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Appendix A: Residual variance of communication

Residual variances under MIE can be computed analytically. If γ ∈ (0�1), it is shown in
Alonso, Dessein, and Matouschek (2008) that the residual variance of communication
in MIE under decentralization is given by

E
[(
θi −E[θi|mi]

)2] = 1
12 + 9γ

if i = 1�2� (A.1)

Under centralization, the residual variance of communication is given by

E
[(
θi −E[θi|mi]

)2] = γ

9 + 12γ
if i = 1�2� (A.2)

Figure S.1 plots the residual variance of communication in MIE.
Note that when coordination is irrelevant (γ = 0), it is an equilibrium to tell the truth

about one’s state and set d1 equal to θ1 and d2 equal to θ2. This is true in both the cen-
tralized and the decentralized game. Because the residual variance of communication in
the truth-telling equilibrium is equal to zero, the residual variance under centralization
exhibits a discontinuity at γ = 0. Both residual variances also exhibit a discontinuity at
γ = 1 in MIE, because truth-telling can be sustained in equilibrium when coordination
is the only relevant task, given that private information has no value. In principle, these
discontinuities may be behaviorally relevant. For example, it could be that when γ is low
the players decide to play the game ignoring coordination, in which case full revelation
is an equilibrium. This, however, is not observed in our data.

Appendix B: Predictions about normalized coordination and adaptation

losses

Let CLk = E[(dk1 − dk2 )
2], k ∈ {C�D}, denote the normalized coordination loss. Sim-

ilarly, ALi
k = E[(dki − θki )

2], k ∈ {C�D}, denotes the normalized adaptation loss for
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Figure S.1. Predicted communication quality as a function of γ.

an arbitrary agent i, which is symmetric between agents. We have the following re-

sults.

Proposition 1. For any γ ∈ (0�1), CLC < CLD. Also, dCLC
dγ < 0 and dCLD

dγ < 0.

Proof. From the proof of Proposition 2 in Alonso, Dessein, and Matouschek (2008,

p. 174), it follows that

CLC = 2
(1 − γ)2

(1 + 3γ)2
1 + γ

3 + 4γ
� (B.1)

CLD = 2(1 − γ)2
[

1
3

− γ
2

(1 + γ)(4 + 3γ)

]
� (B.2)

Differentiating (B.1) and (B.2) with respect to γ gives

dCLC

dγ
= −2

(1 + γ)
(
19 + 32γ + 5γ2)

(1 + 3γ)3(3 + 4γ)2 < 0� (B.3)

dCLD

dγ
= −2

3
(1 − γ)

(
56 + 64γ + 17γ2 + 3γ3)
(1 + γ)2(4 + 3γ)2 < 0� (B.4)

Finally, CLC < CLD, for any γ ∈ (0�1), follows from Lemma 2 in Alonso, Dessein, and

Matouschek (2008).
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Proposition 2. For any γ ∈ (0�1), ALi
C > ALi

D. Also,
dALi

C
dγ > 0 and

dALi
D

dγ > 0.

Proof. From the proof of Proposition 2 in Alonso, Dessein, and Matouschek (2008,
p. 174), it follows again that

ALi
C = 1

3
− (1 + γ)

(
1 + 6γ + γ2)

(1 + 3γ)2(3 + 4γ)
� (B.5)

ALi
D = 7γ2 + γ3

3(1 + γ)(4 + 3γ)
� (B.6)

Differentiating (B.5) and (B.6) with respect to γ gives

dALi
C

dγ
= 1 + 57γ + 131γ2 + 67γ3

(1 + 3γ)3(3 + 4γ)2 > 0� (B.7)

dALi
D

dγ
= γ

3
56 + 61γ + 14γ2 + 3γ3

(1 + γ)2(4 + 3γ)2 > 0� (B.8)

Finally, ALi
C > ALi

D, for any γ ∈ (0�1), follows from Lemma 2 in Alonso, Dessein, and
Matouschek (2008).

Appendix C: Additional analysis of communication quality

Tables S.1–S.6 provide several robustness checks of the results in Table 2 of the main
text. The analysis is carried out for the first five periods of the experiment in Table S.1
and the last 5 periods of the experiment in Table S.2. Table S.3 repeats the analysis in
Table 2 of the main text using messages instead of guesses to form a measure of residual
variance, providing a robustness check that does not rely on our belief elicitation pro-
cedure. Table S.4 repeats it excluding observations in which (i) the state and message
are of opposite signs or (ii) the guess and message are of opposite signs, which might
be interpreted as mistakes. Because entering a minus sign requires effort, an arguably
more plausible interpretation is that only observations where a minus sign is forgotten

Table S.1. Treatment effects on residual variance of commu-
nication (periods 1–5).

Decentralized Centralized

γ = 0�25 0�4954 > 0�2643
(0�1172) (0�0912)

∨ ∧
γ = 0�75 0�2815 < 0�670

(0�0448) (0�2997)

Observations 1400

Note: Session-clustered standard errors in parentheses.
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Table S.2. Treatment effects on residual variance of commu-
nication (periods 11–15).

