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Appendix A: Omitted proofs

In this section, we provide lemmas that establish the sharpness of the bounds given in
Propositions 3.1, 4.1, and 4.2, and any proofs that were omitted from the main text of the
paper.

Lemma A.1. The bounds given in Proposition 3.1 are sharp.

Proof. Part (i). Consider a data generating process (DGP) subject to (s.t.) E[Yi(t)|Zi =
s] = E[Yi|Zi = s] + b|s − t| ∀t� s ∈ Γ . This ensures E[Yi(t)] attains the upper bound. It
remains to show this DGP satisfies STR, which is followed by∣∣E[

Yi(t1)|Zi = s
] −E

[
Yi(t2)|Zi = s

]∣∣ = b
∣∣|s − t1| − |s − t2|

∣∣
≤ b|t1 − t2|�

On the other hand, the DGP E[Yi(t)|Zi = s] = E[Yi|Zi = s] − b|s − t| ∀t� s ∈ Γ attains the
lower bound, and the convex combinations between the two DGPs yield all the values
between the lower and upper bounds. It can also be shown that they obey STR.
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Part (ii). Consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi|Zi = s] + b(t − s) when s ≤ t and
E[Yi(t)|Zi = s] =E[Yi|Zi = s] when s > t. This ensures E[Yi(t)] attains the upper bound.
To show that this DGP satisfies SMTR, note that for any t1 and t2 satisfying t1 > t2, we
have

E
[
Yi(t1)|Zi = s

] −E
[
Yi(t2)|Zi = s

] =

⎧⎪⎪⎨⎪⎪⎩
b(t1 − t2)� if t1 > t2 ≥ s�

0� if t2 < t1 < s�

b(t1 − s)� if t2 < s ≤ t1�

This implies that SMTR holds since (t1 − s)≤ (t1 − t2) when t2 < s ≤ t1. The lower bound
can be attained similarly, and furthermore, as in part (i), the convex combinations be-
tween the two polar DGPs yield all the values between the lower and upper bounds. �

Proof of Proposition 3.2. To verify the sharpness of the STR upper bound, consider
a HLR-type DGP s.t. Yi(t) = β× t +δi with Eδi = 0 and β= b satisfies STR, as mentioned
in the main text, and this DGP yields �(t� t ′) = b(t − t ′). Likewise, the sharp lower bound
is −b(t − t ′) (take β = −b). Now the convex combinations between the two DGPs yield
all the values between the lower and upper bounds. Identical arguments yield that the
sharp SMTR upper and lower bounds for the average treatment effect are b(t − t ′) and 0,
respectively. �

Proof of Proposition 3.3. The proof is omitted since it is basically the same as that
of Proposition 3.1. �

Lemma A.2. The bounds given in Proposition 4.1 are sharp.

Proof. We start by taking g(s� s) to be a monotone increasing function of s since the
MTR-MTS assumption requires such property to hold. To verify the sharpness of the
upper bound, consider the following DGP:

g(t� s) =
⎧⎨⎩ inf

s′∈[s�t]
(
g
(
s′� s′

) + b
(
t − s′

))
� s ≤ t�

g(s� s)� s > t

for all s, t.
First, we will check whether SMTR holds, that is, 0 ≤ g(t2� s)− g(t1� s) ≤ b(t2 − t1) for

t1 < t2. There are three cases: (1) t1 < t2 ≤ s, (2) t1 ≤ s < t2, and (3) s < t1 < t2. For the first
case, note that

g(t2� s)− g(t1� s) = g(s� s)− g(s� s)

= 0�

so SMTR holds. For the second case,

g(t2� s)− g(t1� s) = inf
s′∈[s�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

)) − g(s� s)
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≥ inf
s′∈[s�t2]

g
(
s′� s′

) − g(s� s)

= 0

since g(s� s) is an increasing function with respect to s. Therefore, MTR holds. Moreover,

g(t2� s)− g(t1� s) = inf
s′∈[s�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

)) − g(s� s)

≤ g(s� s)− b(t2 − s)− g(s� s)

= b(t2 − s)

≤ b(t2 − t1)

since t1 ≤ s for the second case. This verifies the smoothness condition, so SMTR holds.
For the third case,

g(t2� s)− g(t1� s) = inf
s′∈[s�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

)) − inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t1 − s′

))
�

Note that

inf
s′∈[s�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

))
= min

{
inf

s′∈[s�t1]
(
g
(
s′� s′

) + b
(
t2 − s′

))
� inf
s′∈[t1�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

))}
�

For the first term inside the minimum operator,

inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t2 − s′

)) = inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t1 − s′

) + b(t2 − t1)
)

≥ inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t1 − s′

))
�

Moreover, for the second term inside the minimum operator, we can see that

inf
s′∈[t1�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

)) ≥ inf
s′∈[t1�t2]

g
(
s′� s′

)
= g(t1� t1)

≥ inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t1 − s′

))
�

Therefore, MTR holds. For the case of SMTR, let A ≡ infs′∈[s�t1](g(s′� s′) + b(t1 − s′)) and
B ≡ infs′∈[t1�t2](g(s′� s′)+ b(t1 − s′)). Then

g(t2� s)− g(t1� s) = inf
s′∈[s�t2]

(
g
(
s′� s′

) + b
(
t2 − s′

)) − inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t1 − s′

))
= inf

s′∈[s�t2]
(
g
(
s′� s′

) + b
(
t1 − s′

)) + b(t2 − t1)− inf
s′∈[s�t1]

(
g
(
s′� s′

) + b
(
t1 − s′

))
= min{A�B} + b(t2 − t1)−A�

Since min{A�B} ≤ A, we can see that SMTR holds.
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Next, we need to check MTS, that is, g(t� s2)− g(t� s1) ≥ 0 for s1 < s2. There are again
three cases to consider: (1) s1 < s2 ≤ t, (2) s1 ≤ t < s2, and (3) t < s1 < s2. For the first case,

g(t� s2)− g(t� s1) = inf
s′∈[s2�t]

(
g
(
s′� s′

) + b
(
t − s′

)) − inf
s′∈[s1�t]

(
g
(
s′� s′

) + b
(
t − s′

))
≥ 0�

since [s2� t] ⊂ [s1� t]. For the second case,

g(t� s2)− g(t� s1) = g(s2� s2)− inf
s′∈[s1�t]

(
g
(
s′� s′

) + b
(
t − s′

))
≥ g(s2� s2)− g(t� t)

≥ 0�

For the third,

g(t� s2)− g(t� s1) = g(s2� s2)− g(s1� s1)

≥ 0�

Therefore, MTS holds for this DGP.
Likewise, the DGP that achieves the lower bound is

g(t� s) =
⎧⎨⎩g(s� s)� s ≤ t�

sup
s′∈[t�s]

(
g
(
s′� s′

) − b
(
s′ − t

))
� s > t�

We omit the proof that it satisfies SMTR-MTS, since it is analogous to the previous one,
and the convex combination of the previous DGP and this one yields all the values be-
tween the upper and the lower bounds. �

Lemma A.3. The bounds given in Proposition 4.2 are sharp.

