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Hurdles and steps: Estimating demand for solar photovoltaics
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This paper estimates demand for residential solar photovoltaic (PV) systems using
a new approach to address three empirical challenges that often arise with count
data: excess zeros, unobserved heterogeneity, and endogeneity of price. Our re-
sults imply a price elasticity of demand for solar PV systems of −0�65. Counter-
factual policy simulations indicate that reducing state financial incentives in half
would have led to 9% fewer new installations in Connecticut in 2014. Calculations
suggest a subsidy program cost of $364/tCO2 assuming solar displaces natural gas.
Our Poisson hurdle approach holds promise for modeling the demand for many
new technologies.
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1. Introduction

The market for rooftop solar photovoltaic (PV) systems has been growing rapidly around
the world in the past decade. In the United States, there has been an increase in new
installed capacity from under 500 MW in 2008 to over 4500 MW in 2013, along with a de-
crease in average (preincentive) PV system prices from over $8/W in 2008 to just above
$4/W in 2013 (in 2014 dollars) (Barbose, Weaver, and Darghouth (2014)). These major
changes in the market have come over a period of considerable government support at
both the state and federal levels, ranging from state-level rebates to a 30% federal tax
credit. For example, in Connecticut (CT), the 2008–2014 average combined state and
federal incentives equaled 50% of the system cost for most PV system purchasers.1 Yet
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such substantial government support is being slowly reduced in many markets through-
out Europe and the United States.

This paper develops a new approach to addressing key empirical challenges in es-
timating demand with count data and applies this approach to model the demand for
residential PV systems in CT. We use rich installation-level data over the period 2008
to 2014 to shed new light on a small, but fast-growing market that is similar to many
others around the world. We estimate a price elasticity of demand for a PV system of
-0.65, a finding useful to both policymakers and firms. Policymakers are often interested
in how changes in PV system prices—whether due to policy or other factors—influence
the sales of PV systems. Such knowledge is essential for assessing the impacts of solar
PV policies. Given the evidence that PV system installation markets are often imper-
fectly competitive (Bollinger and Gillingham (2016), Gillingham et al. (2016), Pless and
van Benthem (2017)), firms may be able to use this elasticity to inform pricing decisions
and market forecasts.

The empirical challenges that motivate our approach are threefold: possible unob-
served heterogeneity at a fine geographic level, excess zeros, and endogeneity of price
(due to simultaneity). Existing studies have developed count data methods that can sep-
arately address the presence of excess zeros (e.g., Pohlmeier and Ulrich (1995), Santos
Silva and Windmeijer (2001), Winkelmann (2004)) or endogeneity of covariates with-
out unobserved heterogeneity (e.g., Mullahy (1997), Windmeijer and Santos Silva (1997),
Terza (1998)). Windmeijer (2008) goes further in addressing endogeneity in the presence
of unobserved heterogeneity, but does not address excess zeros. This paper is the first to
address all three challenges in a count data setting with clear policy significance. We use
panel data on the count of annual solar PV systems installed in a Census block group.
Such panel data allow us to address likely unobserved heterogeneity in environmen-
tal preferences or other block group-specific factors with fixed effects. Aggregating at a
higher level would leave this unobserved heterogeneity unaddressed. However, 74% of
the observations have zero values for the number of installations in a block group in a
year. Thus, classic models for count data are problematic, such as the Poisson and nega-
tive binomial, which likely misspecify the underlying data generating process. Moreover,
the negative binomial model cannot readily accommodate block group fixed effects and
endogeneity.

To address this problem, we employ a hurdle model, which is recognized as an ef-
fective tool for dealing with the presence of excess zeros in count data settings (e.g.,
Cameron and Trivedi (2013)). We estimate a hurdle model based on two data generating
processes: a standard logit for whether a block group has at least one adoption and a
zero-truncated Poisson that models the rate of adoptions conditional on a block group
having an adoption. This hurdle model has a clear behavioral interpretation in our set-
ting: the first installation in an area is a rare event, but once there are multiple installa-
tions, peer effects may begin to influence adoption and installers can focus marketing
on the area, so we have a count process. In order to tackle unobserved heterogeneity and
endogeneity of the price variable, we extend the hurdle model to accommodate fixed ef-
fects and instrumental variables.
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At the basis of our approach is the conditional maximum likelihood (CMLE) estima-
tor for fixed effects logit models introduced in a sequence of works by Rasch (1960, 1961),
Andersen (1972), and Chamberlain (1980). Majo and van Soest (2011) show that this con-
ditional maximum likelihood approach can also be applied to the zero-truncated Pois-
son framework and present an application of this in a two-period setting. We generalize
the model of Majo and van Soest (2011) to a setting with an arbitrary number of peri-
ods and possible endogeneity. In contrast to Majo and van Soest (2011), our approach
uses a generalized method of moments (GMM) estimator that is based on the first-order
conditions of the truncated Poisson CMLE. By using a GMM approach (as in Windmei-
jer (2008) and several other papers), we can draw upon the established procedures for
addressing endogeneity using instrumental variables. To the best of our knowledge, this
instrumental variables Poisson hurdle model with fixed effects is new to the literature,
and we both prove the consistency of our estimator and verify it with a Monte Carlo sim-
ulation. This approach is particularly useful for solar PV markets, but we expect that it is
more broadly applicable to many other settings with similar empirical challenges, such
as the demand for many early-stage technologies.

Identification in our setting is based on deviations from block group and year means
in both the number of installations and PV system prices, after controlling for a variety
of potential confounders and instrumenting for price. As instruments, we use a set of
supply shifters: local roofing contractor wage rates and state incentives for PV systems.
After controlling for income at a localized level, county-level roofer wages act as a valid
contractor marginal cost shifter. Solar PV incentives in CT are given directly to the in-
stalling firm rather than the consumer, so the consumer sees the post-incentive price at
the bottom of any contract to install a PV system. Thus, the incentives also act as a valid
marginal cost shifter.

Our preferred estimate of the price elasticity of PV system demand of −0�65 is the
first estimate we are aware of for CT. This result is comparable to the existing literature,
which uses data from California and very different empirical strategies. For example,
Rogers and Sexton (2014) find a rebate elasticity of approximately −0�4, while Hughes
and Podolefsky (2015) find an estimate of approximately −1�2. In contrast to the previ-
ous papers, which both use reduced form approaches, Burr (2014) estimates a dynamic
discrete choice model of demand, but does not specifically estimate a price elasticity of
demand. The dynamic discrete choice approach may seem well-suited for our context,
since subsidies may be changing over time and a household usually only installs a solar
system once (although a household can always add capacity later if there is available
roof space). However, we provide survey and descriptive evidence in Online Appendix
A of the Supplemental Material (Gillingham and Tsvetanov (2019)) suggesting that solar
PV demand in CT is more similar to the many other contexts where consumers do not
appear to treat adoption as a dynamic “buy-or-wait” decision.

Using our results, we perform policy counterfactual simulations to examine the im-
pact of state financial incentives and permitting policies on PV system adoption. We first
perform a simple analysis of the pass-through of the incentives to consumers, following
Sallee (2011), and find the pass-through rate of 84%. Our simulation results suggest, un-
der a 50% reduction of all financial incentives for purchasing PV systems, the number
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Table 1. Timeline of pre-RSIP solar rebates.

Rebate Structure Program Opens Change Change Closed Reopened

Date July 1, 2004 Jan 29, 2007 Oct 27, 2008 Nov 19, 2008 May 18, 2009
≤ 5 kW $5�00/W $5�00/W $4�00/W - $1�75/W
>5 kW and ≤10 kW $0�00/W $4�30/W $2�50/W - $1�25/W

Note: Source: The Connecticut Green Bank.

of new installations in CT in 2014 would have been 9% less than observed. This would
result in up to 1�3 MW less added PV capacity in 2014. Simple calculations suggest a cost-
effectiveness of the program of $364 per avoided ton of CO2 ($594 if the federal tax credit
is included), assuming that solar power displaces natural gas-fired generation.

The remainder of this paper is structured as follows. Section 2 provides a background
on policies in CT targeted at stimulating solar demand. Section 3 describes the data used
in our analysis. Sections 4 and 5 outline the estimation methodology. Section 6 presents
our empirical results. Section 7 presents the pass-through analysis, counterfactual pol-
icy simulations, and a discussion of cost-effectiveness and welfare. Finally, Section 8
concludes.

2. Background on solar PV policies in Connecticut

Despite receiving fewer hours of sun than more southerly regions,2 CT has a robust
and growing market for solar PV systems, due to high electricity prices, many owner-
occupied homes, and considerable state support for PV systems. A $5 per watt (W) re-
bate for residential solar PV systems (up to 5 kW) was available in CT as early as 2004, as
shown in Table 1. The structure of incentives changed on July 1, 2011, with the passage
of Connecticut Public Act 11-802, directing the newly established CT Energy Finance
and Investment Authority, which has since been renamed the Connecticut Green Bank
(CGB), to develop a residential solar investment program that would result in at least 30
MW of new residential PV installations by the end of 2022 (Shaw, Fahey, and Solomon
(2014)).3

Starting on March 2, 2012, two types of financial incentives were offered under the
“Residential Solar Investment Program” (RSIP). For households that purchase a solar PV
system, CT offers an upfront rebate, under an “expected performance based buy-down”
(EPBB) program (replaced by the similar “homeowner performance based incentive”
(HOPBI) rebate program after July 11, 2014). The rebate per W decreases based on the
size of the system, with lower incentives per W for systems larger than 5 kW and even
lower for systems larger than 10 kW. Most systems in CT fall under this incentive pro-
gram until near the end of our time period, when a higher percentage of systems are not
purchased outright. For such third party-owned systems (e.g., installed under a solar
lease or power purchase agreement), CT offers quarterly incentive payments based on

2See solar insolation maps at http://www.nrel.gov/gis/solar.html.
3This target had already been reached by the end of 2014. See http://www.ctcleanenergy.com.

http://www.nrel.gov/gis/solar.html
http://www.ctcleanenergy.com
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Table 2. Residential solar investment program timeline.