Decentralized Centralized

γ = 0�25 0�3701 > 0�1158
(0�0722) (0�0499)

∨ ∧
γ = 0�75 0�1914 < 0�2368

(0�1314) (0�1652)

Note: Session-clustered standard errors in parentheses.

represent mistakes. Following this interpretation, Table S.5 repeats the analysis exclud-
ing observations in which (i) the state is negative and the message is positive and (ii)
the message is negative and the guess is positive, that is, where one of the players “for-
gets” a minus sign. Table S.6 runs the regression in Table 2 of the main text clustering
the standard errors at the level of the message receiver (the subject making the guess).
This controls for heterogeneity at the subject level without allowing for between-subject
correlations.

While we find no significant treatment effects in periods 1–5 of the experiment (Ta-
ble S.1), this observation should be taken with caution as the effects of time on commu-
nication quality are not significant.1 Tables S.2–S.6 suggest that the quality of commu-
nication was significantly higher under centralization if and only if the importance of
coordination was low, as predicted by MIE and reported in the main text.

C.1 Analysis of heterogeneity

To study whether the effects regarding communication quality were reflected in distri-
butions at the level of individual subjects, we generate subject “types” as follows. For

Table S.3. Treatment effects on residual variance of commu-
nication (messages as guesses).

Decentralized Centralized

γ = 0�25 0�2979 > 0�1036
(0�0539) (0�054)

∨ ∧
γ = 0�75 0�1458 < 0�2484

(0�070) (0�149)

Note: Session-clustered standard errors in parentheses.

1Specifically, we can run a single regression using observations in periods 1–5 and 11–15 of the exper-
iment. If we introduce treatment dummies, a dummy for observations in later periods, and interactions
between the treatment dummies and the late observations dummy, we find that none of the interactions
are significant.
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Table S.4. Treatment effects on residual variance of commu-
nication (excluding observations with sign switches).

Decentralized Centralized

γ = 0�25 0�091 > 0�0336
(0�022) (0�0077)

∨ ∧
γ = 0�75 0�104 < 0�0956

(0�0415) (0�0461)

Note: Session-clustered standard errors in parentheses.

each subject i, we take the observations where the subject was in the role of Player 1 and
Player 2 and average out the distances |Sent_Messageit − θit | between the subject’s mes-
sages and states. We identify the resulting variable with the subject’s “lying type.”2 Notice
that the lying type is equal to zero if the subject’s messages always corresponded to the
states. Similarly, averaging out the distances |Guessit − Received_Messageit | between the
subjects’ elicited posterior beliefs and received messages, we obtain the subject’s “mis-
trust type.” A subject whose guesses always corresponded to the received messages had
a mistrust type of zero.

We find that 75 subjects had a lying type of zero, 64 subjects had a mistrust type
of zero, and 49 subjects had a lying type of zero and a mistrust type of zero.3 That is,
the vast majority of subjects had nonzero lying and mistrust types. A more detailed de-
scription of the data is provided in Table S.7, which suggests several observations that
can be related to our analysis of residual variance. First, we find that the mean and me-
dian lying type was smaller in Centralized-Low than Decentralized-Low (P < 0�01 in a
Wilcoxon rank-sum test).4 Second, the difference between mistrust types in Centralized-

Table S.5. Treatment effects on residual variance of commu-
nication (excluding observations with missing minus sign).

Decentralized Centralized

γ = 0�25 0�2387 > 0�0735
(0�0237) (0�0264)

∨ ∧
γ = 0�75 0�1163 < 0�172

(0�0376) (0�0906)

Note: Session-clustered standard errors in parentheses.

2As noted by a referee, these labels may be somewhat misleading. A subject might send a message as a
recommendation of what action to take, in which case the receivers’ guesses might not correspond to the
messages. While our analysis below uses the “lying” and “mistrust” terminology, a careful reader will keep
this caveat in mind.

3The correlation between the lying and mistrust types has a coefficient of ρ = 0�737.
4We use the Wilcoxon rank-sum test in all statistical comparisons in this paragraph.
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Table S.6. Treatment effects on residual variance of commu-
nication (errors clustered by receiver).

Decentralized Centralized

γ = 0�25 0�4272 > 0�1796
(0�0686) (0�0327)

∨ ∧
γ = 0�75 0�2164 < 0�3971

(0�0315) (0�066)

Note: Session-clustered standard errors in parentheses.

Low and Decentralized-Low was small and not significant (P = 0�889). That is, the lying
type was smaller under centralization and the effect of centralization on the mistrust
types was not significant when the importance of coordination was low, which is con-
sistent with Prediction 1 and the results on residual variance. An increase in γ led to
more lying types (P < 0�05) and more mistrust types (P < 0�01) under centralization.
This is also consistent with the residual variance results, as they show no overall ef-
fect of γ in the centralized treatments. Inconsistent with the results on residual vari-
ance, γ had little effect on subjects’ types under decentralization (P = 0�735 for lying
and P = 0�37 for mistrust types). The discrepancy can be reconciled by the observa-
tion that when the quality of communication is measured in terms of standard devia-
tions |Other_Stateit − Guessit |, the significant difference between these two decentral-
ized treatments disappears. This suggests that the observed difference in residual vari-
ances of Decentralized-Low and Decentralized-High was driven by relatively large errors
in guesses.