Proof. The DGP that achieves the sharp bound is constructed by the following manner.
First, fix t1 and t2. Then define

f2(s) =
{
fI(s� t2)� s ≤ t2�

g(s� s)� s > t2�

f̃1(s) =
{
g(s� s)� s ≤ t1�

fS(s� t1)� s > t1�

and

f1(s) = max
{
f̃1(s)� f2(s)− b(t2 − t1)

}
�
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Consider the following DGP:

g(t� s)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(s)� t ≤ t1�

f1(s)+
(
f2(s)− f1(s)

t2 − t1

)
(t − t1)� t1 < t ≤ t2�

f2(s)� t > t2�

We can easily check that this form of DGP leads to the sharp upper bound for E[Y(t2)−
Y(t1)].

We now show that the SMTR-MTS condition holds for this DGP. For SMTR, it is nec-
essary to verify that 0 ≤ g(t ′� s) − g(t� s) ≤ b(t ′ − t), and there are six cases to consider:
(1) t < t ′ ≤ t1 < t2, (2) t ≤ t1 < t ′ ≤ t2, (3) t1 < t < t ′ ≤ t2, (4) t1 < t ≤ t2 < t ′, (5) t ≤ t1 < t2 < t ′,
and (6) t2 < t < t ′. Checking each of these six cases shows that:

(1) g(t ′� s)− g(t� s)= f1(s)− f1(s) = 0.

(2) first note that (
f2(s)− f1(s)

t2 − t1

)
≤ b (A.1)

by the definition of f1(s). Moreover, f2(s) − f1(s) ≥ 0 by the definitions of fS(s� t1) and
fI(s� t2). Then g(t ′� s) − g(t� s) = ( f2(s)−f1(s)

t2−t1
)(t ′ − t1) ≥ 0 and ( f2(s)−f1(s)

t2−t1
)(t ′ − t1) ≤ b(t ′ −

t1)≤ b(t ′ − t) since t ≤ t1.

(3) g(t ′� s)−g(t� s) = ( f2(s)−f1(s)
t2−t1

)(t ′ − t) which is greater than 0 and smaller than b(t ′ −
t) by (A.1).

(4) g(t ′� s) − g(t� s) = ( t2−t
t2−t1

)(f2(s) − f1(s)) ≥ 0 and ( t2−t
t2−t1

)(f2(s) − f1(s)) ≤ b(t2 − t) ≤
b(t ′ − t) since t ′ > t2.

(5) g(t ′� s) − g(t� s) = f2(s) − f1(s). The discussion regarding the second case shows
this is greater than 0 and smaller than b(t2 − t1).

(6) g(t ′� s)− g(t� s)= f2(s)− f2(s) = 0.

Next, for the MTS, we need to show that g(t� s2)−g(t� s1) for s1 < s2. There are three cases
to consider: (1) t ≤ t1, (2) t1 < t ≤ t2, and (3) t2 < t. For the first case,

g(t� s2)− g(t� s1) = f1(s2)− f1(s1)

= max
{
f̃1(s2)� f2(s2)− b(t2 − t1)

}
− max

{
f̃1(s1)� f2(s1)− b(t2 − t1)

}
�

In order to show this to be greater than 0, first note that a2 ≥ a1 and b2 ≥ b1 im-
plies max{a2� b2} ≥ max{a1� b1}. Therefore, we only need to show (i) f̃1(s2) ≥ f̃1(s1) and
(ii) f2(s2) ≥ f2(s1). We have already verified inequality (ii) in the proof of Proposition 4.1.
Also, note that inequality (i) is analogous to inequality (ii). Therefore, case (1) has been
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dealt with. Now for the second case,

g(t� s2)− g(t� s1)

= f1(s2)+
(
f2(s2)− f1(s2)

t2 − t1

)
(t − t1)− f1(s1)−

(
f2(s1)− f1(s1)

t2 − t1

)
(t − t1)

=
(
t2 − t

t2 − t1

)(
f1(s2)− f1(s1)

) +
(
t − t1
t2 − t1

)(
f2(s2)− f2(s1)

)
�

which is greater than 0 when f1(s2) ≥ f1(s1) and f2(s2) ≥ f2(s1), and we have already
shown that the last two inequalities hold. For the last case, g(t� s2) − g(t� s1) = f2(s2) −
f2(s1), which is greater than 0 as mentioned before. Therefore, MTS holds. �

Proof of Propositions 4.3 and 4.4. The detailed proofs of Propositions 4.3 and 4.4
are omitted since they are basically analogous to those of Propositions 4.1 and 4.2. One
notable modification that is necessary to prove the sharpness of Proposition 4.2 is to
define g(t� s) = f1(s) + ( f2(s)−f1(s)

ω(t2−t1)
)(ω(t − t1)) if t1 < t ≤ t2. Note that the additional re-

quirement ω(t2 − t1) > 0 is used in this step. �

Appendix B: Binary treatment

In this section, we consider the binary treatment case to better understand the role of the
smoothness assumption. Suppose throughout this section there are only two treatment
levels: t1 = 1 and t0 = 0.

Remark B.1 (Binary Treatment—Proposition 3.1). Proposition 3.1(ii) can be written as

E[Yi] − bP(Zi = 1)≤ g∗(0) ≤ E[Yi]�
E[Yi] ≤ g∗(1) ≤ E[Yi] + bP(Zi = 0)�

Specifically, a strict improvement from the MTR bounds occurs when ymax > g(0�0) + b

(for g∗(1)) or g(1�1) − b > ymin (for g∗(0)). This shows how b is restricting the possible
values for the unobserved outcomes, especially when ymax is too large or ymin is too small.

Remark B.2 (Binary Treatment—Proposition 4.1). Proposition 4.1 can be written as

l1(0) = g(0�0)P(Zi = 0)+ sup
{
g(0�0)�g(1�1)− b

}
P(Zi = 1)�

u1(0) = E[Yi]�
l1(1) = E[Yi]�
u1(1) = inf

{
g(0�0)+ b�g(1�1)

}
P(Zi = 0)+ g(1�1)P(Zi = 1)�

Specifically, the values inside the supremum and infimum operators show that improve-
ment from the MTR-MTS bounds occurs when g(1�1) − g(0�0) > b. Note that the im-
proved bounds become equivalent to the case without monotone treatment selection.
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Remark B.3 (Binary Treatment—Proposition 4.2). For the binary treatment case, 0 ≤
�(0�1) ≤ b (trivial upper bound) when g(1�1) − g(0�0) > b, and 0 ≤ �(0�1) ≤ g(1�1) −
g(0�0) (MTR-MTS upper bound) when g(1�1) − g(0�0) ≤ b . Therefore, imposing the
smoothness assumption is not useful for bounding the average treatment effect when
the treatment is binary.

