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Specification testing in random coefficient models
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In this paper, we suggest and analyze a new class of specification tests for random
coefficient models. These tests allow to assess the validity of central structural fea-
tures of the model, in particular linearity in coefficients, generalizations of this
notion like a known nonlinear functional relationship, or degeneracy of the distri-
bution of a random coefficient, that is, whether a coefficient is fixed or random,
including whether an associated variable can be omitted altogether. Our tests are
nonparametric in nature, and use sieve estimators of the characteristic function.
We provide formal power analysis against global as well as against local alterna-
tives. Moreover, we perform a Monte Carlo simulation study, and apply the tests
to analyze the degree of nonlinearity in a heterogeneous random coefficients de-
mand model. While we find some evidence against the popular QUAIDS specifi-
cation with random coefficients, it is not strong enough to reject the specification
at the conventional significance level.

Keywords. Nonparametric specification testing, random coefficients, unob-
served heterogeneity, sieve estimation, characteristic function, consumer de-
mand.

JEL classification. C12, C14.

1. Introduction

Heterogeneity of individual agents is now widely believed to be an important—if not
the most important—source of unobserved variation in a typical microeconometric ap-
plication. Increasingly, the focus of econometrics shifts toward explicitly modeling this
central feature of the model through random parameters, as opposed to searching for
fixed parameters that summarize only, say, the mean effect. However, as always when
additional features are being introduced, this step increases the risk of model misspec-
ification and, therefore, introducing bias. This suggests to use all the information avail-
able in the data to assess the validity of the chosen specification through a test before
performing the main analysis. A second important feature of a specification test is that
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we may be able to find a restricted model that is easier to implement than the unre-
stricted one. This feature is particularly important in models of complex heterogeneity,1

which are generically only weakly identified and therefore estimable only under great
difficulties.

This paper proposes a family of nonparametric specification tests in models with
complex heterogeneity. We focus on the important class of random coefficient mod-
els, that is, models in which there is a finite (db dimensional) vector of continuously
distributed and heterogeneous parameters B ∈ R

db , and a known structural function g
which relates these coefficients as well as a dx dimensional vector of observable explana-
tory variablesX to a continuous dependent variable Y , that is,

Y = g(X�B)� (1.1)

Throughout this paper, we assume that X is independent of B (however, as we dis-
cuss below, this does not preclude extensions where some variables in the system are
endogenous). The leading example in this class of models is the linear random coeffi-
cient model, where g(X�B) = X ′B, but we also propose specification tests in models
where g is nonlinear. Indeed, in extensions we also consider the case where Y is binary,
and/or where Y is a vector.

The simple linear model with independent random coefficients is well suited to
illustrate our contribution and to explain the most important features of such a non-
parametric specification test. Despite the fact that in this model there is a one-to-one
mapping from the conditional probability density function of the observable variables
fY |X to the density of random coefficients fB such that the true density of random coeffi-
cients is associated with exactly one density of observables (see, e.g., Beran, Feuerverger,
and Hall (1996) and Hoderlein, Klemelä, and Mammen (2010)), the model imposes
structure that can be used to assess the validity of the specification. For instance, in the
very same model, the conditional expectation is linear, that is,E[Y |X] = b0 +b1X1 +· · ·+
bkXk, where bj = E[Bj]. This means that a standard linear model specification test for
quadratic terms in X , or, somewhat more elaborate, nonparametric specification tests
involving a nonparametric regression as alternative could be used to test the specifica-
tion. Similarly, in this model the conditional skedastic function is at most quadratic in
X , so any evidence of higher order terms can again be taken as rejection of this linear
random coefficients specification. However, both of these tests do not use the entire dis-
tribution of the data, and hence do not allow us to discern between the truth and certain
alternatives.

In contrast, our test will be based on the characteristic function of the data, that is,
we use the entire distribution of the data to assess the validity of the specification. In the
example of the linear model, we compare the distance between a series least squares
estimator of the unrestricted characteristic function E[exp(itY)|X], and an estimator of
the restricted one, which isE[exp(it(X ′B))|X] = ∫

exp(it(X ′b))fB(b)db, where the prob-
ability density function fB of the random coefficients B is replaced by a sieve minimum

1We refer to models with several unobservables, for example, random coefficients models, nonseparable
models, treatment effects, etc., as (models with) “complex heterogeneity.”
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distance estimator under the hypothesis of linearity. More specifically, using the nota-
tion ε(X� t) = E[exp(itY) − exp(it(X ′B))|X], our test is based on the observation that
under the null hypothesis of linearity, ε(X� t)= 0 holds, or equivalently,∫

E
[∣∣ε(X� t)∣∣2]

�(t)dt = 0�

for any strictly positive integrable weighting function �, which is not required to be a
pdf and whose choice is discussed in the simulation section.2 Our test statistic is then
given by the sample counterpart

Sn ≡ n−1
n∑
j=1

∫ ∣∣̂εn(Xj� t)∣∣2
�(t)dt�

where ε̂n denotes an estimator of ε as described above. We reject the null hypothesis of
linearity if the statistic Sn becomes too large.

This test uses evidently the entire distribution of the data to assess the validity of
the specification. It therefore implicitly uses all available comparisons between the re-
stricted and the unrestricted model, not just the ones between, say a linear conditional
mean and a nonparametric conditional mean. Moreover, it does not even require that
these conditional means (or higher order moments) exist. To see that our test uses the
information contained in the conditional moments, consider again the linear random
coefficients model. Using a series expansion of the exponential function, ε(X� t) = 0 is
equivalent to

∞∑
l=0

(it)l
{
E

[
Yl

∣∣X] −E[(
X ′B

)l∣∣X]}
/(l!)= 0�

provided all moments exist. This equation holds true, if and only if, for every coefficient
l ≥ 1:

E
[
Yl|X] =E[(

X ′B
)l|X]

�

that is, there is equality of all of these conditional moments. This implies, in particular,
the first and second conditional moment equation E[Y |X] = X ′E[B] and E[Y 2|X] =
X ′E[BB′]X . As such, our test exploits potential discrepancies in any of the conditional
moments, and works even if some or all of them do not exist.

Our test is consistent against a misspecification of model (1.1) in the sense that, un-
der the alternative, there exists no vector of random coefficients B satisfying the model
equation (1.1) for a known function g. Indeed, such a misspecification leads to a devi-
ation of the unrestricted from the restricted conditional characteristic function. More-
over, our test is also consistent against certain specific other alternatives, for example,
if the null is the linear random coefficient model and the alternative is a higher order
polynomial with random parameters.

2This type of weighting is standard in the literature; see the weighted L2 test statistic by Su and White
(2007), or the empirical likelihood test proposed by Chen, Peng, and Yu (2013). For a complex number
z ∈ C� the absolute value is given by |z| = √

zz̄.
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However, we can also use the same testing principle to analyze whether or not a pa-
rameter is nonrandom, which usually allows for a

√
n consistent estimator for this pa-

rameter, and whether it has in addition mean zero which implies that we may omit the
respective variable altogether. This is important, because from a nonparametric iden-
tification perspective random coefficient models are weakly identified (i.e., stem from
the resolution of an ill-posed inverse problem), a feature that substantially complicates
nonparametric estimation.3

Another key insight in this paper is that testing is possible even if the density of ran-
dom coefficients is not point identified under the null hypothesis. This is important,
because many structural models are not linear in an index. As such, it is either clear that
they are not point identified in general and at best set identified (see Hoderlein, Holz-
mann, and Meister (2014), for such an example), or identification is unknown. To give
an example of such a model that we will pursue in the application, consider a single
cross section of the workhorse QUAIDS model of consumer demand (Banks, Blundell,
and Lewbel (1997)). Note that in a cross section prices often do not vary (or only very
minimally, see, e.g., the commonly used British FES data), and the demand model for a
good Y , in our example food at home, is therefore defined through

Y = B0 +B1X +B2X
2�

where Bj denotes parameters, and X log total expenditure. For reasons outlined in
Masten (2015), the joint density of random parameters B0, B1, B2 is not point identi-
fied in general. Our strategy is now to solve a functional minimization problem that
minimizes a similar distance as outlined above between restricted and unrestricted
model, and allows us to obtain one element in this set as minimizer. If the distance
between the restricted model and the unrestricted model is larger than zero, we con-
clude that we can reject the null that the model is, in our example, a heterogeneous
QUAIDS. However, if the distance is not significantly different from zero, there still may
be other non-QUAIDS models which achieve zero distance, and which we therefore
cannot distinguish from the heterogeneous QUAIDS model. As such, in the partially
identified case we do not have power against all possible alternatives, and our test be-
comes conservative. In contrast, our test has power against certain alternatives even if
our model is not identified under the null hypothesis. As an example, in the applica-
tion we consider testing the random coefficients QUAIDS model against higher order
polynomials; in this case, ε(X� t)= 0 for all t implies that, for example, the cubic model
Y = B̃0 +XB̃1 +X2B̃2 +X3B̃3 with random coefficients (B̃0� B̃1� B̃2� B̃3) is misspecified.4

Finally, we may extend the approach outlined in this paper to binary or discrete de-
pendent variables, provided we have a special regressor Z, as in Lewbel (2000), and to

3In a nonparametric sense, there is a stronger curse of dimensionality associated with random coefficient
models than with nonparametric density estimation problems (see, e.g., Hoderlein, Klemelä, and Mammen
(2010)).

4In addition, our method also applies to other point identified random coefficient models such as mod-
els that are linear in parameters, but whereX is replaced by a element-wise transformation of the covariates
(i.e., Xj is replaced by hj(Xj) with unknown hj . See Gautier and Hoderlein (2015) for the formal argument
that establishes identification).
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systems of equations, see Section 3 as well as the Supplementary Material; see Breunig
and Hoderlein (2018).

Related literature

As already mentioned, this paper draws upon several literatures. The first is nonpara-
metric random coefficients models, a recently quite active line of work, including work
on the linear model (Beran and Hall (1992), Beran, Feuerverger, and Hall (1996), and
Hoderlein, Klemelä, and Mammen (2010)), the binary choice model (Ichimura and
Thompson (1998) and Gautier and Kitamura (2013)), and the treatment effects model
(Gautier and Hoderlein (2015)). Related is also the wider class of models analyzed in Fox
and Gandhi (2009) and Lewbel and Pendakur (2013), who both analyze nonlinear ran-
dom coefficient models, Masten (2015) and Matzkin (2012), who both discuss identifi-
cation of random coefficients in a simultaneous equation model, Hoderlein, Holzmann,
and Meister (2014) who analyze a triangular random coefficients model, and Dunker,
Hoderlein, and Kaido (2013) and Fox and Lazzati (2012) who analyze games.

As far as we know, the general type of specification tests we propose in this paper is
new to the literature. In linear semiparametric random coefficient models, Beran (1993)
proposes a minimum distance estimator for the unknown distributional parameter of
the random coefficient distribution. Within this framework of a parametric joint ran-
dom coefficients’ distribution, Beran also proposes goodness of fit testing procedures.
Also, in a parametric setup where the unknown random coefficient distribution follows
a parametric model, Swamy (1970) establishes a test for equivalence of random coeffi-
cient across individuals, that is, a test for degeneracy of the random coefficient vector.
We emphasize that with our testing methodology, despite less restrictive distributional
assumptions, we are able to test degeneracy of a subvector of B while others are kept
as random. Another test in linear parametric random coefficient models was proposed
by Andrews (2001), namely a test for degeneracy of some random coefficients. In con-
trast, our nonparametric testing procedure is based on detecting differences in condi-
tional characteristic function representation and, as we illustrate below, we do not ob-
tain boundary problems as in Andrews (2001).

While our test is the first that uses characteristic functions to test hypotheses about
random coefficients, in other econometric setups tests based on comparing character-
istic functions have been proposed. For instance, Su and White (2007) considered a test
of conditional independence, Chen and Hong (2010) proposed a goodness-of-fit test for
multifactor continuous-time Markov models, and Chen, Peng, and Yu (2013) considered
an empirical likelihood test for correct specification for Markov processes.

In this paper, we use sieve estimators for the unknown distributional elements. In the
econometrics literature, sieve methodology was recently used to construct Wald statis-
tics (see Chen and Pouzo (2015) and Chen and Pouzo (2012) for sieve minimum distance
estimation) or nonparametric specification tests (see Breunig (2016)), and, in nonpara-
metric instrumental regression, tests based on series estimators have been proposed
by Horowitz (2012) and Breunig (2015). Moreover, in the nonparametric IV model, tests
for parametric specification have been proposed by Horowitz (2006) and Horowitz and
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Lee (2009), while Blundell and Horowitz (2007) proposed a test of exogeneity. Santos
(2012) developed hypothesis tests which are robust to a failure of identification. More
generally, there is a large literature on model specification tests based on nonparametric
regression estimators in L2 distance starting with Härdle and Mammen (1993). Specifi-
cation tests in nonseparable models were proposed by Hoderlein, Su, and White (2011)
and Lewbel, Lu, and Su (2015). None of these tests is applicable to specification test-
ing in random coefficient models. Moreover, in contrast to nonparametric specification
tests in instrumental variable models in Horowitz (2012) and Breunig (2015) who as-
sumed bounded support, we explicitly allow for regressors with large support which is
required to ensure identification of random coefficient models in general. This results in
a very different setup as densities have to be allowed to be close to zero, which leads to
slower rates of convergence and rules out the approach of density weighting considered
in Horowitz (2012).

Finally, our motivation is partly driven by consumer demand, where heterogeneity
plays an important role. Other than the large body of work reviewed above we would
like to mention the recent work by Hausman and Newey (2013), Blundell, Kristensen,
and Matzkin (2010); see Lewbel (1999) for a review of earlier work.

Overview of paper

In the second section, we introduce our test formally, and discuss its large sample prop-
erties in the baseline scenario. We distinguish between general specification tests, and
subcases where we can additively separate a part of the model which contains only co-
variates and fixed coefficients from the remainder. In the third section, we focus on the
extensions discussed above. The finite sample behavior is investigated through a Monte
Carlo study in the fourth section. Finally, we apply all concepts to analyze the validity
of a heterogeneous QUAIDS (Banks, Blundell, and Lewbel (1997)) model which is the
leading parametric specification in consumer demand.

2. The test statistic and its asymptotic properties

2.1 Examples of testable hypotheses

In the wider class of models encompassed by (1.1), we consider two different types of
hypotheses. First, we provide a general test for the hypothesis that the structural relation
between the covariates, the random coefficients, and the outcome variable coincides
with a known function g. We thus consider the hypothesis:5

Hmod : there exist some distributions of random parameters B such that Y = g(X�B)�
The alternative hypothesis is P(Y �= g(X�B) for all distributions of random parameters
B) > 0. An important example is testing the hypothesis of linearity, that is, whether with
probability one

Hlin : Y =X ′B�
5Equalities involving random variables are understood as equalities with probability one, even if we do

not say so explicitly.
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in which case the distribution of B is point identified. Another example is a quadratic
form of the function g in each component of the vector of covariatesX , that is, we want
to assess the null hypothesis

Hquad : Y = B0 +X ′B1 + (
X2)′

B2�

for some B= (B0�B1�B2), where the square of the vectorX is understood element-wise.
Note that in the latter example the distribution of the random parameters B is only par-
tially identified. As already discussed above, this fact will generally result in a lack of
power against certain alternatives.

