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In this paper, we investigate what can be learned about average counterfactual
outcomes as well as average treatment effects when it is assumed that treatment
response functions are smooth. We obtain a set of new partial identification re-
sults for both the average treatment response and the average treatment effect. In
particular, we find that the monotone treatment response and monotone treat-
ment selection bound of Manski and Pepper (2000) can be further tightened if
we impose the smoothness conditions on the treatment response. Since it is un-
known in practice whether the imposed smoothness restriction is met, it is desir-
able to conduct a sensitivity analysis with respect to the smoothness assumption.
We demonstrate how one can carry out a sensitivity analysis for the average treat-
ment effect by varying the degrees of smoothness assumption. We illustrate our
findings by reanalyzing the return to schooling example of Manski and Pepper
(2000) and also by measuring the effect of the length of job training on the labor
market outcomes.
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1. INTRODUCTION

Partial identification has been increasingly popular in econometrics; for example, see
monographs by Manski (2003, 2007), a recent review by Tamer (2010), and references
therein. One important branch of this literature is concerned with bounding the dis-
tribution of the counterfactual outcomes or bounding the average treatment effects;
see, for example, Bhattacharya, Shaikh, and Vytlacil (2008, 2012), Blundell, Gosling,
Ichimura, and Meghir (2007), Chesher (2005, 2010), Chiburis (2010), Fan and Park
(2014), Fan, Sherman, and Shum (2014), Fan and Wu (2010), Jun, Pinkse, and Xu
(2011), Kitagawa (2009), Lee (2009), Manski (1990, 1997, 2013), Manski and Pepper
(2000, 2009, forthcoming), Okumura and Usui (2014), and Shaikh and Vytlacil (2011)
among many others.

In this paper, we build on Manski (1997) and Manski and Pepper (2000), and inves-
tigate what can be learned about average counterfactual outcomes as well as average
treatment effects when it is assumed that treatment response functions are smooth. The
smoothness conditions in this paper amount to assuming that there exists a bound for
the changes in the average treatment response with respect to the changes in the treat-
ment. The precise definition will be given later, but the basic idea is that the change in
the average treatment effect cannot be too large if the change in the treatment is not
large; hence they are called smoothness conditions.!

To describe our setup, let I" C R denote the treatment space that can be finite, count-
ably infinite, or uncountable, and let Y;(¢) denote a random variable that gives the
individual-level potential outcome for treatment ¢ € I'. Hence, {Y;(¢) : t € I'} is a real-
valued stochastic process that we would like to learn about.

Assume that we observe independent and identically distributed observations
((Y;, Z):i=1,...,n}, where Z; is the actual treatment for individual i that takes values
in asubsetof I', and Y; = Y;(Z;) is this individual’s observed outcome.? Let u denote the
probability distribution of Z;, which may be discrete, continuous, or mixed.

In this paper, we focus on the identification region of g*(¢) = E[Y;(¢)], namely the
expected value of the counterfactual outcome Y;(¢) for each ¢ € I'. Define g(¢t,s) =
E[Y;(t)|Z; = s] to be the expectation of Y;(#) conditional on the event that the real-
ized treatment is s. With the empirical evidence alone, we can only identify g(s, s). Let
ty be the value of the treatment of interest. Suppose that Y;(f) € [Vmin,> Ymaxl, Where
—00 < Ymin < Ymax < 00. Then the partial identification analysis of g*(¢) starts from the
well-known Manski’s worst-case bound (see, e.g., Proposition 1.1 of Manski (2003)):

ElY;|Z; =t]|P(Z; =ty) + YyminP(Z; # to)
< g*(ty) < EIYi|Z; =t9)P(Z; = ty) + ymaxP(Z; # tp).

1We argue that there are three motivations to smoothness assumptions: first, economic theory may de-
liver smoothness; second, smoothness can be used for sensitivity analysis; third, smoothness conditions are
typically assumed for nonparametric estimation and inference. We would like to thank one of anonymous
referees for pointing out the third motivation.

2It is possible that the support of Z; is a strict subset of I".

3Furthermore, we implicitly assume that all random variables, their functions, and all the events appear-
ing in the paper are measurable.
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This formulation of the identification region reveals that the identification power be-
comes weak when (i) the probability mass at Z; = #y is small or (ii) ymax — Ymin is large.
Indeed, the identification region for g*(#y) iS [Ymin, Ymax] if P(Z; = ty) = 0 and (—o0, 00) if
Vmax = 00 and Ypin = —o0.