Incentive Type Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

EPBB/HOPBI
Start Date March 2, 2012 May 18, 2012 Jan 4, 2013 Jan 6, 2014 Sept 1, 2014 Jan 1, 2015
Incentive Design:
≤5 kW $2�450/W $2�275/W $1�750/W $1�250/W $0�800/W $0�675/W
>5 kW and ≤10 kW $1�250/W $1�075/W $0�550/W $0�750/W $0�800/W $0�675/W
>10 kW and ≤20 kW - - - - $0�400/W $0�400/W
PBI
Start Date March 2, 2012 May 18, 2012 April 1, 2013 Jan 6, 2014 Sept 1, 2014 Jan 1, 2015
Incentive Design:
≤10 kW $0�300/kWh $0�300/kWh $0�225/kWh $0�125/kWh $0�180/kWh $0�080/kWh
>10 kW and ≤20 kW - - - - $0�600/kWh $0�060/kWh

Note: Source: The Connecticut Green Bank.

production (in kWh) over 6 years, under a “performance-based incentive” (PBI) program
(Shaw, Fahey, and Solomon (2014)). All incentives are being reduced over time in a se-
ries of steps as the solar PV market grows. Unlike other states, where learning-by-doing
was an explicit policy motivation (Bollinger and Gillingham (2016)), in CT this declin-
ing step schedule is primarily motivated by budget constraints and a broad desire for a
self-sustaining market. Table 2 provides details of the programs and the step schedule.
Online Appendix A gives more detail on the path of subsidies and consumer adoption of
solar PV, providing evidence that the subsidy declines were unanticipated by consumers.

Besides direct financial incentives, CT has several additional programs to promote
solar PV systems. One program is “net metering,” which allows owners of solar PV sys-
tems to return excess generated electricity to the grid, offsetting electricity that is used
during times of nongeneration, so the final electricity bill includes a charge for only the
net electricity usage. PV system owners can also carry over credits for excess production
for up to 1 year. On March 31 of each year, the utility pays the PV system owners any
net excess generation remaining at the avoided cost of wholesale electricity (a lower rate
than the retail rate).

Another program in CT is an effort starting in 2011 to streamline municipality and
utility permitting, inspection, and interconnection processes. Several municipalities in
CT have reduced their permitting costs and reduced the permitting time in response to
this effort. Similar efforts have occurred in a number of other states, such as Arizona,
California, and Colorado (CEFIA (2013)).

Perhaps the most important nonrebate program for solar PV system adoption in CT
is the CGB-sponsored “Solarize CT” grassroots marketing program in select municipali-
ties.4 Solarize CT involves local campaigns with a municipality-chosen installer, roughly
20-week time frame, and prenegotiated group discount pricing for all PV system instal-
lations in the town. According to Gillingham and Bollinger (2017), this program led to
a substantial increase in demand in these municipalities: on average roughly 30 addi-

4Solarize CT is funded by foundations, ratepayers, and other grants.
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tional installations per municipality over the length of the program. The program is also
associated with a roughly $0�40 to $0�50 per W decrease in installation prices.

3. Data

Our primary dataset contains nearly all residential solar PV system installations in CT
from the period 2008–2014. Each installation that receives a rebate in the two major
investor-owned electric utility regions in CT, United Illuminating and Eversource Energy
(formerly Connecticut Light & Power) is entered into a database by CGB, with informa-
tion on price, rebates granted, system size (in kW), technical characteristics, financing
arrangements, address, date of application processing, and date of installation.5 Until
late 2014, there were few third party-owned (TPO) systems in CT (i.e., solar leases or
power-purchase agreements) and the price data for these TPO systems are well known
to be less reliable than owned-system price data. Thus, we exclude these TPO systems
from our primary analysis.6 Our raw dataset contains 5070 residential PV installations
approved for the rebate by the CGB between January 1, 2008 and December 31, 2014.

We geocode the installations and match each to the U.S. Census block group they
reside in. We then collect U.S. Census data at the block group level from the 2006–2010,
2007–2011, 2008–2012, and 2009–2013 waves of the American Community Survey (ACS).
We include data on total population, median household income, median age, and edu-
cation level. We obtain a measure of block group population density by dividing popu-
lation by land area. To generate panel data for each variable, we use the average value
for each variable across all waves available for that year. So, for example, the value for
population in 2010 would be the average of the 2006–2010, 2007–2011, 2008–2012, and
2009–2013 values for this variable. We use the 2009–2013 values for 2014.7 In addition to
Census data, we also draw town-level voting registration data from the Office of CT’s Sec-
retary of the State (http://portal.ct.gov/sots) for each year in our study period. Finally,
we bring in annual county-level roofing contractor wage data from the U.S. Bureau of
Labor Statistics (http://www.bls.gov).

3.1 Preparation of the panel dataset

Due to the possibility of unobserved heterogeneity at the localized level, we convert our
data to a panel dataset, where an observation is at the Census block group-year level.
This leads to a balanced panel of 10,738 observations in 1534 block groups. For each

5The only other utilities in CT are small municipal utilities in Bozrah, Norwich, and Wallingford
(Graziano and Gillingham (2015)).

6As a robustness check, we also analyze the full dataset of purchased and third-party-owned (TPO) sys-
tems, controlling for third party ownership in the regressions. The results, presented in Online Appendix
E in the Supplemental Material (Gillingham and Tsvetanov (2019)), should be interpreted with great cau-
tion due to the known issues with over-reporting of TPO system prices. They are suggestive of a different
consumer decision-process for TPO systems.

7We also employed an alternative approach, using only the mid-year of each ACS wave and interpolat-
ing for all missing years, but this made no practical difference to our results. More generally, as shown in
Section 6.2, our results are also robust to the exclusion of all demographic variables.

http://portal.ct.gov/sots
http://www.bls.gov
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block group-year, we take the average of the system price, system size, and incentive
level granted. We also create an indicator variable for a Solarize campaign occurring in
the given block group-year.

Using this panel dataset for our empirical analysis necessitates one further step.
Many observations refer to block group-year combinations where there are no instal-
lations. In fact, our hurdle model approach is motivated by these excess zeros in our
dataset. However, we still have to determine the relevant installation price, system size,
and incentive for observations with no recorded contracts. This is a common issue in
the empirical literature and we take a conservative stance by examining two different
approaches.

In our primary approach, we fill in the missing price and other variables with the
average annual value for the same municipality, and if this is not possible, we use the
average annual value within the county of the installation. Given that our adoption data
in these block groups is censored at zero, this approach may underestimate the price.
Thus, as shown in Section 6.2, we perform several robustness checks and find that our
results are robust to this choice. Our post-incentive PV system price per W variable is
based on the ratio of the average block group-year PV system prices and the average
system size.

3.2 Trends and summary statistics

Figure 1 displays the overall trend in installations and PV system prices (in 2014 dol-
lars) during our study period. Between 2008 and 2014, the real average (post-incentive)
price falls by more than 40%, with a brief spike in 2009. This spike in the post-incentive
price is commonly attributed to a roughly 50% drop in the incentive between 2008 and
2009. Consistent with larger trends in the global PV market (Barbose, Darghouth, Weaver
and Wiser (2013)), real installation costs have been steadily decreasing during the entire
study period, while the efficiency of panels and quality of installations remained rela-
tively constant. Figure 1 also shows a substantial increase in PV system installations after
2011. Some of this increase after 2011 consists of installations under Solarize programs,
which involve both lower prices and additional solar marketing.

Table 3 presents summary statistics for our panel dataset of 10,738 block group-year
observations. The number of PV system installations is a count variable, with a mean
of 0�48 and a variance of 1�19. Hence, these data exhibit clear overdispersion relative to
standard count models, such as the Poisson model, in which an underlying assumption
is the equality of mean and variance of the count variable (see Section 4.2). Figure 2 re-
veals why this might be the case: the distribution of installations in a block group in a
given year is very strongly skewed, with most of the mass (over 74%) centered at zero.
This visually illustrates the issue of excess zeros in our dataset. Table 4 presents sum-
mary statistics for the truncated dataset with positive installations. Comparing Tables 3
and 4 reveals some differences. Most notably, there is a much stronger presence of So-
larize campaigns in the truncated sample (12% versus 6%). The truncated sample has
lower average population density, consistent with Graziano and Gillingham (2015), who
show that most installations in CT occur in suburban or rural areas. This sample also
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Figure 1. Trends in installations and average post-incentive system price.

Table 3. Summary statistics for the full sample.

Variable Mean St. Dev. Min Max

Number of PV installations 0�4781 1�0891 0 20
System capacity (kW) 6�972 1�8417 0�7 22�1
Post-incentive system price ($/W) 3�7645 1�4369 0�0171 20�5824
Solarize campaign 0�0595 0�2366 0 1
Population density (per km2) 853�651 1249�742 0 21,784
Median household income (in 1000$/year) 88�7752 41�7775 2�499 250�001
Median age 42�6938 7�0762 14�8 80�6
% population above 25 with some college or college degree 46�7736 9�9282 0 81�203
% population above 25 with graduate or professional degree 18�3589 12�1701 0 80�7786
% Republican voters 21�9084 7�8536 3�69 51�14
% Democrat voters 34�0913 10�5664 16�92 72�3
Incentive level ($/W) 3�5288 2�0203 0�6824 6�4879
Roofing contractor wage ($/week) 1031�203 171�964 548�894 1312�658

Note: All variables have 10,738 observations. All dollars in 2014 dollars.

features slightly larger systems, likely because it more heavily samples block groups that
are slightly wealthier and have a greater unobserved preference for PV systems.

4. Empirical specification: Preliminaries

Let Yit denote the number of PV installations in block group i purchased in year t. We
use W it to denote a vector containing the installation price pit and demand shifters.
Demand for solar is represented by the following general function:

Yit =Dit(W it �Θ), (1)
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Figure 2. Histogram of the count of installations in the full sample.

Table 4. Summary statistics for the subsample with positive installations.

Variable Mean St. Dev. Min Max

Number of PV installations 1�5855 1�4758 1 20
System capacity (kW) 7�2405 2�5195 0�7 22�1
Post-incentive system price ($/W) 3�8945 1�4433 0�0171 19�0565
Solarize campaign 0�1167 0�3212 0 1
Population density (per km2) 607�418 943�207 0 14,530�95
Median household income (in 1000$/year) 91�8035 40�2957 10�833 250�001
Median age 43�3453 6�795 17�6 79�2
% population above 25 with some college or college degree 47�4923 9�4677 0 77�8978
% population above 25 with graduate or professional degree 19�2437 11�89 0 80�7786
% Republican voters 22�7355 7�1854 3�69 50�19
% Democrat voters 32�5461 9�2511 16�92 71�78
Incentive level ($/W) 3�0427 2�0825 0�6824 6�4879
Roofing contractor wage ($/week) 1010�557 175�821 548�894 1312�658

Note: All variables have 3,238 observations. All dollars in 2014 dollars.

where Θ is a vector of parameters. Before we describe the Poisson hurdle model, which
is our preferred empirical specification, we first briefly review two alternative specifica-
tions, linear and Poisson, to lay the groundwork.

4.1 Linear

In this specification,Dit(·) is modeled as a linear function and (1) becomes

Yit =W ′
itΘ+ εit� (2)

where εit denotes an idiosyncratic error term. We can expand (2) further as Yit = αi +
w′
itθ+μt+εit , where αi captures block group-specific effects,μt is a year fixed effect that
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captures time-varying demand shocks common across block groups, and wit contains
all remaining observed regressors.

