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This Supplemental Material consists of additional finite sample results and exten-
sions to the random coefficient models considered in the main text. Below, we show
that our testing procedures can be extended to two different models. First, we consider
the class of heterogeneous binary response models. Second, we discuss an extension of
linear random coefficient models to system of equations. In both cases, we again discuss
testing functional form restrictions and testing degeneracy of some random coefficients
separately.

1. Additional finite sample results

In the following, we present finite sample results using alternative weight functions. In-
stead of using the standard normal p.d.f. as in the simulations in the main text we con-
sider in the following the density of the uniform distribution as weight function.

Testing functional form restrictions

The data is generated as described in Section 3.1. We also implement the test statistic as
described there but use the weight function �(t)= 0�25 · 1[−2�2](t). Due to the bounded
support, the test results are more sensitive with respect to the choice of the variance.
Here, we choose the absolute value of the boundary of the support to coincide with the
variance ofX1.

Overall our findings are in line with the literature, where test involving conditional
characteristic functions are typically found insensitive w.r.t. the associated weighting
function; see, for instance, Chen and Hong (2010). Indeed, as we see from Table 1, even
using a limited support weight function, such as the uniform density, leads to overall
similar empirical rejection probabilities (see Table 1). We also see from Table 1, that
the empirical rejection probabilities are somewhat lower and in some cases the finite
sample coverage is not accurate (see row 13). We also emphasize that the finite sample
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Table 1. Rows 1, 2, 7, 8, 13, 14, 19, 20 depict the empirical rejection probabilities if Hmod holds
true, the rows 3–6, 9–12, 15–18, 21–24 show the finite sample power of our tests against various
alternatives. The first column states the null model while the second shows the alternative model
and is left empty if the null model is the correct model. Column 3 specifies the noise level of the
data generating process. Column 4 depicts the values of the varying dimension parameters kn.
Columns 5–7 depict the empirical rejection probabilities for the nominal level 0�05 and �(t) =
0�25 · 1[−2�2](t).

Null Model Alt. Model Empirical Rejection Probabilities Using

Rows Hmod True DGP η kn mn = 9 mn = 12 mn = 15

1 (3.1) 0�7 5 0�013 0�004 0�001
2 (3.2) 7 0�070 0�018 0�007

3 (3.1) (3.2) 5 0�935 0�785 0�635
4 (3.1) (3.3) 0�448 0�173 0�098
5 (3.2) (3.1) 7 0�837 0�653 0�450
6 (3.2) (3.3) 0�944 0�758 0�551

7 (3.1) 1 4 0�037 0�005 0�005

8 (3.2) 7 0�220 0�090 0�030
9 (3.1) (3.2) 5 0�741 0�512 0�341

10 (3.1) (3.3) 0�290 0�091 0�035
11 (3.2) (3.1) 7 0�981 0�860 0�676
12 (3.2) (3.3) 0�982 0�877 0�718

13 (3.1) 0�7 6 0�010 0�000 0�001
14 (3.2) 9 0�064 0�020 0�007

15 (3.1) (3.2) 6 0�792 0�501 0�351
16 (3.1) (3.3) 0�335 0�108 0�068
17 (3.2) (3.1) 9 0�873 0�613 0�437
18 (3.2) (3.3) 0�931 0�776 0�562

19 (3.1) 1 6 0�031 0�003 0�005
20 (3.2) 9 0�215 0�087 0�037

21 (3.1) (3.2) 6 0�678 0�387 0�231
22 (3.1) (3.3) 0�197 0�071 0�020
23 (3.2) (3.1) 9 0�972 0�867 0�694
24 (3.2) (3.3) 0�985 0�876 0�683

properties of the test statistic are more sensitive to the choice of the support of [−2�2].
In contrast, when choosing normal density weights, the values of our standardized tests
is very insensitive to the choice of the variance of the normal distribution.