The second type of hypotheses our test allows to consider is whether a subvector of
B, say, B2, is deterministic (or, equivalently, has a degenerate distribution). More specif-
ically, we want to consider the following hypothesis:

Hdeg : B2 = b2 for some distributions of random parameters satisfying (1.1)�

The alternative is P(B2 �= b2 for all distributions of random parameters B satisfying
(1.1)) > 0. While the hypothesis Hdeg could be considered in more general models, mo-
tivated by the linear (or polynomial) model, we will confine ourselves to functions g that
are additively separable in the sense that

Hadd : Y = g1(X�B−2)+ g2(X�B2)� (2.1)

where g1 and g2 denote two known functions, and we use the notation B−2 = (B0�B
′
1)

′.
The leading example for this type of hypothesis is of course when g1 is a linear function
of a subvector X1 of covariates X , in which case we obtain a partially linear structure,
that is,

Hpart-lin : Y = B0 +X ′
1B1 + g2(X�B2)� (2.2)

where g2 is a known function. This covers the following examples of hypotheses already
outlined in the Introduction: First, in a linear model, that is, Y = B0 +X ′

1B1 +X ′
2B2, it

allows to test whether the coefficient onX2 is deterministic, that is, we may test the null

Hdeg-lin : Y = B0 +X ′
1B1 +X ′

2b2�

against the alternative that B2 is random. Obviously, in this case b2 is identified by stan-
dard linear mean regression identification conditions. A second example arises if, in the
quadratic model, we want to test a specification with deterministic second order terms,
that is,

Hdeg-quad : Y = B0 +X ′
1B1 + (

X2
1
)′
b2�

against the alternative that B2 is random. Note that in the latter two hypotheses, iden-
tification of b2 follows as in parametric mean regression and, in equation (2.2), point
identification under the null holds for instance if g2(X�b2) = h(X2)

′b2 for some vector
valued function h such that the associated rank condition is satisfied. In the Monte Carlo
study and the application, we will only consider the case where b2 is point identified,
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which we consider to be the leading case. However, we would like to point out that the
test applies also more generally to situations where b2 does not need to be point identi-
fied, as in the most general case defined by hypothesis Hadd, albeit with a loss of power
against some alternatives.

2.2 The test statistic

Our test statistic is based on the L2 distance between an unrestricted conditional char-
acteristic function and a restricted one. We show below that each null hypothesis is then
equivalent to

ε(X� t)= 0 for all t� (2.3)

where ε : Rdx+1 →C is a complex valued, measurable function. Our testing procedure is
based on the L2 distance of ε to zero. Equation (2.3) is equivalent to∫

E
[∣∣ε(X� t)∣∣2]

�(t)dt = 0�

for some strictly positive weighting function � with
∫
�(t)dt <∞. Our test statistic is

given by the sample counterpart to this expression, which is

Sn ≡ n−1
n∑
j=1

∫ ∣∣̂εn(Xj� t)∣∣2
�(t)dt�

where ε̂n is a consistent estimator of ε. Below, we show that the statistic Sn is (after stan-
dardization) asymptotically standard normally distributed. As the test is one sided, we
reject the null hypothesis at level α when the standardized version of Sn is larger than
the (1 − α)-quantile of N (0�1).

We consider a series estimator for the conditional characteristic function of Y given
X , that is, ϕ(x� t) ≡ E[exp(itY)|X = x]. To do so, let us introduce a vector of basis
functions denoted by pm(·) = (p1(·)� � � � �pm(·))′ for some integer m ≥ 1. Further, let
Xm ≡ (pm(X1)� � � � �pm(Xn))

′ and Yn(t)= (exp(itY1)� � � � �exp(itYn)). We replace ϕ by the
series least squares estimator

ϕ̂n(x� t)≡ pmn(x)
(
X′
mn

Xmn
)−1X′

mn
Yn(t)�

where the integermn increases with sample size n. We compare this unrestricted condi-
tional expectation estimator to a restricted one which depends on the hypothesis under
consideration.

In the following examples, we provide explicit forms for the function ε. The analysis
is based on the assumption of independence of covariatesX and random coefficients B.
See also the discussion after Assumption 1 below.

Example 1 (Testing functional form restrictions). The null hypothesis Hmod is equiva-
lent to the following equation involving conditional characteristic functions

E
[
exp(itY)|X] =

∫
exp

(
itg(X�b)

)
fB(b)db�
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for each t ∈ R, a known function g, and some random parameters B, with probability
density function (p.d.f.) fB. Hence, equation (2.3) holds true with

ε(X� t)=E[
exp(itY)|X] −

∫
exp

(
itg(X�b)

)
fB(b)db� (2.4)

As already mentioned, if the function g is nonlinear the p.d.f. of random coefficients B is
not necessarily point identified. On the other side, if g is the inner product of its entries,
then (2.3) holds true with

ε(X� t)=E[
exp(itY)|X] −

∫
exp

(
itX ′b

)
fB(b)db�

and in this case the distribution of B is point identified (see, e.g., Hoderlein, Klemelä,
and Mammen (2010)).

While our test, based on the function ε, is in general consistent against a failure of
the null hypothesis Hmod, it is also consistent against certain alternative models such
as higher order polynomials which are not point identified. To illustrate this, consider
testing linearity of the random coefficient QUAIDS model which is given by Y = B̃0 +
B̃1X + B̃2X

2 for random coefficients B̃0, B̃1, and B̃2 (also independent of X). In this
case, the conditional first and second moment equation implied by equation (2.3) yield
E[B̃2] = 0 and Var(B̃2) = 0, respectively. We thus conclude that B̃2 = 0 with probability
one.

Let us introduce the integral transform (Fgf )(X� t)≡ ∫
exp(itg(X�b))f (b)db, which

coincides with the Fourier transform evaluated at tX , if g is linear.6 If g is nonlinear,
then the random coefficient’s p.d.f. fB does not need to be identified through ϕ = Fgf .
We estimate the function ε by

ε̂n(Xj� t)= ϕ̂n(Xj� t)− (Fgf̂Bn)(Xj� t)�

where the estimator f̂Bn is a sieve minimum distance estimator given by

f̂Bn ∈ arg min
f∈Bn

{
n∑
j=1

∫ ∣∣ϕ̂n(Xj� t)− (Fgf )(Xj� t)
∣∣2
�(t)dt

}
(2.5)

and Bn = {φ(·) = ∑kn
l=1βlql(·)} is a linear sieve space of dimension kn < ∞ with ba-

sis functions {ql}l≥1. Here, kn and mn increase with sample size n. As we see be-
low, we require that mn increases faster than kn. Next, using the notation Fn(t) =
((Fgqkn)(X1� t)� � � � � (Fgqkn)(Xn� t))′, the minimum norm estimator of fB given in (2.5)

coincides with f̂Bn(·)= qkn(·)′β̂n where

β̂n =
(∫

Fn(−t)′Fn(t)�(t)dt
)− ∫

Fn(−t)′�n(t)�(t)dt

6The Fourier transform is given by (Fφ)(t)≡ ∫
exp(itz)φ(z)dz for a functionφ ∈L1(Rd)while its inverse

is (F−1φ̃)(z)≡ (2π)−d ∫
exp(−itz)φ̃(t)dt. We also make use of (Fgφ)(t)= (Fgφ)(−t) where φ denotes the

complex conjugate of a function φ.
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and �n(t)= (ϕ̂n(X1� t)� � � � � ϕ̂n(Xn� t))
′.7 The exponent “−”denotes the Moore–Penrose

generalized inverse. As a byproduct, we thus extend the minimum distance estimation
principle of Beran and Millar (1994) to nonlinear random coefficient models and the
sieve methodology.

Example 2 (Testing degeneracy under the random coefficients specification). In the
case of an additively separable structure Hadd (see equation (2.1)), the null hypothesis
Hdeg implies the equality of conditional characteristic functions, that is,

E
[
exp(itY)|X] =

∫
exp

(
itg1(X�b−2)

)
fB−2(b−2)db−2 exp

(
itg2(X�b2)

)
� (2.6)

for each t ∈R. Therefore, equation (2.3) holds with

ε(X� t)=E[
exp(itY)|X] −

∫
exp

(
itg1(X�b−2)

)
fB−2(b−2)db−2 exp

(
itg2(X�b2)

)
�

Given a partially linear structure Hpart-lin (see equation (2.2)), the null hypothesis Hdeg

implies the equality of conditional characteristic functions, that is, equation (2.3) holds
with

ε(X� t)=E[
exp(itY)|X] −

∫
exp

(
itX ′

1b−2
)
fB−2(b−2)db−2 exp

(
itg2(X�b2)

)
�

where the distribution of the random coefficients is identified. Our test, based on the
function ε, has power against any failure of hypothesis Hdeg if the distribution of the
random coefficients under the maintained hypothesis Hadd is identified, that is, if g1

and g2 are linear in X1 and X2, respectively, or element-wise transformations of each
component of these vectors (see Gautier and Hoderlein (2015)).

To illustrate that our test of degeneracy has power in the random coefficient QUAIDS
model Y = B̃0 + B̃1X + B̃2X

2, note that under the null the conditional first and second
moment regressions implied by equation (2.3) already yield that E[B̃2] = b2 and E[B̃2

2] =
b2

2, respectively. From this observation, we are already in the position to conclude that
B̃2 is degenerate with B̃2 = b2.

We estimate the function ε by

ε̂n(Xj� t)= ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)exp
(
itg2(Xj� b̂2n)

)
�

where the estimators f̂B−2�n and b̂2n are a sieve minimum distance estimators of the p.d.f.
fB−2 and the parameter b2, respectively, given by

(f̂B−2n� b̂2n)

∈ arg min
(f�b)∈B−2�n×B2

{
n∑
j=1

∫ ∣∣ϕ̂n(Xj� t)− (Fg1f )(Xj� t)exp
(
itg2(Xj�b)

)∣∣2
�(t)dt

}
(2.7)

7The integral transform Fg of a vector of functions is always understood element-wise, that is,
(Fgqkn)(Xj� t)= ((Fgq1)(Xj� t)� � � � � (Fgqkn)(Xj� t))′.
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and B−2�n = {φ(·) = ∑kn
l=1βlql(·)} is a linear sieve space of dimension kn <∞ with ba-

sis functions {ql}l≥1 of B−2 and B2 is a compact parameter space. See also Ai and Chen
(2003) for sieve minimum distance estimation for finite dimensional parameters and
nonparametric functions. As in the previous example, kn and mn increase with sample
size n, but we require thatmn increases faster than kn.

Example 3 (Testing degeneracy under additive separability alone). We also present an
alternative test of degeneracy under Hadd (see equation (2.1)) when g1 depends on co-
variates X1 but not on a subvector X2 of the covariates X = (X ′

1�X
′
2)

′. In this case, we
rely on additive separability alone and base our test on

E
[
exp(itY)|X] =E[

exp
(
it

(
Y − g2(X�b2)

))|X1
]

exp
(
itg2(X�b2)

)
� (2.8)

Of course, such a test is only reasonable if the sigma algebra generated by X is not con-
tained in the one generated byX1. This rules out, for instance, testing degeneracy in the
random coefficient QUAIDS model whereX is scalar and g2 is a quadratic function ofX .

This test would not require any structure on the first term (despite not depend-
ing on X2), that is, in equation (2.1) we do neither have to know g1, nor would have
to assume that B−2 is finite. In contrast to the setting in Example 2, however, we re-
quire b2 to be point identified, which in the absence of any structure on g1 may be
difficult to establish. There are examples where this structure could be useful. Con-
sider for instance a model which has a complex nonlinear function in X1, but is lin-
ear in X2, that is, Y = g1(X1�B−2) + X ′

2B2, with an unknown function g1. Suppose a
researcher wants to test the null that the random coefficients B2 has a degenerate dis-
tribution. In this case, b2 is identified by a partially linear mean regression model, since
E[Y |X] = μ(X1)+X ′

2b2, where μ(X1)= E[g1(X1�B−2)|X1]. Evidently, this test requires
less structure on the wayX1 enters, but in return suffers from lower power, for example,
ifX1 indeed enters through a random coefficients specification.

Let b̂2n denote a consistent estimator of the point identified parameter b2. For in-
stance, under the partially linear structure Hpart-lin (see equation (2.2)), we have the
moment restriction E[Y |X] = b0 +X ′

1b1 + g2(X�b2), and thus, b̂2n would coincide with
the nonlinear least squares estimator of b2. We denote pkn(·) = (p1(·)� � � � �pkn(·))′ and
X1n ≡ (pkn(X11)� � � � �pkn(X1n))

′ which is a n×kn matrix. Consequently, we estimate the
function ε by

ε̂n(Xj� t)= ϕ̂n(Xj� t)−pkn(X1j)
′(X′

1nX1n
)−1X′

1nUn exp
(
itg2(Xj� b̂2n)

)
�

where Un = (exp(it(Y1 − g2(X1� b̂2n)))� � � � �exp(it(Yn − g2(Xn� b̂2n))))
′.

2.3 The asymptotic distribution of the statistic under the null hypothesis

As a consequence of the previous considerations, we distinguish between two main hy-
potheses, that is, functional form restrictions and degeneracy of some random coeffi-
cients. Both types of tests require certain common assumptions, and we start out this
section with a subsection where we discuss the assumptions we require in both cases.
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Thereafter, we analyze each of the two types of tests in a separate subsection, and pro-
vide additional assumptions to obtain the test’s asymptotic distribution under each null
hypothesis. While it might be possible to treat both types of hypotheses under an ab-
stract general testing framework, because of transparency of exposition (at least for ap-
plied researchers), we decided to treat both cases separately.

2.3.1 General assumptions for inference

Assumption 1. The random vectorX is independent of B.

Assumption 1 is crucial for the construction of our test statistic. Full independence
is commonly assumed in the random coefficients literature (see, for instance, Beran
(1993), Beran, Feuerverger, and Hall (1996), Hoderlein, Klemelä, and Mammen (2010),
or any of the random coefficient references mentioned in the Introduction). It is worth
noting that this assumption can be relaxed by assuming independence ofX and B con-
ditional on additional variables that are available to the econometrician, allowing for
instance for a control function solution to endogeneity as in Hoderlein and Sherman
(2015), or simply controlling for observables in the spirit of the unconfoundedness as-
sumption in the treatment effects literature. Further, X denotes the support ofX .

Assumption 2.

(i) We observe a sample ((Y1�X1)� � � � � (Yn�Xn)) of independent and identically dis-
tributed (i.i.d.) copies of (Y�X).

(ii) There exists a strictly positive and nonincreasing sequence (λn)n≥1 such that, uni-
formly in n, the smallest eigenvalue of λ−1

n E[pmn(X)pmn(X)′] is bounded away from zero.

(iii) There exists a constant C ≥ 1 and a sequence of positive integers (mn)n≥1 satisfying
supx∈X ‖pmn(x)‖2 ≤ Cmn withm2

n logn= o(nλn).

Assumption 2(ii)–(iii) restricts the magnitude of the approximating functions {pl}l≥1

and imposes nonsingularity of their second moment matrix. Assumption 2(iii) holds,
for instance, for polynomial splines, Fourier series, wavelet bases, and Hermite func-
tions (which are orthonormalized Hermite polynomials).8 Moreover, this assumption
ensures that the smallest eigenvalue of E[pmn(X)pmn(X)′] is not too small relative to
the dimension mn. In Assumption 2(ii), we assume that the eigenvalues of the matrix
E[pmn(X)pmn(X)′] may tend to zero at the rate λn which was recently also assumed
by Chen and Christensen (2015). On the other hand, the sequence (λn)n≥1 is bounded
away from zero if {pl}l≥ forms an orthonormal basis on the compact support of X and
the p.d.f. ofX is bounded away from zero (cf. Proposition 2.1 of Belloni, Chernozhukov,
Chetverikov, and Kato (2015)). The next result provides sufficient condition for Assump-
tion 2(ii) to hold even if the sequence of eigenvalues (λn)n≥1 tends to zero.

8When pl are Hermite functions, it holds due to Crámer’s inequality that supx∈X ‖pmn(x)‖2 ≤
1�086π−1/4mn.
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Proposition 1. Assume that {pl}l≥1 forms an orthonormal basis on X with respect to a
measure ν. Let (λn)n≥1 be a sequence that tends to zero. Suppose that, for some constant
0< c < 1, for all n≥ 1 and any vector an ∈R

mn the inequality∫ (
a′
npmn(x)

)21
{
f (x) < λn

}
ν(dx)≤ c

∫ (
a′
npmn(x)

)2
ν(dx) (2.9)

holds, where f = dFX/dν. Then Assumption 2(ii) is satisfied.

Condition (2.9) is violated, for instance, if dFX/dν vanishes on some subset A of the
support of ν with ν(A) > 0. Estimation of conditional expectations with respect to X
is more difficult when the marginal p.d.f. fX is close to zero on the support X . In this
case, the rate of convergence will slow down relative to λn (see Lemma 2.4 in Chen and
Christensen (2015) in case of series estimation). As we see from inequality (2.9), λn plays
the role of a truncation parameter used in kernel estimation of conditional densities to
ensure that the denominator is bounded away from zero.