Appendix C: Adding instrumental variables assumptions to treatment

responses

In this section, we show how to tighten the identification results obtained in Section 3
when an instrumental variable exists. In particular, we follow Manski and Pepper (2000)
and study the identifying power of instrumental variable (IV) and monotone instrumen-
tal variable (MIV) assumptions, as they are combined with conditional versions of STR
and SMTR conditions.1

Assume from now on that we observe independent and identically distributed ob-
servations {(Yi�Zi�Vi) : i = 1� � � � � n}, where Vi ∈ V ⊂ R is a real-valued instrumental vari-
able for individual i. Define g(t� s� v) ≡ E[Yi(t)|Zi = s�Vi = v] to be the expectation of
Yi(t) conditional on Zi = s and Vi = v. We now state the STR and SMTR assumptions
conditional on Vi = v (hence called CSTR and CSMTR) as well as the IV and MIV as-
sumptions of Manski and Pepper (2000).

Assumption C.1 (Treatment Response and Instrumental Variable Assumptions). Con-
sider the following assumptions:

(i) (Condition CSTR) There exists a constant b > 0 such that |g(t� s� v) − g(t ′� s� v)| ≤
b|t − t ′| ∀(t� t ′� s� v) ∈ (Γ × Γ × Γ × V).

(ii) (Condition CSMTR) The CSTR condition in part (i) holds with a constant b > 0. In
addition, g(t� s� v)≥ g(t ′� s� v) ∀(t� t ′� s� v) ∈ (Γ × Γ × Γ × V) satisfying t ≥ t ′.

(iii) (Condition IV) E[Yi(t)|Vi = v] =E[Yi(t)|Vi = v′] for all (v� v′� t) ∈ (V × V × Γ ).

(iv) (Condition MIV) If v ≥ v′, then E[Yi(t)|Vi = v] ≥ E[Yi(t)|Vi = v′] for all (v� v′� t) ∈
(V × V × Γ ).

Condition CSTR is met if (3.3) holds for each individual and CSMTR is satisfied when
(3.1) and (3.3) hold for each individual. Hence, the conditional versions of STR and
SMTR conditions can be motivated, as in Section 3. The IV and MIV conditions are well
known in the literature; see, for example, Manski and Pepper (2000, 2009) among others.

Remark C.1. A related identification assumption in the literature is “bounded instru-
mental variable” introduced in Manski and Pepper (2013). To express this assumption in

1Lafférs (2013) emphasize the importance of distinguishing conditional and unconditional versions of
monotone treatment selection.
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our notation, let ATEv ≡ E[Y(t2)|Vi = v] −E[Y(t1)|Vi = v] for some fixed t1 
= t2. Then Vi
is called a bounded instrumental variable if

|ATEv1 −ATEv2 | ≤ �

for some �> 0 for all v1 and v2. This condition is related to our CSTR assumption in the
following sense: |ATEv1 −ATEv2 | is less than or equal to |ATEv1 |+|ATEv2 | by triangular
inequality, and each |ATEv1 | and |ATEv2 | is bounded due to the CSTR assumption.

The following proposition gives identification results under several possible combi-
nations of the conditions in Assumption C.1.

Proposition C.1. Assume that the support of Yi(t) is unbounded. Then the following
bounds are sharp:

(i) Under CSTR and IV together,

sup
v∈V

{
E[Yi|Vi = v] − bE

[|Zi − t||Vi = v
]} ≤ g∗(t)

≤ inf
v∈V

{
E[Yi|Vi = v] + bE

[|Zi − t||Vi = v
]}
�

(ii) Under CSMTR and IV together,

sup
v∈V

{
E[Yi|Vi = v] − bE

[
(Zi − t)+|Vi = v

]} ≤ g∗(t)

≤ inf
v∈V

{
E[Yi|Vi = v] + bE

[
(Zi − t)−|Vi = v

]}
�

(iii) Under CSTR and MIV together,

sup
v1∈V :v1≤v

{
E[Yi|Vi = v1] − bE

[|Zi − t||Vi = v1
]}

≤E
[
Yi(t)|Vi = v

]
≤ inf

v2∈V :v2≥v

{
E[Yi|Vi = v2] + bE

[|Zi − t||Vi = v2
]}
�

(iv) Under CSMTR and MIV together,

sup
v1∈V :v1≤v

{
E[Yi|Vi = v1] − bE

[
(Zi − t)+|Vi = v1

]}
≤E

[
Yi(t)|Vi = v

]
≤ inf

v2∈V :v2≥v

{
E[Yi|Vi = v2] + bE

[
(Zi − t)−|Vi = v2

]}
�

These results can be regarded as combinations of Proposition 3.1 and Proposition 1
of Manski and Pepper (2000). It follows immediately from Proposition C.1(iii) and (iv)
that the identification region of g∗(t) under the MIV assumption is given as below.
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Corollary C.2. Assume that the support of Yi(t) is unbounded. Let FV denote the prob-
ability measure of Vi. Then the following bounds are sharp:

(i) Under CSTR and MIV together,∫
sup

v1∈V :v1≤v

{
E[Yi|Vi = v1] − bE

[|Zi − t||Vi = v1
]}
FV (dv)

≤ g∗(t)

≤
∫

inf
v2∈V :v2≥v

{
E[Yi|Vi = v2] + bE

[|Zi − t||Vi = v2
]}
FV (dv)�

(ii) Under CSMTR and MIV together,∫
sup

v1∈V :v1≤v

{
E[Yi|Vi = v1] − bE

[
(Zi − t)+|Vi = v1

]}
FV (dv)

≤ g∗(t)

≤
∫

inf
v2∈V :v2≥v

{
E[Yi|Vi = v2] + bE

[
(Zi − t)−|Vi = v2

]}
FV (dv)�

As in the only-MIV bound of Manski and Pepper (2000), the CSTR-MIV (CSMTR-
MIV) bound coincides with the only-CSTR (only-CSMTR) bound if the CSTR (CSMTR)
lower and upper bounds for E[Yi(t)|Vi = v] are weakly increasing in v. Hence, in this
case, the MIV assumption has no identifying power. Likewise, if these bounds are weakly
decreasing in v, then combining IV with CSTR or CSMTR yields the same result as MIV
with CSTR or CSMTR. Thus, in such cases, the MIV assumption has the same identifying
power as the IV assumption.