Testing degeneracy

The test is implemented as for Table 2 but in the following we use the weighting func-
tion�(t)= 0�5 · 1[−1�1](t). As above, the absolute value of the boundary of the support is
thus chosen to coincide with the variance of X1. As above, we see from Table 2 that the
empirical rejection probabilities are somewhat smaller than compared to the standard
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Table 2. The first row depicts the empirical rejection probabilities under degeneracy of the co-
efficient of X2, the rows 2–4, 6–8, 10–12, and 14–16 show the finite sample power of our tests
against various alternatives. Column 1 depicts the value of κ in the correct and alternative mod-
els. Column 2 specifies the covariance of B1 and B2 for the alternative models. Column 3 depicts
the value of η in the correct model and is empty if the null model is correct. Columns 4–7 depict
the empirical rejection probabilities for the nominal level 0�05 and�(t)= 0�5 · 1[−1�1](t).

Empirical Rejection Probabilities Using

kn = 4 kn = 5
Alt. Model

Rows κ ρ η mn = 16 mn = 20 mn = 20 mn = 25

1 1 1 0�028 0�020 0�012 0�008
2 0�3 0�230 0�194 0�123 0�118

3 0�5 0�573 0�550 0�489 0�430
4 0�7 0�860 0�836 0�798 0�759

5 1�5 0�000 0�002 0�000 0�000

6 0�3 0�191 0�113 0�012 0�012
7 0�5 0�555 0�427 0�152 0�116
8 0�7 0�866 0�794 0�536 0�437

9 2 1 0�001 0�000 0�000 0�000

10 0�3 0�078 0�056 0�004 0�003
11 0�5 0�320 0�238 0�057 0�032
12 0�7 0�671 0�560 0�310 0�229

13 1�5 0�024 0�025 0�013 0�011

14 0�3 0�322 0�276 0�224 0�199
15 0�5 0�724 0�635 0�612 0�578
16 0�7 0�937 0�900 0�888 0�852

normal weight as depicted in Table 2. In some cases, this leads again to inaccurate finite
sample coverage (see row 9). Overall the results are relatively similar even though the
weight functions has only limited support.

1.1 Binary response models

We consider the binary response model

Y = 1
{
g(X�B) < Z

}
� (1.1)

where, besides the dependent variable Y and covariates X , a special regressor Z is ob-
served as well. In the following, we assume that (X�Z) is independent ofB. In contrast to
the previous section, the test in the binary response model is based on the difference of
a partial derivative of the conditional success probability P(Y = 1|X�Z) and a restricted
transformation of the p.d.f. fB.
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Testing functional form restrictions In the binary response model (1.1), observe that

P[Y = 1|X = x�Z = z] =
∫

1
{
z > g(x�b)

}
fB(b)db

=
∫ z

−∞

∫
Px�s

fB(b)dν(b)ds�

where ν is the Lebesgue measure on the lower dimensional hyperplane Px�s = {b :
g(x�b)= s}. Consequently, it holds

ψ(x�z)≡ ∂zP[Y = 1|X = x�Z = z] =
∫
Px�z

fB(b)dν(b)�

We consider the null hypothesis Hmod : Y = 1{g(X�B) < Z} for some random coeffi-
cient B. By using the above integral representation of ψ, the null hypothesis Hmod is
equivalent to (Fψ(X� ·))(t)= (FgfB)(t�X) (recall the definition of the integral transform
(Fgf )(X� t)≡ ∫

exp(itg(X�b))f (b)db). Instead of using the previous equation, we invert
the Fourier transform and conclude that equation (2.3) holds true with

ε(X�z)=ψ(X�z)− (
F−1[(FgfB)(X� ·)])(z)�

Due to nonsingularity of the Fourier transform ε(X�z) = 0 is indeed equivalent to
(Fψ(X� ·))(t)= (FgfB)(t�X). In the case of a linear g, the random coefficient density fB
is thus identified through the Radon transform; see also Gautier and Hoderlein (2015).

To estimate the function ε, we replace ψ by a series least squares estimator. Let us
introduce the matrix Wn = (pmn(X1�Z1)� � � � �pmn(Xn�Zn))

′ where the basis function pl,
l ≥ 1, are assumed to be differentiable with respect to the (dx + 1)th entry. We estimate
ψ by