Table S.8, Table S.9, Table S.10, and Table S.11 provide some robustness checks of
the results reported in Table S.7. In Table S.8, we exclude observations with particularly
large distances between states and messages and messages and guesses when comput-

Table S.7. Summary statistics of lying and mistrust types.

Mean Standard Deviation Median Observations

(a) Lying types
Decentralized-Low 0�108 0�203 0�022 48
Decentralized-High 0�078 0�127 0�03 56
Centralized-Low 0�038 0�085 0�003 66
Centralized-High 0�088 0�157 0�011 68

(b) Mistrust types
Decentralized-Low 0�058 0�147 0�008 48
Decentralized-High 0�045 0�08 0�015 56
Centralized-Low 0�045 0�085 0�008 66
Centralized-High 0�08 0�115 0�043 68
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Table S.8. Summary statistics of lying and mistrust types (excluding ob-
servations with sign switches).

Mean Standard Deviation Median Observations

(a) Lying types
Decentralized-Low 0�059 0�139 0�01 48
Decentralized-High 0�06 0�1 0�015 56
Centralized-Low 0�013 0�04 0�001 66
Centralized-High 0�043 0�073 0�011 68

(b) Mistrust types
Decentralized-Low 0�034 0�11 0�007 48
Decentralized-High 0�032 0�053 0�013 56
Centralized-Low 0�026 0�044 0�007 66
Centralized-High 0�052 0�081 0�025 68

ing players’ types. Specifically, when computing lying types, we exclude observations in
which the messages were of opposite sign of the associated states, and when computing
mistrust types, we exclude observations in which the guesses were of opposite sign of
the messages. In Table S.9, we exclude observations in which the state was negative and
the message positive or the message was negative and the guess positive. In Table S.10,
we compute lying and mistrust types using observations from the last five periods in
the experiment, which can be viewed as a robustness check for learning effects. In Ta-
ble S.11, we compute the fractions of lying messages and mistrusting guesses in each of
the treatments.5

Table S.9. Summary statistics of lying and mistrust types (excluding ob-
servations with omitted minus signs).

Mean Standard Deviation Median Observations

(a) Lying types
Decentralized-Low 0�086 0�172 0�016 48
Decentralized-High 0�062 0�1 0�017 56
Centralized-Low 0�023 0�062 0�002 66
Centralized-High 0�053 0�089 0�011 68

(b) Mistrust types
Decentralized-Low 0�04 0�12 0�007 48
Decentralized-High 0�033 0�057 0�013 56
Centralized-Low 0�029 0�049 0�007 66
Centralized-High 0�064 0�093 0�03 68

5As before, a message is defined as lying if it is not equal to the state, while a guess is defined as mistrust-
ing if it is not equal to the message. For each subject, we first averaged each dummy variable to compute
the subject’s percentage of lying messages and mistrusting guesses. The table reports summary statistics of
these subject-level percentages by treatment.
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Table S.10. Summary statistics of lying and mistrust types (types esti-
mated from observations in the last five periods of the experiment).

Mean Standard Deviation Median Observations

(a) Lying types
Decentralized-Low 0�105 0�267 0 48
Decentralized-High 0�076 0�174 0 56
Centralized-Low 0�022 0�08 0 66
Centralized-High 0�058 0�162 0 68

(b) Mistrust types
Decentralized-Low 0�032 0�12 0 48
Decentralized-High 0�027 0�094 0 56
Centralized-Low 0�033 0�087 0 66
Centralized-High 0�045 0�105 0 68

Most of the statistical comparisons using the types in Tables S.8–S.10 give qualita-
tively similar results to those reported in Table S.7. For instance, the lying types are sig-
nificantly smaller in Centralized-Low than Decentralized-Low (P < 0�01 leaving out ob-
servations with sign switches or omitted minus signs). While the rank-sum test shows no
significant difference for later observations (P = 0�1645), the difference is significant ac-
cording to a t-test (P < 0�05). Similarly, in a regression with treatment dummy variables
and session-clustered errors, the coefficient on Centralized-Low is negative and strongly
significant for observations in the last five periods (P < 0�001). The fraction of lying mes-
sages is also smaller in Centralized-Low than Decentralized low, although the difference
is only marginally significant in this case (P < 0�1). As in Table S.7, the mistrust types in
Centralized-Low and Decentralized-Low are not significantly different (P = 0�784 leav-
ing out sign switches, P = 0�7709 leaving out omitted minus signs, and P = 0�813 for
later observations). The fractions of mistrusting messages also do not significantly differ
across these two treatments (P = 0�9675).

Table S.11. Percentages of lying messages and mistrusting guesses.