To derive our test’s asymptotic distribution, we standardize Sn by subtracting the
mean and dividing through a variance which we introduce in the following. Let V ≡
(Y�X), and denote by δ a complex valued function which is the difference of exp(itY)
and the restricted conditional characteristic function, that is, δ(V � t) = exp(itY) −
(FgfB)(X� t) in case of Hmod, and δ(V � t) = exp(itY) − E[exp(it(B0 + X ′

1B1))|X1]×
exp(itg2(X�b2)) in case ofHdeg. Moreover, note that

∫
E[δ(V � t)|X]�(t)dt = 0 holds.

Definition 1. Denote by Pn =E[pmn(X)pmn(X)′], and define

μmn ≡
∫
E

[∣∣δ(V � t)∣∣2
pmn(X)

′P−1
n pmn(X)

]
�(t)dt

and

ςmn ≡
(∫∫ ∥∥P−1/2

n E
[
δ(V � s)δ(V � t)pmn(X)pmn(X)

′]P−1/2
n

∥∥2
F
�(s)�(t)ds dt

)1/2
�

Here, we use the notation φ for the complex conjugate of a function φ, and ‖ · ‖F
to denote the Frobenius norm. Alternatively, we could normalize our test statistic using
residuals exp(itY)−E[exp(itY)|X] rather than δ(V � t). While this alternative procedure
leads to accurate normalization of our test statistic under the null hypothesis, it is not
necessarily accurate under alternative models.

Assumption 3. There exists some constantC > 0 such thatE[| ∫ δ(V � t)�(t)dt|2|X] ≥ C.

Assumption 3 ensures that the conditional variance of
∫
δ(V � t)�(t)dt is uniformly

bounded away from zero. Assumptions of this type are commonly required to obtain
asymptotic normality of series estimators (see Assumption 4 of Newey (1997) or The-
orem 4.2 of Belloni et al. (2015)). As we show in the Appendix, Assumption 3 implies
ςmn ≥ C√

mn; see Lemma A.1.
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2.3.2 Testing functional form restrictions We now present conditions that are suffi-
cient to provide the test’s asymptotic distribution under the null hypothesis Hmod.
To do so, let us introduce the norm ‖φ‖� = (

∫
E|φ(X� t)|2�(dt))1/2 and the lin-

ear sieve space Φn ≡ {φ : φ(·) = ∑mn
l=1βlpl(·)}. Moreover, ‖ · ‖ and ‖ · ‖∞, respec-

tively, denote the Euclidean norm and the supremum norm. Let us introduce An =∫
E[(Fgqkn)(X�−t)(Fgqkn)(X� t)′]�(t)dt and its empirical analog Ân = n−1 ∫

Fn(−t)′ ×
Fn(t)�(t)dt (see also Example 1). In the following, we introduce a strictly positive, non-
increasing sequence (τn)n≥1 such that τn‖A−

n ‖2 =O(1).
Assumption 4.

(i) For any p.d.f. fB satisfying ϕ = FgfB there exists ΠknfB ∈ Bn such that
n‖Fg(ΠknfB − fB)‖2

� = o(√mn).
(ii) There existsΠmnϕ ∈Φn such that n‖Πmnϕ−ϕ‖2

� = o(√τnmn) and ‖Πmnϕ−ϕ‖∞ =
O(1).

(iii) It holds kn logn= o(τn√mn).
(iv) It holds P(rank(An)= rank(Ân))= 1 + o(1).
(v) There exists a constant C > 0 such that

∑
l≥1(

∫
R
db φ(b)ql(b)db)

2 ≤ C ∫
R
db φ

2(b)db

for all square integrable functions φ.

Assumption 4(i) is a requirement on the sieve approximation error for all functions
fB that belong to the identified set Ig ≡ {f : f is a p.d.f. with ϕ = Fgf }. This condition
ensures that the bias for estimating any fB in the identified set Ig is asymptotically neg-
ligible. In the linear case, Hermite functions are eigenfunctions of the Fourier transform
F , and hence, Assumption 4(i) is equivalent to imposing a sufficiently small approxima-
tion error ΠknfB − fB. In the following, we present primitive conditions when Assump-
tion 4(i) holds also for any nonlinear function g and, in particular, is satisfied for, for
example, quadratic functions. We observe that∥∥Fg(ΠknfB − fB)

∥∥
�

≤ ‖Fg‖�
∫
Rd

∣∣ΠknfB(b)− fB(b)
∣∣db�

where we introduced the operator norm given by

‖Fg‖2
� ≡ sup

φ∈L1(Rdb )�
∫ |φ(b)|db=1

∫
E

∣∣∣∣∫ exp
(
itg(X�b)

)
φ(b)db

∣∣∣∣2
�(t)dt

≤ sup
φ∈L1(Rdb )�

∫ |φ(b)|db=1

∫ (∫ ∣∣φ(b)∣∣db)2
�(t)dt

=
∫
�(t)dt�

using that |exp(itg(X�b))| ≤ 1. The sieve approximation error imposed in Assump-
tion 4(i) is thus less restrictive than assuming

√
n

∫
R
db

∣∣ΠknfB(b)− fB(b)
∣∣db= o(√mn)�
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for any fB ∈ Ig. For instance, if fB and its approximation ΠknfB belong to a compact

subset of Rdb and ‖ΠknfB− fB‖∞ =O(k−s/db
n ), which is satisfied for B-splines or trigono-

metric basis functions, we obtain the rate restriction nk−2s/db
n = o(√mn), which imposes

a lower bound on the dimension parameters kn and mn. If in addition τ−1
n = O(1), As-

sumptions 4(i) and (iii) are satisfied if mn ∼ nζ and kn ∼ nκ where db(1 − ζ/2)/(2s) <
κ < ζ/2.9 We thus require ζ > 2db/(2s + db), so s has to increase with dimension db,
which reflects a curse of dimensionality. In this case, Assumption 4(ii), which determines
the sieve approximation error for the function ϕ, automatically holds if ‖Πmnϕ−ϕ‖� =
O(m

−s/dx
n ) and we may choose κ to balance variance and bias, that is, κ= dx/(2s+dx).10

For further discussion and examples of sieve bases, we refer to Chen (2007).
Assumption 4(iii) has the interpretation of an overidentification restriction imposed

on the finite dimensional approximations and requires that there are more moment re-
striction (captured bymn) than unknown parameters (captured by the dimension of the
sieve space Bn given by kn).

Assumption 4(iv) ensures that the sequence of generalized inverse matrices is
bounded and imposes a rank condition. This condition is sufficient and necessary for
convergence in probability of generalized inverses of random matrices with fixed di-
mension; for further discussions and sufficient conditions, see Andrews (1987) for the
comparable case of generalized Wald tests. Note that Assumption 4(iv) is more involved
than the corresponding assumption in Andrews (1987) due to increasing dimensions of
An. In Assumption 4(iii), we also restrict the dimension ofAn determined by kn relative
to the size of ‖A−

n ‖.
Assumption 4(v) is satisfied if {ql}l≥1 forms a Riesz basis in L2(Rdb) ≡ {φ :∫

R
db φ

2(s)ds < ∞}. The following result establishes asymptotic normality of our stan-
dardized test statistic.

Theorem 2.1. Let Assumptions 1–4 hold with δ(V � t) = exp(itY)− (FgfB)(X� t). Then,
underHmod we obtain

(
√

2ςmn)
−1(nSn −μmn) d→ N (0�1)�

Remark 2.1 (Estimation of Critical Values). The asymptotic result of the previous theo-
rem depends on unknown population quantities. As we see in the following, the critical
values can be easily estimated. We define δn(V � t)= exp(itY)− (Fgf̂Bn)(X� t), and

σn(s� t)= (
δn(V1� s)δn(V1� t)� � � � � δn(Vn� s)δn(Vn� t)

)′
�

We replace μmn and ςmn , respectively, by the estimators

μ̂mn =
∫
tr

((
X′
nXn

)−1/2X′
n diag

(
σn(t� t)

)
Xn

(
X′
nXn

)−1/2)
�(t)dt

9We use the notation an ∼ bn for cbn ≤ an ≤ Cbn given two constant c�C > 0, and all n≥ 1.
10This choice of kn corresponds indeed to the optimal smoothing parameter choice in nonparametric

random coefficient model if s = r+ (dx − 1)/2 where r corresponds to the smoothness of fB (see Hoderlein,
Klemelä, and Mammen (2010) in case of kernel density estimation).
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and

ς̂mn =
(∫ ∫ ∥∥(

X′
nXn

)−1/2X′
n diag

(
σn(s� t)

)
Xn

(
X′
nXn

)−1/2∥∥2
F
�(s)�(t)ds dt

)1/2
�

Proposition 2. Under the conditions of Theorem 2.1, we obtain

ςmnς̂
−1
mn

= 1 + op(1) and μ̂mn = μmn + op(√mn)�

The asymptotic distribution of our standardized test statistic remains unchanged if
we replace μmn and ςmn by estimators introduced in the last remark. This is summarized
in following corollary, which follows immediately from Theorem 2.1, Proposition 2, and
Lemma A.1.

Corollary 2.1. Under the conditions of Theorem 2.1, we obtain

(
√

2ς̂mn)
−1(nSn − μ̂mn) d→ N (0�1)�

An alternative way to obtain critical values is the bootstrap which, for testing non-
linear functionals in nonparametric instrumental regression, was considered by Chen
and Pouzo (2015). In our situation, the critical values can be easily estimated and the fi-
nite sample properties of our testing procedure are promising, thus we do not elaborate
bootstrap procedures here. In the following example, we illustrate our sieve minimum
distance approach for estimating fB in the case of linearity of g.

Example 4 (Linear Case). Let g be linear and recall that in this case the integral trans-
form Fg coincides with the Fourier transform F . For the sieve space Bn, we consider as
basis functions Hermite functions given by

ql(x)= (−1)l√
2ll!√π

exp
(
x2/2

) dl
dxl

exp
(−x2)�

These functions form an orthonormal basis of L2(R). Hermite functions are also eigen-
functions of the Fourier transform with

(Fql)(·)= √
2π(−i)−lql(·)�

We introduce the notation q̃l(·)≡ √
2π(−i)−lql(·) and Xn(t)= (q̃kn(tX1)

′� � � � � q̃kn(tXn)′)′.
Thus, the estimator of fB given in (2.5) simplifies to f̂Bn(·)= qkn(·)′β̂n where

β̂n = argmin
β∈Rkn

n∑
j=1

∫ ∣∣ϕ̂n(Xj� t)− q̃kn(tXj)′β
∣∣2
�(t)dt� (2.10)

An explicit solution of (2.10) is given by

β̂n =
(∫

Xn(−t)′Xn(t)�(t)dt
)− ∫

Xn(−t)′�n(t)�(t)dt�
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where �n(t) = (ϕ̂n(X1� t)� � � � � ϕ̂n(Xn� t))
′. We emphasize that under the previous as-

sumptions, the matrix
∫

Xn(−t)′Xn(t)�(t)dt will be nonsingular with probability ap-
proaching one.

2.3.3 Testing degeneracy under the random coefficient specification for the model For
testing degeneracy, Theorem 2.1 is not directly applicable as the required sieve approx-
imation error in Assumption 4(i) is here not satisfied in general. In contrast, we will im-
pose an approximation condition on the function g̃(x� t� b)≡ exp(itg2(x�b))where b be-
longs to the parameter space B2.

Let us introduce a (kn · ln)-dimensional vector valued function χn given by χn(x� t)=
(Fg1qkn)(x� t) ⊗ p̃ln(x� t), where ⊗ denotes the Kronecker product and p̃ln is a
ln-dimensional vector of complex valued basis functions used to approximate g̃(·� ·� b).
For instance, if g2(x�b) = φ(x)ψ(b) then approximation conditions can be easily veri-
fied due to g̃(x� t� b)= ∑

l≥0 p̃l(x� t)ψ(b)
l where p̃l(x� t)= (itφ(x))l/ l!. Let us introduce

An = ∫
E[χn(X�−t)χn(X� t)′]�(t)dt and its empirical analog Ân = n−1 ∫ ∑n

j=1χn(Xj�

−t)χn(Xj� t)′�(t)dt. Recall that B−2�n = {φ(b)= ∑kn
l=1βlql(b) for b ∈R

db2 } where db2 de-

notes the dimension of b2 and let G2�n = {φ(x� t)= ∑ln
l=1βlp̃l(x� t)}. In the following, we

introduce a strictly positive, nonincreasing sequence (τn)n≥1 such that τn‖A−
n ‖2 =O(1).

Assumption 5.

(i) The hypothesisHadd holds.

(ii) The set of parameters b2 satisfying (2.6) belongs to a compact parameter space
B2 ⊂ R

db2 .

(iii) For any b ∈ B2, there exists Πlng̃(·� ·� b) ∈ G2�n satisfying n‖Πlng̃(·� ·� b) −
g̃(·� ·� b)‖2

� = o(√mn).
(iv) For any p.d.f. fB−2 satisfying (2.6), there exists ΠknfB−2 ∈ B−2�n such that

n‖Fg1(ΠknfB−2 − fB−2)‖2
� = o(√mn).

(v) It holds knln logn= o(τn√mn).
(vi) It holds P(rank(An)= rank(Ân))= 1 + o(1).

(vii) There exists a constant C > 0 such that
∑
l�l′≥1〈Fg1ql · p̃l′�φ〉2 ≤ C‖φ‖2

� for all
functions φwith ‖φ‖� <∞.

Assumption 5(i) states the maintained hypothesis of an additive structure of g given
in equation (2.1). Assumption 5(iii) states an asymptotic condition of the sieve ap-
proximation error for g̃(·� ·� b) for any b in the parameter space B2. By doing so, we
impose regularity conditions on the integral transform Fg2 of the Dirac measure at
b but not on the Dirac measure itself. For instance, if again g2(x�b) = φ(x)ψ(b) and
p̃l(x� t)= (itφ(x))l/ l! for l ≥ 1 then ‖Πlng̃(·� ·� b)− g̃(·� ·� b)‖� ≤ C/(ln+1)! for some con-
stant C > 0, provided that E[φln(X)]ψln(b)∫ tln�(t)dt is bounded. Assumption 5(iv) re-
quires an appropriate sieve approximation error only for any nondegenerate p.d.f. fB−2

satisfying (2.6). This assumption is a modification of Assumption 4(i), which does not
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hold under Hdeg as degenerate distributions cannot be accurately approximated by ba-
sis functions. Assumption 5(v) restricts the magnitude of kn also relative to the dimen-
sion parameter ln, which is not too restrictive as the dimension kn is used to approximate
a lower dimensional p.d.f. than in Theorem 2.1. Assumption 5(vi) and (vii), respectively,
are closely related to Assumption 4(iv) and (v).

Theorem 2.2. Let Assumptions 1–3, 4(ii), and 5 be satisfied with δ(V � t) = exp(itY) −
(Fg1fB−2)(X� t)g̃(X� t� b2). Then, underHdeg we obtain

(
√

2ςmn)
−1(nSn −μmn) d→ N (0�1)�

The critical values can be estimated as in Remark 2.1 but where now δn(V � t) =
exp(itY) − (Fg1 f̂B−2n)(X� t)g̃(X� t� b̂2n). The following result shows that, by doing so,
the asymptotic distribution of our standardized test statistic remains unchanged. This
corollary follows directly from Theorem 2.2 and the proof of Proposition 2; hence we
omit its proof.

Corollary 2.2. Under the conditions of Theorem 2.2, it holds

(
√

2ς̂mn)
−1(nSn − μ̂mn) d→ N (0�1)�

Remark 2.2 (Comparison to Andrews (2001)). It is instructive to compare our setup and
results to Andrews (2001), who considers the random coefficient model:

Y = B0 +B1X1 + (b2 + σB̃2)X2�

where E[B0 · B1|X] = 0, B1 is independent of B̃2, and E[B1|X] = E[B̃2|X] = 0. In this
model, degeneracy of the second random coefficient is equivalent to σ = 0 and degen-
eracy fails if σ > 0. So underHdeg the parameter σ is on the boundary of the maintained
hypothesis with σ ∈ [0�∞).

In contrast, we rely in this paper on independence of B to X under the maintained
hypothesis. In this case, the hypothesis of degeneracy is equivalent to a conditional char-
acteristic function equation as explained in Example 2. Such an equivalent characteriza-
tion is not possible given the assumptions of Andrews (2001). This is why in our frame-
work we automatically avoid the boundary problem that is apparent in Andrews (2001).