ψ̂n(x� z)= ∂zpmn(x� z)′
(
W′
nWn

)−1Yn�

where Yn = (Y1� � � � �Yn)
′. Consequently, we replace the function ε by

ε̂n(Xj� z)= ψ̂n(Xj� z)− (
F−1[(Fgf̂Bn)(Xj� ·)])(z)�

where f̂Bn is the sieve minimum distance estimator given by

f̂Bn ∈ arg min
f∈Bn

{
n∑
j=1

∫ ∣∣ψ̂n(Xj� z)− (
F−1[(Fgf )(Xj� ·)])(z)∣∣2

�(z)dz

}
(1.2)

and Bn = {φ(·) = ∑kn
l=1βlql(·)}. Our test statistic is Sn = n−1 ∑n

j=1
∫ |̂εn(Xj� z)|2�(z)dz

where, in this section,� is an integrable weighting function on the support of Z.
We introduce anmn dimensional linear sieve space Ψn ≡ {φ :φ(x�z)= ∑mn

l=1βlpl(x�

z)}. Let pmn(X�Z) be a tensor-product of vectors of basis functions pmn1
(X) and

pmn2
(Z) for integers mn1 and mn2 with mn = mn1 · mn2 . We assume that ∂zpmn2

(z) =
(p0(z)�2p1(z)� � � � �mn2pmn2−1(z))

′. Further, let τl denote the squared integer that is
associated with ∂zpl. In Definition 1, pl(X) has to be replaced by τlpl(X�Z). Let
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Bn = ∫
E[(F−1[(Fgqkn)(X� ·)](z)(F−1[(Fgqkn)(X� ·)](z)′]�(z)dz, which is denoted by

B̂n when the expectation is replaced by the sample mean. In contrast to Assumption 4,
we assume in the following that ‖B−

n ‖ is bounded from above.

Assumption 1.

(i) The random vector (X�Z) is independent of B.

(ii) For any p.d.f. fB satisfying Fψ = FgfB there exists ΠknfB ∈ Ψn such that n‖ψ −
F−1FgΠknfB‖2

� = o(√mn).
(iii) There existsΠmnψ ∈Ψn such that n‖Πmnψ−ψ‖2

� = o(√mn).
(iv) It holds ‖B−

n ‖ =O(1) and P(rank(Bn)= rank(B̂n))= 1 + o(1).
(v) It holds kn logn= o(√mn) andm2

n(logn)
∑mn
l=1 τl = o(nλn).

Assumption 1 is similar to Assumption 4. Note that due to the partial derivatives of
the basis functions we need to be more restrictive about the dimension parameter mn,
which is captured in Assumption 1(iv). The following result establishes the asymptotic
distribution of our test statistic underHmod in the binary response model (1.1).

Proposition 1. Let Assumptions 2, 3, and 1 hold with δ(Y�X�Z) = Y − ∫
1{Z >

X ′b}fB(b)db. Then, underHmod we have

(
√

2ςmn)
−1(nSn −μmn) d→ N (0�1)�

The critical values can be estimated as in Remark 2.1 but where now δn(Y�X�Z) =
Y − ∫

1{Z ≥X ′b}f̂Bn(b)db with the estimator f̂Bn given in (1.2).

Testing degeneracy To keep the presentation simple, we only consider the linear case
in the following. UnderHlin, the binary response model (1.1) simplifies to

Y = 1
{
X ′B <Z

}
� (1.3)

∫
exp(itz)ψ(X�z)dz =

∫
exp(itz)ψ

(
X1� z−X ′

2b2
)
dz�

By nonsingularity of the Fourier transform, we conclude thatHdeg is equivalent to equa-
tion (2.3) where

ε(X�z)=ψ(X�z)−ψ(
X1� z−X ′

2b2
)
�

If ψ only depends on X1, we consider the estimator ψ̂1n(x1� z) = ∂zpkn(x1� z)
′(W′

n1
Wn1)

−1Yn, where Wn1 = (pkn(X11�Z1)� � � � �pkn(X1n�Zn))
′. We propose a minimum dis-

tance estimator of b2 given by

b̂2n = arg min
β∈B

n∑
j=1

∫ ∣∣ψ̂n(Xj� t)− ψ̂1n
(
X1j� t −β′X2

)∣∣2
�(t)dt� (1.4)
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Consequently, we estimate the function ε by ε̂n(Xj� z) = ψ̂n(Xj� z) − ψ̂1n(X1j� z −
b̂2nX2j).