Proof of Proposition C.1 and Corollary C.2. Part (i). Note that under CSTR,
Proposition 3.1(i) leads to

E[Yi|Vi = u] − bE
[|Zi − t||Vi = u

] ≤E
[
Yi(t)|Vi = u

] ≤E[Yi|Vi = u] + bE
[|Zi − t||Vi = u

]
which holds for any u ∈ V . Due to Assumption C.1 (iii), E[Yi(t)|Vi = u] is no larger
than the CSTR upper bound on E[Yi(t)|Vi = u′], and no smaller than the CSTR lower
bound, for any u′ ∈ V . There are no other restriction on E[Yi(t)|Vi = u], so the bound
is sharp. Part (ii) can be proved in a similar way. For Part (iii), we again use the CSTR
bound for E[Yi(t)|Vi = u] presented above. Due to Assumption MIV, E[Yi(t)|Vi = u] is
no smaller than the CSTR lower bound on E[Yi(t)|Vi = u1], and no larger than the CSTR
upper bound on E[Yi(t)|Vi = u2], for any u1 ≤ u ≤ u2. There is no other restriction on
E[Yi(t)|Vi = u], so the bound is sharp. Part (iv) can be proved in the similar way.

Corollary C.2 can be proved by observing that

g∗(t) =
∫

E
[
Yi(t)|Vi = v

]
FV (dv)�
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Figure A-1. SMTS-STS-MTS comparison.

Setting E[Yi(t)|Vi = v] at its lower (upper) bound given in Proposition C.1(iii) and (iv)
yields the result. �

Appendix D: Smooth treatment selection

In this section, we introduce the condition that E[Yi(t)|Zi = s] is a “smooth” function
of s. As in Section 3, we focus on two assumptions on treatment selection: the one we
call smooth treatment selection (STS) and the other smooth monotone treatment selection
(SMTS). Both conditions are now stated below in terms of the “local” behavior of g(t� s)
with respect to s.

Assumption D.1 (Treatment Selection Assumptions). Assume one of the following con-
ditions:

(i) (Condition STS) There exists a constant a > 0 such that |g(t� s) − g(t� s′)| ≤ a|s −
s′| ∀t� s� s′ ∈ Γ .

(ii) (Condition SMTS) The STS condition in part (i) holds with a constant a > 0. In
addition, g(t� s)≥ g(t� s′) ∀t� s� s′ ∈ Γ satisfying s ≥ s′.

Note that in both STS and SMTS conditions, we have a bound on changes in g(t� s)

with respect to s. The “smoothness” condition in Assumption D.1 can be rewritten as

−a ≤ g(t� s)− g
(
t� s′

)
s − s′

≤ a (D.1)
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for all s 
= s′ and t, which is equivalent with g(t� ·) having uniformly bounded difference
quotients when viewed as a function of only the second argument for each t. The condi-
tion in (D.1) assumes that the average outcome cannot change “too much” as the selec-
tion of the treatment varies. If we think about plausibility in the context of bounding the
return to schooling, the STS assumption is consistent with the economic models that
predict that persons who select similar levels of schooling have similar levels of ability
on average.

Remark D.1. Assumption D.1 does not seem to be imposed in the literature before; the
most related discussions we can find in the literature are from Manski (2003) and Manski
and Pepper (forthcoming). Using our notation, equation (9.21) in Section 9.4 of Manski
(2003, p. 149) states that∣∣E[

Yi(t)|Vi = v
] −E

[
Yi(t)|Vi = v′]∣∣ ≤ C ∀(

v� v′� t
) ∈ (V × V × Γ )�

where C > 0 is a specified constant. Manski (2003) motivated this restriction as a form of
“approximate” mean independence of instruments but just mentioned it without devel-
oping any identification result. Manski and Pepper (forthcoming) considered assump-
tions of bounded variations; using our notation, a simplified version of their assumption
is that for any (t� d�w) and (t ′� d′�w′),

CL ≤Ed

[
Yi(t)|Wi =w

] −Ed′
[
Yi

(
t ′
)|Wi =w′] ≤CU�

where d and d′ refer to possibly different time periods, Wi is a vector of covariates, and
CL and CU are constants chosen by the researcher. Our STS and SMTS assumptions are
distinct and have different motivations since we emphasize the nature of continuity or
smoothness of the treatment selection.

The following proposition provides sharp bounds for g∗(t) under these two assump-
tions.

Proposition D.1. Assume that the support of Yi(t) is unbounded. Then the following
bounds are sharp:

(i) Under STS, E[Yi|Zi = t] − aE[|Zi − t|] ≤ g∗(t) ≤E[Yi|Zi = t] + aE[|Zi − t|].
(ii) Under SMTS, E[Yi|Zi = t] − aE[(Zi − t)−] ≤ g∗(t) ≤E[Yi|Zi = t] + aE[(Zi − t)+].

Proof of Proposition D.1. Part (i). We only prove the case of the upper bound. The
proof for the lower bound is analogous. Under STS,

E
[
Yi(t)

] =
∫

E
[
Yi(t)|Zi = z

]
μ(dz)

≤
∫ (

E[Yi|Zi = t] + a|z − t|)μ(dz)
= E[Yi|Zi = t] + aE

[|Zi − t|]�
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For the sharpness, consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] + a|s − t| ∀t� s ∈
Γ . This ensures that E[Yi(t)] attains the upper bound. We can also show that this DGP
satisfies STS:

E
[
Yi(t)|Zi = s1

] =E
[
Yi(t)|Zi = t

] + a|s1 − t|�
E

[
Yi(t)|Zi = s2

] =E
[
Yi(t)|Zi = t

] + a|s2 − t|
⇒ ∣∣E[

Yi(t)|Zi = s1
] −E

[
Yi(t)|Zi = s2

]∣∣ = a
∥∥|s1 − t| − |s2 − t|∥∥ ≤ a|s1 − s2|�

On the other hand, the DGP s.t. E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] − a|s − t| ∀t� s ∈ Γ , at-
tains the lower bound, and the convex combinations between the two DGPs yield all the
values between the lower and upper bounds. Also, they all obey STS.

Part (ii). We only consider the upper bound. Again, the proof for the lower bound is
analogous. Under SMTS,

E
[
Yi(t)

] =
∫
z≤t

E
[
Yi(t)|Zi = z

]
μ(dz)+

∫
z>t

E
[
Yi(t)|Zi = z

]
μ(dz)

≤
∫
z≤t

(
E[Yi|Zi = t] + 0

)
μ(dz)+

∫
z>t

(
E[Yi|Zi = t] + a(z − t)

)
μ(dz)

=E[Y |Zi = t] + aE
[
(Zi − t)+

]
�

For the sharpness, consider a DGP s.t. E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] when s ≤ t

and E[Yi(t)|Zi = s] = E[Yi(t)|Zi = t] + a(s − t) when s > t. This ensures that E[Yi(t)]
attains the upper bound. To show that this DGP satisfies SMTS, note that for any s1 and
s2 satisfying s1 > s2, we have

E
[
Yi(t)|Zi = s1

] −E
[
Yi(t)|Zi = s2

] =

⎧⎪⎪⎨⎪⎪⎩
0� if s2 < s1 ≤ t�

a(s1 − s2)� if s1 > s2 > t�

a(s1 − t)� if s1 > t ≥ s2�

This implies that SMTS holds since (s1 − t) ≤ (s1 − s2) when s1 > t ≥ s2. Then the rest can
be proved as in part (ii) of the proof of Proposition 3.1. �

The interpretation of Proposition D.1 is similar to that of Proposition 3.1. Proposi-
tion D.1(i) states that under STS, the sharp bound is symmetric around E[Yi|Zi = t] and
its width is 2aE[|Zi − t|]. Proposition D.1(ii) implies that under SMTS, the sharp bound
is asymmetric around E[Yi|Zi = t] and also its width is just aE[|Zi − t|] (the half of the
width under STS). Again, the width is minimized when the counterfactual treatment
value is the median of Zi.