The advantage of using a linear model is that it can easily accommodate fixed effects
to control for region-specific unobserved heterogeneity. Furthermore, the linear model
also allows for the straightforward implementation of an instrumental variables proce-
dure to address the endogeneity of prices. However, it is well recognized in the literature
(e.g., King (1988), Wooldridge (2002)) that a linear model is poorly suited for a count
data setting. A linear model not only misspecifies the count data generating process,
but it also often predicts negative and noninteger outcome values.

4.2 Poisson

In this specification, we model the data generating process as a Poisson process, which
is perhaps a better model for our count data. More specifically, if Yit is modeled as a
Poisson random variable with parameter λit > 0, its probability mass function, denoted

by Po, is given by: Po(y | λit) = Pr[Yit = y | λit] = λ
y
ite

−λit
y! , where y = 0�1�2� � � � �∞. Fur-

thermore, it follows that

E[Yit | λit] = Var[Yit | λit] = λit� (3)

that is, the conditional mean and variance of the Poisson random variable are equal. The
parameter λit is modeled as an exponential function of the covariates: λit = eW ′

itΘ.
Therefore, in this specification, the conditional expectation of (1) is

E[Y |W it �Θ] = eW ′
itΘ ≡ eαi+w′

itθ+μt � (4)

To facilitate discussion of this common model, we can then further rewrite (4) using
X to denote the vector of observed regressors and time dummies, and δ to denote the
vector of all slope parameters (i.e., excluding the time-invariant fixed effects parameters):

E[Y | Xit �δ�αi] = eαi+X′
itδ� (5)

The presence of individual-specific fixed effects usually poses a challenge in the es-
timation of nonlinear panel models, such as the one presented in equation (5), since
these parameters cannot be eliminated from the model through any of the standard
transformations used in linear models. If heterogeneity is left completely unrestricted
and the model is estimated directly with the fixed parameters included, the estimates
would suffer from the “incidental parameters problem” first noted by Neyman and Scott
(1948). The problem arises since the estimator of the fixed effects parameter αi is based
only on the number of observations for each i ∈ {1� � � � �N}, and that number remains
fixed even asN → ∞. Hence, the estimator α̂i is inconsistent, while the estimator of δ̂ is
only consistent if it can be expressed separately from α̂i. Fortunately, as shown by Blun-
dell, Griffith, and Windmeijer (2002), the latter is the case in the Poisson panel model.
In particular, when this model is estimated by maximizing the log-likelihood function,
the first-order conditions can be rearranged so that δ̂ does not depend on the estimates
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of the fixed effects coefficients. Therefore, the maximum likelihood estimator (MLE) for
δ in our model with block group-specific constants does not suffer from the incidental
parameters problem.8

Yet even with time-invariant unobserved heterogeneity accounted for, δ̂MLE may
still be inconsistent due to the endogeneity of the price variable in W it . One potential
solution to the presence of an endogenous regressor in a Poisson model is the control
function (CF) approach. Imbens and Wooldridge (2007) lay out a CF approach for ad-
dressing endogeneity in a cross-sectional Poisson model, which can be easily general-
ized to a panel data setting.

First, reexpress the vector of covariates as W = (p�Z1)
′ and the corresponding vec-

tor of parameters as Θ = (γ�� )′. Furthermore, let Z be a vector of exogenous variables,
such that Z1 ⊂ Z. Combining (3) with the definition of λit and dropping all subscripts for
simplicity, we can flexibly rewrite the conditional mean as

E[Y | Z�p�ζ] = exp
(
γp+Z′

1� + ζ)� (6)

where ζ is an unobserved component of the conditional expectation that is correlated
with p. Let the endogenous variable p be written as

p= Z′Π + r� (7)

Applying the law of iterated expectations to (6) and (7),

E[Y | Z�p] = E[Y | Z� r] = E
[
E[Y | Z� ζ� r] | Z� r] = exp

(
γp+Z′

1�
)
E
[
exp(ζ) | Z� r]� (8)

Note that both ζ and r are independent of Z. The standard assumption here is joint nor-
mality of ζ and r, and under this assumption it can be shown that E[exp(ζ) | r] = exp(ρr)
for some scalar ρ. Hence, (8) becomes E[Y | Z�p] = exp(γp+Z′

1� +ρr)= exp(W ′Θ+ρr),
which suggests a straightforward two-stage estimation procedure. In the first stage, we
estimate a linear regression of price on all excluded and included instruments in order to
obtain the residual r̂. In the second stage, we estimate a Poisson model with W and r̂ as
covariates using MLE, as described earlier. Of course, since this is a two-stage procedure,
bootstrapping is the easiest way to obtain valid standard errors.

The Poisson model can thus be used to address unobserved heterogeneity with fixed
effects and endogeneity of price. Moreover, it is likely a much better model for count
data than the linear specification. However, by virtue of its underlying distribution, the
Poisson model predicts that only a small proportion of all counts in the data equal zero

8Note that if the Poisson model contains unobserved market-level demand shocks that vary both cross-
sectionally and by time, the corresponding parameters αit can no longer be substituted out in the MLE’s
first-order conditions in a way that would allow solving separately for δ. Consistent estimation of δ would
then require integrating out the demand shocks. Interestingly, such a random Poisson model, in which the
shocks exhibit substantial variance, can produce a large number of zero outcomes and overdispersion rel-
ative to the standard Poisson distribution, which is consistent with our data. Nonetheless, we demonstrate
in Online Appendix B.1 in the Supplemental Material (Gillingham and Tsvetanov (2019)) by simulating a
random Poisson model that even in that setting the hurdle model provides very close estimates to the true
elasticities. We thank an anonymous referee for pointing us to this finding.
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and is likely misspecified when there are excess zeros in the outcome variable, so the

finite-sample bias from running quasi-maximum likelihood would be expected to be

large.

5. Empirical specification: Hurdle model

5.1 General form

In situations with very large numbers of zeros, the data generating process is perhaps

better thought of as a two-stage process. A hurdle model, originally formulated in Mul-

lahy (1986), is designed to model such a two-stage process.9 The first stage determines

whether the count variable has a zero or positive realization. A positive realization

means that the “hurdle” is crossed, in which case the exact outcome value is modeled by

a truncated count distribution. The two stages are functionally independent (Cameron

and Trivedi (2013)). For a given nonnegative count variable Y , let the first-stage process

be driven by a distribution function f1, while the second stage governed by f2. Then the

complete distribution of Y is given by

Pr(Y = y)=
{
f1(0) if y = 0�(
1 − f1(0)

)
f2(y) if y = 1�2� � � � �∞�

It is common to model the first stage using a logistic distribution, that is, f1 =
1 − Pr[Y > 0], where Pr[Y > 0] is estimated through a logit regression model, and the

second stage as a zero-truncated Poisson, that is, f2 = Po(y)
(1−Po(0)) (e.g., Min and Agresti

(2005), Gallop, Rieger, McClintock and Atkins (2013), Neelon, Ghosh, and Loebs (2013)).

Depending on the setting, the explanatory variables in the first- and second-stage re-

gressions may differ.

Adapting this framework to our setting,

Pr[Yit > 0 | W it �Θ1] = eW
′
itΘ1

1 + eW ′
itΘ1

� f2(y | λit)= λ
y
it

y!(eλit − 1
) and λit = eW ′

itΘ2 �

Note that while we expect the same determinants to play a role in both stages of

the demand model, there is no behavioral reason to presume a priori that the effects of

these determinants would be identical. Therefore, we allow Θ1 to be different than Θ2.

9A zero-inflated Poisson (ZIP) model is a similar model, but not as readily extendable to a panel data
context with fixed effects and instrumental variable estimation. Gilles and Kim (2017) developed a quasi-
conditional likelihood method for estimating ZIP with fixed effects only in the count part that is consistent
under strict exogeneity of all regressors. Kitazawa (2014) derived moment conditions that allow for the es-
timation of a fixed effects ZIP model with exogenous regressors in the logit component and predetermined
explanatory variables in the Poisson component.
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Let ιit = I(Yit > 0), where I(·) denotes the indicator function. The log-likelihood
function of this model can be expressed as follows:

L(Θ1�Θ2)

=
N∑
i=1

T∑
t=1

{
(1 − ιit) log

[
1

1 + exp
(
W ′
itΘ1

)]
+ ιit log

[
exp

(
W ′
itΘ1

)
1 + exp

(
W ′
itΘ1

)]}

+
N∑
i=1

T∑
t=1

{
ιit

[
YitW

′
itΘ2 − log(Yit !)− log

(
exp

(
exp

(
W ′
itΘ2

)) − 1
)]}

≡LL(Θ1)+LP(Θ2)�

(9)

where LL(Θ1) is the log-likelihood function for the logit model and LP(Θ2) is the log-
likelihood for the truncated Poisson model. Therefore, maximizing L(Θ1�Θ2) is equiv-
alent to maximizing the two terms separately, which implies that estimating the hur-
dle model effectively reduces to separately estimating a binary logit model and a zero-
truncated Poisson model.

This model is convenient both for estimation of the parameters and for estimation
of the price elasticity of demand. To see this, first note that the conditional mean of the
outcome variable in this model is given by

E[Yit | W it �Θ] = Pr[Yit > 0 | W it �Θ1]EP [Yit | W it �Θ2]

= exp
(
W ′
itΘ1

)
1 + exp

(
W ′
itΘ1

) λit
1 − exp(−λit) �

(10)

where Θ = (Θ1�Θ2)
′ and EP [·] ≡ E[· | Yit > 0] is the mean in the truncated Poisson

model. Then the price elasticity η at the mean values of p and Y can be derived through
the following expression:

η= ∂
[
E[Yit]

]
∂pit

E[pit]
E[Yit] = ∂

[
Pr[Yit > 0]]
∂pit

E[pit]
Pr[Yit > 0] + ∂

[
EP [Yit]

]
∂pit

EP [pit]
EP [Yit]

≡ ηL +ηP�

In other words, η is a sum of the price elasticity from the logit and truncated Poisson
components of the hurdle model.

An important characteristic of this model is that, unlike the Poisson specification, it
can accommodate both overdispersion and underdispersion in the full dataset. In fact, it
can be shown that Var[Yit | W it �Θ] = E[Yit | W it �Θ]+E[Yit | W it �Θ](λit−E[Yit | W it �Θ]).
Therefore, depending on the relative magnitudes of λit and E[Yit | W it �Θ], the model
could result in E[Yit | W it �Θ] ≤ Var[Yit | W it �Θ] or vice versa. In particular, E[Yit | W it �Θ]
in (10) is a linear function of Pr[Yit > 0], so an excessive number of zero outcomes
implies that Pr[Yit > 0] (and, hence, E[Yit | W it �Θ]) is relatively small, which leads to
overdispersion relative to the Poisson model.

