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APPENDIX C: ADDITIONAL ASSUMPTIONS ON THE MEASUREMENT ERROR

This section considers widely-used assumptions on the measurement structure: (i) there
is a positive correlation between the measurement and the truth, and (ii) the measure-
ment error is independent of the other error in the simultaneous equation system in

(D-3).

AsSUMPTION 22. (i) P(T* # T | T*) < 1/2. (ii) Ty is independent of (Y, Ty, T{") for each
*=0,1.

Assumption 22(i) is that the measured treatment 7T is equal to the true variable 7*
with probability more than 50%. Assumption 22(ii) has been used in the literature on
measurement error, e.g., Mahajan (2006), Lewbel (2007), and Hu (2008).

Unlike Assumption 1 itself, the combination of Assumptions 1 and 22 yields restric-
tions on the distribution for the observed variables.

LEMMA 23. Suppose that Assumptions 1 and 22 hold. Then
Afcv,myz(y, 1) = Afy,1)1z(y,0) > 0.

Proor. AsinKitagawa (2015, Proposition 1.1) and Mourifié and Wan (2016, Theorem 1),
Assumptions 1 implies the following inequalities
fov,m12=0(y,0) = fiv,1)1z=1(y, 0), (17)
fov.roz=0y, D) < fov, 1) 12z=1(y, D). (18)

Assumption 22(i) implies

fov.miz(y,t) = Z Iriv=y,m=, 2D fiy, )12 (¥, 1)
#=0,1

= Z [Tl Yemy, 1=t 2(O) fov, 7o) 2 (¥, 1)

t*=0,1
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= Z fr. (O fv. 2 (v, 1),

t*=0,1

Afy,ryz(y, D) = Afy,1yz(y,0) = Z (1 (D) = fr, () Afy, 7o)z (v, )
t*=0,1

= (fTo(l) - fTo(O))Af(Y,T*)\Z(ya 0)
+ (fr, (D) = f1,(0)Af v, 72 (y, 1)
= (2f1, (1) = 1)Afey, 742 (¥, 0)
+ (1 =2f7,(0)Af ey, 7y z(y, D)
>0,
where the last inequality comes from Eq. (17)-(18) and P(T*# T | T*) < 1/2. O
The sharp identified set is characterized as follows.
THEOREM 24. Suppose that Assumptions 1 and 22 hold, and consider an arbitrary data
distribution P of (Y, T, Z). Then ©;(P) = O if TVy =0; otherwise

AEp[Y | Z]

O;(P)= {(1—P0—Pl)m

2(po, p1) € !2}
where (2 is the set of (poy, p1) such that

0 < p1 = friy=y,z=1(0),
0 < po < friy=y,z=0(1),
P1Afy1z(y) = Afv, 1) z(y, 0),
PoAfyiz(y) = My.ryiz(y, D)
forevery y.

Proor. Define

apo(y) aon\ _ (fovmyz=0(»0)  fiv,1)z=1(3,0)
aip(y) an(y) fovmiz=o D) fiy,mz=1(y, D)’

boo(y) boi(M) _ (fev.ro1z=0(3,0)  fiy,14)12z=1(y, 0)
bio(y) b11(y) fov,ro1z=00, 1) fiy,o12z=1(0, D )7

and define po = frir==0(1) and p1 = frir+=1(0). Since fiy,1)z(y, 1) = 3 1 f1. (1) %
fov, ) z(y, t*) from Assumption 22(i), it follows that

ap(y) aotM)_(1-po P boo(y) bo1(y)
ap(y) ap(y) po  1—pi) \bi(y) buy))’



Supplementary Material Heterogeneous treatment effects 3

Assumption 22(i) implies that the matrix (1;0” ©.r b ) is invertible. Thus

(boo(}’) bo1 (}’)> 1

bio(y) bu(y) T 1- Po—P1

o (1= pag(y) — prawn(y) (1 —ppap(y) — pra(y)
—poaop(y) + (1 — po)aio(y) —poaoi(y)+ (1 — po)aii(y)

and
AE[Y | Z]

O(P)=(1—PO—P1)W|Z],

because
AE[T* | Z] = frejz=1(1) = fr+z=0(1)

=/b11(y)dy—/bm(y) dy

Po / (a00(y) — a01(»)) dy + (1 — po) / (a11(y) — aro(y)) dy

1—po—p1
_ —poAE[1-T | Z]+ (1 - pg)AEI[T | Z]
B 1—po—p1
_ AE[T|Z]
1-po—p1’

In the rest of the proof, I am going to show that the sharp identified set for (pg, p1) is {2.