Proposition 2. Let Assumptions 2, 3, 1(i), (iii), (v) with δ(Y�X�Z) = Y − P(Y =
1|X1�Z − X ′

2b2), and Hlin hold true. Assume that n
∫
E|(Πknψ)(X1� z) − ψ(X1�

z)|2�(z)dz = o(√mn). Then, underHdeg we have

(
√

2ςmn)
−1(nSn −μmn) d→ N (0�1)�

The critical values can be estimated as in Remark 2.1 by replacing P(Y = 1|X1�Z −
X ′

2b2) by a series least squares estimator.

1.2 Application to systems of equations

In this subsection, we apply our testing procedure to systems of equations, that is, situ-
ations in which the endogenous variable is not a scalar, but a vector. For simplicity, we
consider in the following only the bivariate case. Formally, we consider the model

Y = g(X�B)� (1.5)

for some function g and Y ∈R
2. Again the vector of random coefficients B= (B0�B1�B2�

B3) is assumed to be independent of the covariatesX .

Testing functional form restrictions Null hypothesis Hmod is equivalent to equation
(2.3) with

ε(X� t)=E[
exp

(
it ′Y

) − exp
(
it ′g(X�B)

)|X]
for some t ∈ R

2. Our test of Hmod is now based on Sn ≡ n−1 ∑n
j=1

∫ |̂εn(Xj� t)|2�(t)dt
where ε̂n is the estimator of ε introduced in Example 1 but with a multivariate index t
and� being a weighting function on R

2. Under a slight modification of assumptions re-
quired for Theorem 2.1, asymptotic normality of the standardized test statistic Sn follows
underHmod.

Testing degeneracy In the partially linear case (i.e., Hpart-lin holds), the random coeffi-
cient model (1.5) simplifies to

Y1 = B0 +B′
11X1 +B′

12X2�

Y2 = B2 +B′
31X1 + g2(X2�B32)�

This model is identified if B32 is degenerate (see Hoderlein, Holzmann, and Meister
(2014)). A test for degeneracy of Hdeg : B32 = b, for some nonstochastic vector b, uses
only the second equation, that is,

E
[
exp(itY2)|X

] =E[
exp

(
it

(
B2 +B′

31X1
))|X1

]
exp

(
itg2(X32� b)

)
�

We can consequently use the testing methodology developed in Section 2.3.4.



Supplementary Material Specification testing in random coefficient models 7

1.3 Proofs of Section 3

In the following, we make use of the notation α̂n ≡ (nR̂n)
−1 ∑

j Yjpmn(Xj�Zj) where

R̂n = n−1 ∑
j pmn(Xj�Zj)pmn(Xj�Zj)

′. The Kronecker product for matrices is denoted
by ⊗.

Proof of Proposition 1. We make use of the decomposition

nSn =
∑
j

∫ ∣∣∂zpmn(Xj� z)′(̂αn −E[
1
{
Z > g(X�B)

}
pmn(X�Z)

])∣∣2
�(z)dz

+ 2
∑
j

∫
∂zpmn(Xj� z)

′(̂αn −E[
1
{
Z > g(X�B)

}
pmn(X�Z)

])
× (
∂zpmn(Xj� z)

′E
[
1
{
Z > g(X�B)

}
pmn(X�Z)

]
− (

F−1[(Fgf̂Bn)(Xj� ·)])(z))�(z)dz
+

∑
j

∫ ∣∣∂zpmn(Xj� z)′E[
1
{
Z > g(X�B)

}
pmn(X�Z)

]
− (

F−1[(Fgf̂Bn)(Xj� ·)])(z)∣∣2
�(z)dz

= In + 2IIn + IIIn (say)�

Consider In. For all l ≥ 1, the derivative of a basis function pl is given by lpl−1. Since pl
forms an orthonormal basis in L2

�(R) holds

In = n

λn

(
β̂mn −E[

1
{
Z > g(X�B)

}
pmn(X�Z)

])′

× (Im1n ⊗ Tn)
(
β̂mn −E[

1
{
Z > g(X�B)

}
pmn(X�Z)

]) + op(√mn)�

where Tn is am2n ×m2n diagonal matrix with lth diagonal element is given by (l− 1)2. It
holds

In = λ−1
n

mn∑
l=1

τl

∣∣∣∣n−1/2
∑
j

(
Yj −

∫
1
{
Zj > g2(Xj�b)

}
fB(b)db

)
pl(Xj�Zj)