Mean Standard Deviation Median Observations

(a) Lying messages
Decentralized-Low 0�375 0�352 0�267 48
Decentralized-High 0�39 0�381 0�333 56
Centralized-Low 0�284 0�366 0�091 66
Centralized-High 0�415 0�396 0�273 68

(b) Mistrusting guesses
Decentralized-Low 0�294 0�342 0�1 48
Decentralized-High 0�306 0�340 0�133 56
Centralized-Low 0�301 0�347 0�13 66
Centralized-High 0�396 0�361 0�317 68
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Appendix D: Robustness checks for Section 3.2

For our econometric analysis of learning, we use the following model under centraliza-
tion:

Decisionit = (1 +β0 +β1Highit +β2t +β3tHighit)

(1 + 3 ∗ (β0 +β1Highit +β2t +β3tHighit)

× Guess_of _the_Stateit

+ 2 ∗ (β0 +β1Highit +β2t +β3tHighit)

(1 + 3 ∗ (β0 +β1Highit +β2t +β3tHighit)

× Guess_of _the_Other_Stateit + εit

and the following under decentralization:

Decisionit = (1 −β0 −β1Highit −β2t −β3tHighit)× θit

+ (β0 +β1Highit +β2t +β3tHighit)
2

(1 +β0 +β1Highit +β2t +β3tHighit)
× Guess_of _the_Stateit

+ (β0 +β1Highit +β3t +β4tHighit)

(1 +β0 +β1Highit +β2t +β3tHighit)

× Guess_of _the_Other_Stateit + εit �

In the baseline case (Table 5 in the main text), the NLS models are identical with the
exception that the coefficients involving time (β2 and β3) are omitted. The coefficient
estimates and standard errors of the model with learning are reported in Table S.12. The
main text describes the results.

The remaining tables in this part of the appendix report the results of robustness
checks described in Section 3.2 of the main text. Table S.13 is identical to Table 3 in
the main text, with the exception that standard errors are clustered at the level of the
decision maker (as opposed to session). The models underlying Table S.14, Table S.15,
and Table S.16 are described in the last paragraph of Section 3.2 of the main text.

D.1 Analysis of heterogeneity

Table S.17 compares the within-treatment means and medians of the estimated γ’s
to their predicted values. We find that the mean in Decentralized-Low is significantly
greater than predicted (P < 0�001 using a t-test), although the median is not (P = 0�685).6

While the mean in Decentralized-High is not significantly greater than 0�75 (P = 0�291
using a t-test), the median is (P < 0�001). Both of the means are significantly lower than
predicted in Centralized-Low and Centralized-High (P < 0�001 in both cases); while the
median is significantly lower than predicted in Centralized-Low (P < 0�001), but not in

6When comparing the medians to the associated predicted values, we run a quantile regression for each
treatment. The dependent variable is the subject-level estimate of γ, and the single independent variable is
a constant. We then compare the estimated constant to its predicted value using an F-test.
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Table S.12. Effects of learning on distortions of decision rules
(see Appendix D for the coefficient legend).

Decentralization Centralization

β0 0�684 0�0131
(0�0883) (0�00632)

β1 0�189 0�252
(0�139) (0�115)

β2 −0�0209 0�00193
(0�00179) (0�00162)

β3 0�0298 0�00979
(0�0123) (0�00983)

Observations 1560 1320

Note: Session-clustered standard errors in parentheses.

Centralized-High (P = 0�523). The broad message of these findings is that Main Result 1

is reflected not only in overall averages, but also in distributions at the level of individual

subjects.

Table S.13. Estimated decision weights (standard errors clus-
tered by subject making the decision).

Decentralized Centralized

High (dummy = 1 if γ = 3
4 ) −0�00735 0�0149

(0�0181) (0�0166)

State (θ) 0�493
(0�0427)

Guess of the state 0�162 0�946
(0�0396) (0�0130)

Guess of the other state 0�345 0�0544
(0�0297) (0�0130)

θ × High −0�270
(0�0688)

Guess of the state × High 0�0576 −0�290
(0�0710) (0�0339)

Guess of the other state × High 0�213 0�290
(0�0394) (0�0339)

Constant 0�0197 0�00615
(0�0138) (0�00956)

Observations 1560 1320

Note: Subject-clustered standard errors in parentheses.
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Table S.14. Estimated distortions of γ (messages as proxies
for beliefs).

Decentralized Centralized

γ̂ when γ = 0�25 0�538 > 0�25 0�055 < 0�25
(0�128) (0�012)

γ̂ when γ = 0�75 1�048 > 0�75 0�414 < 0�75
(0�057) (0�052)

Observations 1560 1320

Note: Standard errors in parentheses.

Table S.15. Estimated distortions of γ under centralization
(estimated with beliefs of Player 1 and Player 2).

Centralized

γ̂ when γ = 0�25 0�052 < 0�25
(0�012)

γ̂ when γ = 0�75 0�443 < 0�75
(0�072)

Observations 1320

Note: Session-clustered standard errors in parentheses.

Table S.16. Estimated distortions of γ (subject-clustered er-
rors).

Decentralized Centralized

γ̂ when γ = 0�25 0�517 > 0�25 0�0296 < 0�25
(0�081) (0�008)

γ̂ when γ = 0�75 0�9396 > 0�75 0�356 < 0�75
(0�07) (0�067)

Observations 1560 1320

Note: Subject-clustered standard errors in parentheses.

Table S.17. Distributions of individual-level estimates of γ.

Mean Standard Deviation Median Observations

Decentralized-Low 0�446 0�377 0�278 48
Decentralized-High 0�792 0�296 0�983 56
Centralized-Low 0�07 0�15 0�004 66
Centralized-High 0�542 0�436 0�638 68
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Appendix E: Omitted figures and tables

Figure S.2. Points lost in the experiment by subject.