First, I am going to show that the identified set for (pg, p1) is a subset of (2. As in
Kitagawa (2015, Proposition 1.1) and Mourifié and Wan (2016, Theorem 1), Assump-
tion 1 implies the following inequalities

for,r)1z=0(3,0) > frv,1)z=1(y,0) > 0,
0 < fov.ryz=0(0, 1) < fiy.moyz=1(y, D).

In the notation of this proof,

(1 - pvag(y) — prawo(y) = (1 — p1)api(y) — prai(y) =0,
0 < —poago(y) + (1 — po)aio(y) < —poao1(y) + (1 — po)ai(y).

By some algebraic operations,

Pifyiz=1(Y) < fiv,m)z=1(,0),
Pofyiz=0(y) = fov,myz=0(y, 1),
PiAfyiz(y) = Afy,1)1z(y, 0),
PoAfy1z(y) < Afy,1yz(y, D).
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Then, I am going to show that (2 is included in the identified set for (pg, p1). Let
(po, p1) be any element of 2. Then define

. . -1
fvro1z=00,0) fiv,r91z=1(0, 0\ _ (1=po D1 apo(y) ao1(y) .
fov,ryz=0, D) fov,royz=1(3, 1) po 1—-p1 aj(y) an(y)

Some calculations yield

fov.ro12=0(3,0) = foy,r)2=1(y,0) = 0,
0= f(Y,T*)|Z=0(% 0) < f(Y,T*)|Z=1 (y,0).
This is a sufficient condition for f(y,7+)z to be consistent with Assumptions 1, which

is shown in Kitagawa (2015, Proposition 1.1) and Mourifié and Wan (2016, Theorem 1).
Thus (pg, p1) belongs to the identified set for (pg, p1). O

APPENDIX D: COMPLIERS-DEFIERS-FOR-MARGINALS CONDITION

This section demonstrates that a variant of Theorem 4 still holds under a weaker condi-
tion than the deterministic monotonicity condition in Assumption 1(ii). I consider the
following assumption.

AsSUMPTION 25. (i) For each t* =0, 1, Z is independent of (Ty<, Y+, T, TY). (ii) There is
a subset Cp of {T} > Tj} such that
P(Cp)=P(T} <Tj,),
fovoo1¢e = fovo, Ty <15

forioice = for o<1y -

(i) 0<P(Z=1) < 1.

Assumption 25(ii) imposes the compliers-defiers-for-marginals condition (de Chai-
semartin (2016)) on the joint distribution of (Y, Ty+). Under this assumption, Theo-
rem 2.1 of de Chaisemartin (2016) shows that

AE[Y | Z]

ElYy—- Y| Cyl=———7——-
[Yo—Y1|Cyl] AE[T" 1 Z]

where Cy = {T] > T§} \ Crp.12

12In fact he uses a weaker condition than the compliers-defiers-for-marginals condition to establish this
equality. I use the compliers-defiers-for-marginals condition here, because it makes the characterization in
26 exactly the same to Theorem 2.1.
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THEOREM 26. Suppose that Assumption 1 holds, and consider an arbitrary data distri-
bution P of (Y, T, Z). The identified set O;(P) for E[Yy — Y1 | Cy/] is characterized in the
same way as Theorem 4: O1(P) = O if TV y, 1y = 0; otherwise,

[AEP[Y 1 Z1, M} iFAEPLY | Z] = 0,
; TViy,T)
O1(P)=1{0} ifAEp[Y | Z] =0,
[w, AEp[Y | Z]} if AEp[Y | Z] <O.
TViy,1)