As in the case of the treatment response assumptions, the identification region of
g∗(t) is unbounded when only the MTS condition in the equation (4.1) is assumed (see
Proposition 1, Corollary 2 of Manski and Pepper (2000)). This implies that the STS as-
sumption can provide additional information for identification when the support of
Yi(t) is unbounded.
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When the support of Yi(t) is bounded, that is, Yi(t) ≤ ymax < ∞ for some known ymax,
we can show that the upper bound for g∗(t) isp

g∗(t) ≤
∫
z>t

min
{
ymax�

(
E[Yi|Zi = t] + a(z − t)

)}
μ(dz)

+E[Yi|Zi = t]P(Zi ≤ t)�

(D.2)

The upper bound (D.2) cannot be larger than the upper bound under the MTS assump-
tion alone since the latter has the form (see again Proposition 1, Corollary 2 of Manski
and Pepper (2000)):

g∗(t) ≤ ymaxP(Zi > t)+E
[
Yi(t)|Zi = t

]
P(Zi ≤ t)� (D.3)

Similar to the discussion under SMTR, note that the SMTS upper bound strictly im-
proves the MTS upper bound if and only if the event such that E[Yi|Zi = t] + a(Zi − t) <

ymax has a strictly positive probability, conditional on Zi > t. Analogous results can be
established for the lower bound, and we summarize our findings below.

Corollary D.2. Assume that the support of Yi(t) is [ymin� ymax], where −∞ ≤ ymin ≤
ymax ≤ ∞. Then we have:

(i) The upper bound of the SMTS bound is strictly smaller than that of the MTS bound
if and only if

∫
z>t 1{USMTS(t� z) < 0}μ(dz) > 0, where USMTS(t� z) ≡ E[Yi|Zi = t] + a(z −

t)− ymax.

(ii) The lower bound of the SMTS bound is strictly larger than that of the MTS bound if
and only if

∫
z<t 1{LSMTS(t� z) > 0}μ(dz) > 0, where LSMTS(t� z)≡E[Yi|Zi = t]−a(t − z)−

ymin.

The proof of Corollary D.2 is omitted since it is straightforward. As in the SMTR case,
one can test whether there is an strict improvement using Corollary D.2.

D.1 The STR and STS bounds

If we combine STR with STS, we obtain the following result.

Proposition D.3. Assume that the support of Yi(t) is unbounded. Then, under STR and
STS together, E[Yi(t)] ∈ [l2(t)�u2(t)], where

l2(t) ≡
∫

max
{
E[Yi|Zi = t] − a|z − t|�E[Yi|Zi = z] − b|z − t|}μ(dz)�

u2(t) ≡
∫

min
{
E[Yi|Zi = t] + a|z − t|�E[Yi|Zi = z] + b|z − t|}μ(dz)�

Moreover, this bound is sharp.

In contrast to the case where only one of STS and STR holds, the length of the iden-
tification region is generally not minimized at the median of Zi. To make a comparison
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with the STR bound in Proposition 3.1 and the STS bound in Proposition D.1, we present
the special case such that a= b as the following corollary.

Corollary D.4. Suppose a = b = k̄, where k̄ denotes the common value. Define A(t) as
the event such that E[Yi|Zi = t] ≤ E[Yi|Zi] for each t. Assume that the support of Yi(t) is
unbounded. Then, under STR and STS together, E[Yi(t)] ∈ [l3(t)�u3(t)], where

l3(t) ≡E[Yi|Zi = t]P(
A(t)c

) +E
[
Yi|A(t)

]
P

(
A(t)

) − k̄E
[|Zi − t|]�

u3(t) ≡E[Yi|Zi = t]P(
A(t)

) +E
[
Yi|A(t)c

]
P

(
A(t)c

) + k̄E
[|Zi − t|]�

As a polar case, suppose that E[Yi|Zi = t] ≤ E[Yi|Zi] holds with probability one.
Then the lower and upper bounds of the STR-STS bound reduce to

l3(t) = E[Yi] − k̄E
[|Zi − t|] and u3(t) = E[Yi|Zi = t] + k̄E

[|Zi − t|]�
respectively. Thus, in this case, as long as E[Yi|Zi = t] < E[Yi], we can conclude that
the upper bound of the STR-STS bound is strictly smaller than that of the STR bound
in Proposition 3.1 and that the lower bound of the STR-STS bound is strictly larger than
that of the STS bound in Proposition 3.1.

Proof of Proposition D.3 and Corollary D.4. The bounds in Proposition D.3 nat-
urally follow from Propositions 3.1 and D.1. For the sharpness, note that there are two
cases to consider; STR and STS can hold with (1) a ≥ b or (2) a < b. For case (1), consider
a DGP s.t. E[Yi|Zi = z] = c ∀z, where c indicates some constant. Furthermore, suppose
g(t� s) = g(s� s) + b|t − s| = c + b|t − s|. Note that in case (1),

∫
min{E[Yi|Zi = t] + a|z −

t|�E[Yi|Zi = z]+b|z− t|}μ(dz)= ∫
min{c+a|z− t|� c+b|z− t|}μ(dz) = ∫

c+b|z− t|μ(dz).
Moreover, note that E[Yi(t)] = ∫

E[Yi(t)|Zi = z]μ(dz) = ∫
c + b|t − z|μ(dz). Therefore,

the upper bound is sharp in this case. Likewise, if we change the DGP into g(t� s) =
g(s� s)−b|t − s| = c−b|t − s|, we can show that the lower bound is also sharp. Finally, the
DGP s.t. g(t� s) = g(s� s)+ k|t − s| = c + k|t − s|, s ∈ (−b�b) generates different values for
E[Yi(t)] which are between the upper and the lower bound.

It remains to show these DGPs satisfy STR and STS. However, this can be easily
checked since these DGPs have the same form as in the DGPs appearing in the proofs
for Propositions 3.1 and D.1. For case (2), replacing b with a leads to the analogous argu-
ment which completes the proof.