Table S.18. Degrees of adaptation and coordination in differ-
ent experimental treatments. The decentralized-low treatment
serves as a baseline.

(1) (2)
(d1 − d2)

2 (di − θi)
2

Decentralized-High −0�0935 0�117
(0�0532) (0�0428)

Centralized-Low 0�204 −0�145
(0�0700) (0�0402)

Centralized-High −0�0596 0�0590
(0�0469) (0�0741)

Constant 0�319 0�220
(0�0424) (0�0369)

Observations 1440 2880

Note: Session-clustered standard errors in parentheses.

Appendix F: Additional analysis of payoffs

Recall that theory predicts expected payoffs under centralization to be higher for both
chosen values of γ. The first column of Table S.19 presents the results of a regression in
which the total points lost by Player 1 and Player 2 from the decisions made in the game7

7That is, excluding the points lost for guessing.
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Table S.19. Payoff analysis. Lobserved = Lobserved
1 + Lobserved

2 denotes the total points lost by

Player 1 and Player 2 in the game due to the decisions, Lreported beliefs = L
reported beliefs
1 +

L
reported beliefs
2 denotes the points that the team would have lost if the decision makers employed

equilibrium decision rules with their reported (elicited) beliefs, and LMIE =LMIE
1 +LMIE

2 denotes
the total points that Player 1 and Player 2 would have lost if they employed equilibrium decision
rules and formed beliefs according to MIE.

Total points lost Relative payoff loss Relative payoff loss
from the decisions from distortions from communication

Lobserved Lobserved −Lreported beliefs Lreported beliefs −LMIE

Decentralized-High 0�0667 0�346 −0�0116
(0�281) (0�283) (0�0260)

Centralized-Low −0�463 −0�600 0�140
(0�242) (0�163) (0�143)

Centralized-High 0�154 0�353 0�101
(0�260) (0�214) (0�0893)

Constant 1�959 1�268 0�0303
(0�171) (0�157) (0�0120)

Observations 1440 1440 1440

Note: Session-clustered standard errors in parentheses.

are regressed against the treatment indicator variables.8 The results show that losses
are marginally lower under centralization than decentralization when γ is low (P < 0�1).
They are also lower under decentralization when γ is high, although the difference in
this case is not statistically significant (P = 0�7738 in a test of equality of coefficients
on Decentralized-High and Centralized-High). These results are not consistent with the
MIE predictions, which is not surprising given the deviations from equilibrium behavior
documented above. The fact that γ is underweighted under centralization makes a prin-
cipal’s comparative advantage in coordination weaker. Similarly, that γ is overweighted
under decentralization weakens each agent’s comparative advantage in adaptation.

In the second column of Table S.19, we regress the relative losses due to distortions
against the treatment dummies. The estimates show that these losses were positive and
significant in each of our treatments (P < 0�001 in every treatment). The negative coef-
ficient on Centralized-Low (P < 0�01) suggests that the relative losses due to distortions
were lower in this treatment than in the others. Recall that subjects in the centralized
treatments overweighted the importance of adaptation. The negative coefficient sug-
gests that in Centralized-Low, where coordination was not important, the overweight-
ing of adaptation was less costly than it was in Centralized-High. It was also less costly
than the underweighting of adaptation in the decentralized treatments. This is because
in Decentralized-High—where the underweighting of adaptation was less costly than
in Decentralized-Low—the subjects still found it difficult to coordinate their decisions.
Table S.20 shows that the relative loss due to miscoordination is higher in Decentralized-
High than in Centralized-Low (see also Appendix G).

8Only subjects in the roles of Player 1 and Player 2 are used in this regression to avoid double-counting.
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Table S.20. Decompositions of adaptation and coordination losses into a component due to
distortions of decision weights and a component due to miscommunication. The standard er-
rors are obtained by regressing each of the variables (e.g., relative coordination loss) against the
treatment dummies.

D-L D-H C-L C-H

Relative coordination loss 0�125 1�236 0�810 1�533
(0�081) (0�191) (0�111) (0�120)

Relative coordination loss (distortions) 0�111 1�233 0�826 1�533
(0�070) (0�200) (0�097) (0�120)

Relative coordination loss (miscommunication) 0�014 0�003 −0�017 0�0001
(0�014) (0�012) (0�016) (0�001)

Relative adaptation loss 1�173 0�397 0�028 0�219
(0�220) (0�038) (0�082) (0�134)

Relative adaptation loss (distortions) 1�157 0�381 −0�158 0�088
(0�221) (0�042) (0�106) (0�050)

Relative adaptation loss (miscommunication) 0�016 0�016 0�187 0�131
(0�002) (0�012) (0�134) (0�088)

Observations 360 420 330 330

Note: Session-clustered standard errors in parentheses.

The third column of Table S.19 reports the results of a regression of subjects’ relative
miscommunication losses against the treatment indicator variables. These results show
that these losses were positive and significant in Decentralized-Low (P < 0�05 on the
constant term) and not in any other treatment (P > 0�1 on the test of the constant plus
any of the indicator variables being equal to zero). This is consistent with the results on
communication quality reported in Section 3.1 of the main text, where we find that the
quality of communication is significantly different from MIE in the Decentralized-Low
treatment.