2.3.4 Testing degeneracy under additive separability alone We now establish the
asymptotic distribution of our test of degeneracy based on separability but not full
knowledge of g1 (see Example 3). We introduce the function h(·� t) = E[exp(it(Y −
g2(X�b2)))|X1 = ·] and a linear sieve space Hn ≡ {φ : φ(x1) = ∑kn

l=1βlpl(x1) for x1 ∈
R
dx1 } where dx1 denotes the dimension of X1. The series least squares estimator of h is

denoted by ĥn(·) = pkn(·)′(X′
1nX1n)

−1X′
1nUn where Un = (exp(it(Y1 − g2(X1� b̂2n)))� � � � �

exp(it(Yn − g2(Xn� b̂2n))))
′ and b̂2n denotes an estimator of b2. Recall the notation

g̃(x� t� b) ≡ exp(itg2(x�b)) for b ∈ B2. Below we denote the vector of partial derivatives
of g̃ with respect to b by g̃b.
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Assumption 6.

(i) The hypothesis Hadd holds, where g1 need not to be known except that it does not
depend onX2.

(ii) There existsΠknh ∈ Hn such that n‖Πknh− h‖2
� = o(√mn).

(iii) The parameter b2 is point identified and belongs to the interior of a compact pa-
rameter space B2 ⊂R

db2 .

(iv) There exists an estimator b̂2n such that
√
n(b̂2n − b2)=Op(1).

(v) The function g̃ is partially differentiable with respect to b and
∫
E supb∈B2

‖g̃b(X�
t� b)‖2�(t)dt <∞.

(vi) It holds kn = o(√mn).

Assumption 6(ii) determines the required asymptotic behavior of the sieve approx-
imation bias for estimating h. This condition ensures that the bias for estimating the
function h is asymptotically negligible but does not require undersmoothing of the esti-

mator ĥn. To see this, let ‖Πknh−h‖� =O(k−s/dx1
n ) for some constant s > 0. Assumptions

6(ii) and (vi) are satisfied if mn ∼ nζ and kn ∼ nκ where dx1(1 − ζ/2)/(2s) < κ < ζ/2. We
thus require ζ > 2dx1/(2s+ dx1) and we may choose κ to balance variance and bias, that
is, κ= dx1/(2s+dx1). In this case, Assumption 4(ii) automatically holds if ‖Πmnϕ−ϕ‖� =
O(m

−s/dx
n ) and 2dx1 ≥ dx. Under a partially linear structureHpart-lin, Assumptions 6(iv) is

automatically satisfied if b̂2n coincides with the nonlinear least squares estimator. If g2
is linear, Assumption 6(iv) holds true if E‖X‖2 <∞ and

∫
t2�(t)dt <∞.

Theorem 2.3. Let Assumptions 1–3, 4(ii), and 6 hold, with δ(V � t) = exp(itY) − h(X1�

t)g̃(X� t� b2). Then, underHdeg we obtain

(
√

2ςmn)
−1(nSn −μmn) d→ N (0�1)�

The critical values can be estimated as in Remark 2.1 but where now δn(V � t) =
exp(itY) − ĥn(X1� t)exp(itg2(X� b̂2n)). The following result shows that, by doing so,
the asymptotic distribution of our standardized test statistic remains unchanged. This
corollary follows directly from Theorem 2.3 and the proof of Proposition 2; hence we
omit its proof.

Corollary 2.3. Under the conditions of Theorem 2.3, it holds

(
√

2ς̂mn)
−1(nSn − μ̂mn) d→ N (0�1)�

2.4 Consistency against a fixed alternative

In the following, we establish consistency of our test when the difference of restricted
and unrestricted conditional characteristic functions does not vanish for all random
parameters B. In case of testing functional form restrictions, this is equivalent to a fail-
ure of the null hypothesis Hmod, that is, P(Y �= g(X�B) for all distributions of random
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parameters B) > 0. A deviation of conditional characteristic functions can be also
caused by alternative models with a different structural function (see Example 1). We
only discuss the global power for testing functional form restrictions here, but the results
for testing degeneracy follow analogously (of course, in this case we have to be more re-
strictive about the shape of g1 and g2 as discussed in Example 2). The next proposition
shows that our test of functional form restrictions has the ability to reject a failure of the
null hypothesisHmod with probability one as the sample size grows to infinity.

Proposition 3. Suppose that Hmod is false and let Assumptions 1–4 be satisfied. Con-
sider a sequence (γn)n≥1 satisfying γn = o(nς−1

mn
). Then we have

P
(
(
√

2ς̂mn)
−1(nSn − μ̂mn) > γn

) = 1 + o(1)�
Recall that under Assumption 3 we have ςmn ≥ C√

mn (see Lemma A.1). Hence, un-
der this assumption, the rate requirement γn = o(nς−1

mn
) implies γn = o(n/

√
mn) which

implies γ−1
n = o(1).

2.5 Asymptotic distribution under local alternatives

We now study the power of our testing procedure against a sequence of linear local al-
ternatives that tends to zero as the sample size tends to infinity. First, we consider devi-
ations from the hypothesis of known functional form restriction. UnderHmod, the iden-
tified set in the nonseparable model (1.1) is given by Ig = {f : f is a p.d.f. with ϕ= Fgf }.
We assume that Ig is not empty and denote by f ∗

B the p.d.f. in Ig with minimal norm. We
consider the following sequence of local alternatives:

ϕn = Fg
(
f ∗
B +�√

ςmn/n
)
� (2.11)

for some function � ∈ L1(Rdb) ∩ L2(Rdb). Here, we assume that � is such that f ∗
B +

�
√
ςmn/n does not belong to the identified set Ig and need not to be a density. We also

note that the p.d.f. f ∗
B coincides with the minimal norm solution of ‖ϕn − Fgf‖� as n

tends to infinity. The next result establishes asymptotic normality under (2.11) of the
standardized test statistic Sn for testing functional form restrictions.

Proposition 4. Let the assumptions of Theorem 2.1 be satisfied. Then, under (2.11) we
obtain

(
√

2ς̂mn)
−1(nSn − μ̂mn) d→ N

(
2−1/2‖Fg�‖2

��1
)
�

As we see from Proposition 4, our test can detect linear alternatives at the rate√
ςmn/n. Results for testing degeneracy follow similarly. In the following, we thus study

deviations from the hypothesis of degeneracy only under the maintained hypothesis
Hlin : Y = B0 + B′

1X1 + B′
2X2. Under the maintained hypothesis of linearity, any devia-

tion between the conditional characteristic functions is equivalent to a failure of a de-
generacy of the random coefficients B2. Let us denote Bdeg ≡ (B1� b2) with associated
p.d.f. fBdeg . We consider the following sequence of linear local alternatives:

fBn = fBdeg +�√
ςmn/n� (2.12)
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for some density function � ∈L1(Rdb)∩L2(Rdb)which is not degenerate at b2. Applying
the Fourier transform to equation (2.12) yields

E
[
exp

(
itX ′B

)|X] =E[
exp

(
it

(
B0 +X ′

1B1
))|X]

exp
(
itX ′

2b2
) +

∫
exp

(
itX ′s

)
�(s)ds

√
ςmn/n�

The next result establishes asymptotic normality under (2.12) for the standardized test
statistic Sn for testing degeneracy. This corollary follows by similar arguments used to
establish Proposition 4, and hence we omit the proof.

Corollary 2.4. Let the assumptions of Theorem 2.3 be satisfied. Then, under (2.12) we
obtain

(
√

2ς̂mn)
−1(nSn − μ̂mn) d→ N

(
2−1/2‖F�‖2

��1
)
�

3. Monte Carlo experiments

In this section, we study the finite-sample performance of our test by presenting the
results of a Monte Carlo simulation study. The experiments use a sample size of 500 and
there are 1000 Monte Carlo replications in each experiment. As throughout the paper,
we structure this section again in a part related to testing functional form restrictions,
and a part related to testing degeneracy.

3.1 Testing functional form restrictions

In each experiment, we generate realizations of regressorsX fromX ∼ N (0�2) and ran-
dom coefficients B= (B1�B2)

′ from B∼ N (0�A) where

A=
(

1 1/2
1/2 1

)
�

We simulate a random intercept B0 ⊥ (B1�B2) according to the standard normal dis-
tribution. Realizations of the dependent variable Y are generated either by the linear
model

Y = ηB0 +XB1� (3.1)

the quadratic model

Y = c1
(
ηB0 +XB1 +X2B2

)
� (3.2)

or the nonlinear model

Y = c2
(
ηB0 +XB1 + √|X|B2

)
� (3.3)

where the constant η is either 0�7 or 1. Here, the normalization constants c1 and c2 en-
sure that the dependent variables in models (3.1)–(3.3) have the same variance.11 Note

11This normalization ensures that large empirical rejection probabilities are not only driven by a large
variance of the alternative models (see, for instance, Blundell and Horowitz (2007)).
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that the random coefficient density fB is neither point identified in model (3.2) nor in
model (3.3). However, recall that even if the model is not point identified under the
maintained hypothesis, our testing procedure may still be able to detect certain fail-
ures of the null hypothesis, in particular if they arise from differences in conditional
moments. Consider, for example, testing linearity in the heterogeneous QUAIDS model
(3.2), where the first two conditional moments yield E[B2] = 0 and Var(B2)= 0. Conse-
quently, P(

∫ |ε(X� t)|2�(t)dt �= 0) > 0 if and only if P(B2 �= 0) > 0. In the finite sample
experiment, we also observe that our testing procedure is able to detect such deviations.

The test is implemented using Hermite functions, and uses the standardization de-
scribed in Remark 2.1. When (3.1) is the true model, we estimate the random coefficient
density as described in Example 4, where we make use of the fact that the Hermite func-
tions are eigenfunctions of the Fourier transform. If (3.2) is the true model, the inte-
gral transform Fg is computed using numerical integration. In both cases, the weight-
ing function� is given by the standard normal p.d.f., following Su and White (2007) and
Chen and Hong (2010), or following Chen, Peng, and Yu (2013) by the uniform p.d.f. with
support [−2�2]. We also tried different weighting functions and found, similar to Chen
and Hong (2010), that the results of our finite sample analysis are not sensitive when
these functions have support on the whole real line. For finite support weight functions
the results are equally sensitive, and thus we report the empirical rejection probabilities
of our tests using the uniform weights available in the Supplementary Material (Breunig
and Hoderlein (2018)).

Our test statistic is implemented using a varying number of Hermite functions to
analyze its sensitivity to that dimension parameter choice. If (3.1) is the correct model,
we use either kn = 5 (= 3 + 2) or kn = 6 (= 3 + 3) Hermite functions to estimate the
density of the bivariate random coefficients (B0�B1). If (3.2) is the correct model, we
have an additional dimension which accounts for the nonlinear part. Here, the choice
of Hermite basis functions is either kn = 7 (= 3+2 ·2) or kn = 9 (= 3+2 ·3). In both cases,
we vary the dimension parametermn between 8, 12, and 16.

The empirical rejection probabilities of our tests are shown in Table 1 at the nominal
level 0�05. We also note that the models are normalized, and hence, the null and alterna-
tive have the same variance. The differences between the nominal and empirical rejec-
tion probabilities, under the correct functional form restrictions, is accurate for mn = 8
if the linear model is the correct model (see rows 1, 7, 13, and 19) while for the correct
quadratic model we require a large value ofmn to obtain accurate finite sample coverage
(see rows 2, 8, 14, and 20). This is not surprising but in line with our theory, where we
requiremn to be larger than kn and the quadratic model requires a larger choice of kn.

From Table 1, we see that the empirical rejections probabilities become larger as the
parameter η increases. On the other hand, we observe from this table that our tests have
power to detect nonlinear alternatives even in cases where the model under the main-
tained hypothesis is not identified. This is in line with our observation that these alterna-
tives imply deviations between the restricted and unrestricted characteristic functions.
Comparing rows 3, 9 with 4, 10 in Table 1, we observe that our test rejects the quadratic
model (3.2) more often than the nonlinear model (3.3). From rows 5, 11 and 6, 12, we see
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Table 1. Rows 1, 2, 7, 8, 13, 14, 19, 20 depict the empirical rejection probabilities if Hmod holds
true, the rows 3–6, 9–12, 15–18, 21–24 show the finite sample power of our tests against various
alternatives. The first column states the null model while the second shows the alternative model
and is left empty if the null model is the correct model. Column 3 specifies the noise level of the
data generating process. Column 4 depicts the values of the varying dimension parameters kn.
Columns 5–7 depict the empirical rejection probabilities for the nominal level 0�05.

Null Model Alt. Model Empirical Rejection Probabilities Using

Rows Hmod True DGP η kn mn = 8 mn = 12 mn = 16

1 (3.1) 0�7 5 0�041 0�006 0�004
2 (3.2) 7 0�120 0�063 0�020

3 (3.1) (3.2) 5 0�958 0�727 0�561
4 (3.1) (3.3) 0�645 0�233 0�129
5 (3.2) (3.1) 7 0�935 0�780 0�558
6 (3.2) (3.3) 0�990 0�903 0�734

7 (3.1) 1 5 0�093 0�014 0�002
8 (3.2) 7 0�290 0�120 0�051

9 (3.1) (3.2) 5 0�876 0�513 0�327
10 (3.1) (3.3) 0�550 0�146 0�053
11 (3.2) (3.1) 7 0�994 0�952 0�837
12 (3.2) (3.3) 0�996 0�966 0�866

13 (3.1) 0�7 6 0�019 0�003 0�001
14 (3.2) 9 0�140 0�049 0�023

15 (3.1) (3.2) 6 0�887 0�539 0�313
16 (3.1) (3.3) 0�524 0�161 0�064
17 (3.2) (3.1) 9 0�938 0�778 0�581
18 (3.2) (3.3) 0�986 0�893 0�756

19 (3.1) 1 6 0�042 0�004 0�003
20 (3.2) 9 0�292 0�103 0�042

21 (3.1) (3.2) 6 0�847 0�465 0�261
22 (3.1) (3.3) 0�364 0�085 0�037
23 (3.2) (3.1) 9 0�991 0�952 0�833
24 (3.2) (3.3) 0�994 0�957 0�859

that our test rejects the nonlinear model (3.3) slightly more often than the linear model
(3.1).

Note that mn could be any integer larger than const. × k2
n that is smaller than n1/2

(up to logs). The range of admissible dimension parameters for this minimization-
maximization routine reflects the dimension restrictions imposed in Theorem 2.1 and
the consistency results thereafter, that is, m2

n logn= o(n) and kn = o(
√
mn).12 From Ta-

ble 1, we see that the condition kn = o(
√
mn) might be too restrictive in finite samples

12For simplicity, we assume here the the minimal eigenvalues of the associated matrices are uniformly
bounded away from zero.
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when Hermite functions are used.13 We thus modify the range of possible dimension
parameters to ensure accurate finite sample coverage. That is, if s(kn�mn) denotes the
value of the test statistic, a guideline for parameter choice in practice is given by the
minimum-maximum principle min1≤kn<2n1/4 maxkn<mn<

√
n {s(kn�mn)}. The intuition be-

hind this criterion is that we choose kn to have a good model fit and to choose mn such
that the finite sample power of the test statistic is maximized. For instance, as we see
from Table 1, ifη= 1 and (3.1) is the correct model, the principle yieldskn = 6 andmn = 8
which implies an empirical rejection probability of 0�042 (see row 19). The minimum-
maximum principle also ensures that kn is always smaller than mn and thus precludes
inaccurate finite sample coverage in the quadratic model due to too small mn as we see
in rows 2, 8, 14, and 20. For instance, if η= 0�7 and (3.2) is the true model the principle
yields kn = 9 andmn = 12 leading to the empirical rejection probability of 0�049 (see row
14). Yet for larger values of η, that is, if η = 1 and (3.2) is the true model, the principle
yields again kn = 9 and mn = 12 leading to the empirical rejection probability of 0�103.
Thus, the testing procedure works generally well but leads in some cases to overrejection
(see row 20).

When we consider different data generating processes, such as a cubic polynomial
with random coefficients, we find that our test of linearity leads to empirical rejection
probabilities which are close to one for all nominal levels considered. Hence, these re-
sults are not reported here. Regarding consistency of the test statistic, we conduct ex-
periments with increasing sample sizes. We find a slight tendency of our test statistic
to underreject for small η, see in Table 1 in rows 1, 2, 13, and 14. However, this under-
rejection diminishes as we increase the sample size to n= 1000. Not surprisingly, when
n= 1000 also the empirical rejection probabilities in in alternative models increase.