For the upper bound in Corollary D.4, note that

g∗(t) ≤
∫

min
(
E[Yi|Zi = t] + k̄|z − t|�E[Yi|Zi = z] + k̄|z − t|)μ(dz)

=
∫ [

min
(
E[Yi|Zi = t]�E[Yi|Zi = z]) + k̄|z − t|]μ(dz)

=
∫

min
(
E[Yi|Zi = t]�E[Yi|Zi = z])μ(dz)+ k̄E|Zi − t|

=
∫
A(t)

E[Yi|Zi = t]μ(dz)+
∫
A(t)c

E[Yi|Zi = z]μ(dz)+ k̄E|Zi − t|�

The result for the lower bound can be shown similarly. �
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Figure A-2. SMTR-MTR comparison when combined with MIV.

D.2 Numerical illustration: Manski and Pepper (2000) revisited

In this subsection, we go back to the returns to schooling example of Manski and Pep-
per (2000) in Section 5 and illustrate the usefulness of STR and SMTS assumptions. Fig-
ure A-1 shows the SMTS, STS, and MTS bounds when the value of a is 0�4� Here, SMTS
and STS bounds are calculated under the assumption that log wages are unbounded.
It seems more difficult to come up with a reasonable value of a in this example. We set
a = 2b = 0�4 to have a relatively large value for a. The estimation results are similar to
those in Figure 2. Again Figure A-1 shows that there could be a substantial advantage if
one combines the smoothness condition with the monotonicity assumption.

Appendix E: Inference

In this section, we provide discussions on inference using the identification results ob-
tained in the paper and give directions for further research by mentioning open ques-
tions in inference methods.

E.1 Inference using Proposition 3.1

We first describe how to carry out inference under STR, following Imbens and Manski
(2004) and Stoye (2009). First, define

θ̂
 ≡ 1
n

n∑
i=1

[
Yi − b|Zi − t|]�
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Figure A-3. Comparison between the MTR-MTS and SMTR-MTS bounds. Notes: Each figure
compares the MTR-MTS bounds with the SMTR-MTS bounds. The top panels show results for
males and the bottom panels for females, respectively. In each row, the left and right figures
correspond to weekly earnings and employment rates, respectively.

θ̂u ≡ 1
n

n∑
i=1

[
Yi + b|Zi − t|]�

σ̂2

 ≡ 1

n

n∑
i=1

[
Yi − b|Zi − t|]2 − θ̂2


�

σ̂2
u ≡ 1

n

n∑
i=1

[
Yi + b|Zi − t|]2 − θ̂2

u�

and �̂≡ 2bn−1 ∑n
i=1 |Zi − t|. For each t, let

CISTR
α (t) ≡

[
θ̂
 − cασ̂
√

n
� θ̂u + cασ̂u√

n

]
�

where cα solves




(
cα +

√
n�̂

max{σ̂
� σ̂u}
)

−
(−cα) = 1 − α�
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Figure A-4. Sensitivity analysis on the upper bound of �(16�36). Notes: The top and bottom
panels show sensitivity analysis results on �(16�36) for the employment probability in percent-
age and weekly earnings, respectively. In each row, the left and right panels show the results for
male and females, respectively. The dash horizontal lines show the MTR-MTS bounds and the
dash-dot upward sloping lines represent 20b. The dotted vertical lines correspond to the base-
line values of b used in Table 1.

Since θ̂
 ≤ θ̂u by construction, Lemma 3 and Proposition 1 of Stoye (2009) imply that
g∗(t) ∈ CISTR

α (t) with probability 1 − α uniformly as n → ∞, provided that the data gen-
erating process satisfies mild regularity conditions given in Assumption 1(i) and (ii) of
Stoye (2009). Note that the confidence interval in CISTR

α (t) is pointwise in t. It would re-
quire more complicated approximations than simple normal approximations in Imbens
and Manski (2004) and Stoye (2009) to obtain a uniform confidence band for g∗(t).

Analogously, we can obtain a confidence interval for g∗(t) under SMTR by redefining
θ̂
, θ̂u, σ̂2


 , σ̂2
u, and �̂ as the following:

θ̂
 ≡ 1
n

n∑
i=1

[
Yi − b(Zi − t)+

]
�

θ̂u ≡ 1
n

n∑
i=1

[
Yi + b(Zi − t)−

]
�

σ̂2

 ≡ 1

n

n∑
i=1

[
Yi − b(Zi − t)+

]2 − θ̂2

�
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σ̂2
u ≡ 1

n

n∑
i=1

[
Yi + b(Zi − t)−

]2 − θ̂2
u�

�̂≡ b
1
n

n∑
i=1

|Zi − t|�

One may develop alternative methods for inference, noting that the bounds in Propo-
sition 3.1 can be expressed as unconditional moment inequality restrictions. Existing
inference methods include Andrews and Barwick (2012), Andrews and Guggenberger
(2009), Andrews and Soares (2010), Beresteanu and Molinari (2008), Bugni (2010), Canay
(2010), Chernozhukov, Hong, and Tamer (2007), Galichon and Henry (2009), Romano
and Shaikh (2008, 2010), and Rosen (2008) among others.

E.2 Inference using Proposition C.1

The identification region obtained in each case of Proposition C.1 corresponds to
the form of intersection bounds considered in Chernozhukov, Lee, and Rosen (2013).
Therefore, a pointwise confidence interval for g∗(t) can be obtained, following the in-
ference method developed in Chernozhukov, Lee, and Rosen (2013) directly. Alterna-
tively, one can use inference methods developed for conditional moment inequalities,

Table A-1. The upper bounds for �(12�16) and �(16�18).

Smoothness Parameter of Interest

b �(12�16) �(16�18)

MTR-MTS 0�316 0�338
SMTR-MTS
0�02 0�080 0�040
0�04 0�155 0�080
0�06 0�219 0�120
0�08 0�262 0�159
0�10 0�284 0�189
0�12 0�302 0�217
0�14 0�314 0�243
0�16 0�316 0�264
0�18 0�316 0�284
0�20 0�316 0�303
0�22 0�316 0�323
0�24 0�316 0�326
0�26 0�316 0�329
0�28 0�316 0�332
0�30 0�316 0�334
0�32 0�316 0�336
0�34 0�316 0�337
0�36 0�316 0�338

Note: The bold font corresponds to the case when the upper bound for �(t1� t2) is strictly less than the MTR-MTS bound
and also strictly less than b(t2 − t1).
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such as Andrews and Shi (2013), Armstrong (2014, 2015), Armstrong and Chan (2016),
Chetverikov (2018), and Lee, Song, and Whang, Lee, Song, and Whang (2017, 2013)
among others. Among these methods, Lee, Song, and Whang (2017) can be used to ob-
tain a uniform confidence band for g∗(t).