Appendix G: Additional analysis of adaptation and coordination losses

Table S.20 breaks point losses of teams in different treatments of the experiment into
miscomunication and miscoordination components. Thus, for example, the miscom-
munication component of the relative coordination loss in the treatments with γ = 3

4 is
calculated as9

2∑
i=1

{
3 ∗ ((

d
reported beliefs
i − d

reported beliefs
−i

)2 − (
dMIE
i − dMIE

−i

)2)}
�

Note that this table can be used to recover the overall relative losses due to distortions
or communication reported in Table S.19. For example, to compute the relative losses

9The sum is necessary in the expression because the analysis of the decompositions is carried out in
terms of team rather than individual payoffs.
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due to distortions in Decentralized-Low (Table S.19, constant term in the second col-
umn), add the relative coordination losses due to distortions in Decentralized-Low (Ta-
ble S.20, first column, second row) to the relative adaptation losses due to distortions in
Decentralized-Low (Table S.20, first column, fifth row).

Recall from the second column of Table S.19 that the relative payoff losses due to dis-
tortions were smaller in Centralized-Low than in any of the other treatments. Table S.20
provides evidence for our conjecture that this was driven by coordination losses being
smaller in Centralized-Low (where the overweighting of adaptation was less costly) than
in Centralized-High. Thus, while the coordination loss due to distortions was greater in
Centralized-High than in Centralized-Low, distortions in decision rules did not lead to
adaptation losses under centralization (all P > 0�1). The table also provides additional
evidence for Main Result 2: very little of the significant loss in payoffs is due to miscom-
munication. As discussed above, the only treatment showing significant payoff loss due
to miscommunication is Decentralized-Low.

Appendix H: Simulations for risk preferences (centralization)

To accommodate risk-seeking as well as risk-averse preferences, we assume that the de-
cision maker in the experiment has a utility function of the form U(x) = −(−x)α, with
α> 1 leading to risk-averse and α ∈ (0�1) to risk-seeking behavior. Suppose that author-
ity is centralized. Let νi be the principal’s posterior expectation about θi after having
received a message about θi. Suppose that ν̃i ∈ {νi − ε� νi + ε}, with ε > 0, i = 1�2. Let
p = Prob(ν̃i = νi + ε). Then E[ν̃i] = νi + (2p − 1)ε and Var(ν̃i) = 4p(1 − p)ε2. When p is
close to 1

2 , the distribution of νi is a proxy for a uniform posterior distribution around
the posterior mean νi, as it would be in communication equilibria with risk-neutrality.10

The parameter ε can be interpreted as a measure of uncertainty about the posterior ex-
pectation νi. The problem of the principal can therefore be written as

max
d1�d2∈R

−E
[(
(1 − γ)(d1 − ν̃1)

2 + (1 − γ)(d2 − ν̃2)
2 + 2γ(d1 − d2)

2)α]
� (H.1)

If the principal were risk-neutral (α = 1), she would choose

di = 1 + γ

1 + 3γ
E[ν̃i] + 2γ

1 + 3γ
E[ν̃j]� i = 1�2� i �= j� (H.2)

Note that the decision rules are exactly those used by the principal in our baseline
model.

We perform simulations to calculate the average distance between the principal’s
decisions, |d1 − d2|, for different values of ν1, ν2, α, and ε.11 In the simulations, we as-
sume that p = 1

2
12 and consider νi ∈ [−0�6�0�6].13 Figure S.3 shows the simulated aver-

age distances D(ε�α) ≡ Mean(ν1�ν2){|dRS
1 − dRS

2 | − |dRN
1 − dRN

2 |} for different values of α

10Although communication equilibria could have different features under risk aversion, we make this
distributional assumption for tractability.

11We set the grid sizes to 0�05 for νi , i = 1�2, 0�02 for ε.
12Robustness checks suggest that the magnitude of distortions is little affected by relaxing it.
13The values of ν1 and ν2 are chosen in such a way that max{|νi − ε|� |νi + ε|} ≤ 1, i = 1�2, given the simu-

lated values of ε ∈ [0�0�4]. Varying ε over a smaller interval leads to smaller distortions.
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(a) Comparison of average distances between optimal risk-seeking and risk-neutral
decisions, |dRS

1 − dRS
2 | − |dRN

1 − dRN
2 | for γ = 1

4 . Each point corresponds to the average
over (ν1� ν2) ∈ [−0�6�0�6]2 with a grid of size 0�05. The grid size for α is 0�05.

(b) Comparison of average distances between optimal risk-seeking and risk-neutral
decisions, |dRS

1 − dRS
2 | − |dRN

1 − dRN
2 | for γ = 3

4 . Each point corresponds to the average
over (ν1� ν2) ∈ [−0�6�0�6]2 with a grid of size 0�05. The grid size for α is 0�05.