Recommendation on choice of tuning parameters In the following, based on the theo-
retical results and the Monte Carlo investigation we provide a recommendation on the
choice of weighting function and dimension parameters to implement the test in prac-
tice.

• Concerning the weighting function �, choosing a standard normal p.d.f. performs
well in many different settings, and should probably be considered as a benchmark.
However, the results in the simulation section suggest that the choice of weighting is
immaterial, as the results do not appear to be sensitive.

• In contrast, the test appears to be significantly more sensitive to the choice of di-
mension parameters kn and mn. In particular, the test appears more sensitive to the
choice of kn than to the choice ofmn. We recommend to choose the dimension parame-
ters kn and mn according to the minimum-maximum principle as proposed above, that
is, choose mn to maximize the finite sample power of the test, and kn to minimize the
specification error.

13This rate requirement is not too restrictive for B-spline basis functions as we see below.
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3.2 Testing degeneracy

In each experiment, we generate realizations of X from X ∼ N (0�A) and random coef-
ficients B= (B1�B2)

′ from B∼ N (0�Aρ), where

A=
(

1 0�5
0�5 1

)
and Aρ =

(
2 ρ

ρ 2

)
�

for some constant ρ > 0, which varies in the experiments. Further, we generate the de-
pendent variable Y either as

Y = 0�25 ·Bκ2 +Bκ1X1 +X2�

if the null hypothesisHdeg holds, where the constant κ is either 1 or 2 in the experiments
below. For the alternative, we generate the dependent variable Y using

Y = 0�25 ·Bκ2 +Bκ1X1 +ηBκ2X2�

for some constants η> 0, and κ which vary in the simulations below.
The test is implemented as described in Example 2 with B-splines, and uses the

standardization described in Remark 2.1 with δn(V � t)= exp(itY)− ĥn(X1� t)exp(itg2(X�

b̂2n)). This means that we use the more general test that allows for a nearly arbitrary
specification in the remaining model Y − g2(X2� b2). We focus in the simulation on this
specification, because it has arguably less power than the more specific one that im-
poses in addition the linear random coefficients structure. However, as will be evident
from the results below, this test already has very good power properties, implying that
separating the term involving the fixed coefficient turns out to already be a powerful
device in testing. To estimate the restricted conditional characteristic function, we use
B-splines of order 2 with one or two knots (hence, kn = 4 or kn = 5), and for the unre-
stricted one a tensor-product of these B-spline basis functions (hence,mn = 16,mn = 20,
or mn = 25). We do not consider larger values for kn, because we want to ensure the re-
quirement k2

n ≤mn; see also the minimum maximum principle below.
The empirical rejection probabilities for testing degeneracy are shown in Table 2 at

the nominal level 0�05. Again we normalize the models to ensure that the null and al-
ternative have the same variance. The differences between the nominal and empirical
rejection probabilities are small under a fixed coefficient for X2, as is obvious from the
first row. In Table 2, we also see from rows 2–4, 6–8, 10–12, and 14–16 that our test rejects
the alternative model more often for a larger variance of B2, as we expect. Moreover, the
empirical rejection probabilities increase as the covariance of B1 and B2 becomes larger,
as we see by comparing rows 2–4 with 6–8 and 10–12 with 14–16.

In case of B-spline basis functions, we need to be less restrictive regarding the size
of the dimension parameters and recommend the following criterion. Again if s(kn�mn)
denotes the value of the test statistic, we consider the modified minimum-maximum
principle min1≤kn<2n1/4 maxk2

n≤mn<2
√
n {s(kn�mn)}. For instance, as we see from Table 2,

if κ = 2, ρ = 1 and B2 is deterministic, this principle yields kn = 5 and mn = 20 which
implies an empirical rejection probability of 0�058 (see row 9). Yet when ρ is larger, that is,
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Table 2. The first row depicts the empirical rejection probabilities under degeneracy of the co-
efficient of X2, the rows 2–4, 6–8, 10–12, and 14–16 show the finite sample power of our tests
against various alternatives. Column 1 depicts the value of κ in the correct and alternative mod-
els. Column 2 specifies the covariance of B1 and B2 for the alternative models. Column 3 depicts
the value of η in the correct model and is empty if the null model is correct. Columns 4–7 depict
the empirical rejection probabilities for the nominal level 0�05. Column 8 depicts the empirical
rejection probabilities using the quasi-likelihood ratio test proposed by Andrews (2001).

Empirical Rejection Probabilities Using

kn = 4 kn = 5
Alt. Model

Rows κ ρ η mn = 16 mn = 20 mn = 20 mn = 25 Andrews’ Test

1 1 1 0�053 0�016 0�017 0�003 0�060

2 0�3 0�184 0�135 0�009 0�009 0�974
3 0�5 0�489 0�419 0�107 0�076 0�999
4 0�7 0�783 0�709 0�400 0�344 1�000

5 1�5 0�110 0�019 0�018 0�003 0�070

6 0�3 0�352 0�269 0�032 0�024 0�976
7 0�5 0�760 0�691 0�291 0�229 1�000
8 0�7 0�953 0�946 0�692 0�660 1�000

9 2 1 0�102 0�050 0�058 0�032 0�220

10 0�3 0�461 0�389 0�344 0�335 0�822
11 0�5 0�852 0�810 0�786 0�756 0�983
12 0�7 0�984 0�969 0�970 0�945 0�996

13 1�5 0�178 0�083 0�103 0�046 0�190

14 0�3 0�601 0�507 0�512 0�448 0�801
15 0�5 0�925 0�890 0�894 0�865 0�984
16 0�7 0�995 0�991 0�991 0�978 1�000

ρ= 1�5 and again κ= 2, the minimum-maximum principle leads an empirical rejection
probability of 0�103 and thus, the testing procedure leads occasionally to overrejection.

In Table 2, we compare our testing procedure to the quasi-likelihood ratio test pro-
posed by Andrews (2001). In both settings, conditional mean independence of random
slope and intercept parameters is violated. We see that this violation of Andrews (2001)
framework leads inaccurate empirical rejection probabilities, in particular, in the sec-
ond case. We see that for κ= 1, the quasi-likelihood ratio test of Andrews (2001) is more
powerful than the normalized statistic Sn. When κ= 2, however, the statistic of Andrews
has inaccurate finite sample coverage; see rows 9 and 13, due to misspecification.

Recommendation on choice of tuning parameters In the following, based on the theo-
retical results and the Monte Carlo investigation we provide a recommendation on the
choice of weighting function and dimension parameters to implement the test in prac-
tice.
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• As above we recommend choosing the weighting function� to be the standard nor-
mal p.d.f.

• In contrast, the test appears to be significantly more sensitive to the choice of di-
mension parameters kn and mn. In particular, the test appears more sensitive to the
choice of kn than to the choice of mn. We recommend to choose the dimension param-
eters kn and mn according to the modified minimum-maximum principle as proposed
above, that is, choosemn to maximize the finite sample power of the test, and kn to min-
imize the specification error.

4. Application

4.1 Motivation: Consumer demand

Heterogeneity plays an important role in classical consumer demand. The most popular
class of parametric demand systems is the almost ideal (AI) class, pioneered by Deaton
and Muellbauer (1980). In the AI model, instead of quantities budget shares are being
considered and they are being explained by log prices and log total expenditure.14 The
model is linear in log prices and a term that involves log total expenditure over a nonlin-
ear price index that depends on parameters of the utility function. In applications, one
frequent shortcut is to replace this utility dependent price index by a conventional price
index (e.g., Laspeyres), another is that homogeneity of degree zero is imposed, which
means that all prices and total expenditure are relative to a price index, resulting in an
entirely linear model.

A popular extension of this model allows for quadratic terms in total expenditure
(QUAIDS, Banks, Blundell, and Lewbel (1997)). Since we focus in this paper on the bud-
get share for food at home (BSF), which, due at least in parts to satiation effects, is often
documented to decline steadily across the total expenditure range, we want to assess
whether quadratic terms are really necessary. Note that prices enter the quadratic term
in a nonlinear fashion, however, due to the fact that we have very limited price varia-
tion, we can treat the nonlinear expression involving prices as fixed. This justifies the
use of real total expenditure as regressor, even in the quadratic term. In other words, we
thus consider an Engel curve QUAIDS model. However, we want to allow for preference
heterogeneity, and hence consider the following model:

BSFi = B0i +B1i log(TotExpi)+B2i
(
log(TotExpi)

)2 + b4W1i + b5W2i� (4.1)

Unobserved heterogeneity is reflected in the three random coefficients B0i, B1i, and B2i.
To account for observed heterogeneity in preferences, we include in addition household
covariates as regressors. Specifically, we use principal components to reduce the vector
of remaining household characteristics to a few orthogonal, approximately continuous
components. We only use two principal components, denoted W1i and W2i. These prin-
cipal components are obtained through two different linear combinations of the original

14The use of total expenditure as wealth concept is standard practice in the demand literature and, as-
suming the existence of preferences, is satisfied under an assumption of separability of the labor supply
from the consumer demand decision; see Lewbel (1999).
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covariates Si, that is, W1i = λ′
1Si and W2i = λ′

2Si, where λ1, λ2 are the first two loadings,
and are computed using the R command princomp. While including additional con-
trols in this form is arguably ad hoc, we perform some robustness checks like alternat-
ing the component or adding several others, and the results do not change appreciably.
Moreover, the additive specification can be justified as letting the mean of the random
intercept B0i depend on covariates.

We implement the test statistics as described in the Monte Carlo section. For testing
degeneracy, we estimate the conditional characteristic functions as described in Exam-
ple 3. For testing functional form restrictions, our test is implemented as described in
Example 1, where in the linear case we employ the estimation procedure in Example 4. In
both cases, we choose the dimension parameters kn andmn by the minimum-maximum
principle explained in the Monte Carlo section.

4.2 The data: The British family expenditure survey

The FES reports a yearly cross section of labor income, expenditures, demographic com-
position, and other characteristics of about 7000 households. We use years 2008 and
2009. As is standard in the demand system literature, we focus on the subpopulation of
two person households where both are adults, at least one is working, and the head of
household is a white collar worker. This is to reduce the impact of measurement error;
see Lewbel (1999) for a discussion. We thus have a sample of size 543, which is similar to
the one considered in the Monte Carlo section.

We form several expenditure categories, but focus on the food at home category.
This category contains all food expenditure spent for consumption at home; it is broad
since more detailed accounts suffer from infrequent purchases (the recording period
is 14 days) and are thus often underreported. Food consumption accounts for roughly
20% of total expenditure. Results actually displayed were generated by considering con-
sumption of food versus nonfood items. We removed outliers by excluding the upper
and lower 2.5% of the population in the three groups. We form food budget shares by
dividing the expenditures for all food items by total expenditures, as is standard in con-
sumer demand. Table 3 provides summary statistics of the economically important vari-
ables. Since the data are similar to the data used in Hoderlein 2011, for brevity of ex-
position we refer to this paper for additional descriptive statistics, especially regarding
household covariates.

4.3 Results

For testing degeneracy of the coefficient B2, we estimate the coefficient underHdeg, that
is, we assume that this coefficient is fixed. The ordinary least squares estimate is −0�009

Table 3. Summary statistics of the economically important variables.

Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.

Food share 0�003 0�129 0�178 0�189 0�239 0�591 0�084
log(TotExp) 3�867 5�463 5�748 5�752 6�058 6�911 0�468



Quantitative Economics 9 (2018) Specification testing in random coefficient models 1399

Table 4. Values of the tests with p-values when null hypothesis is either a linear random coeffi-
cient model (i.e.,B2i = 0 in (4.1)), a quadratic random coefficient model (i.e., randomB2i in (4.1)),
or a random coefficient model with degenerate coefficient on the quadratic term (i.e., B2i = b2 in
(4.1) for some fixed b2).

Null Hypothesis Linear RC Quadratic RC RC With Fixed Coeff. on Quadratic Term in TotExp

Value of test 2�2058 1�4573 1�5843
p-values 0�0137 0�0725 0�0566

with standard error 0�008, which means that mean effects are rather insignificant. A po-
tential role of the nonlinear term more generally is, however, picked up by our proce-
dure. Table 4 shows the different values of the test statistics and p-values. We evaluate
results using a nominal level of 0�05. As we see from Table 4, our test fails to reject the
model (4.1) with degenerate B2i but rejects the linear random coefficient model where
B2i = 0. Not surprisingly, we also fail to reject the random coefficient QUAIDS model.
The dimension parameters kn andmn are chosen via the proposed minimum-maximum
principle.15 It is interesting to note that the procedure selects higher order basis func-
tions to account for the random coefficient of the quadratic term. Since higher order
basis functions are required to estimate sharp peaks, this also supports the hypothesis
that the marginal p.d.f. B2 is akin to a Dirac measure (i.e., the distribution is degener-
ate), or very close it. We also performed a quasi-likelihood ratio test of degeneracy as
proposed by Andrews (2001) and obtained the value of the test statistic of 0.243 with
critical value 2.706.16 Consequently, again we fail to reject the hypothesis of a quadratic
model with fixed coefficient on the quadratic term.

The analysis thus far assumes that total expenditure is exogenous. However, in con-
sumer demand it is commonly thought that log total expenditure is endogenous and is
hence instrumented for, typically by labor income, say Z; see Lewbel (1999). One might
thus argue that we reject our hypotheses not due to a failure of the functional form as-
sumptions, but because of a violation of exogeneity of total expenditure. Therefore, we
follow Imbens and Newey (2009), and model endogeneity through a structural hetero-
geneous equation that relates total expenditure X to the instrument labor income Z,
that is,

X =ψ(Z�U)�
where U denotes a scalar unobservable. Following Imbens and Newey (2009), we as-
sume that the instrument Z is exogenous, that is, we assume Z ⊥ (B�U), implying
X ⊥ B|U , and we assume that the function ψ is strictly monotonic in U . Finally, we em-
ploy the common normalization that U |Z is uniformly distributed on the unit interval

15Consequently, we choose kn to minimize the value of our statistic and mn to maximize the value the
test statistic over the range 1 ≤ kn ≤ 2n1/4 and kn <mn <

√
n.

16Note that all the hypotheses under consideration would have been rejected under a nominal level of
0�1. However, given the recent discussion of lowering the significance levels (see Benjamin et al. (2018)), we
feel that a level of 0�1 is not meaningful here.
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Table 5. Values of the test statistics with p-values, when additionally corrected for endogeneity.

Null Hypothesis Linear RC Quadratic RC RC With Fixed Coeff. on Quadratic Term in TotExp

Value of test 1�8514 1�0857 1�2829
p-values 0�0321 0�1388 0�0998

[0�1]. Then the disturbanceU is identified through the conditional cumulative distribu-
tion function ofX given Z, that is,

U = FX|Z(X|Z)�

SinceX ⊥ B|U , we then simply modify our testing procedure by additionally condition-
ing on controls U . In the consumer demand literature, this control function approach
was also considered by Hoderlein (2011), who propose a life-cycle structural model that
yields this specification. Generally, the control function U would have to be estimated
in a first stage. Since the theory involving pre-estimation is beyond the scope of this pa-
per, we do not adjust for estimation error in this variable, which may lead to a higher
variance (depending on the smoothness assumptions).

The results of this modification are summarized in Table 5. As we see from this table,
the value of the modified test statistics are smaller, once we introduce the instrument Z
in a control function approach. This possibly indicates that there is some endogeneity
bias in the first case; however, our main conclusions remain unchanged: We soundly
reject the linear RC model, and fail to rejectHdeg andHmod.

5. Conclusion

This paper develops nonparametric specification testing for random coefficient models.
We employ a sieve strategy to obtain tests for both the functional form of the structural
equation, for example, for linearity in random parameters, as well as for the important
question of whether or not a parameter can be omitted. While the former can be used
to distinguish between various models, including such models where the density of ran-
dom coefficients is not necessarily point identified, the latter types of test reduce the
dimensionality of the random coefficients density. From a nonparametric perspective,
this is an important task, because random coefficient models are known to suffer from
very slow rates of convergence; see Hoderlein, Klemelä, and Mammen (2010). We estab-
lish the large sample behavior of our test statistics, and show that our tests work well in a
finite sample experiment and allow to obtain reasonable results in a consumer demand
application.