Thus, the hurdle model is a promising approach for our setting. But the challenge of
handling unobserved heterogeneity and endogeneity remains. Other approaches, such
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as the negative binomial model, can only handle an extensive set of fixed effects and en-
dogeneity with great difficulty and restrictive assumptions. Furthermore, while studies
have extended the traditional Poisson model to accommodate individual-specific fixed
effects and instrumental variables (e.g., Windmeijer (2008)), there is little in the current
literature on such extensions of the hurdle model.

5.2 Fixed effects

As suggested by equation (9), estimating the hurdle model is equivalent to separately
estimating a logit model and truncated Poisson model. This allows us to address the
challenge of accommodating block group fixed effects in each of the two parts of the
hurdle model.

Logit With fixed effects, the logit model becomes

Pr[Yit > 0 | W it �Θ1] = Pr[ιit = 1 |W it �Θ1]

= exp
(
αLi +w′

itθ1 +μLt
)

1 + exp
(
αLi +w′

itθ1 +μLt
)

≡ bi exp
(
X′
itδ1

)
1 + bi exp

(
X′
itδ1

) �
(11)

where bi ≡ exp(αLi ) is a block group-specific coefficient, μLt is the year fixed effect, while
X and δ1 again denote the vectors of time variables and observed regressors and their re-
spective coefficients. As discussed in Section 4.2, the presence ofN block group-specific
coefficients can be problematic in a nonlinear setting, unless δ̂1 can be derived inde-
pendently of b̂i. For the case of logit with fixed effects, early work by Rasch (1960, 1961),
Andersen (1972), and Chamberlain (1980) established that model parameters can be es-
timated using a conditional maximum likelihood estimator (CMLE). In particular, this
estimator uses the sum of outcomes within each group i as a minimal sufficient statistic
for i’s group-specific parameter. As a result, groups with all equal outcomes (all posi-
tive or all zeros) are not used in the estimation. Using �Li to denote the conditional log-
likelihood for all observations in block group i, it can be shown that

�Li

(
bi�δ1

∣∣∣ T∑
t=1

ιit

)
= �Li

(
δ1

∣∣∣ T∑
t=1

ιit

)
� (12)

that is, the conditional log-likelihood does not depend on the fixed effects parameter
bi. The remaining parameters are then estimated by maximizing

∑N
i=1 �

L
i . The condi-

tional maximum likelihood estimator for this model, δ̂1�CMLE, is consistent under mild
restrictions on the rate at which the sequence of bi’s grows to infinity (Andersen (1970),
Chamberlain (1980)).10

10However, as noted by Greene and Hensher (2010), the conditional likelihood of the logit is based on a
restricted dataset that excludes all groups with equal outcomes over time, as well as all group-specific pa-
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Truncated Poisson The truncated Poisson model is estimated using only observations
for which Yit > 0. Allowing for unobserved block group heterogeneity, the truncated
Poisson parameter λit for each one of these observations can be expressed as follows:

λit = exp
(
αPi +w′

itθ2 +μPt
) ≡ ci exp

(
X′
itδ2

) ≡ ciβit� (13)

with year fixed effects represented by μPt , ci ≡ exp(αPi ), δ2, as before, denoting a vector
of parameters for the time variables and all remaining observed regressors, and βit ≡
exp(X′

itδ2). Unlike the fixed effects Poisson model, estimating a zero-truncated Poisson
with individual fixed effects through maximum likelihood does not allow for δ2 to be
estimated independently of the fixed effects coefficients. Therefore, MLE is inconsistent
in this specification.

As shown by Majo and van Soest (2011), conditional maximum likelihood can be
employed in this setting, in a similar fashion to the fixed effects logit model, which
eliminates the fixed effects parameters from the estimation. Majo and van Soest (2011)
demonstrated this method for a two-period panel dataset. In what follows, we generalize
their procedure to any panel with an arbitrary number of longitudinal observations.

Let Ti ⊆ {1� � � � �T } be the subset of periods with Yit > 0 and let Y∗
i = {Yit : t ∈ Ti}. Also,

let Xi = {Xit : t ∈ Ti} denote the matrix of regressors and λi = {λit : t ∈ Ti} be the vec-
tor of corresponding truncated Poisson parameters. Define the statistic ni = ∑

t∈Ti
Yit =∑T

t=1Yit . Finally, let Hi(ni) be the set of all possible histories of strictly positive natural
numbers di = {dit ∈N+ : t ∈ Ti} such that

∑
t∈Ti

dit = ni. Then we have that

Pr
(
Y∗
i = yi | Xi� ni� ci�δ2

) = Pr
(
Y∗
i = yi | Xi� ci�δ2

)
Pr

(∑
t∈Ti

Yit = ni |Xi� ci�δ2

)

=

∏
t∈Ti

λ
yit
it

yit !
(
exp(λit)− 1

)
∑

di∈Hi(ni)

[∏
t∈Ti

λ
dit
it

dit !
(
exp(λit)− 1

)]

= 1
hi(λi)

∏
t∈Ti

ni!
yit !λ

yit
it �

(14)

where hi(λi) ≡ ∑
di∈Hi(ni)

∏
t∈Ti

λ
dit
it . Since λit = ciβit , it is easy to show that hi(λi) =

hi(ciβi) = c
ni
i hi(βi), where βi = {βit : t ∈ Ti}. In other words, the function hi(·) is ho-

mogeneous of degree ni in βi. So, from (14),

1
hi(λi)

∏
t∈Ti

ni!
yit !λ

yit
it = 1

c
ni
i hi(βi)

∏
t∈Ti

ni!
yit !c

yit
i β

yit
it = 1

hi(βi)

∏
t∈Ti

ni!
yit !β

yit
it �

rameters, and is therefore not comparable to the unrestricted likelihood of alternative model specifications.
This prevents the implementation of model selection tests based on likelihood ratio statistics, including se-
lection tests among nonnested models, such as the Vuong test (Vuong (1989)) and its extensions (e.g., Chen,
Hong, and Shum (2007)).
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that is, upon conditioning on
∑T
t=1Yit , the truncated Poisson distribution no longer de-

pends on the nuisance parameter ci but still depends on the parameters of interest δ2,
as long as Ti contains at least two periods and the explanatory variables Xit are not con-
stant over Ti. The conditional log-likelihood then takes the following form:

L(δ2)=
N∑
i=1

�Pi

(
δ2

∣∣∣ T∑
t=1

Yit

)

=
N∑
i=1

{
log

[(∑
t∈Ti

Yit

)
!
]

−
∑
t∈Ti

log[Yit !] +
∑
t∈Ti

Yit log(βit)− log(hi)
}
�

(15)

where �Pi is the conditional log-likelihood for all observations from block group i with
Yit > 0.

This procedure is rather general and can be applied to an arbitrarily large number
of longitudinal panel observations and any number of model parameters. The param-
eter estimator of this fixed effects truncated Poisson model is obtained as δ̂2�CMLE =
arg maxδ2 L(δ2). Under strict exogeneity of the regressors X, δ̂2�CMLE can be shown to
be a consistent estimator of δ2 (See Appendix A).

5.3 Endogeneity

Both the logit and truncated Poisson conditional likelihood estimators, discussed in Sec-
tion 5.2, are consistent, provided that the respective models are specified appropriately.
However, this would no longer be the case with endogeneity of price. We thus extend the
hurdle model further in order to accommodate the implementation of a suitable instru-
mental variable procedure. Once again, we address the problem separately in the logit
and truncated Poisson portions of the model.

Logit In the discrete choice literature, a number of methods have been developed
to tackle endogeneity in demand settings. These include the product-market control
(and instrumental variable) approach of Berry, Levinsohn, and Pakes (1995), a simu-
lated maximum likelihood approach developed by Gupta and Park (2009), and Bayesian
methods employed by Yang, Chen, and Allenby (2003) and Jiang, Manchanda, and Rossi
(2009). More recently, Petrin and Train (2010) proposed a control function approach that
is arguably easier to estimate and more flexible than the above methods, as it does not
require invoking equilibrium or imposing strict distributional assumptions for the iden-
tification of demand parameters.

As in Section 4.2, dropping subscripts for simplicity, let W = (p�Z1)
′ and Z1 ⊂ Z,

where Z is a vector of exogenous variables. Also, let Θ1 = (γ1�� 1)
′. Suppose the purchase

of any positive number of PV systems in a given block group generates utility u, given by

u= γ1p+Z′
1� 1 + ζ1� (16)

where ζ1 denotes an idiosyncratic term that is correlated with price p. As in Section 4.2,
let

p= Z′Π + r� (17)
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Since ζ1 is correlated with p but not with Z, there exists some function CF(r�ρ1), where
ρ1 is a parameter, such that ζ1 = CF(r�ρ1) + ζ̃1 and ζ̃1 is uncorrelated with p. We can
then rewrite (16) as

u= γ1p+Z′
1� 1 +CF(r�ρ1)+ ζ̃1 =W ′Θ1 +CF(r�ρ1)+ ζ̃1� (18)

Therefore, if we estimate our model including the control function CF(r�ρ1) with valid
instruments, we can consistently estimate Θ1.

Petrin and Train (2010) suggested several simplifying assumptions. First, as an alter-
native to specifying a joint distribution for both error terms in (16) and (17), one could
enter r flexibly in the utility and then choose a distributional assumption for ζ̃1. Second,
the control function can be approximated as a linear function. Accordingly, we specify
CF(r�ρ1) as ρ1r in (18) and assume that ζ̃1 is distributed i.i.d. type I extreme value.11 The
probability of Y > 0 is now given by

Pr[Yit > 0 | W it �Θ1] = bi exp
(
X′
itδ1 + ρ1r

)
1 + bi exp

(
X′
itδ1 + ρ1r

) �
As in our earlier discussion from Section 4.2, this CF specification implies a two-

stage estimation procedure. In the first stage, we run a linear regression of price on all
excluded and included instruments. The residuals from this stage are then included as
a covariate in the second-stage estimation, which, following the discussion from Sec-
tion 5.2, is carried out using conditional maximum likelihood in order to eliminate the
nuisance parameters. Finally, we bootstrap the standard errors to ensure that our infer-
ence accounts for both stages.

Truncated Poisson To our knowledge, we are the first to address endogeneity of one or
more of the regressors in a fixed effects truncated Poisson model. In what follows, we
develop a generalized method of moments (GMM) procedure for the consistent estima-
tion of the vector of truncated Poisson slope parameters δ2 in cases where X is no longer
strictly exogenous.12

Recall that the function hi(βi), described in Section 5.2, is homogeneous of degree ni
in βi. This implies that

∑
t∈Ti

∂hi(·)
∂βit

βit = nihi(·), or
∑
t∈Ti

∂hi(·)
∂βit

βit
hi(·) = ni. For convenience,

we now define a nonlinear function φit of all regressors and slope parameters in the
truncated Poisson model:

φit(Xi�δ2)≡
∂hi(βi)

∂βit
βit

hi(βi)
�

11Alternatively, CF(r�ρ1) can be specified as a quadratic function (e.g., Olley and Pakes (1996)). We also
reestimated our model using a quadratic control function and found the results to be quite robust.