Figure S.3. The effect of risk-seeking on coordination behavior in centralized coordination
games.
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and ε, with α ∈ [0�1].14 The figure shows that the simulated average distance is negative,
which means that the decisions are on average more coordinated under risk-seeking
than risk-neutrality. If we average over ε ∈ [0�0�4], and α ∈ [0�1], we obtain that the av-
erage distance between decisions under risk-seeking is −0�04 for γ = 1/4 and −0�01 for
γ = 3/4.15 In the experiment, the average absolute distance between the observed and
risk-neutral equilibrium decisions, |dObserved

1 −dObserved
2 | − |dEq

1 −d
Eq
2 |, is approximately

0�29 for Centralized-Low and 0�22 for Centralized-High. Based on these simulation re-
sults, we conclude that risk-seeking cannot explain the over-coordination observed in
the centralized treatments in the data.

Simulation results for risk-averse preferences are shown in Figure S.4. The figure
gives us a rough idea of how much risk aversion is necessary to generate distortions of
the order observed in the experiment. With α ∈ [1�5],16 we obtain that the average dif-
ference in the distances is 0�05 for γ = 1/4 and 0�01 for γ = 3/4. Although the simulated
distortions go in the same direction as what we observe in our data, the magnitudes are
of a different order even with highly unreasonable degrees of risk aversion. For example,
averaging over α ∈ [10�20] only raises the average between distances to 0�098 for γ = 1/4
and 0�029 γ = 3/4. We performed simulations with alternative, standard, utility functions
such as the log and CRRA and obtained similar results. This shows that risk aversion can
partly explain the distortions observed in the centralized treatments with incomplete
information but cannot fully accommodate them.

Appendix I: Simulations for risk preferences (decentralization)

Under decentralization, we can without loss of generality consider the decision problem
of Player 1. Player 1 observes her own local conditions θ1 and needs to make a single
decision without knowing the decision made by Player 2. Let us reformulate the problem
assuming that the decision of Player 2, d̃2, is random from Player 1’s perspective and
could take on the value d2 + ε with probability p, or d2 − ε otherwise, where d2 ∈ (−1�1)
and ε ∈ (0�1 − |d2|). We interpret d2 as the expected decision of Player 2 from Player 1’s
perspective.

Given a risk aversion coefficient α, Player 1’s decision problem can be written as

max
d1∈R

−E
[(
(1 − γ)(d1 − θ1)

2 + γ(d1 − d̃2)
2)α]

� (I.1)

If Player 1 were risk-neutral (α= 1), she would choose

d1 = (1 − γ)θ1 + γE[d̃2]� (I.2)

Note that this decision rule is the same as the one used by Player 1 in the baseline model,
given our interpretation of d2.

14More precisely, we calculate the distance D for each vector (α�ε� ν1� ν2) and, holding α and ε fixed,
average the distances obtained for different values of (ν1� ν2). The grid size for α is set at 0�05.

15We also performed simulations with a larger number of states, namely, {νi − ε� νi − ε
3 � νi + ε

3 � νi + ε},
i = 1�2. We found similar qualitative and quantitative results.

16The grid size for α was increased to 0�1 due to the larger parameter interval.
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(a) Comparison of average distances between optimal risk-averse and risk-neutral
decisions, |dRA

1 − dRA
2 | − |dRN

1 − dRN
2 | for γ = 1

4 . Each point corresponds to the average
over (ν1� ν2) ∈ [−0�6�0�6]2 with a grid of size 0�05.

(b) Comparison of average distances between optimal risk-averse and risk-neutral
decisions, |dRA

1 − dRA
2 | − |dRN

1 − dRN
2 | for γ = 3

4 . Each point corresponds to the average
over (ν1� ν2) ∈ [−0�6�0�6]2 with a grid of size 0�05.

Figure S.4. The effect of risk aversion on coordination behavior in centralized coordination
games.

We perform simulations to calculate the degree of adaptation, |d1 − θ1|, for different
values of θ1, d2, α, and ε. In the simulations, we assume that p = 1

2 and consider values
of θ1 ∈ [−1�1], d2 ∈ [−0�6�0�6], and ε ∈ [0�0�4].17 Figure S.5 shows the simulated average
distances D(ε�α) ≡ Mean(θ1�d2){|dR1 −θ1|− |dRN

1 −θ1|} for different values of α and ε. The
figure shows that the decisions are on average more adapted under risk-seeking than
risk neutrality, and more adapted under risk neutrality than under risk aversion. More
precisely, averaging over ε ∈ [0�0�4] and α ∈ {0�2�0�4�0�6�0�8}, for a risk seeking decision

17The grids for θ1, d2, and ε are 0�01, 0�01, and 0�02, respectively.
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(a) Comparison of average distances between optimal risky and risk neutral level of
adaptation, |dR1 − θ1| − |dRN

1 − θ1| for γ = 1
4 , different attitudes toward risk,

α ∈ {0�2�0�4�0�6�0�8�1�2�3�4�5}, and different values of ε ∈ [0�0�4] with grid of size 0�02.
Each point corresponds to the average over (θ1� d2) ∈ [−1�1] × [−0�6�0�6] with a grid of

size 0�01.

(b) Comparison of average distances between optimal risky and risk neutral level of
adaptation, |dR1 − θ1| − |dRN

1 − θ1| for γ = 3
4 , different attitudes toward risk,

α ∈ {0�2�0�4�0�6�0�8�1�2�3�4�5}, and different values of ε ∈ [0�0�4] with grid of size 0�02.
Each point corresponds to the average over (θ1� d2) ∈ [−1�1] × [−0�6�0�6] with a grid of

size 0�01.

