Supplement to "Experimenting with the transition rule in dynamic games"

(Quantitative Economics, Vol. 10, No. 4, November 2019, 1825–1849)

EMANUEL VESPA Department of Economics, University of California, Santa Barbara

ALISTAIR J. WILSON
Department of Economics, University of Pittsburgh

This file provides a number of supplementary analyses and tables to the main paper.

TABLE S.I. Unique MPE in an endogenous game.

Player i/j	M_{DD}	M_{CD}	M_{DC}	M_{CC}	
M_{DD}	SPE	Player j deviates to D in low	Player j deviates to D in high	Player j deviates to D in low	
M_{CD}	-	Either player deviates to D in low	Player i deviates to D in low	Player j deviates to D in low	
M_{DC}	-	-	Either player deviates to D in high	Either player deviates to D in high	
M_{CC}	_	-	_	Either player deviates to D in high	

Table S.II. Initial cooperation rates.

		Easy		Difficult			
State	Static	Exog.	Endog.	Static	Exog.	Endog.	
		I	nitial cooperation	n (all supergames	s)		
Low	0.726	0.719	0.822	0.602	0.591	0.841	
	(0.049)	(0.057)	(0.053)	(0.061)	(0.061)	(0.042)	
High	0.676	0.552	0.834	0.356	0.316	0.678	
	(0.060)	(0.053)	(0.54)	(0.055)	(0.053)	(0.062)	
		Init	tial cooperation (last five supergan	nes)		
Low	0.736	0.733	0.824	0.558	0.610	0.886	
	(0.062)	(0.063)	(0.057)	(0.076)	(0.069)	(0.047)	
High	0.692	0.510	0.800	0.300	0.302	0.653	
	(0.067)	(0.070)	(0.066)	(0.064)	(0.063)	(0.065)	

Note: The initial cooperation rate captures the frequency of C choices in each state using the first choice a subjects make in that state within the supergame. In the case of the low state, only period-one choices are included.

Table S.III. Aggregate cooperation (last five supergames).

		Unweighted		State-Matched			
	Par	am.		Param.			
Transition	Easy	Diff.	Δ_{Ψ}	Easy	Diff.		
Static	0.604	0.351	-0.252	0.595	0.319		
	(0.049)	(0.044)	(0.065)	(0.050)	(0.042)		
Exogenous	0.561	0.383	-0.177	0.548	0.357		
-	(0.049)	(0.047)	(0.067)	(0.050)	(0.047)		
Endogenous	0.633	0.613	-0.020	0.633	0.613		
	(0.046)	(0.035)	(0.058)	(0.046)	(0.035)		

Note: Coefficients in the first two data columns (and standard errors accounting for 252 subject clusters) are recovered from a linear probability model with six treatment-dummy regressors. Coefficients in the state-weighted column are derived from a similar model with the following set of mutually exclusive dummy variables: (i) a treatment dummies for the two *Endogenous* treatments, with coefficients representing $\Pr\{C|V_X\}$; and (ii) treatment-state-period dummies for the exogenous treatments, with coefficients representing $\Pr\{C|t,\theta,\Psi_X\}$. Reported coefficients for the *Exogenous* and *Static* treatments reflect the weighted sum $Q(\Psi_X)$ across the relevant treatment-state-period coefficient to correct for differing state selection.

Table S.IV. P-values of hypothesis tests between initial cooperation rates (last five supergames).