12Alternatively, endogeneity in the truncated Poisson model could be addressed through a control func-
tion approach. However, unlike the GMM approach, this would require further assumptions about the func-
tional form and distribution of the model’s error term, which would be complicated by the nonlinearity in
λ.
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By definition, it follows that
∑
t∈Ti

φit = ∑
t∈Ti

Yit since both are equal to ni. Using this

equivalence and the Weak Law of Large Numbers, 1
N

∑N
i=1

1
T ∗
i

∑
t∈Ti

φit = 1
N

∑N
i=1

1
T ∗
i

×∑
t∈Ti

Yit
p−→ EP [Yit], where T ∗

i = max{t : Yit > 0}. Hence, in our context φit can be inter-
preted asymptotically as the predicted number of installations in block group i at time
t, conditional on the occurrence of a positive number of installations. Note that this in-
terpretation follows directly from the functional form of φit and does not require any
assumptions about the exogeneity of Xi.

Based on this interpretation, we proceed to construct the following model of the
zero-truncated demand for solar PV:

Yit =φit(Xi�δ2)+ ξit� (19)

where ξit is the econometrician’s error, which represents block group and year-specific
idiosyncratic shocks that influence the number of adoptions. We now use this model
to derive moment conditions for the estimation of δ2, both in the absence and in the
presence of endogenous regressors.

Let ξi = (ξi1� � � � � ξiT ∗)′. If X is strictly exogenous in the demand model, the resultant
orthogonality with the error term ξi provides a moment condition E[X′

iξi] = 0, with the
sample analog of this condition leading to a GMM estimator of δ2. As demonstrated in
Appendix B, this GMM estimator turns out to be equivalent to δ̂2�CMLE, which was shown
in Appendix A to be a consistent estimator of δ2 under strict exogeneity of all regressors.

However, with one or more endogenous regressors in the model, E[X′
iξi] = 0 no

longer holds. In that case, a vector Z, comprised only of variables that are exogenous
in the model, would be orthogonal to the error term in (19), that is,

E
[
Z′
iξi

] = 0� (20)

where Zi = (Zi1� � � � �ZiT ∗)′. Then, if δ2 is a P-dimensional vector, we can use the sample
analog of (20) in order to estimate δ2 through a GMM estimator, as long as there are a
total of at least P exogenous variables in Z. Suppose Zit ∈ Z ⊂ R

Q, where Q> P , and let
ψ(Zi�δ2)= Z′

iξi. Then

δ̂2�GMM = arg max
δ2

[
1
N

N∑
i=1

ψ(Zi�δ2)

]′
Ξ̂

[
1
N

N∑
i=1

ψ(Zi�δ2)

]
� (21)

where Ξ̂ is an optimal weighting matrix. In Appendix A, we demonstrate that under the
standard GMM assumptions δ̂2�GMM is a consistent estimator of δ2.

5.4 Deriving the price elasticity

The estimators derived in Sections 5.2 and 5.3 do not allow us to estimate the fixed ef-
fects parameters in the model. As a result, we are not able to recover the predicted con-
ditional expectations or calculate the exact marginal effects, needed for the derivation



Quantitative Economics 10 (2019) Estimating demand for solar photovoltaics 293

of price elasticity.13 Instead, we develop, in the spirit of Kitazawa (2012), a procedure
for obtaining average elasticity estimates that are shown to converge to the true average
elasticity values asN → ∞.

Logit The average price elasticity in the logit model is given by ηL = (1 − Pr[Yit >
0])γ1E[pit], where γ1 is the coefficient on price. The following proposition derives an
expression for the consistent estimator of ηL.

Proposition 1. Let η̂L = (1− ῑ)γ̂1p̄, where ῑ= 1
NT

∑N
i=1

∑T
t=1 ιit , p̄= 1

NT

∑N
i=1

∑T
t=1pit ,

and γ̂1
p−→ γ1. Then η̂L

p−→ ηL.

Proof. By the Weak Law of Large Numbers (WLLN), ῑ
p−→ Pr[Yit > 0] and p̄

p−→ E[pit].
Then, since γ̂1

p−→ γ1, by the Continuous Mapping Theorem (CMT), η̂L = (1 − ῑ)γ̂1p̄
p−→

(1 − Pr[Yit > 0])γ1E[pit] = ηL.

This is intuitive. Note that Pr[Yit > 0 | W it �Θ1] = bi exp(X′
itδ1)

1+bi exp(X′
itδ1)

. Since we do not have

an estimate of bi, we cannot use the post-estimation predicted probabilities to calcu-
late ηL. However, asymptotically, the sample averages ῑ and p̄ converge in probability to
Pr[Yit > 0] and E[pit], respectively. Hence, we can use these averages, together with the
consistent logit CF estimate of γ1, to obtain a consistent estimator of ηL.

Truncated Poisson Similarly, we derive an estimator for the average elasticity in the
zero-truncated Poisson portion of the hurdle model. First, since λit = ci exp(X′

itδ2) and
we do not estimate ci, we proceed to express λit as a function of EP [Yit]. Note that

EP [Yit] = λit
1 − exp(−λit) ≡m(λit)�

Then λit =m−1(EP [Yit]). As shown in Appendix C,m(· ) is a monotonic function over the
relevant range of λit values in this model, implying thatm−1(· ) is a one-to-one mapping
from EP [Yit] to λit .

Next, it can be shown that the average price elasticity is given by

ηP = (
1 + λit − EP [Yit]

)
γ2EP [pit] = (

1 +m−1(EP [Yit]
) − EP [Yit]

)
γ2EP [pit]�

where γ2 is the coefficient on price in the truncated Poisson model. This suggests a
straightforward estimator of ηP , presented in the following proposition.

Proposition 2. Let η̂P = (1 + m−1(Ȳ P) − Ȳ P)γ̂2p̄
P , where Ȳ P = 1

N

∑N
i=1

1
T ∗
i

∑
t∈Ti

Yit ,

p̄P = 1
N

∑N
i=1

1
T ∗
i

∑
t∈Ti

pit , and γ̂2
p−→ γ2. Then η̂P

p−→ ηP .

Proof. By WLLN, Ȳ P
p−→ EP [Yit] and p̄P

p−→ EP [pit]. By CMT, m−1(Ȳ P)
p−→m−1(EP [Yit]).

Since γ̂2
p−→ γ2, η̂P = (1+m−1(Ȳ P)− Ȳ P)γ̂2p̄

P p−→ (1+m−1(EP [Yit])−EP [Yit])γ2EP [pit] =
ηP , by CMT.

13Furthermore, this implies that model selection tests based on conditional expectations (e.g., Silva, Ten-
reyro, and Windmeijer (2015)) cannot be implemented.
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Table 5. Monte Carlo simulation results.

Parameters Elasticity

Estimated Implied
True
Value

True
ValueSpecification Mean Bias MSE Value Bias

Logit CF δ1 = −0�1 −0�0961 0�0039 0�0003 η1 = −0�0767 −0�0780 −0�0013
Tr. Poisson GMM δ2 = −0�1 −0�0999 0�0001 0�0001 η2 = −0�1716 −0�1712 0�0004
Poisson hurdle n/a n/a n/a n/a η= −0�2483 −0�2493 −0�0010
Linear 2SLS n/a −0�2257 n/a n/a η= −0�2483 −0�2654 −0�0171
Poisson CF n/a −0�1103 n/a n/a η= −0�2483 −0�2659 −0�0176

Note: See Online Appendix B.2 in the Supplemental Material (Gillingham and Tsvetanov (2019)) for details about construc-
tion of the simulated data. Output is based on 5000 replications. Sample means and parameter values, averaged over the 5000
replications, are used to compute elasticity under each specification. Elasticity values in the hurdle model are calculated using

the formulas in Section 5.4. The elasticity in the linear model is derived from η̂ = δ̂w̄
ȳ . The elasticity in the Poisson model is

derived from η̂= δ̂w̄.

Thus, ηP can be consistently estimated using the mean values for installations and

prices in the truncated sample, along with the GMM estimate γ̂2.

5.5 Monte Carlo simulations

While we have already proven the consistency of our estimator, we conduct a set of

Monte Carlo simulations to evaluate its performance. In short, we simulate data from

our data generating process and then apply our estimator and alternative estimators to

the simulated data. We use a simple panel data framework, in which the outcome count

variable is determined by a set of unobserved time-invariant and time-varying cross-

section-specific factors and a single endogenous regressor. The model, data generation

process, and parameter values used in these simulations are described in Online Ap-

pendix B.2 in the Supplemental Material (Gillingham and Tsvetanov (2019)).

Our results are encouraging. Table 5 shows the results from one representative sim-

ulation. The bias on each of the parameters of interest using the logit CF and truncated

Poisson GMM is small: 3% for the logit CF and 0�2% for the truncated Poisson. Con-

verting this to an elasticity, we find that our estimated (combined) elasticity is within

1�2% of true elasticity value. Compared to the results obtained using linear two-stage

least squares (2SLS) and Poisson CF approaches, we find that our estimated elasticity

is much closer to the true value. We repeat this procedure with several different sets of

parameter values and find similar results.14

14We also run another set of Monte Carlo simulations (described in Online Appendix B.3 in the Supple-
mental Material (Gillingham and Tsvetanov (2019))), which shows that even in the case where the true data
generation process is Poisson with fixed effects and an endogenous regressor (i.e., it does not have excess
zeros), the hurdle model still performs very well in recovering the true values.
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6. Results

6.1 Primary results

Our identification strategy relies on the validity of our instruments. As described earlier,
we use two marginal cost shifters as instruments for the post-incentive price: average
incentive levels in $/W for the first 5 kW of installed capacity in each block group-year
and county-year average roofer wages. Incentives are given directly to installers in CT,
so they act as a shifter of the firm marginal cost. Due to the declining incentives and
time lag between the submission and approval of contract applications, there is both
temporal and cross-sectional variation in incentive levels.15 County-year average roofer
wages are used as a proxy for PV system installer labor costs, and are a valid shifter af-
ter controlling for income.16 Online Appendix C contains the results of the first-stage
regression, demonstrating that we do not have to worry about weak instruments.

Table 6 presents the results from estimating a linear model, Poisson model, and Pois-
son hurdle model with instruments for price.17 Our preferred specification is the instru-
mental variables hurdle model, consisting of a logit regression estimated with a control
function approach in column (3) and a trucated Poisson estimated by GMM in column
(4). All columns include block group fixed effects and year dummies. Standard errors are
clustered at the town level. At the bottom of the table, we present estimates of the price
elasticity of demand for each specification.