Figure S.5. The effect of attitudes toward risk on the degree of adaptation in decentralized co-
ordination games.

maker, we obtain that the average distances are approximately −0�02 for γ = 1/4, and
−0�05 for γ = 3/4. For degrees of risk aversion in the set {2�3�4�5}, the same average
leads to 0�036 for γ = 1/4, and 0�05 for γ = 3/4. For comparison, the average distance
between decisions and states in the data is approximately 0�128 for γ = 1/4, and 0�10
for γ = 3/4. Thus, risk aversion explains the direction of the observed distortions under
decentralization. It is also provides quantitative benchmarks that are closer to the data
than their counterparts in the centralized case.
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Appendix J: Simulations for ambiguity preferences (centralization)

We now use simulations similar to those described in Appendices H and I to argue that
strategic uncertainty about communication rules combined with ambiguity-aversion
can generate distortions of larger magnitudes than those generated by risk-aversion
alone. Moreover, ambiguity-aversion can generate distortions in the right direction even
with risk-seeking preferences. To see this, assume that the principal solves the following
optimization problem:

max
d1�d2∈R

min
μ∈{(p�1−p)�(1−p�p)}

−Eμ
[(
(1 − γ)(d1 − ν̃1)

2 + (1 − γ)(d2 − ν̃2)
2 + 2γ(d1 − d2)

2)α]
�

Here, μ indexes the principal’s belief system, which specifies beliefs both about ν1 and
about ν2.18

The belief system can be either (p�1 − p) or (1 − p�p). If μ = (p�1 − p), p is the
probability that ν1 is high as well as the probability that ν2 is low.19 If μ = (1 −p�p), then
p is the probability that ν1 is low as well as the probability that ν2 is high. Thus, for any
p �= 1/2, the principal considers two belief systems: one in which the probability that ν1

is high is greater than the probability that ν2 is high, and another in which the probability
that ν2 is high is greater than the probability that ν1 is high. Intuitively, for any (ν1� ν2), the
principal posterior beliefs can take on one of four values: (ν1 − ε� ν2 − ε), (ν1 − ε� ν2 + ε),
(ν1 +ε� ν2 −ε), or (ν1 +ε� ν2 +ε). The principal will use one of two belief systems (p�1−p)

and (1 − p�p) to compute her expected utility. Ambiguity-aversion will make the prin-
cipal select the belief system under which “bad” posteriors—posteriors where beliefs
about ν1 and ν2 are further apart—are more likely. In the simulation, we consider three
possible values for p ∈ {0�1�0�3�0�6}. To complete the description of the simulation, we
assume that both belief systems are equally likely, so that an ambiguity neutral decision
maker will have a posterior belief equal to 1/2 for any of our possible values of p.

Our simulation results with different values of p and α are reported in Figure S.6
in the Appendix. These results show that introducing ambiguity-aversion amplifies the
distortions caused by risk aversion considerably. Thus, even with risk neutrality, that is,
α = 1, we obtain that the average difference in the distances, over our simulated values
of p, is 0�121 for γ = 1/4 and 0�028 for γ = 3/4. Increasing the risk aversion coefficient
to α = 2 increases the average difference in distance to 0�1388 for γ = 1/4 and 0�036 for
γ = 3/4, thus tripling the average distances compared to an ambiguity neutral but risk
averse agent with the same attitudes toward risk. We conclude that reasonable degrees
of risk aversion (i.e., α = 2), coupled with extreme aversion to ambiguity, can account for
16% to 50% of the distortions observed in the data. Moreover, note that when p is either
sufficiently low or sufficiently high, the simulated distortions are quantitatively close to
those for an ambiguity neutral decision maker for values of α in the upper part of the
interval [0�1]. This suggests that ambiguity-aversion can generate a reasonable fit to the
data even with moderate risk-seeking preferences.

18Recall that we assume ν1 and ν2 are independent.
19Formally, p= Prob(ν̃1 = ν1 + ε) and p= Prob(ν̃1 = ν1 − ε).
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(a) Comparison of average distances between optimal maxmin and
risk/ambiguity-neutral decisions, |dAA

1 − dAA
2 | − |dRN

1 − dRN
2 | for γ = 1

4 , different degrees
of risk aversion α, and different distribution parameters p. Each point corresponds to

the average over (ν1� ν2) ∈ [−0�6�0�6]2 with a grid of size 0�05. The grid size for the
decisions is 0�05, and the value of ε= 0�4.

(b) Comparison of average distances between optimal maxmin and
risk/ambiguity-neutral decisions, |dAA

1 − dAA
2 | − |dRN

1 − dRN
2 | for γ = 3

4 , different degrees
of risk aversion α, and different distribution parameters p. Each point corresponds to

the average over (ν1� ν2) ∈ [−0�6�0�6]2 with a grid of size 0�05. The grid size for the
decisions is 0�05, and the value of ε= 0�4.

Figure S.6. The effect of ambiguity-aversion on coordination behavior in centralized coordi-
nation games.
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