The issue of small or zero probability mass occurs naturally when the treatment is
evaluated on a continuous scale or on a discrete scale with many treatment options.
This problem may arise under the extrapolation problem as well. It is also easy to think
of a situation where the difference between ynax and ypi, is large. This motivates us to
develop new identifying conditions under which one can obtain a meaningful identifi-
cation region for g*(¢) even in these circumstances.

The paper is organized as follows. In Section 2, we describe two empirical exam-
ples with which we will illustrate the usefulness of our approach. In Section 3, we intro-
duce new assumptions on treatment responses and obtain corresponding identification
results. In particular, we find that the monotone treatment response (MTR) bound of
Manski (1997) can be tightened if we impose the smoothness conditions on the treat-
ment response. In Section 4, we show that adding the smoothness to the treatment
response improves the monotone treatment response and monotone treatment selec-
tion (MTR-MTS) bound of Manski and Pepper (2000). In Section 5, we revisit the re-
turn to schooling example of Manski and Pepper (2000), and in Section 6, we use data
from the National Job Corps Study and show how to bound the effect of the length of
job training on the labor market outcomes. Moreover, in Sections 5 and 6, we demon-
strate how one can conduct a sensitivity analysis by varying the degrees of smooth-
ness assumption. Section 7 gives concluding remarks. The online supplement consists
of six Appendices and is available in a supplementary file on the journal website, http:
//geconomics.org/supp/545/supplement.pdf. Appendix A contains all proofs omitted
from the main text, including the proofs for the sharpness results. In Appendix B, we
focus on the binary treatment case to better understand the role of the smoothness as-
sumption. In Appendix C, we show how to tighten the identification results obtained in
Section 3 when an instrumental variable exists. In Appendix D, we show how to use the
smoothness assumption with respect to treatment selection. Appendix E provides dis-
cussions on statistical inference. Finally, Appendix F gives additional empirical results
that are omitted from the main text. Replication files are available in a supplementary
file on the journal website, http://qeconomics.org/supp/545/code_and_data.zip.

Notation

Throughout the paper, we write the expectation of a function of Z; as E[¢(Z;)] =
[ @(z)u(dz), where ¢(-) is a given function and u can be any probability measure
as mentioned before. For example, if the distribution of Z; is continuous, E[¢(Z;)] =
[ e(2)u(dz) = [ ¢(2)pu(z) dz, where p,(-) is the probability density function of Z;. Al-
ternatively, if the distribution of Z; is discrete, E[¢(Z))] = [ ¢(z)u(dz) = Zj ©(zj)) pu(zj),
where p,(-) is now the probability mass function of Z;. Other cases can be understood
similarly. Finally, we let Roman letters such as ¢, ¢, 5, 5', z € I" denote generic arguments
of g(-, -) with different uses in different places. Let x* = max(x, 0) and x~ = max(—x, 0)
for any real number x.
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2. MOTIVATING EMPIRICAL APPLICATIONS
2.1 Return to schooling

As our first empirical example, we revisit the return to schooling example of Manski and
Pepper (2000). They use data from the NLSY79 (National Longitudinal Survey of Youth
1979) and restrict the sample to be 1257 white males who were full-time year-round
workers in 1994. In this example, the treatment ¢ is years of schooling, Y;(¢) is the loga-
rithm of counterfactual hourly wages for ¢ years of schooling, and Y; and Z; are observed
log hourly wages in 1994 and years of schooling. Manski and Pepper (2000) argue that
the monotone treatment response (MTR) and monotone treatment selection (MTS) as-
sumptions are plausible in the case of return to schooling and obtain the upper bound of
the average differences between two different years of schooling.* We will demonstrate
that the MTR-MTS bound of Manski and Pepper (2000) can be tightened further if we
add smoothness conditions.

2.2 Effects of job corps

Our second empirical example is based on the National Job Corps5 Study (NJCS), which
contain data for applicants for Job Corps between November 1994 and February 1996.
This study is based on the random assignment of eligible applicants who were divided
into treatment, control, and nonresearch groups.

We use the survey analysis sample, which includes 11,313 youths who completed a
48-month interview, belonging to treatment (6828) and control (4485) groups. Among
these, there are 774 individuals with missing values for the wages or the training dura-
tion, and we are excluding them from our analysis. We should also note that there are
noncompliers in the treatment group (2111) and the control group (198). Excluding ob-
servations with missing vales and noncompliers, we end up with 8306 observations (4207
treatments and 4099 controls).