Proor. Since Theorem 4 gives tpe sharp identified set under a stronger assumption of
this theorem, the identified set ®;(P) in this theorem shogld be equal to or larger than
the set in Theorem 4. As a result, it suffices to show that @;(P) is a subset of the set in
Theorem 4. By the Assumption 25(ii),
formiz=0y, ) = P(T{ =T =11 Z =0) fiy, 1) 17=13=1,2=0()> 1)

+P(T7 = T3 =01 Z=0) fiy,ry17=173=0,2=0(y, 1)

+P(Cr | Z=0)fv,1)icp,z=0(¥5 1)

+P(Cy | Z=0)f(v,1)1c,2=0(), )

+P(T{ < T3 | Z=0)foy. 115 <13, 22035 1)

=P(T7 =T = 1) fov, mym=13=1(, D)

+P(T} = Tg =0) foyy, 117 =15 =0(¥> 1)

+ P(CF) fovy, 1o)1cp (35 1)

+P(Cy) fvy, To)1c0 (9> 1)

+P(T] < T5) fovy, oy <13 (05 ),

formiz=10, 0 =P(T{ =T¢ =11 Z =1)fiy. 1) 17=13=1,2=1(), 1)

+P(T} =T5 =01 Z=1)fy,ry17=17=0,2=1(), 1)

+P(Cr | Z=1Dfv,1)|Cr,z=1(); 1)

+P(Cy | Z=Dfy, 10, 2=1(¥, 1)

+P(T7 < T3 | Z=1)fiy,ryre <17, 2=1 (35 1)

=P(T7 =Ty = 1) fiv,. 1y 13213 =1(35 1)

+P(T1 = T5 = 0) foyy, 1)1 =13 =0( 1)

+ P(Cr) foy,,micp (3> 1)

+P(Cv) fovy, ey (s 1)

+ P(T7 < T5) fovy, oy s <13 (95 ),
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Afyv,ryz(v, ) = P(CE)(fivy moicy (0> ) = fovo, yyicr (95 1)
+ P(Cv) (fovy.moicy 0 ) = fivy 11y (95 1)
+ P(TF < T) (fove. 1oyims <13 05 1) = fovymme <1 (95 1)
= P(Cr)(fovmicy s 1) = fovg. Ticy (0, 1))
Based on the definition of the total variation distance,
TViv,1) =P(CV)% > /|f(Y1,T1)|CV(Ya 0 — fovo, ey (0, D] diy (),
t=0,1
and therefore
TV =P(Cy) <1
Since P(Cy) =AE[T | Z],
TViy,ry <AE[T | Z]1 < 1.

This concludes that E[Yy — Y7 | Cp]is included in

[AE[Y 21, M} fAE[Y | Z] = 0,
TViy,1)
{0} if AE[Y | Z] =0,
AE[Y | Z] .

APPENDIX E: NUMERICAL EXAMPLE AND MONTE CARLO SIMULATIONS

This section considers a numerical example to illustrate the theoretical properties in the
previous section. I consider the following data generating process:

Z ~ Bernoulli(0.5),
T*=1{-3/4+1/2Z + U, >0},
Y =2T* + d(Uy),
T=T"+(1-2T*)1{Us < v},

where ® is the standard normal cdf and, conditional on Z, (U;, U,, U3) is drawn from
the Gaussian copula with the correlation matrix

1 025 025
025 1 025
025 025 1

I set y =0,0.2,0.4, which captures the degree of the misclassification. In this design,
the treatment variable is endogenous since Uy and U, are correlated. In addition, the
misclassification is endogenous in that U, and Uj are correlated.
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TaBLE 5. Population parameters (Theorem 4).

y LATE Identified Set Wald Estimand
0 2.00 [1,2.00] 2.00
0.2 2.00 [1,2.41] 3.01
0.4 2.00 [1,2.64] 8.72
f
0.8 I'I
|
g | |
8 [
= | K =1
|I Kr‘=2
Kﬂ=3
' K, =4
0 b Identified Set
1] 2 - <]

LATE

FIGURrE 3. Coverage of the confidence interval (Theorem 4) for y =0.

Table 5 lists the three population objects: the local average treatment effect, the Wald
estimand, and the identified set for the local average treatment effect. Note that, unless
v =0, the distribution for (Y, T, Z) violates the conditions in (5). When there is no mea-
surement error, the sharp upper bound is equal to the Wald estimand, which is the case
for y = 0. When there is a measurement error, the sharp upper bound for the local aver-
age treatment effect can be smaller than the Wald estimand.