We are most interested in the statistical and economic significance of the price coef-
ficient. We find negative and statistically significant coefficients on the price variable in
all model specifications. Rather than interpreting the coefficient directly, we find it more
instructive to consider the price elasticity implied by the coefficient taken at the mean
of our sample.18 Estimating the model using a Poisson specification implies a consider-
ably higher (in absolute value) price elasticity relative to the linear specification. A lin-
ear 2SLS regression yields a price elasticity of −0�62. Fitting a Poisson model generates
an elasticity coefficient that is almost twice as high. However, both of these empirical
specifications are unsuited for our data with excess zeros, as discussed in Section 4.

As shown earlier, the total price elasticity of the hurdle model, which is our preferred
specification, is the sum of the elasticities from the logit and truncated Poisson. Sum-
ming the price elasticity estimates in columns (3) and (4) shows that the hurdle model

15The time lag provides cross-sectional variation because the incentives granted are based on the ap-
proval date of the contract. Consumers are assumed to have rational expectations about what the awarded
incentive will be at the time of approval.

16While over-identification tests are never definitive, we use a Hansen’s J overidentification test to ex-
amine the validity of the instruments in the truncated Poisson GMM specification of our hurdle model.
Comfortingly, we find that we fail to reject the null of valid instruments, with a Chi-squared test statistic of
0�47 and a p-value of 0�49. We find similar results for other specifications.

17For completeness, Online Appendix D in the Supplemental Material (Gillingham and Tsvetanov (2019))
also presents output from the same model specification without the use of instrumental variables. We view
these results with great caution as the coefficients are most likely biased due to the endogeneity of price.

18The price elasticity in the linear model is estimated as η = γ̂p̄

Ȳ
, where γ̂ is the two-stage least squares

(2SLS) estimate of the price coefficient and p̄ and Ȳ are the sample means for price and number of instal-
lations. The price elasticity in the Poisson model is estimated as η= γ̂p̄, where γ̂ is the Poisson CF estimate
of the price coefficient.
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Table 6. Primary estimation results.

Hurdle

Linear Poisson Logit Trun. Poisson

2SLSi CFii CFii GMMi

Variable (1) (2) (3) (4)

Price −0�079*** −0�286*** −0�201** −0�292**
(0�0292) (0�0982) (0�0999) (0�132)

Solarize 0�929*** 0�913*** 0�863*** 0�877***
(0�242) (0�15) (0�204) (0�161)

Pop. density −5�6 × 10−6 −0�0002*** −0�0002** 0�0004
(9�4 × 10−6) (0�00007) (0�00009) (0�0005)

Income 0�0008 0�0004 −0�0014 0�0013
(0�00077) (0�00154) (0�00152) (0�00267)

Age −0�003 −0�012** −0�0096* −0�008
(0�0026) (0�0047) (0�0053) (0�012)

% (some) college 0�0003 0�0002 0�002 0�005
(0�001) (0�003) (0�004) (0�007)

% grad/prof degree 0�001 −0�0003 0�006 −0�005
−0�002 −0�004 −0�005 (0�008)

% Republican 0�063*** 0�077* 0�036 0�153***
(0�024) (0�040) (0�041) (0�059)

% Democrat 0�027** 0�041* 0�011 0�102***
(0�0126) (0�0222) (0�0248) (0�0384)

BG FE yes yes yes yes
Year Dummies yes yes yes yes
Instruments yes yes yes yes

Price elasticityiii −0�621*** −1�076*** −0�528** −0�123**
(0�2301) (0�3698) (0�2626) (0�0554)

Observations 10,738 10,738 10,738 3238

Note: Dependent variable is number of residential PV installations. Unit of observation is block group-year. BG FE refers to
block group fixed effects. Year FE refers to year fixed effects. The instruments used for all IV specifications are the EPBB/HOPBI
state financial incentives given to the installers and the county roofing contractor wage rate. p < 0�1 (*), p < 0�05 (**), p < 0�01
(***).
i Clustered standard errors at the town level in parentheses.
ii Block bootstrapped standard errors (100 replications), clustered at the town level, in parentheses.
iii Standard errors for the price elasticity obtained by the delta method.

implies a price elasticity of solar PV system demand of −0�65. At the average system
price and number of installations in our sample, this elasticity estimate suggests that a
$1/W decrease in the installation price (well within the variation in our data) would lead
to an increase in demand of approximately 0�083 additional PV systems in each block
group during the respective year. In our data, there are 1534 block groups in any given
year. Thus, a $1/W decrease in system price translates into 127 additional installations
demanded statewide in that year.

The other coefficients are of less interest to us, but we are reassured to see that the
signs are generally consistent and make sense. One of the more interesting of these is the
coefficient on the indicator for whether a block group has a Solarize campaign, which
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is positive and highly statistically significant in all specifications. This is consistent with
results in Gillingham and Bollinger (2017), which uses quasi-experimental and experi-
mental approaches to find a large treatment effect of the Solarize program. The other
statistically significant coefficients largely make sense in sign. Solar demand is higher
in less densely populated areas and in areas with a younger population. Political views
also appear to have a positive effect on the decision to adopt in the linear and truncated
Poisson specifications. The general lack of statistical significance for the demographic
and voting variables is likely attributable to the lack of sufficient time series variation in
these variables.

6.2 Robustness checks

We perform several robustness checks, which are both reassuring and provide insight
into the variation behind our results. Table 7 shows the estimated elasticities from each
of these robustness checks and includes the elasticity estimates from our preferred spec-
ifications in columns (3) and (4) of Table 6 for comparison.

First, we are concerned that our results in the logit regression may be driven by the
method we use to fill in missing price data in block group-years where no contracts
were signed. We therefore reestimate the model using the highest, rather than aver-
age, recorded prices as proxies, preserving the order of our approach outlined in Sec-
tion 3.1 (column (I)). We find that our logit CF estimates are only modestly affected by
this change in the interpolation approach, a very reassuring result.

As an alternative, we also estimate a hedonic equilibrium price equation for each
year using the subsample with positive installation counts at the block group level and

Table 7. Elasticity values under different specifications.

Robustness Checks

Model Specification Baseline I II III IV V

Logit CFi −0�528** −0�478* −0�661* −0�530** −0�521** −0�543**
(0�2626) (0�2778) (0�3498) (0�2635) (0�2698) (0�2622)

Tr. Poisson GMMii −0�123** −0�123** −0�123** −0�122** −0�118** −0�067
(0�0554) (0�0554) (0�0554) (0�0553) (0�0522) (0�0426)

Combined elasticityiii −0�651** −0�601** −0�784** −0�652** −0�639** −0�61**
(0�2684) (0�2833) (0�3542) (0�2692) (0�2748) (0�2656)

BG FE yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
Market size no no no yes no no
Demographics/voting yes yes yes yes no yes
Solarize included yes yes yes yes yes no
Missing price proxy average price highest price hedonic price average price average price average price
Observations 10,738 10,738 10,738 10,738 10,738 10,099

Note: Dependent variable is number of residential PV installations. Unit of observation is block group-year. All other vari-
ables are the same as in Table 6. Standard errors are obtained by the delta method. p< 0�1 (*), p< 0�05 (**), p< 0�01 (***).
i Block bootstrapped standard errors (100 replications), clustered by town.
ii Robust standard errors, clustered by town.
iii Standard errors of combined elasticity coefficients obtained assuming independence of the data generating processes.
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including county fixed effects. The regressors are a Solarize dummy and the set of demo-
graphic and voting variables from the baseline specification. We then use the estimated
coefficients to predict prices in block groups with zero installations. We are careful in
interpreting the estimates in this robustness check (shown in column (II)) due to the
likely selection bias that we cannot control for in the hedonic equation. It is nonetheless
reassuring to note that the elasticity we obtain of −0�78 is relatively close to our baseline
result of −0�65.

Next, we explore the extent to which the changing market size for solar may affect
our results. In particular, the pool of potential buyers continuously declines as more
households adopt solar, resulting in a sequential truncation in the distribution of will-
ingness to pay for the consumers remaining in the market.19 To test the effects of this
endogenous exit of adopters, we estimate an alternative specification in which we con-
trol for the market size. We scale the number of Census occupied housing units in each
block group-year by the percentage of solar-viable homes in the area calculated from
satellite data by GeoStellar, and then subtract the cumulative number of installations in
the block group up to that year. This provides a time-varying measure of market size.
While the results from this specification should be viewed with caution, as the market
size regressor may not be strictly exogenous but only predetermined, they are quite sup-
portive of the robustness of our main model. As shown in column (III) of Table 7, our
elasticity estimate is almost identical to the baseline result. Furthermore, the market
size variable is not statistically significant effect in either the logit or truncated Poission,
with p-values of 0�23 and 0�91, respectively.

In addition, we test the sensitivity of our results to an alternative specification with-
out demographic and voting variables among the regressors (column (IV)). Excluding
these variables, we obtain almost identical elasticity estimates as in our baseline logit
and truncated Poisson runs. This result is not surprising, given the lack of substantial
temporal variation in these variables, as noted earlier.

Lastly, we examine the effect of excluding observations from Solarize campaigns
from the analysis (column (V)). This robustness check also provides insight into the ori-
gins of our results. We find an elasticity estimate from the truncated Poisson GMM that
is of smaller magnitude than the baseline value, while the logit CF is roughly unchanged.
The overall implied elasticity from the hurdle model is quite close to our baseline elas-
ticity.

These results underscore the importance of the Solarize campaigns for our obser-
vations with multiple installations in a block group-year. Figure 3 shows a histogram of
observations with at least one installation. Non-Solarize observations with positive out-
comes are largely centered at low counts, while higher-count outcomes are mostly Solar-
ize observations. Hence, when we drop all Solarize observations, our outcome variable
is effectively reduced to a binary variable, enabling us to capture most of the variation in
the data through the logit component of the hurdle model. This suggests that the hurdle
model, as a mix of components that can exploit both binary and zero-truncated count
data variation, offers a flexible approach for estimating solar demand in various settings:
from emerging markets with few installations to booming higher-demand markets.

19We thank an anonymous referee for suggesting this robustness check.
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Figure 3. Histogram of the count of installations in the truncated subsample.

7. Policy analysis

In this section, we highlight what our results imply for policies in the solar PV market
in CT through a set of simple counterfactual simulations. We run three policy counter-
factuals: a reduction in the state financial incentives down to Step 6 (recall Table 2), a
reduction in state incentives to half of their average level in 2014 (well within the varia-
tion in the data), and a waiving of all permitting fees for solar PV systems. These simula-
tions are particularly policy relevant. CT plans is in the process of phasing out financial
incentives entirely and at the same time has made efforts to convince municipalities to
reduce or entirely waive permitting fees (CEFIA (2013)).