As an illustration of the inference method in this section, we compare the MTR-MIV
bound with the SMTR-MIV bound by revisiting the return to education example using
the data from the National Longitudinal Survey of Youth of 1979.2 Here, Yi(t) is the coun-
terfactual log wage given that the individual received t years of schooling, and Vi is the
Armed Forces Qualifying Test (AFQT) score which is used as MIV; that is, those with
higher AFQT scores will earn more wages on average. We used b = 0�2 for the smoothness
parameter. Figure A-2 shows the pointwise 95% confidence intervals for E[Yi(t)|Vi = 0]
using both the MTR-MIV and SMTR-MIV bounds.3 Each confidence interval was ob-
tained by the inference method of Chernozhukov, Lee, and Rosen (2013) using a STATA
command in Chernozhukov, Kim, Lee, and Rosen (2015).4 We can observe that impos-
ing the smoothness assumption substantially tightens the original MTR-MIV confidence
interval, in particular the upper confidence interval at more than 12 years of schooling.

2In particular, we use the same data extract as Carneiro and Lee (2009). See also Carneiro, Heckman, and
Vytlacil (2011) for the dataset and recent advances in estimating returns to schooling.

3The variable Vi was normalized so that it has mean zero and variance one in the NLSY population.
4In particular, the series estimator with cubic B-splines was employed. The pointwise confidence

intervals were obtained by inverting a test, which is implementable by the clr3bound command in
Chernozhukov et al. (2015).

Table A-2. Summary statistics on the job corps data.

Group N Mean St. Dev. Min Max Median

Observed outcome: Weekly earnings 48 months after random assignment (in dollars)
Treatment 4207 218�81 219�38 0�00 1890�49 202�10
Control 4099 202�24 207�44 0�00 2388�1 187�66
Treatment (male) 2376 249�94 236�87 0�00 1890�49 245�35
Control (male) 2524 225�83 216�57 0�00 2345�77 217�06
Treatment (female) 1831 178�43 186�84 0�00 1884�65 150�13
Control (female) 1575 164�45 185�82 0�00 2388�10 130�42

Observed outcome: Whether employed (in percentage)
Treatment 4207 71�26 45�26 0 100 100
Control 4099 68�46 46�47 0 100 100

Treatment (male) 2376 73�06 44�37 0 100 100
Control (male) 2524 70�64 45�55 0 100 100
Treatment (female) 1831 68�92 46�29 0 100 100
Control (female) 1575 64�95 47�73 0 100 100

Realized treatment: Training weeks
Treatment 4207 30�14 27�42 0�06 204�01 22�50
Treatment (male) 2376 29�64 27�45 0�06 204�01 21�95
Treatment (female) 1831 30�79 27�37 0�10 192�80 23�31

Note: This table gives summary statistics of the data extract used in this paper. All figures were calculated using design
weights.
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E.3 Open questions in inference

The existing literature does not provide inference methods for all the bounds we devel-

oped in this paper. First, the bounds given in Corollary C.2 differ from the intersection

bounds; they are rather averages of intersection bounds. To our knowledge, there does

not exist a suitable inference method yet in the literature. It is an interesting future re-

search topic to develop inference methods for such bounds, including bounds given in

equations (9) and (17) of Manski and Pepper (2000).

The SMTR-MTS bounds in Proposition 4.1 is difficult to deal with. Note that the

SMTR-MTS bounds can be estimated consistently by plugging in suitable sample

analogs; however, they are not sufficiently smooth functionals of the underlying pop-

ulation distribution. Santos (2012), Fang and Santos (2015), and Chernozhukov, Newey,

and Santos (2015) have developed general inference methods for nonparametric func-

tionals in models with partial identification; however, it is an open question how to carry

out inference for our bounds by extending their results or by developing new tools of in-

ference.

Table A-3. Empirical results by assumptions.

(1) (2) (3) (4) (5) (6) (7) (8)

Lower Bound Upper Bound
Training
Duration MTR SMTR MTR SMTR MTR SMTR MTR SMTR
(in Weeks) + MTS + MTS + MTS + MTS

Panel (a)—Males
Outcome: employment status (percentage employed)

4 −63�61 −1�20 −3�13 −1�15 4�66 1�16 1�23 1�16
16 −35�87 0�21 0�14 0�26 16�47 1�79 2�54 1�79
36 −3�73 1�10 1�09 1�10 27�83 4�29 5�20 4�22

Outcome: weekly earnings in US dollars (including zero earnings)
4 −204�51 −1�40 −5�59 0�54 193�49 16�62 16�96 16�62

16 −111�34 9�38 11�26 11�26 848�16 21�43 23�55 21�43
36 −0�87 16�21 16�15 16�21 1560�02 40�61 40�32 38�00

Panel (b)—Females
Outcome: employment status (percentage employed)
4 −59�09 1�52 −0�89 1�69 7�33 4�00 4�09 4�00

16 −33�96 2�99 2�94 3�16 19�75 4�56 5�34 4�56
36 −0�73 3�95 3�97 3�97 33�50 7�01 7�85 6�85

Outcome: weekly earnings in US dollars (including zero earnings)
4 −147�26 4�99 −3�17 7�24 173�89 18�41 18�69 18�41

16 −82�87 12�97 14�50 15�22 817�33 21�47 24�87 21�47
36 5�84 18�14 18�26 18�26 1614�05 34�70 30�79 29�99

Note: The table shows the lower and upper bounds of the average treatment effect E[Yi(t)]−E[Yi|i ∈ control group], where
the length of enrollment to the program (t) is 4, 16, and 36 weeks.



Supplementary Material The identification power of smoothness assumptions 21

Table A-4. Sensitivity analysis on the upper bound of �(16�36).

Y = Employment Probability Y = Weekly Earning

Panel (a)—Male

MTR-MTS 5�06 MTR-MTS 29�06

SMTR-MTS SMTR-MTS
b= 0�1 2�00 b = 0�5 10�00
0�15 2�94 1 19�15
0�2 3�71 1�5 24�71
0�25 4�23 2 27�77
0�3 4�55 2�5 28�86
0�35 4�78 3 29�06
0�4 4�93
Effective region: (0�10�0�40) Effective region: (0�7�2�8)

Panel (b)—Female

MTR-MTS 4�91 MTR-MTS 16�29

SMTR-MTS SMTR-MTS
b= 0�1 1�92 b = 0�5 8�20
0�15 2�78 1 12�92
0�2 3�59 1�5 15�47
0�25 4�10 2 16�23
0�3 4�38 2�5 16�29
0�35 4�59 3 16�29
0�4 4�73
Effective region: (0�10�0�40) Effective region: (0�5�2�2)

Note: The employment probability is in percentage. The bold font corresponds to the case when the upper bound for
�(16�36) is strictly less than the MTR-MTS bound and also strictly less than 20b.

Appendix F: Additional empirical results

In this section, we provide supplementary empirical results that are omitted from the
main text. Table A-1 gives the upper bounds for �(12�16) and �(16�18) shown in Fig-
ure 3. Table A-2 presents summary statistics for Job Corps data. Extra empirical results
using Job Corps data are grouped into the following two subsections.