Mathematical appendix

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may
be different in different uses. We use the notation an � bn to denote an ≤ Cbn for all
n ≥ 1. Further, for ease of notation we write

∑
j for

∑n
j=1. Recall that ‖ · ‖ denotes the
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usual Euclidean norm, while for a matrix A, ‖A‖ is the operator norm. Further, ‖φ‖X ≡√
E(φ2(X)) and 〈φ�ψ〉X ≡E[φ(X)ψ(X)]. For any integerm≥ 1, In denotes themn×mn

dimensional identity matrix. Recall the notation Pn =E[pmn(X)pmn(X)′].

Proofs of Section 2

Proof of Proposition 1. Let us denote f = dFX
dν . For some constant 0 < c < 1, for all

n≥ 1, and any an ∈R
mn we have

‖an‖2 =
∫ (
a′
npmn(x)

)21
{
f (x)≥ λn

}
ν(dx)

+
∫ (
a′
npmn(x)

)21
{
f (x) < λn

}
ν(dx)

≤ λ−1
n

∫ (
a′
npmn(x)

)2
f (x)ν(dx)

+ c
∫ (
a′
npmn(x)

)2
ν(dx)�

Consequently, we obtain λnIn � Pn. �

By Assumption 2, the eigenvalues of λ−1
n Pn are bounded away from zero, and hence,

it may be assumed that Pn = λnIn. Otherwise, consider a linear transformation of pmn
of the form p̌mn ≡ (Pn/λn)

−1/2pmn where supx∈X ‖p̌mn(x)‖ �mn using that the smallest

eigenvalue of (Pn/λn)−1/2 is bounded away from zero uniformly in n.

Lemma A.1. Under Assumption 2(ii), it holds
√
mn � ςmn .

Proof. Without loss of generality, it may be assumed that
∫
�(t)dt = 1. By the defini-

tion of ςmn , we conclude

ς2
mn

=
∫ ∫ ∥∥P−1/2

n E
[
δ(V � s)δ(V � t)pmn(X)pmn(X)

′]P−1/2
n

∥∥2
F
�(s)�(t)ds dt

≥ λ−2
n

mn∑
l=1

∫ ∫ ∣∣E[
δ(V � s)δ(V � t)p2

l (X)
]∣∣2
�(s)�(t)ds dt

≥ λ−2
n

mn∑
l=1

(
E

[∣∣∣∣∫ δ(V � t)�(t)dt

∣∣∣∣2
p2
l (X)

])2
(by Jensen’s inequality)

≥ Cλ−2
n

mn∑
l=1

(
E

[
p2
l (X)

])2
(by Assumption 3)

= Cmn� �

In the following, we make use of the notation P̂n = n−1 ∑
j pmn(Xj)pmn(Xj)

′ and

γ̂n(t) ≡ (nP̂n)
−1 ∑

j exp(itYj)pmn(Xj). Let Ân = n−1 ∑
j

∫
(Fgqkn)(Xj�−t)(Fgq′

kn
)(Xj�
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t)�(t)dt and its population counterpart An = E[∫ (Fgqkn)(X�−t)(Fgq′
kn
)(X� t)�(t)dt].

Recall the definition β̂n = (nÂn)
− ∑

j

∫
(Fgqkn)(Xj�−t)ϕ̂n(Xj� t)�(t)dt and further, we

introduce βn =A−
n

∫
E[(Fgqkn)(X�−t)ϕ(X� t)]�(t)dt.

Proof of Theorem 2.1. We make use of the decomposition

nSn =
∑
j

∫ ∣∣̂εn(Xj� t)∣∣2
�(t)dt

=
∑
j

∫ ∣∣pmn(Xj)′γ̂n(t)−Πmnϕ(Xj� t)
∣∣2
�(t)dt

+ 2
∑
j

Re
∫ (
pmn(Xj)

′γ̂n(t)−Πmnϕ(Xj� t)
)(
Πmnϕ(Xj�−t)

− (Fgf̂Bn)(Xj�−t)
)
�(t)dt

+
∑
j

∫ ∣∣Πmnϕ(Xj� t)− (Fgf̂Bn)(Xj� t)
∣∣2
�(t)dt

= In + 2IIn + IIIn (say)�

Consider In. We conclude

In = n
∫ (
γ̂n(t)− 〈

ϕ(·� t)�pmn
〉
X

)′
P̂n

(
γ̂n(t)− 〈

ϕ(·� t)�pmn
〉
X

)
�(t)dt

= n−1
∫ (∑

j

(
exp(itYj)−Πmnϕ(Xj� t)

)
pmn(Xj)

)′
P̂−1
n

×
(∑

j

(
exp(itYj)−Πmnϕ(Xj� t)

)
pmn(Xj)

)
�(t)dt

= λ−1
n

∫ ∥∥∥∥n−1/2
∑
j

(
exp(itYj)−Πmnϕ(Xj� t)

)
pmn(Xj)

∥∥∥∥2
�(t)dt

+ n−1
∫ (∑

j

(
exp(itYj)−Πmnϕ(Xj� t)

)
pmn(Xj)

)′(
P̂−1
n − λ−1

n In
)

×
(∑

j

(
exp(itYj)−Πmnϕ(Xj� t)

)
pmn(Xj)

)
�(t)dt

= B1n +B2n (say).

Since (Πmnϕ(X� t) − ϕ(X� t))pmn(X) is a centered random variable for all t it is eas-

ily seen that B1n = λ−1
n

∫ ‖n−1/2 ∑
j(exp(itYj)−ϕ(Xj� t))pmn(Xj)‖2�(t)dt+op(1). Thus,

Lemma A.2 yields (
√

2ςmn)
−1(B1n − μmn)

d→ N (0�1). To show that B2n = op(
√
mn) note
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that ∥∥P̂−1
n − λ−1

n In
∥∥ ≤ λ−1

n

∥∥(P̂n/λn)−1∥∥‖In − P̂n/λn‖ =Op
(√
(mn logn)/

(
nλ2

n

))
by Lemma 6.2 of Belloni et al. (2015). Further, from E[(exp(itY)−Πmnϕ(X� t))pl(X)] =
0, 1 ≤ l ≤mn, we deduce

n−1
∫
E

∥∥∥∥∑
j

(
exp(itYj)−Πmnϕ(Xj� t)

)
pmn(Xj)

∥∥∥∥2
�(t)dt

�
∫
�(t)dtE

∥∥pmn(X)∥∥2

+ sup
x∈X

∥∥pmn(x)∥∥2
mn∑
l=1

∫ 〈
ϕ(·� t)�pl

〉2
X
�(t)dtE

[
p2
l (X)

]
�mnλn�

(A.1)

The result follows due to condition m2
n logn = o(nλn). Thereby, it is sufficient to prove

IIn + IIIn = op(√mn). Consider IIIn. We observe

IIIn �
∑
j

∫ ∣∣Fg(f̂Bn −ΠknfB)(Xj� t)
∣∣2
�(t)dt

+
∑
j

∫ ∣∣(FgΠknfB)(Xj� t)−Πmnϕ(Xj� t)
∣∣2
�(t)dt�

where
∑
j

∫ |(FgΠknfB)(Xj� t)−Πmnϕ(Xj� t)|2�(t)dt = op(√mn) and∑
j

∫ ∣∣Fg(f̂Bn −ΠknfB)(Xj� t)
∣∣2
�(t)dt

= (β̂n −βn)′
∑
j

∫
(Fgqkn)(Xj� t)(Fgqkn)(Xj� t)

′�(t)dt(β̂n −βn)

= n(β̂n −βn)′Ân(β̂n −βn)�
Let us introduce the vector β̃n = (nÂn)

− ∑
j

∫
(Fgqkn)(Xj�−t)ϕ(Xj� t)�(t)dt. Using the

property of Moore–Penrose inverses that Ân = ÂnÂ−
n Ân, we conclude

n(β̂n −βn)′Ân(β̂n −βn)
� n(β̂n − β̃n)′Ân(β̂n − β̃n)+ n(β̃n −βn)′Ân(β̃n −βn)

�
∥∥∥∥n−1/2

∑
j

∫
(Fgqkn)(Xj�−t)

(
ϕ̂n(Xj� t)−ϕ(Xj� t)

)
�(t)dt

∥∥∥∥2∥∥Â−
n

∥∥
+ n

∥∥∥∥∫
E

[
(Fgqkn)(X�−t)ϕ(X� t)

]
�(t)dt

∥∥∥∥2∥∥Â−
n −A−

n

∥∥2‖Ân‖
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+
∥∥∥∥n−1/2

∑
j

∫ (
(Fgqkn)(Xj�−t)ϕ(Xj� t)

−E[
(Fgqkn)(X�−t)ϕ(X� t)

])
�(t)dt

∥∥∥∥2∥∥A−
n

∥∥2‖Ân‖�

From Lemma A.3, we have ‖Â−
n −A−

n ‖ = Op(
√
(logn)kn/(nτn)). By Assumption 4(v), it

holds
√
τn‖A−

n ‖ =O(1), and thus, ‖Â−
n ‖ ≤ ‖Â−

n −A−
n ‖+‖A−

n ‖ =Op(τ−1/2
n ). Thereby, it is

sufficient to consider∥∥∥∥n−1/2
∑
j

∫
(Fgqkn)(Xj�−t)

(
ϕ̂n(Xj� t)−ϕ(Xj� t)

)
�(t)dt

∥∥∥∥2

�
∥∥∥∥n−1/2

∑
j

∫
(Fgqkn)(Xj�−t)pmn(Xj)′

(
γ̂n(t)− 〈

ϕ(·� t)�pmn
〉
X

)
�(t)dt

∥∥∥∥2

+
∥∥∥∥n−1/2

∑
j

∫
(Fgqkn)(Xj�−t)

(
Πmnϕ(Xj� t)−ϕ(Xj� t)

)
�(t)dt

∥∥∥∥2

� n
∥∥∥∥∫

E
[
(Fgqkn)(X�−t)pmn(X)′

](
γ̂n(t)− 〈

ϕ(·� t)�pmn
〉
X

)
�(t)dt

∥∥∥∥2

+ n
∥∥∥∥∫

E
[
(Fgqkn)(X�−t)

(
Πmnϕ(X� t)−ϕ(X� t))]�(t)dt∥∥∥∥2

+Op(kn)

=Op
(
kn + n‖Πmnϕ−ϕ‖2

�

)
which can be seen as follows. Let 〈·� ·〉� denote the inner product induced by the norm
‖ · ‖�. We calculate∥∥∥∥∫

E
[
(Fgqkn)(X�−t)

(
Πmnϕ(X� t)−ϕ(X� t))]�(t)dt∥∥∥∥2

=
kn∑
l=1

〈Fgql�Πmnϕ−ϕ〉2
�

=
kn∑
l=1

(∫
ql(b)E

[(
F∗
g (Πmnϕ−ϕ))(X�b)]db)2

�
∫ (
E

[(
F∗
g (Πmnϕ−ϕ))(X�b)])2

db

� ‖Πmnϕ−ϕ‖2
��

where F∗
g is the adjoint operator of Fg given by (F∗

gφ)(b) = ∫
E[exp(−itg(X�b))φ(X�

t)]�(t)dt. Consequently, we have n(β̂n −βn)
′
Ân(β̂n − βn) = Op((logn)kn/τn +

n‖Πmnϕ−ϕ‖2
�/

√
τn)= op(√mn) and, in particular, IIIn = op(√mn). Consider IIn. From
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above, we infer n‖β̂n −βn‖2 =Op((logn)kn/τn + n‖Πmnϕ− ϕ‖2
�/

√
τn). Thereby, we ob-

tain

|IIn|2 �
∣∣∣∣∫ ∑

j

(
exp(itYj)

−Πmnϕ(Xj� t)
)
pmn(Xj)

′〈ϕ(·�−t)− (FgΠknfB)(·�−t)�pmn
〉
X
�(t)dt

∣∣∣∣2

+
∣∣∣∣∫ ∑

j

(
exp(itYj)

−Πmnϕ(Xj� t)
)
pmn(Xj)

′〈(Fg(ΠknfB − f̂Bn)(·�−t)�pmn
〉
X
�(t)dt

∣∣∣∣2

+ op(mn)

� n
∫
E

∣∣Πmnϕ(X� t)− (ΠmnFgΠknfB)(X� t)
∣∣2
�(t)dt

+ n
∫
E

∥∥(
exp(itY)−Πmnϕ(X� t)

)
(ΠmnFgqkn)(X�−t)

∥∥2
�(t)dt

∥∥β̂n −βn
∥∥2

+ op(mn)
=Op

(
n
∥∥Fg(ΠknfB − fB)

∥∥2
�

+ kn
(
(logn)kn/τn + n‖Πmnϕ−ϕ‖2

�/
√
τn

)) + op(mn)
= op(mn)�

where we used that ‖Πmnϕ− ϕ‖∞ = O(1) and
∑kn
l=1 ‖ΠmnFgql‖2

� = O(kn), which com-
pletes the proof. �

We require the following notation. Let us introduce the covariance matrix estima-
tor Σ̂mn(s� t) = n−1 ∑

j pmn(Xj)pmn(Xj)
′δn(Vj� s)δn(Vj� t) where δn(Vj� s) = exp(itY) −

(Fgf̂Bn)(X� t). Further, we define δ̃n(V � t) = exp(itY) − (FgΠknfB)(X� t) and introduce
the matrix Σ̃mn(s� t)= n−1 ∑

j pmn(Xj)pmn(Xj)
′δ̃n(Vj� s)δ̃n(Vj� t).

Proof of Proposition 2. To keep the presentation of the proof simple, we do not con-
sider estimation of Pn in ς̂mn and μ̂mn . We make use of the relationship

δn(·� s)δn(·� t)− δ̃n(·� s)δ̃n(·� t)= δ̃n(·� s)
(
(Fgf̂Bn)(·� t)− (FgΠknfB)(·� t)

)
+ δn(·� t)

(
(Fgf̂Bn)(·� s)− (FgΠknfB)(·� s)

)
�

Observe ∫ ∫ ∥∥Σ̂mn(s� t)− Σ̃mn(s� t)
∥∥2
F
�(s)ds�(t)dt

�
∫ ∫ ∥∥∥∥n−1

∑
j

pmn(Xj)pmn(Xj)
′δ̃n(Vj� s)

(
(Fgf̂Bn)(Xj� t)
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− (FgΠknfB)(Xj� t)
)∥∥∥∥2

F

�(s)ds�(t)dt

+
∫ ∫ ∥∥∥∥n−1

∑
j

pmn(Xj)pmn(Xj)
′δn(Vj� t)

(
(Fgf̂Bn)(Xj� s)

− (FgΠknfB)(Xj� s)
)∥∥∥∥2

F

�(s)ds�(t)dt

= In + IIn (say)�

We conclude

In ≤
∫ ∫ ∥∥∥∥ 1

n

∑
j

δ̃n(Vj� s)pmn(Xj)pmn(Xj)
′(Fgpkn)(Xj� t)

′(β̂n −βn)
∥∥∥∥2

F

�(s)ds�(t)dt

≤
∫ ∫ ∥∥E[

δ̃n(V � s)pmn(X)pmn(X)
′(Fgqkn)(X� t)

′](β̂n −βn)
∥∥2
F
�(s)ds�(t)dt

+ op(1)
≤ ‖β̂n −βn‖2

×Op
(
mn∑
j�l=1

kn∑
l′=1

∫ ∫ (
E

[(
ϕ(X� s)

− (FgΠknfB)(X� s)
)
(Fgql′)(X� t)pj(X)pl(X)

])2
�(s)ds�(t)dt

)

≤ ‖β̂n −βn‖2

×Op
(
mn∑
l=1

kn∑
l′=1

∫ ∫
E

∣∣(ϕ(X� s)
− (FgΠknfB)(X� s)

)
(Fgql′)(X� t)pl(X)

∣∣2
�(s)ds�(t)dt

)

=Op
(
mn(logn)k2

n/(τnn)+mnkn‖Πmnϕ−ϕ‖2
�/

√
τn

) = op(1)�

Here, we used ‖β̂n − βn‖2 = Op((logn)kn/τn + n‖Πmnϕ− ϕ‖2
�/

√
τn) which can be seen

as in the proof of Theorem 2.1. Since In = op(1), we conclude

IIn �
∫ ∫ ∥∥(β̂n −βn)′E

[
(Fgqkn)(X� s)pmn(X)pmn(X)