In order to focus on the finite sample properties of the test 1{7'(0, 7) > c(a, 0, 7)},
I only evaluate coverage probabilities given 7 = 0.5 for various value of 6. The partition
of grids is equally spaced over Y with the number the partitions K, =1, ..., 4. Coverage
probabilities are calculated as how often the 95% confidence interval includes a given
parameter value out of 1000 simulations. The sample size is n = 500 for Monte Carlo
simulations. I use 1000 bootstrap repetitions to construct critical values. I set 8 =0.1%
for the moment selection.

Figures 3-5 describe the coverage probabilities of the confidence intervals for each
parameter value. When the degree of measurement error is zero (y = 0), the power for
the confidence interval with K;,, = 1 has a slightly better performance than those with
K, > 2. It can be because the number of moment inequalities are larger for K, > 2 and
then the critical value is bigger. As the degree of measurement error becomes larger, the
power for the confidence intervals with K, > 2 becomes better than that with K,, = 1. It
is a result of the fact that the sharp upper bound for the local average treatment effect is
smaller than the Wald estimand.
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09
|
|
£ |
Bl
= , K =1
n
r K,
oLt e Identified Set
0 2 4 6

LATE

FIGURE 4. Coverage of the confidence interval (Theorem 4) for y =0.2.
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FiGure 5. Coverage of the confidence interval (Theorem 4) for y = 0.4.

Next, I investigate the identifying power of an additional measurement.
R=T"+(1-2T*)1{Us < v},
where (Uy, U,, U3, Uy) is drawn from the Gaussian copula with the correlation matrix

1 025 025 025
025 1 025 025
025 025 1 025
025 025 025 1

Table 6 lists the three population objects: the local average treatment effect, the Wald
estimand, and the identified set for the local average treatment effect. Figures 6-8 de-
scribe the coverage probabilities of the confidence intervals for each parameter value.

The comparison among different K,;’s are similar to the previous figures.
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TABLE 6. Population parameters with using R (Theorem 9).

9

y LATE Identified Set Wald Estimand
0 2.00 [1,2.00] 2.00
0.2 2.00 [1,2.26] 3.01
0.4 2.00 [1,2.62] 8.72
{
08 (
& |
5 I
i | Kn=1
|| K =2
K, =3
K =4
0 b Identified Set
1] 2 B 6

LATE

F1GURE 6. Coverage of the confidence interval with using R (Theorem 9) for y = 0.

FIGUuRre 7. Coverage of the confidence interval with using R (Theorem 9) for y =0.2.

09

Coverage

0 -
0 2 4
LATE

K =1
K,=2
K,=3
K,=4
Identified Set

Last, I consider the dependence between measurement error and instrumental vari-
able, as in Section 3.4. Table 7 lists the three population objects and Figures 9-11 de-
scribe the coverage probabilities of the confidence intervals. Since they do not use any
information from the measured treatment 7', the identified sets and the confidence in-
tervals show that the upper bounds on the local average treatment effect is larger than
those under the independence between measurement error and instrumental variable.
The difference becomes smaller when the degree of the measurement error is larger. It
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FIGURE 8. Coverage of the confidence interval with using R (Theorem 9) for y = 0.4.

TABLE 7. Population parameters without 7 (Theorem 11).

vy LATE Identified Set Wald Estimand
0 2.00 [1,2.67] 2.00
0.2 2.00 [1,2.67] 3.01
0.4 2.00 [1,2.68] 8.72

£ |
8 | |

| K =1

I| K =2

K,=3

.' K, =4

3 L Identified Set
0 2 4 6

LATE

F1cure 9. Coverage of the confidence interval without T (Theorem 11) for y = 0.

can be considered as the result that, when the misclassification happens too often, the
measured treatment 7" has only little information about the true treatment and therefore

there is a small difference between the identified sets.
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F1GURE 10. Coverage of the confidence interval without 7' (Theorem 11) for y =0.2.
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Ficure 11. Coverage of the confidence interval without 7' (Theorem 11) for y =0.4.
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