∣∣∣∣2
+ op(1)�

Thus, Lemma A.2 yields (
√

2ςmn)
−1(In −μmn) d→ N (0�1). Consider IIIn. We have

IIIn �
∑
j

∫ ∣∣(Πmnψ)(Xj� z)−ψ(Xj� z)
∣∣2
�(z)dz

+
∑
j

∫ ∣∣(F−1[(Fg(f̂Bn − fB)
)
(Xj� ·)

])
(z)

∣∣2
�(z)dz

=An1 +An2�
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We haveAn1 =Op(n‖Πmnψ−ψ‖2
�)= op(√mn) and

An2 �
∑
j

∫ ∣∣(F−1[(Fg(f̂Bn −ΠknfB)
)
(Xj� ·)

])
(z)

∣∣2
�(z)dz

+
∑
j

∫ ∣∣(F−1[(Fg(ΠknfB − fB)
)
(Xj� ·)

])
(z)

∣∣2
�(z)dz�

where the second summand on the right-hand side is of the order op(
√
mn). Further,∑

j

∫ ∣∣(F−1[(Fg(f̂Bn −ΠknfB)
)
(Xj� ·)

])
(z)

∣∣2
�(z)dz

= (β̂n −βn)′

×
∑
j

∫ (
F−1

[
(Fgqkn)(Xj� ·)

])
(z)

(
F−1[(Fgqkn)(Xj� ·)])(z)′�(z)dz(β̂n −βn)

and thus, following the proof of Theorem 2.1 we obtain An2 = op(
√
mn). Similarly as

in the proof of Theorem 2.1, it can be seen that IIn = op(
√
mn), which completes the

proof.

Proof of Proposition 2. We decompose our test statistic as

nSn =
∑
j

∫ ∣∣∂zpmn(Xj� z)′(̂αn −E[
Ypmn(X�Z)

])∣∣2
�(z)dz

+ 2
∑
j

∫ (
∂zpmn(Xj� z)

′α̂n − (Πmnψ)(Xj� z)
)

× (
(Πmnψ)(Xj� z)− ψ̂1n

(
X1j� z−X ′

2j b̂2n
))
�(z)dz

+
∑
j

∫ ∣∣(Πmnψ)(Xj� z)− ψ̂1n
(
X1j� z−X ′

2j b̂2n
)∣∣2
�(z)dz

= In + 2IIn + IIIn (say)�

Consider In. As in the proof of Proposition 1, we obtain

In = λ−1
n

mn∑
l=1

τl

∣∣∣∣n−1/2
∑
j

(
Yj −

∫
1
{
Zj ≥X ′

1b1 +X ′
2b2

}
fB1(b1)db1

)
pl(Xj�Zj)

∣∣∣∣2

+ op(1)�

and thus, Lemma A.2 yields (
√

2ςmn)
−1(In −μmn) d→ N (0�1). Concerning IIIn, we calcu-

late

IIIn �
∑
j

∫ ∣∣(Πmnψ)(Xj� z)−ψ(Xj� z)
∣∣2
�(z)dz
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+
∑
j

∫ ∣∣ψ(
X1j� z−X ′

2jb2
) − ψ̂n(Xj� z)

∣∣2
�(z)dz

+
∑
j

∫ ∣∣ψ̂n(Xj� z)− ψ̂1n
(
X1j� z−X ′

2j b̂2n
)∣∣2
�(z)dz�

The definition of the estimator b̂2 in (1.4) yields∑
j

∫ ∣∣ψ̂n(Xj� z)− ψ̂1n
(
X1j� z−X ′

2j b̂2n
)∣∣2
�(z)dz

≤
∑
j

∫ ∣∣ψ̂n(Xj� z)− ψ̂1n
(
X1j� z−X ′

2jb2
)∣∣2
�(z)dz

�
∑
j

∫ ∣∣ψ̂n(Xj� z)−ψ(Xj� z)
∣∣2
�(z)dz

+
∑
j

∫ ∣∣ψ̂1n
(
X1j� z−X ′

2jb2
) −ψ(

X1j� z−X ′
2jb2

)∣∣2
�(z)dz

= op(√mn)�

It thus follows IIIn = op(√mn). Similarly as in the proof of Theorem 2.3 it can be shown
that IIn = op(√mn).
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