′(Fgqkn)(X� t)
′]

× (β̂n −βn)
∥∥2
F
�(s)ds�(t)dt + op(1)

≤ ‖β̂n −βn‖4
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×
mn∑
j�l=1

∫ ∫
E

[∥∥(Fgqkn)(X� s)∥∥∥∥(Fgqkn)(X� t)∥∥∣∣pj(X)pl(X)∣∣]2
�(s)ds�(t)dt

+ op(1)

≤ Cm2
n‖β̂n −βn‖4

(∫
E

∥∥(Fgqkn)(X� t)∥∥2
�(t)dt

)2
+ op(1)

=Op
(
m2
n(logn)kn/(τn)2 +m2

n‖Πmnϕ−ϕ‖4
�/τn

) = op(1)

by using lognkn = o(τn√mn). Finally, it is easily seen that ς2
mn

− ∫ ∫ ‖Σ̃mn(s� t)‖2�(s)ds×
�(t)dt = op(1), which proves ςmnς̂

−1
mn

= 1 +op(1). In particular, convergence of the trace

of Σ̂mn(t� t) to the trace of Σmn(t� t) follows by using |μ̂mn − μmn |2 ≤ mn
∫ ‖Σ̂mn(t� t) −

Σmn(t� t)‖2
F�(t)dt = op(mn). �

Proof of Theorem 2.2. Let us introduce αn = (nAn)−
∫
E[χn(X� t)ϕ(X�−t)]�(t)dt

and the estimator

α̂n = (nÂn)−
∫ ∑

j

χn(Xj�−t)ϕ̂n(Xj� t)�(t)dt�

We prove in the following that

∑
j

∫ ∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)g̃(Xj� t� b̂2n)
∣∣2
�(t)dt

=
∑
j

∫ ∣∣ϕ̂n(Xj� t)−χn(Xj� t)̂αn
∣∣2
�(t)dt + op(√mn)�

By the definition of the estimator b̂2n in (2.7), we obtain

∑
j

∫ ∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)g̃(Xj� t� b̂2n)
∣∣2
�(t)dt

≤
∑
j

∫ ∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)g̃(Xj� t� b2)
∣∣2
�(t)dt

(A.2)

for any b2 ∈ B2 satisfying (2.6). By the definition of the least squares estimator α̂n and the
triangular inequality, we obtain√√√√∑

j

∫ ∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)g̃(Xj� t� b̂2n)
∣∣2
�(t)dt

≥
√√√√∑

j

∫ ∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)Πln g̃(Xj� t� b̂2n)
∣∣2
�(t)dt
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−
√√√√∑

j

∫ ∣∣(Fg1 f̂B−2�n)(Xj� t)
(
Πlng̃(Xj� t� b̂2n)− g̃(Xj� t� b̂2n)

)∣∣2
�(t)dt

≥
∑
j

∫ ∣∣ϕ̂n(Xj� t)−χn(Xj� t)′α̂n
∣∣2
�(t)dt −Op

(√
nmax
b∈B2

∥∥Πlng̃(·� ·� b)− g̃(·� ·� b)∥∥
�

)

=
∑
j

∫ ∣∣ϕ̂n(Xj� t)−χn(Xj� t)′α̂n
∣∣2
�(t)dt − op

(
m

1/4
n

)
�

Consequently, applying again the triangular inequality together with inequality (A.2)
yields

∣∣∣∣
√√√√∑

j

∫ ∣∣∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)g̃(Xj� t� b̂2n)

∣∣∣∣2
�(t)dt

−
√√√√∑

j

∫ ∣∣ϕ̂n(Xj� t)−χn(Xj� t)′α̂n
∣∣2
�(t)dt

∣∣∣∣
≤

√√√√∑
j

∫ ∣∣ϕ̂n(Xj� t)− (Fg1 f̂B−2�n)(Xj� t)g̃(Xj� t� b2)
∣∣2
�(t)dt

−
√√√√∑

j

∫ ∣∣ϕ̂n(Xj� t)−χn(Xj� t)′α̂n
∣∣2
�(t)dt + op

(
m

1/4
n

)

≤
√√√√∑

j

∫ ∣∣Πlng̃(Xj� t� b2)− g̃(Xj� t� b2)
∣∣2
�(t)dt + √

n‖α̂n − αn‖ + op
(
m

1/4
n

)
= n∥∥Πlng̃(·� ·� b2)− g̃(·� ·� b2)

∥∥2
�

+Op
(√
knln(logn)/τn + √

nτ
−1/4
n ‖Πmnϕ−ϕ‖�

)
+ op

(
m

1/4
n

)
= op

(
m

1/4
n

)
�

as in the proof of Theorem 2.1. Now following line by line the proof of Theorem 2.1 and
using∑

j

∫ ∣∣Πmnϕ(Xj� t)− (Fg1ΠknfB−2)(Xj� t)Πln g̃(Xj� t� b2)
∣∣2
�(t)dt

� n‖Πmnϕ−ϕ‖2
� + n∥∥Fg1ΠknfB−2 −Fg1fB−2

∥∥2
�

+ n∥∥Πlng̃(·� ·� b2)− g̃(·� ·� b2)
∥∥2
�

+ op(√mn)
= op(√mn)�

the result follows. �
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Proof of Theorem 2.3. We make use of the decomposition

nSn =
∑
j

∫ ∣∣pmn(Xj)′(γ̂n(t)− 〈
ϕ(·� t)pmn

〉
X

)∣∣2
�(t)dt

+ 2
∑
j

Re
∫ (
pmn(Xj)

′(γ̂n(−t)− 〈
ϕ(·�−t)�pmn

〉
X

))
× (
Πmnϕ(Xj� t)− ĥn(X1j� t)g̃(Xj� t� b̂2n)

)
�(t)dt

+
∑
j

∫ ∣∣Πmnϕ(Xj� t)− ĥn(X1j� t)g̃(Xj� t� b̂2n)
∣∣2
�(t)dt

= In + 2IIn + IIIn (say)�

where we used 〈h(·� t)g̃(·� t� b2)�pmn〉X = 〈ϕ(·� t)�pmn〉X . Consider In. As in the proof of
Theorem 2.1, we have

In = nλ−1
n

∫ ∥∥∥∥n−1/2
∑
j

(
exp(itYj)− h(X1j� t)g̃(Xj� t� b2)

)
pmn(Xj)

∥∥∥∥2
�(t)dt + op(√mn)�

Thus, Lemma A.2 yields (
√

2ςmn)
−1(In − μmn)

d→ N (0�1). Consider IIIn. Since |̃g(Xj� t�
b)| ≤ 1 for all b we evaluate

IIIn �
∑
j

∫ ∣∣Πmnϕ(Xj� t)−ϕ(Xj� t)
∣∣2
�(t)dt

+
∑
j

∫ ∣∣h(X1j� t)− ĥn(X1j� t)
∣∣2
�(t)dt

+
∑
j

∫ ∣∣ĥn(X1j� t)
∣∣2∣∣̃g(Xj� t� b2)− g̃(Xj� t� b̂2n)

∣∣2
�(t)dt�

It holds
∫ ‖ĥn(·� t)−Πknh(·� t)‖2

X1
�(t)dt =Op(kn/n) as we see in the following. We have

λn

∫ ∥∥ĥn(·� t)−Πknh(·� t)
∥∥2
X1
�(t)dt

≤ λn
∥∥∥∥(∑

j

pkn(Xj)pkn(Xj)
′
)−1∥∥∥∥∫ ∥∥∥∥∑

j

(
Πknh(X1j� t)

− exp
(
it

(
Yj − g2(Xj� b̂2n)

)))
pkn(X1j)

∥∥∥∥2
�(t)dt

�
∫ ∥∥∥∥n−1

∑
j

(
Πknh(X1j� t)− exp

(
it

(
Yj − g2(Xj�b2)

)))
pkn(X1j)

∥∥∥∥2
�(t)dt
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+ ‖b̂2n − b2‖2
kn∑
l=1

∫ ∥∥∥∥n−1
∑
j

exp(itYj)g̃b(Xj� t� b̃2n)pl(X1j)

∥∥∥∥2
�(t)dt + op(1)�

by a Taylor series expansion, where b̃2n is between b̂2n and b2. As in relation (A.1), from
E[(Πknh(X� t)− exp(it(Y − g2(X�b2))))pkn(X)] = 0 we deduce

∫
E

∥∥∥∥n−1
∑
j

(
Πknh(X1j� t)− exp

(
it

(
Yj − g2(Xj�b2)

)))
pkn(Xj)

∥∥∥∥2
�(t)dt =O(

n−1knλn
)
�

Further, since
∫
E supb∈B2

‖g̃b(X� t� b)‖2�(t)dt ≤ C we have

E

(
kn∑
l=1

∫ ∥∥∥∥n−1
∑
j

exp(itYj)g̃b(Xj� t� b̃2n)pl(Xj)

∥∥∥∥2
�(t)dt

)1/2

≤E
[∥∥pkn(X)∥∥(∫ ∥∥g̃b(X� t� b̃2n)

∥∥2
�(t)dt

)1/2]

≤ (
E

∥∥pkn(X)∥∥2)1/2
(∫

E sup
b∈B2

∥∥g̃b(X� t� b)∥∥2
�(t)dt

)1/2

=O(
√
λnkn)�

This establishes the rate for the estimator ĥn. In light of condition n‖Πknh − h‖2
� =

o(
√
mn), from n‖b2 − b̂2n‖2 = Op(1) and kn = o(

√
mn) we infer IIIn = op(

√
mn). It re-

mains to show IIn = op(√mn), which follows by

|IIn| �
∣∣∣∣∫ ∑

j

(
exp(−itYj)

−Πmnϕ(Xj�−t)
)
pmn(Xj)

′〈Πmnϕ(·� t)−Πknh(·� t)g̃(·� t� b2)�pmn
〉
X
�(t)dt

∣∣∣∣
+

∣∣∣∣∫ ∑
j

(
exp(−itYj)−Πmnϕ(Xj�−t)

)
pmn(Xj)

′〈Πknh(·� t)g̃(·� t� b2)

− ĥn(·� t)g̃(·� t� b̂2n)�pmn
〉
X
�(t)dt

∣∣∣∣
+ op(√mn)

=Op
(√
n‖Πknh− h‖�

) + op(√mn)

+Op
((
kn

∫
E sup
b∈B2

∥∥∥∥∥
mn∑
l=1

pl(X)
〈̃
gb(·� t� b)p′

kn
�pl

〉
X

∥∥∥∥∥
2

�(t)dt

)1/2)

= op(√mn)�
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using that
∫
E supb∈B2

‖∑mn
l=1pl(X)〈g̃b(·� t� b)p′

kn
�pl〉X‖2�(t)dt ≤ ∑kn

l=1E[p2
l (X)] =

O(kn), which proves the result. �

In the following, recall the definition of f ∗
B satisfying ‖Fgf ∗

B − ϕ‖� ≤ ‖Fgf − ϕ‖� for
all p.d.f. f .

Proof of Proposition 3. For the proof, it is sufficient to show Sn ≥ C‖Fgf ∗
B − ϕ‖2

� +
op(1). The proof of Theorem 2.1 together with the basic inequality (a − b)2 ≥ a2 − b2

implies that

Sn = λ−1
n

mn∑
l=1

∫ ∣∣∣∣n−1
∑
j

(
exp(itYj)− (

Fgf ∗
B

)
(Xj� t)

)
pl(Xj)

∣∣∣∣2
�(t)dt + op(1)

�
mn∑
l=1

∫ ∣∣E[(
exp(itY)− (

Fgf ∗
B

)
(X� t)

)
pl(X)

]∣∣2
�(t)dt + op(1)

�
∥∥Fgf ∗

B −ϕ∥∥2
�

+ op(1)�

by using that (λn)n≥1 is a nonincreasing sequence. �

Proof of Proposition 4. Following the proof Theorem 2.1, it is easily seen that

nSn = λ−1
n

mn∑
l=1

∫ ∣∣∣∣n−1/2
∑
j

(
Yi −ϕ(Xj� t)

)
pl(Xj)

∣∣∣∣2
�(t)dt

+
∑
j

∫ ∣∣(FgΠknf ∗
B

)
(Xj� t)−Πmnϕ(Xj� t)

∣∣2
�(t)dt + op(√mn)�

Further, under the sequence of local alternatives (2.11), we calculate∑
j

∫ ∣∣(FgΠknf ∗
B

)
(Xj� t)−Πmnϕ(Xj� t)

∣∣2
�(t)dt = n∥∥Fgf ∗

B −ϕ∥∥2
�

+ op(√mn)

= ς−1
mn

‖Fg�‖2
� + op(√mn)�

which proves the result. �

Technical appendix

Lemma A.2. Let Assumptions 1–3 hold true. Then

(
√

2ςmn)
−1

(
λ−1
n

mn∑
l=1

∫ ∣∣∣∣n−1/2
∑
j

δ(Vj� t)pl(Xj)

∣∣∣∣2
�(t)dt −μmn

)
d→ N (0�1)�
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Proof. Let us denote the real and imaginary parts of δ(V � t)pl(X) by δRl (V � t) =
Re(δ(V � t))pl(X) and δIl (V � t)= Im(δ(V � t))pl(X), respectively. We have

mn∑
l=1

∫ ∣∣∣∣(λnn)−1/2
∑
j

δ(Vj� t)pl(Xj)

∣∣∣∣2
�(t)dt

=
mn∑
l=1

∫ ∥∥∥∥(λnn)−1/2
∑
j

(
δRl (Vj� t)� δ

I
l (Vj� t)

)′
∥∥∥∥2
�(t)dt

= (λnn)−1
mn∑
l=1

∑
j

∫ ∥∥(
δRl (Vj� t)� δ

I
l (Vj� t)

)′∥∥2
�(t)dt

+ (λnn)−1
mn∑
l=1

∑
j �=j′

∫ (
δRl (Vj� t)δ

R
l (Vj′� t)+ δIl (Vj� t)δIl (Vj′� t)

)
�(t)dt

= In + IIn (say)�

We observe

E|In −μmn |2 = Var

(
(λnn)

−1
mn∑
l=1

∑
j

∫ ∣∣δ(Vj� t)pl(Xj)∣∣2
�(t)dt

)

≤ λ−2
n n

−1E

[∫ ∣∣δ(V � t)∣∣4
�(t)dt

(
mn∑
l=1

p2
l (X)

)2]

� sup
x∈X

∥∥pmn(x)∥∥2
λ−2
n n

−1
mn∑
l=1

E
[
p2
l (X)

]
�m2

nn
−1λ−1

n = o(1)

using that
∫

supv |δ(v� t)|4�(t)dt is bounded. Consider IIn. Let us introduce the Martin-

gale difference array Qnj = √
2(ςmnn)

−1 ∑mn
l=1

∑j−1
j′=1

∫
(δRl (Vj� t)δ

R
l (Vj′� t)+ δIl (Vj� t)δIl (Vj′�

t))�(t)dt for j = 2� � � � � n, and zero otherwise. Further,

(
√

2ςmn)
−1IIn = √

2(ςmnn)
−1

∑
j<j′

mn∑
l=1

∫ (
δRl (Vj� t)δ

R
l (Vj′� t)+ δIl (Vj� t)δIl (Vj′� t)

)
�(t)dt

=
∑
j

Qnj�

It remains to show that
∑
j Qnj

d→ N (0�1), which follows by Lemma A.3 of Breunig (2016)

by using the following computations. To show
∑∞
j=1E|Qnj|2 ≤ 1, observe that

∑
j �=j′

∫ (
δIl (Vj� t)δ

R
l (Vj′� t)− δRl (Vj� t)δIl (Vj′� t)

)
�(t)dt = 0
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and E[X1jX1j′ ] = 0 for j �= j′. Thus, for j = 2� � � � � n we have

E|Qnj|2 = 2(j − 1)

n2ς2
mn

E

∣∣∣∣∣
mn∑
l=1

∫
δl(V1� t)δl(V2� t)�(t)dt

∣∣∣∣∣
2

= 2(j − 1)

n2ς2
mn

mn∑
l�l′=1

∫ ∫
E

[
δl(V � s)δl′(V � t)

]
E

[
δl(V � s)δl′(V � t)

]
�(s)ds�(t)dt

= 2(j − 1)

n2ς2
mn

mn∑
l�l′=1

∫ ∫ ∣∣E[
δl(V � s)δl′(V � t)

]∣∣2
�(s)ds�(t)dt

= 2(j − 1)

n2

by the definition of ςmn , and thus
∑
j E|Qnj|2 = 1 − 1/n. �

Recall Ân = n−1 ∫
Fn(−t)′Fn(t)�(t)dt and An = ∫

E[(Fgpkn)(X�−t)(Fgpkn)(X�
t)′]�(t)dt.