F.1 Effects of Job Corps for subgroups

In this subsection, we revisit the example of Section 6 and repeat the analysis for the
subgroups defined by gender. If we look at Table A-3, we can see that there are some
differences between males and females. It seems that the average treatment effect for
the employment status is larger for females but that for the weekly earnings is higher
for males especially at t = 36. The difference between the MTR-MTS and SMTR-MTS
assumptions is largest in the lower bound for female earnings at week four; adding the
smoothness tightens the bound substantially (by more than 10 dollars), so that the nega-
tive lower MTR-MTS bound (−3�17) becomes the positive SMTR-MTS bound (7�24). Fig-
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Table A-5. Sensitivity Analysis (Y = Employment Probability).

Panel (a)—All individuals
E[Yi(t)] −E[Yi|i ∈ control group] at:

t = 4 t = 16 t = 36

LB UB LB UB LB UB

MTR-MTS −1�98 2�37 1�31 3�65 2�25 6�24

SMTR-MTS
b= 0�1 0�89 2�28 1�72 2�65 2.25 4�12
0�15 0�20 2�29 1�46 2�84 2.25 5�04
0�2 −0�36 2�30 1.31 3�03 2.25 5�82
0�25 −0�77 2�31 1.31 3�22 2.25 6�17
0�3 −1�17 2�32 1.31 3�41 2.25 6.24
0�35 −1�46 2�33 1.31 3�55 2.25 6.24
0�4 −1�70 2�34 1.31 3�63 2.25 6.24

Panel (b)—Male
E[Yi(t)] −E[Yi|i ∈ control group] at:

t = 4 t = 16 t = 36

LB UB LB UB LB UB

MTR-MTS −3�13 1�23 0�14 2�54 1�09 5�20

SMTR-MTS
b=0.1 −0�24 1�14 0�59 1�51 1�11 2�99
0�15 −0�90 1�15 0�34 1�71 1�10 3�89
0�2 −1�49 1�16 0�17 1�90 1�10 4�64
0�25 −1�94 1�17 0.14 2�10 1�09 5�11
0�3 −2�33 1�18 0.14 2�29 1�09 5�20
0�35 −2�65 1�19 0.14 2�45 1�09 5�20
0�4 −2�88 1�20 0.14 2�53 1�09 5�20

Panel (c)—Female
E[Yi(t)] −E[Yi|i ∈ control group] at:

t = 4 t = 16 t = 36

LB UB LB UB LB UB

MTR-MTS −0�89 4�09 2�94 5.34 3�97 7�85

SMTR-MTS
b= 0�1 2�58 3�99 3�45 4�32 3�97 5�72
0�15 1�94 4�00 3�24 4�49 3�97 6�54
0�2 1�32 4�00 3�05 4�67 3�97 7�30
0�25 0�78 4�01 2�95 4�84 3�97 7�71
0�3 0�38 4�02 2�94 5�01 3�97 7�84
0�35 0�06 4�03 2�94 5�15 3�97 7�85
0�4 −0�23 4�04 2�94 5�26 3�97 7�85

Note: The employment probability is in percentage. The bold font corresponds to the case when the SMTR-MTS lower
bound (LB) or upper bound (UB) strictly tightens the equivalent of the MTR-MTS bound.
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Table A-6. Sensitivity Analysis (Y = Weekly Earning).

Panel (a)—All individuals
E[Yi(t)] −E[Yi|i ∈ control group] at:

t = 4 t = 16 t = 36

LB UB LB UB LB UB

MTR-MTS −0�73 18�12 13�31 23�67 17�56 36�03

SMTR-MTS
b= 0�5 10�79 17�78 14�97 19�61 17�63 26�95
1 4�97 17�87 13�32 21�53 17�57 34�78
1�5 1�25 17�97 13�31 23�28 17�56 36�03
2 −0�60 18�06 13�31 23�67 17�56 36�03
2�5 −0�73 18�12 13�31 23�67 17�56 36�03
3 −0�73 18�12 13�31 23�67 17�56 36�03

Panel (b)—Male
E[Yi(t)] −E[Yi|i ∈ control group] at:

t = 4 t = 16 t = 36

LB UB LB UB LB UB

MTR-MTS −5�59 16�96 11�26 23�55 16�16 40�32

SMTR-MTS
b= 0�5 9�54 16�47 13�69 18�32 16�31 25�70
1 3�19 16�57 11�49 20�27 16�25 34�54
1�5 −0�98 16�66 11�26 22�18 16�19 39�35
2 −3�78 16�76 11�26 23�40 16�16 40�32
2�5 −5�36 16�86 11�26 23�55 16�16 40�32
3 −5�59 16�95 11�26 23�55 16�16 40�32

Panel (c)—Female
E[Yi(t)] −E[Yi|i ∈ control group] at:

t = 4 t = 16 t = 36

LB UB LB UB LB UB

MTR-MTS −3�17 18�69 14�50 24�87 18�26 30�79

SMTR-MTS
b= 0�5 11�79 18�34 16�13 20�01 18�26 26�08
1 6�38 18�42 15�05 21�75 18�26 30�36
1�5 1�52 18�51 14�50 23�49 18�26 30�79
2 −1�78 18�59 14�50 24�78 18�26 30�79
2�5 −3�16 18�67 14�50 24�87 18.26 30�79
3 −3�17 18�69 14�50 24�87 18�26 30�79

Note: The bold font corresponds to the case when the SMTR-MTS lower bound (LB) or upper bound (UB) strictly tightens
the equivalent of the MTR-MTS bound.
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Figure A-5. Sensitivity Analysis (Y = Employment Probability). Notes: The top, middle and bot-
tom panels show the SMTR-MTS bounds as functions of b for all individuals, male and females,
respectively. The average treatment effects at t = 4, 16, 36 weeks are shown from left to right,
respectively. The dash horizontal lines depict the MTR-MTS bounds. The dotted vertical lines
correspond to the baseline values of b used in Table 1.

ure A-3 gives a graphical summary similar to Figure 4. Table A-4 and Figure A-4 reports
subgroup-specific sensitivity analysis results analogous to Table 2 and Figure 5.

F.2 Additional sensitivity analyses for effects of Job Corps

In this subsection, we report sensitivity analyses by varying the values of b for the av-
erage treatment effects reported in Table 1. Table A-5 compares the MTR-MTS bounds
and the SMTR-MTS bounds for different b’s, when the outcome variable is the employ-
ment rates. Table A-6 does the same for weekly earnings. Figures A-5 and A-6 present
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Figure A-6. Sensitivity analysis (Y = Weekly Earning). Notes: The top, middle, and bottom
panels show the SMTR-MTS bounds as functions of b for all individuals, male and females,
respectively. The average treatment effects at t = 4, 16, 36 weeks are shown from left to right,
respectively. The dash horizontal lines depict the MTR-MTS bounds. The dotted vertical lines
correspond to the baseline values of b used in Table 1.

the graphical representation of the sensitivity analysis results. The improvement is most

noticeable at t = 4 and also for subsamples of males and females.
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