	$S_L^{ m Esy}$	$\mathcal{S}_L^{ ext{Dif}}$	$S_H^{ m Esy}$	$S_H^{ m Dif}$	Ex_L^{Esy}	Ex_L^{Dif}	Ex_H^{Esy}	Ex_H^{Dif}	En_L^{Esy}	$En_L^{ m Dif}$	En_H^{Esy}	$En_H^{ m Dif}$
S_L^{Esy}	_	0.072	0.528	0.000	0.977	0.176	0.017	0.000	0.301	0.056	0.480	0.358
$S_L^{ m Dif}$	_	_	0.187	0.001	0.078	0.619	0.642	0.010	0.006	0.000	0.017	0.345
S_H^{Esy}	_	_	_	0.000	0.656	0.391	0.061	0.000	0.137	0.019	0.253	0.673
S_H^{Dif}	_	_	_	_	0.000	0.001	0.028	0.983	0.000	0.000	0.000	0.000
Ex_L^{Esy}	_	_	_	_	_	0.187	0.000	0.000	0.289	0.053	0.465	0.375
Ex_I^{Dif}	_	_	_	-	_	_	0.313	0.000	0.018	0.001	0.047	0.648
Ex_H^{Esy}	_	_	-	-	_	_	_	0.028	0.001	0.000	0.003	0.136
Ex_H^{Dif}	_	_	_	_	_	_	_	_	0.000	0.000	0.000	0.000
$En_I^{\rm Esy}$	_	_	_	_	_	_	_	_	_	0.405	0.784	0.050
En_L^{Dif}	_	_	_	_	_	_	_	_	_	_	0.290	0.004
En_H^{Esy}	_	_	_	_	_	_	_	_	_	_	_	0.113
En_H^{Dif}	_	-	_	_	_	_	_	_	_	_	_	_

Note: To compute these p-values, we first run a regression in which the unit of observation is the choice a subject makes in a period of a supergame. The sample is constrained to the last five supergames and to periods in which the subject makes the first choice in each state. The dependent variable takes value 1 if the subject decided to cooperate and 0 otherwise. The right-hand side includes a fully saturated set of dummies that account for differences in cooperation rates across three dimensions: the treatment (*Easy-Endog, Easy-Exog, Easy-Static, Easy-Exog, Easy-Ex* There is one row per (initial-cooperation rate) coefficient estimate and one column per (initial-cooperation rate) coefficient, where notation is as follows. S, Ex, and En capture whether the coefficient corresponds to a static, exogenous, or endogenous treatment, respectively. The superscript (Esy, Dif) identifies if the coefficient corresponds to a easy or difficult parameterization, respectively. The subscript (L, H) identifies if the coefficient corresponds to behavior in the low or high state, respectively. For example, En_L^{Diff} corresponds to the coefficient estimated for $Diff\text{-}Endog \times \text{Low State}$.

TABLE S.V. Common sequences of actions as percent of histories (last five supergames).

Treatment	Five or more observed supergames							
Easy-Endog	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	CC, DC , DC , DD , DC	DC, DC, DD, DD, DD				
	37.1	10.5	6.7	4.8				
Diff-Endog	CC, CC, CC, CC, CC	CC, DC , DD , DC, DD	CC, CC, CC, CC, DC	CC, DC , DD , DD, DD				
	20.0	6.7	5.7	4.8				
Easy-Exog	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD					
	36.2	20.0	5.7					
Diff-Exog	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD	CC, CC, CC, CC, CC	DC, DC, DD, DD, DD				
	22.9	18.1	18.1	4.8				
Easy-Static (low)	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DC, DC, DD, DD, DD					
	50.9	18.9	9.4					
Diff-Static (low)	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD	DC, DC, DD, DD, DD				
	25.0	20.0	13.3	11.7				
Easy-Static (high)	CC, CC, CC, CC, CC	DC, DD, DD, DD, DD	DD, DD, DD, DD, DD					
	42.3	25.0	9.6					
Diff-Static (high)	DD, DD, DD, DD, DD	DC, DD, DD, DD, DD						
	46.7	22.2						

Note: In endogenous and static-transition treatments, high-state action pairs are displayed in bold face.

4 Vespa and Wilson

Supplementary Material

Co-editor Rosa L. Matzkin handled this manuscript.

Manuscript received 9 March, 2016; final version accepted 29 March, 2019; available online 10 April, 2019.