Lemma A.3. Under the conditions of Theorem 2.1, it holds∥∥Â−
n −A−

n

∥∥ =Op
(√
(logn)kn/(nτn)

)
�

Proof. On the set Ω≡ {‖A−
n ‖‖Ân −An‖< 1/4� rank(An)= rank(Ân)}, it holds R(Ân) ∩

R(An)
⊥ = {0} by Corollary 3.1 of Chen, Wei, and Xue (1996), where R denotes the range

of a mapping. Consequently, by using properties of the Moore–Penrose pseudoinverse
it holds on the setΩ:

Â−
n −A−

n = −Â−
n (Ân −An)A−

n + Â−
n

(
Â−
n

)′
(Ân −An)′

(
Ikn −AnA−

n

)
+ (
Ikn − ÂnÂ−

n

)
(Ân −An)′

(
A−
n

)′
A−
n �

see derivation of equation (3.19) in Theorem 3.10 on page 345 of Nashed (1973). Apply-
ing the operator norm and using the fact that Ikn −AnA−

n and Ikn − ÂnÂ−
n as projections

have operator norm bounded by one, we obtain∥∥Â−
n −A−

n

∥∥1Ω = (∥∥Â−
n

∥∥‖Ân −An‖
∥∥A−

n

∥∥ + ∥∥Â−
n

∥∥2‖Ân −An‖ + ∥∥A−
n

∥∥2‖Ân −An‖
)
1Ω

≤ 3‖Ân −An‖max
{∥∥A−

n

∥∥2
�
∥∥Â−

n

∥∥21Ω
}
�

By Theorem 3.2 of Chen, Wei, and Xue (1996), it holds ‖Â−
n ‖1Ω ≤ 3‖A−

n ‖ = O(τ
−1/2
n ).

Consequently, Lemma 6.2 of Belloni et al. (2015) yields ‖Â−
n − A−

n ‖1Ω =
Op(

√
kn(logn)/(nτn)). The assertion follows by 1Ω = 1 with probability approaching

one. �



1414 Breunig and Hoderlein Quantitative Economics 9 (2018)

References

Ai, C. and X. Chen (2003), “Efficient estimation of models with conditional moment re-
strictions containing unknown functions.” Econometrica, 71, 1795–1843. [1381]

Andrews, D. W. (1987), “Asymptotic results for generalized Wald tests.” Econometric The-
ory, 3 (03), 348–358. [1385]

Andrews, D. W. (2001), “Testing when a parameter is on the boundary of the maintained
hypothesis.” Econometrica, 69, 683–734. [1375, 1388, 1396, 1399]

Banks, J., R. Blundell, and A. Lewbel (1997), “Quadratic engel curves and consumer de-
mand.” Review of Economics and Statistics, 79 (4), 527–539. [1374, 1376, 1397]

Belloni, A., V. Chernozhukov, D. Chetverikov, and K. Kato (2015), “Some new asymptotic
theory for least squares series: Pointwise and uniform results.” Journal of Econometrics,
186 (2), 345–366. [1382, 1383, 1403, 1413]

Benjamin, D. J., J. O. Berger, M. Johannesson, B. A. Nosek, E.-J. Wagenmakers, R. Berk,
K. A. Bollen, B. Brembs, L. Brown, C. Camerer, D. Cesarini, C. D. Chambers, M. Clyde,
T. D. Cook, P. De Boeck, Z. Dienes, A. Dreber, K. Easwaran, C. Efferson, E. Fehr, F. Fidler,
A. P. Field, M. Forster, E. I. George, R. Gonzalez, S. Goodman, E. Green, D. P. Green, A. G.
Greenwald, J. D. Hadfield, L. V. Hedges, L. Held, T. Hua Ho, H. Hoijtink, D. J. Hruschka,
K. Imai, G. Imbens, J. P. A. Ioannidis, M. Jeon, J. Holland Jones, M. Kirchler, D. Laibson,
J. List, R. Little, A. Lupia, E. Machery, S. E. Maxwell, M. McCarthy, D. A. Moore, S. L.
Morgan, M. Munafó, S. Nakagawa, B. Nyhan, T. H. Parker, L. Pericchi, M. Perugini, J.
Rouder, J. Rousseau, V. Savalei, F. D. Schönbrodt, T. Sellke, B. Sinclair, D. Tingley, T. Van
Zandt, S. Vazire, D. J. Watts, C. Winship, R. L. Wolpert, Y. Xie, C. Young, J. Zinman, and
V. E. Johnson (2018), “Redefine statistical significance.” Nature Human Behaviour, 2, 6–
10. [1399]

Beran, R. (1993), “Semiparametric random coefficient regression models.” Annals of the
Institute of Statistical Mathematics, 45 (4), 639–654. [1375, 1382]

Beran, R., A. Feuerverger, P. Hall (1996), “On nonparametric estimation of intercept and
slope distributions in random coefficient regression.” The Annals of Statistics, 24 (6),
2569–2592. [1372, 1375, 1382]

Beran, R. and P. Hall (1992), “Estimating coefficient distributions in random coefficient
regressions.” The Annals of Statistics, 20, 1970–1984. [1375]

Beran, R. and P. W. Millar (1994), “Minimum distance estimation in random coefficient
regression models.” The Annals of Statistics, 22 (4), 1976–1992. [1380]

Blundell, R. and J. Horowitz (2007), “A nonparametric test of exogeneity.” Review of Eco-
nomic Studies, 74 (4), 1035–1058. [1376, 1391]

Blundell, R., D. Kristensen, and R. Matzkin (2010), “Stochastic demand and revealed
preference.” Technical report. [1376]

Breunig, C. (2015), “Goodness-of-fit tests based on series estimators in nonparametric
instrumental regression.” Journal of Econometrics, 184 (2), 328–346. [1375, 1376]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/AC03econometrica&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/andrews1987&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/andrews2001&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/banks1997&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/belloni2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/beran1993&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/beran1996&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/beran1992&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/beran1994&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Blundell2007&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/Breunig2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/AC03econometrica&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/andrews1987&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/andrews2001&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/banks1997&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/belloni2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/belloni2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/benjamin2017redefine&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/beran1993&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/beran1996&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/beran1996&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/beran1992&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/beran1994&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Blundell2007&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/Breunig2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W


Quantitative Economics 9 (2018) Specification testing in random coefficient models 1415

Breunig, C. (2016), “Specification testing in nonparametric instrumental quantile regres-
sion.” SFB 649 discussion paper, Humboldt-Univ. [1375, 1412]

Breunig, C. and S. Hoderlein (2018), “Supplement to ‘Specification testing in random co-
efficient models’.” Quantitative Economics Supplemental Material, 86, https://doi.org/
10.3982/QE757. [1375, 1392]

Chen, B. and Y. Hong (2010), “Characteristic function-based testing for multifactor
continuous-time Markov models via nonparametric regression.” Econometric Theory,
26 (04), 1115–1179. [1375, 1392]

Chen, G., M. Wei, and Y. Xue (1996), “Perturbation analysis of the least squares solution
in Hilbert spaces.” Linear Algebra and its Applications, 244, 69–80. [1413]

Chen, S. X., L. Peng, C. L. Yu (2013), “Parameter estimation and model testing for Markov
processes via conditional characteristic functions.” Bernoulli, 19 (1), 228–251. [1373,
1375, 1392]

Chen, X. (2007), “Large sample sieve estimation of semi-nonparametric models.” In
Handbook of Econometrics, Vol. 6 (J. J. Heckman and E. E. Leamer, eds.), 5549–5632, El-
sevier, Amsterdam. [1385]

Chen, X. and T. M. Christensen (2015), “Optimal uniform convergence rates and asymp-
totic normality for series estimators under weak dependence and weak conditions.”
Journal of Econometrics, 188, 447–465. [1382, 1383]

Chen, X. and D. Pouzo (2012), “Estimation of nonparametric conditional moment mod-
els with possibly nonsmooth generalized residuals.” Econometrica, 80 (1), 277–321.
[1375]

Chen, X. and D. Pouzo (2015), “Sieve quasi likelihood ratio inference on
semi/nonparametric conditional moment models.” Econometrica, 83 (3), 1013–1079.
[1375, 1386]

Deaton, A. and J. Muellbauer (1980), “An almost ideal demand system.” American Eco-
nomic Review, 70 (3), 312–326. [1397]

Dunker, F., S. Hoderlein, and H. Kaido (2013), “Random coefficients in static games
of complete information.” Technical report, Centre for Microdata Methods and Prac-
tice. [1375]

Fox, J. T. and A. Gandhi (2009), “Identifying heterogeneity in economic choice and selec-
tion models using mixtures.” Technical report. [1375]

Fox, J. T. and N. Lazzati (2012), “Identification of potential games and demand models
for bundles.” Technical report, National Bureau of Economic Research. [1375]

Gautier, E. and S. Hoderlein (2015), “A triangular treatment effect model with ran-
dom coefficients in the selection equation.” Technical report, Toulouse School of Eco-
nomics. [1374, 1375, 1380]

https://doi.org/10.3982/QE757
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/chen2010characteristic&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:17/chen1996&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/chen2013parameter&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/chen2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/Chen08&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/chen2013&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/deaton1980&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
https://doi.org/10.3982/QE757
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/chen2010characteristic&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/chen2010characteristic&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:17/chen1996&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/chen2013parameter&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/chen2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/chen2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/Chen08&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/chen2013&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/deaton1980&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W


1416 Breunig and Hoderlein Quantitative Economics 9 (2018)

Gautier, E. and Y. Kitamura (2013), “Nonparametric estimation in random coefficients
binary choice models.” Econometrica, 81 (2), 581–607. [1375]

Härdle, W. and E. Mammen (1993), “Comparing nonparametric versus parametric re-
gression fits.” The Annals of Statistics, 21, 1926–1947. [1376]

Hausman, J. and W. Newey (2013), “Individual heterogeneity and average welfare.” Tech-
nical report, Centre for Microdata Methods and Practice. [1376]

Hoderlein, S. (2011), “How many consumers are rational?” Journal of Econometrics, 164
(2), 294–309. [1398, 1400]

Hoderlein, S., H. Holzmann, and A. Meister (2014), “The triangular model with random
coefficients.” Technical report, Boston College. [1374, 1375]

Hoderlein, S., J. Klemelä, and E. Mammen (2010), “Analyzing the random coefficient
model nonparametrically.” Econometric Theory, 26 (03), 804–837. [1372, 1374, 1375,
1379, 1382, 1385, 1400]

Hoderlein, S. and R. Sherman (2015), “Identification and estimation in a correlated ran-
dom coefficients binary response model.” Journal of Econometrics, 188 (1), 135–149.
[1382]

Hoderlein, S., L. Su, and H. White (2011), “Specification testing for nonparametric struc-
tural models with monotonicity in unobservables.” Working paper, UCSD Department
of Economics. [1376]

Horowitz, J. L. (2006), “Testing a parametric model against a nonparametric alterna-
tive with identification through instrumental variables.” Econometrica, 74 (2), 521–538.
[1375]

Horowitz, J. L. (2012), “Specification testing in nonparametric instrumental variables es-
timation.” Journal of Econometrics, 167, 383–396. [1375, 1376]

Horowitz, J. L. and S. Lee (2009), “Testing a parametric quantile-regression model with
an endogenous explanatory variable against a nonparametric alternative.” Journal of
Econometrics, 152 (2), 141–152. [1375]

Ichimura, H. and T. S. Thompson (1998), “Maximum likelihood estimation of a binary
choice model with random coefficients of unknown distribution.” Journal of Economet-
rics, 86 (2), 269–295. [1375]

Imbens, G. W. and W. K. Newey (2009), “Identification and estimation of triangular
simultaneous equations models without additivity.” Econometrica, 77 (5), 1481–1512.
[1399]

Lewbel, A. (1999), “Consumer demand systems and household expenditure.” In Hand-
book of Applied Econometrics, Blackwell Handbooks in Economics (H. Pesaran and M.
Wickens, eds.). Blackwell, Oxford. [1376, 1397, 1398, 1399]

Lewbel, A. (2000), “Semiparametric qualitative response model estimation with un-
known heteroscedasticity or instrumental variables.” Journal of Econometrics, 97 (1),
145–177. [1374]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/gautier2013&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/hardle1993&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/hoderlein2011m&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/hoderlein2010&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/hoderlein2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/Horowitz2006&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/Horowitz2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/HorLee2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/ichimura1998&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:40/imbens2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/lewbel2000&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/gautier2013&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/hardle1993&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/hoderlein2011m&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/hoderlein2010&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/hoderlein2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/Horowitz2006&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/Horowitz2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/HorLee2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/HorLee2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/ichimura1998&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/ichimura1998&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:40/imbens2009&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/lewbel2000&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/lewbel2000&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W


Quantitative Economics 9 (2018) Specification testing in random coefficient models 1417

Lewbel, A., X. Lu, and L. Su (2015), “Specification testing for transformation models with
an application to generalized accelerated failure-time models.” Journal of Econometrics,
184 (1), 81–96. [1376]

Lewbel, A. and K. Pendakur (2013), “Unobserved preference heterogeneity in demand
using generalized random coefficients.” Technical report, Department of Economics,
Boston College. [1375]

Masten, M. (2015), “Random coefficients on endogenous variables in simultaneous
equations models.” Technical report, Centre for Microdata Methods and Practice. [1374,
1375]

Matzkin, R. L. (2012), “Identification in nonparametric limited dependent variable mod-
els with simultaneity and unobserved heterogeneity.” Journal of Econometrics, 166 (1),
106–115. [1375]

Nashed, M. Z. (2014), “Generalized inverses and applications.” In Proceedings of an
Advanced Seminar Sponsored by the Mathematics Research Center, the University of
Wisconsin—Madison, October 8–10, 1973, Vol. 32. Elsevier, Amsterdam. [1413]

Newey, W. K. (1997), “Convergence rates and asymptotic normality for series estima-
tors.” Journal of Econometrics, 79 (1), 147–168. [1383]

Santos, A. (2012), “Inference in nonparametric instrumental variables with partial iden-
tification.” Econometrica, 80 (1), 213–275. [1376]

Su, L. and H. White (2007), “A consistent characteristic function-based test for condi-
tional independence.” Journal of Econometrics, 141 (2), 807–834. [1373, 1375, 1392]

Swamy, P. A. (1970), “Efficient inference in a random coefficient regression model.”
Econometrica, 38, 311–323. [1375]

Co-editor Rosa L. Matzkin handled this manuscript.

Manuscript received 15 August, 2016; final version accepted 12 February, 2018; available online 5
April, 2018.

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/lewbel2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/matzkin2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/Newey1997&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/Santos12&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:50/su2007&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:51/swamy1970&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/lewbel2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/lewbel2015&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/matzkin2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/matzkin2012&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/Newey1997&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/Santos12&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:50/su2007&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:51/swamy1970&rfe_id=urn:sici%2F1759-7323%28201811%299%3A3%3C1371%3ASTIRCM%3E2.0.CO%3B2-W

	Introduction
	Related literature
	Overview of paper

	The test statistic and its asymptotic properties
	Examples of testable hypotheses
	The test statistic
	The asymptotic distribution of the statistic under the null hypothesis
	General assumptions for inference
	Testing functional form restrictions
	Testing degeneracy under the random coefﬁcient speciﬁcation for the model
	Testing degeneracy under additive separability alone

	Consistency against a ﬁxed alternative
	Asymptotic distribution under local alternatives

	Monte Carlo experiments
	Testing functional form restrictions
	Recommendation on choice of tuning parameters

	Testing degeneracy
	Recommendation on choice of tuning parameters


	Application
	Motivation: Consumer demand
	The data: The British family expenditure survey
	Results

	Conclusion
	Mathematical appendix
	Proofs of Section 2
	Technical appendix

	References