7.1 Simple pass-through analysis

As a first step, the above analysis necessitates obtaining a measure of the pass-through
of installation costs to customers. While there are some estimates of pass-through in
the California solar PV system market, the CT market may be quite different than the
California market. Moreover, these estimates based on California data vary widely. For
example, Henwood (2014) found a low pass-through rate, while Dong, Wiser, and Rai
(2014) and Pless and van Benthem (2017) found nearly complete pass-through. These
working papers use similar data, but very different empirical strategies.

Thus, we perform our own simple pass-through analysis for CT, following the stan-
dard approach for estimating pass-through of a subsidy or tax on consumer prices (e.g.,
Sallee (2011)).20 We observe the rebate received by each of the 5070 purchased installa-
tions in 2008–2014. As noted earlier, the time lag between the submission and approval

20Note that we do not account for the federal investment tax credit in our pass-through analysis, un-
like Pless and van Benthem (2017), because in CT the tax credits are “state rebates” rather than “utility re-
bates,” so they are not viewed as taxable income (see http://solaroutreach.org/wp-content/uploads/2015/
03/ResidentialITC_Factsheet_Final.pdf).

http://solaroutreach.org/wp-content/uploads/2015/03/ResidentialITC_Factsheet_Final.pdf
http://solaroutreach.org/wp-content/uploads/2015/03/ResidentialITC_Factsheet_Final.pdf
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Table 8. Pass-through of Rebates.

Variable I

Rebate level 0�156***
(0�045)

Solarize −0�547***
(0�057)

Town FE yes
Year Dummies yes
Observations 5070

Note: Dependent variable is prerebate price. Specification is
a linear least squares regression. The sample includes only solar
contracts with EPBB/HOPBI rebates. Each contract is a separate
observation. Town FE refers to town fixed effects. Standard er-
rors are clustered by town. p< 0�1 (*), p< 0�05 (**), p< 0�01 (***).

of contract applications gives rise to cross-sectional variation in rebate levels. We ex-
ploit this variation, along with the temporal variation due to declining incentive levels
over time, in order to identify the effect of rebates on prerebate price, after controlling
for unobserved region and time effects.

Using installation-level data, we estimate a linear regression of prerebate price (in
$/W) on the rebate level for the first 5 kW of installed capacity (in $/W), a Solarize cam-
paign indicator variable, municipality fixed effects, and year dummies. Our results are
shown in Table 8.21 The estimated coefficient on the rebate variable can be interpreted
as the fraction of a $1/W increase in the rebate level that is captured by the installer.
A coefficient equal to zero would suggest complete pass-through: the rebate is entirely
captured by consumers. A coefficient equal to one would suggest zero pass-through: the
rebate is entirely captured by firms. We find a highly statistically significant coefficient
on the rebate level of 0�16, implying a pass-through rate of 84%. In other words, a $1/W
decrease in installer costs translates into an 84 cents/W decrease in the PV system price.

7.2 Policy simulations

For each policy scenario, we quantify the counterfactual number of installations in CT
in 2014 and 2015, and compare these to the observed number of installations in 2014
and a projected number of installations in 2015. We limit our simulations to this 2-year
period in order to ensure that the demand structure and system characteristics are rela-
tively stable—as in any new technology the distribution of willingness-to-pay is likely to
change over the longer run. In this rapidly changing market, extrapolating too far out is
not likely to be a useful exercise. These simulations have an important caveat: a model
of firm pricing is outside the scope of this paper, so we do not model competition in the
market. Thus, just as in any time when a demand elasticity is applied, the simulations

21We also reran the estimation, aggregating all data at the block group-year level and replacing munici-
pality fixed effects with block group fixed effects. We obtained an almost identical rebate coefficient.
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Table 9. Policy simulations.

Baseline Small Reduction Moderate Reduction Permit Fees

Year: 2014 2015 2014 2015 2014 2015 2014 2015

New installations 1974 1994 1879 1896 1803 1819 1993 2013
Added capacity (MW) 15�43 15�59 14�69 14�10 14�22 12�08 15�59 15�74
� installations −95 −97 −171 −175 19 19
% change in installations −4�81 −4�89 −8�66 −8�78 0�98 0�98
� capacity (MW) −0�74 −0�76 −1�33 −1�37 0�15 0�16

Note: Simulations use a price elasticity estimate of −0�65 from Table 6 and a pass-through rate of 84%, as estimated in
Table 8. The “Small Reduction” counterfactual decreases state incentives down to the Step 6 level (see Table 2) in January 2014.
The average rebate in this counterfactual is $0.675/W. The “Moderate Reduction” counterfactual reduces the subsidy to half of
its average 2014 level of $0.935/W in January 2014. The “Permit fees” counterfactual entirely removes municipal permit fees for
solar installations in January 2014, reducing average system costs by $0.05/W. Further details on the counterfactual simulation
methodology are in Online Appendix F in the Supplemental Material (Gillingham and Tsvetanov (2019)).

assume that competition remains constant in this market with the relatively short-run
price changes we examine.22

Our methodology is straightforward. The CGB database contains installer-reported
data on the module, inverter, permitting, and labor costs for each installation.23 Since
the statutory incidence of the policies falls on the installing firms, we model the pol-
icy counterfactuals as a change in the installer’s marginal cost. We find the percentage
change in the sum of the module, inverter, permitting, and labor costs due to the policy,
adjust this by a pass-through rate to estimate the change in price, and then use our esti-
mated elasticity (−0�65) to calculate the percent change in the number of installations.
This is then converted into total number of new installations and additional installed
capacity in MW. Further details of our approach used for the counterfactual simula-
tions are in Online Appendix F in the Supplemental Material (Gillingham and Tsvetanov
(2019)).

The results of our simulations are shown in Table 9. In the baseline, state policies are
assumed to remain unchanged and system prices are affected only by the falling global
costs of PV components. Hence, projected installations and added capacity for 2015 are
slightly higher than the observed numbers in 2014. In the “Small Reduction” counter-
factual, the rebate offered by the state is reduced down to Step 6 in the rebate schedule
in Table 2, lowering the average incentive amount in 2014 from the observed $0�935/W
to $0�675/W. In the “Moderate Reduction” counterfactual, state incentives are cut in half,
resulting in an average rebate of $0�468/W. Finally, the “Permit Fees” counterfactual sim-
ulates a decrease in average PV system costs from waiving all municipal permit fees. This
amounts to a reduction in average system costs by approximately $0�052/W in 2014.

The “Small Reduction” simulation reveals a 4�8% decrease in the number of new
PV installations in CT during 2014 relative to the number observed, and 4�9% in 2015.

22Firms in this market generally compete throughout the state, although they may sometimes focus on
certain more narrow regions. We assume that the pass-through rate is constant across the state.

23We are not entirely confident in these reported cost estimates in the dataset, so we also use the module
and inverter price indices instead of the reported module and inverter costs. We find very similar results.
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This would imply 95 fewer installations in 2014 and 97 fewer in 2015, and is equivalent
to a reduction in added PV capacity of 0�74 MW in 2014 and 0�76 MW in 2015.24 The
“Moderate Reduction” simulation shows much larger impacts on new installations and
capacity. The results suggest a decrease in adoption by 171 installations in 2014 and 175
installations in 2015 (1�33 MW in 2014 and 1�37 MW in 2015). If CT succeeded in elimi-
nating municipality permit fees, the number of installations would have been increased
by roughly 1% in both 2014 and 2015. This amounts to approximately 51 additional in-
stallations in each year (0�15 MW in 2014 and 0�16 MW in 2015). Of course, this may be
an underestimate of the effect of eliminating permitting fees, since it does not account
for the reduced paperwork and associated labor costs from expedited permitting, which
likely would occur with a reduction or elimination of the fees. Such additional cost re-
ductions may also be passed on to consumers, increasing the effect.

7.3 Cost-effectiveness of subsidies

Our above results can be used to provide insight into the cost-effectiveness and welfare
implications of the subsidy policy in CT. We focus on direct program costs (dollar value
of subsidies), as in Davis, Fuchs, and Gertler (2014). A quick calculation reveals that the
cost of the subsidy is $3�03 of state dollars per additional watt installed (in 2014 dol-
lars). Assuming all consumers take the full $7500 federal tax credit, this implies a total
state and federal program cost of $4�95 per watt.25 To determine the benefits from a watt
of installed solar capacity, we calculate the average annual electricity generation from
a PV system in CT. We use the National Renewable Energy Laboratory’s “PVWatts” solar
electricity calculator for four different locations across CT and average the resultant out-
put.26 We assume a 25-year lifespan of an average installed system, which is in line with
both the standard warranty offered by most manufacturers27 and the assumptions made
by the CGB in calculating lifetime electricity generation for an average system. This
yields an average lifetime electricity generation of 32�26 kWh per watt of installed ca-
pacity, implying a short-run program cost of $0�094/kWh generated ($0�153/kWh when
including the federal tax credit).

There are two sources of avoided pollution from installing solar PV systems: green-
house gas emissions and local air pollutants. The amount of avoided pollution depends
on assumptions about the type of generation that is displaced by solar PV both now
and for the next 25 years. The average carbon dioxide emissions rate in the Northeast
is estimated to be 0�000258 tons of CO2 per kWh (Graff Zivin, Kotchen, and Mansur
(2014)). Assuming this holds for the next 25 years, the lifetime cost-effectiveness would
be $364/tCO2 ($594/tCO2 when including the federal credit). If we assume that the CT

24The simulation results assume that the increased adoptions are not simply “pulled-forward” from fu-
ture adoptions, which is reasonable since there is a large base of potential adopters and the subsidies con-
tinued through 2015.

25Note that state policymakers find this to be irrelevant.
26See http://pvwatts.nrel.gov. The locations we use are New London, North Canaan, Putnam, and Stam-

ford. The calculations account for reduction in output due to periods of no sunlight, as well as loss of gen-
eration during conversion from direct to alternating current power.

27See, for example, http://energyinformative.org/solar-panel-warranty-comparison.

http://pvwatts.nrel.gov
http://energyinformative.org/solar-panel-warranty-comparison
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electricity grid will continue to become less carbon intensive over time, this estimate
will be correspondingly higher. While there are numerous caveats to this simple calcu-
lation, including the social cost of public funds, the utility consumers receive, profits
for installers, intermittency issues (Gowrisankaran, Reynolds, and Samano (2016)), un-
certainty in future electricity generation, and spillovers in learning-by-doing at the lo-
calized level (Bollinger and Gillingham (2016)), it is notable that this estimate is much
above the IAWG (2013) central value of the social cost of carbon of $42/tCO2 (in 2014
dollars).28

8. Conclusions

This study estimates the demand for solar PV systems using a new empirical approach:
a Poisson hurdle model with fixed effects and instrumental variables. This approach al-
lows us to tackle several key challenges that arise in modeling count data in the diffusion
of any new technology. Specifically, it addresses unobserved heterogeneity at a fine ge-
ographic level, excess zeros in the outcome variable, and the endogeneity of price. In
addition to the adoption of new technologies, we also expect this approach to be useful
in a variety of other settings, such as the demand for health care in hospital units.

We estimate the price elasticity of demand for solar PV systems in CT over 2008–
2014 to be −0�65. This estimate is valuable to both policymakers and firms. As mod-
ule prices continue to drop, it provides useful guidance for forecasting the number of
new installations, absent policy changes. It is also very useful for examining changes
in policy, in light of continuing policy discussions about phasing out the financial in-
centive program and reducing municipal permit fees. After estimating a pass-through
rate of 84%, we perform counterfactual policy simulations with less generous state in-
centives. We find that dropping incentives to Step 6 would have reduced the number of
installations by 5% in 2014, while reducing incentives in half would have led to a 9%
drop in installations in 2014. Simple calculations suggest that the direct program cost
is $364/tCO2 ($594/tCO2 including the federal tax credit), significantly higher than the
central estimate of the social cost of carbon used by the U.S. government. Other mar-
ket failures, such as innovation market failures (van Benthem, Gillingham, and Sweeney
(2008)), must be significant for the policy to be social welfare-improving.

For firm decision-making, our finding of a price elasticity of −0�65 suggests that con-
sumers are not very price sensitive. Firms can use this knowledge for short-run forecast-
ing of the expected growth of the market. Moreover, in a market with imperfect compe-
tition, our estimated pass-through rate of 84% can provide important guidance to firms
for optimal price-setting to maximize profits.

Our results also provide insight into how other policies influence the solar PV mar-
ket. For example, we find a highly statistically significant effect of the Solarize grassroots
campaigns on installations. Moreover, we find that when we exclude all Solarize instal-
lations from our analysis, our elasticity estimate remains the same, but the variation
identifying it is almost exclusively from the logit specification. This indicates that with-
out Solarize, the data can be treated as binary rather than count data, a finding due to

28Including benefits from reduced criteria air pollutants does little to change this calculation.
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the fact that the Solarize program accounts for nearly all installations in a block group-
year after the first contract. This may not be surprising, due to evidence of neighbor
effects in the diffusion of solar PV systems (Bollinger and Gillingham (2012), Graziano
and Gillingham (2015)).

Stepping back, this study of demand in the CT solar PV market highlights the intense
policy effort to promote the technology, which mirrors efforts in many other U.S. states,
European countries, and other countries around the world. As our approach is applica-
ble to evaluating many solar PV incentive programs, we view further policy analyses in
similar settings as a promising area for future research.

Appendix A: Consistency of the IV fixed effects truncated Poisson

estimator

Y∗
i is a vector of outcome variables, such that Y∗

i ∈ Y ⊂ R
T ∗
i+ and each element Yit is

independently distributed with truncated Poisson distribution. Let Xit ∈ X ⊂ R
P and

δ2 ∈ �⊂ R
P . Let g0(y | x� n) denote the true conditional distribution of Y∗

i given Xi and∑T
t=1Yit . If our model is correctly specified, then, for some δ0

2 ∈ �⊂ R
P , g(· | x� n�δ0

2)=
g0(· | x� n), for all x ∈ X and n ∈ N . We now show that the conditional maximum likeli-
hood estimator, obtained from the maximization of (15), is a consistent estimator of δ0

2.

Lemma A.1. Let Q(δ2) = E[logg(Y∗
i | Xi� ni�δ2)] and QN(δ2) = 1

N

∑N
i=1 logg(Y∗

i | Xi� ni�
δ2). Under the following assumptions:

A1. � is a compact set.

A2. For each (y�x� n) ∈ Y ×X ×N , logg(y | x� n� · ) is a continuous function on �.

A3. For all x ∈ X and n ∈ N ,Q(δ2) �=Q(δ0
2) if δ2 �= δ0

2.

A4. For all x ∈ X , n ∈ N , and δ2 ∈ �,
∑

y∈Y g(y | x� n�δ2)= 1.

A5. The uniform weak law of large numbers holds.

A6. The sequence {ci}Ni=1 is bounded, that is, limN→∞ cN < ∞, δ̂2�CMLE
p−→ δ0

2, where

δ̂2�CMLE = arg maxδ2∈� QN(δ2).

Proof. From A1 and A2, it follows that the problem maxδ2∈� Q(δ2) always has a solu-
tion. A3 implies that this solution is unique. Using A4 and Jensen’s inequality, it can easily
be shown that Q(δ2) is maximized at δ0

2. From A1 and A2, we also know that the prob-
lem maxδ2∈� QN(δ2) always has a solution. Let δ̂2�CMLE = arg maxδ2∈� QN(δ2). Under

A5, |QN(δ̂2�CMLE) −Q(δ0
2)|

p−→ 0, by the uniform weak law of large numbers. Therefore,

δ̂2�CMLE
p−→ δ0

2. Note that A6 is needed to ensure that the sequence of unknown param-
eters that we do not estimate, c1� � � � � cN , does not contain a high number of extremely
large values, which could result in inconsistency of δ̂2�CMLE.

However, if X is not exogenous, CMLE is no longer consistent. We next show that, in
such a setting, the GMM estimator derived from (21) is a consistent estimator of δ0

2.
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Lemma A.2. Suppose Zit ∈ Z ⊂ R
Q, where Q > P . Let ψ(Zi�δ2) = Z′

iξi and E[ψ(Zi�
δ0

2)] = 0. Furthermore, let G(δ2) = [E[ψ(Zi�δ2)]′Ξ[E[ψ(Zi�δ2)] and GN(δ2) =
[ 1
N

∑N
i=1[ψ(Zi�δ2)]′ Ξ̂ [ 1

N

∑N
i=1[ψ(Zi�δ2)], where Ξ̂ is a symmetric positive semidefinite

weight matrix and Ξ is a symmetric and positive definite matrix. Under the following
assumptions:

A1. � is a compact set.

A2. For each z ∈ Z , ψ(z� · ) is a continuous function on �.

A3. For all z ∈ Z , ψ(z�δ2) �=ψ(z�δ0
2) if δ2 �= δ0

2.

A4. Ξ̂
p−→Ξ .

A5. The uniform weak law of large numbers holds, δ̂2�GMM
p−→ δ0

2, where δ̂2�GMM =
arg minδ2∈� GN(δ2).

Proof. A1 and A2 imply that the problem minδ2∈� GN(δ2) always has a solution. Let

δ̂2�GMM = arg minδ2∈� GN(δ2). By definition, we know that δ0
2 ∈ � solves the problem

minδ2∈� G(δ2). By A3 and because Ξ is a positive definite matrix, δ0
2 is a unique solu-

tion to minδ2∈� G(δ2). Then, using A4 and A5, |GN(δ̂2�GMM) − G(δ0
2)|

p−→ 0. Therefore,

δ̂2�GMM
p−→ δ0

2.

Appendix B: Equivalence of CMLE and GMM estimators under strict

exogeneity

In what follows, we review the equivalence of CMLE and GMM estimators in our setting
that only holds under strict exogeneity of the vector of regressors. Suppose Xit ∈ X ⊂ R

P .
Then, starting from (15), we can express the P-dimensional score vector of derivatives
of the log-likelihood corresponding to block group i as

Si(δ2)= ∇δ2�
P
i

(
δ2

∣∣∣ T∑
t=1

Yit

)
=

∑
t∈Ti

[
Yit −φit(Xi�δ2)

]
Xit �

where φit ≡
∂hi
∂βit

βit

hi
. Let Y∗

i ∈ Y denote the T ∗-dimensional vector of outcomes in block
group i, and let Pr(Y∗

i = y | Xi� ni�δ2) ≡ g(y | Xi� ni�δ2). Assuming that the model has
been correctly specified,

∑
y∈Y g(y | Xi� ni�δ2) = 1 for all Xi, ni, and δ2, and it can be

shown that the score of the log-likelihood function, evaluated at the true parameter vec-
tor δ0

2, has a zero conditional mean. Let Si(δ
0
2)
(p) denote the pth element of the score

vector, corresponding to ∂
∂δ
p
2
�Pi (δ2)|δ2=δ0

2
. Then

E
[
Si

(
δ0

2
)(p) |Xi� ni

] =
∑
y∈Y

∂

∂δ
p
2

�Pi (δ2)|δ2=δ0
2
g
(
y | Xi� ni�δ0

2
)

=
∑
y∈Y

∂

∂δ
p
2

g(y | Xi� ni�δ2)|δ2=δ0
2



306 Gillingham and Tsvetanov Quantitative Economics 10 (2019)

= ∂

∂δ
p
2

(∑
y∈Y

g(y | Xi� ni�δ2)

)∣∣∣
δ2=δ0

2

= 0�

Since the above is true for any element of the score, it follows that

E
[
Si

(
δ0

2
) | Xi� ni

] = 0� (B.1)

Note that the log-likelihood function is derived after conditioning on the vector of re-
gressors. Therefore, this result would not hold if one or more of the variables in X are
endogenous in the model.

Let ξit ≡ Yit −φit(Xi�δ0
2), and let ξi = (ξi1� � � � � ξiT ∗)′. By the law of iterated expecta-

tions, (B.1) implies that

E
[
X′
iξi

] = 0�

that is, the expected value of the score leads to the same moment condition as the or-
thogonality of the regressors to the error term in (19) under strict exogeneity of X. Thus,
with no endogenous regressors, the sample analog of E[X′

iξi] = 0 is identical to the first-
order conditions of the conditional likelihood from (15) and yields a GMM estimator
that is equivalent to δ̂2�CMLE.

Appendix C: Monotonicity of m(λ)

In order to ensure that m−1(· ) is a one-to-one function, we need to show that m(λ) is
monotonic over the relevant range of λ values. In what follows, we prove that, as long as
λ is positive, the functionm(λ) is strictly increasing.

Lemma C.1. For any λ > 0,m′(λ) > 0.

Proof. Dropping all subscripts for simplicity,m′(λ)= [ 1
λ − e−λ

1−e−λ ]m(λ)= [ eλ−1−λ
λ(eλ−1) ]m(λ).

Note that, by the properties of the truncated Poisson model, m(λ)= Et(Y) > 0 for all λ.
Furthermore, λ > 0, which implies that λ(eλ − 1) > 0. Hence, we need to ensure that
eλ − 1 − λ is either positive or negative over the relevant range of λ.

Let h1(λ)= eλ and h2(λ)= λ+ 1 and note that h1(0)= h2(0). Also note that h′
1(0)=

h′
2(0) = 1, while, for any λ > 0, h′

1(λ) > 1 = h′
2(λ). Hence, h1(λ) > h2(λ) for all λ > 0,

implying that m′(λ) > 0 for all λ > 0, which is the relevant range of λ in a truncated
Poisson model.
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