For a detailed description of the Job Corps study methodology, the dataset and pre-
vious research, see Schochet, Burghardt, and Glazerman (2001), Schochet, Burghardt,
and McConnell (2008), Lee (2009), Flores-Lagunes, Gonzalez, and Neumann (2010), and
Flores, Flores-Lagunes, Gonzalez, and Neumann (2012) among others. As pointed out
by Flores et al. (2012), the length of the training program varies among individuals since
each individual designs his/her own training program with the help of JC counselors.
Therefore, the NJCS provides a possibility of measuring the effect of the length of job
training on the labor market outcomes.

To describe the setting, let the treatment variable Z; be the length of exposure to the
academic and vocational instruction (henceforth “AV instruction”) in weeks® for individ-
ual i, and let the counterfactual outcome Y;(#) be the weekly earnings (in dollars) or the
binary employment status (1 if employed; 0 otherwise) of individual i 48 months after

4The MTR assumption is given in (3.1) and the MTS assumption is presented in (4.1).

5Job Corps, established in 1964, is a nationwide job-training program administered by the U.S. Depart-
ment of Labor that provides vocational education to young people ages 16 through 24.

61t is calculated by dividing the total training hours by 40, and hence, can be treated as continuous.
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F1GURE 1. Wages, employment status and training durations in the treatment group. Notes: The
top left and right panels of the figure show nonparametric estimates of the conditional means
of weekly earnings and employment status given weeks of training, respectively, and the bottom
panel depicts the kernel density estimates of training durations.

random assignment, given that the individual received ¢t weeks of AV instruction during
the program.” The outcomes after 4 years of random assignment are the usual outcomes
of interest in the literature.

Figure 1 and Table A-2 in Online Appendix F provide descriptive statistics for the
data used in the paper. Throughout this example, weights were used in all calculations
to adjust for the sample and survey designs. It can be seen in Table A-2 that the mean
earnings for treatment and control groups are 218.81 and 202.24 dollars, respectively. The
percentages employed for these groups are 71.26 and 68.46, respectively. These figures
replicate those reported in the NJCS (the corresponding figures are $217.5, $199.4, 71.1%,
and 68.7% in Table Al of Schochet, Burghardt, and McConnell (2008)), indicating that
our estimation sample does not seem to be biased in any particular way. For both males

Precisely, we define the weekly earnings to be the average of weekly wages in the 16th quarter after
random assignment and the employment status to be one if the weekly wage is positive and 0 otherwise.
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and females, the Job Corps program increased the average earnings and employment
rates.

The average enrollment to the program is about 8 months but the realized treatment
varies substantially in the data. The maximum is greater than 200 weeks but the 90%
sample quantile is just 43 weeks. In what follows, we will restrict the treatment space I’
to be [0, 40] for identification analysis. This is mainly because we will utilize monotonic-
ity assumptions, which may not hold for excessively large values of training weeks. For
example, the MTR condition assumes that Y;(¢) is a nondecreasing function of ¢; it may
not be plausible to assume that the earnings will still increase after a long period of job
training. We will make further comments in Remark 3.2.

In Figure 1, the top left and right panels of the figure show nonparametric esti-
mates of the conditional means of weekly earnings and employment status given weeks
of training, respectively, and the bottom panel depicts the kernel density estimates of
training durations.® In each figure, the horizontal axis is limited to 40 weeks, as we re-
stricted the treatment space I" to be [0, 40]. Note that the conditional means of both out-
comes are increasing in the realized training weeks. Since the MTR and MTS conditions
together imply that E[Y;|Z; = z] is a nondecreasing function of z (Manski and Pepper
(2000)), it seems plausible to make the MTR and MTS assumptions in this example.

Thanks to the random assignment, the NJCS data provide credible estimates of
the counterfactual outcomes without the Job Corps program. Using this feature of the
dataset, our parameters of interest will be two different types of the average treatment
effects: first, E[Y;(¢)] — E[Y;]i € control group], which measures the impact of a treat-
ment ¢ relatively to the control group; second, E[Y;(#1)] — E[Yi(t;)] for different #; and
t;, which measures the average changes of the counterfactual outcomes by varying ¢
within the treatment group. Both will provide useful information about the effects of the
length of job training.

As mentioned in the Introduction, the difficulty of identification arises from the fact
that we only observe Y; = Y;(Z;) in the treatment group, not all the counterfactual out-
comes. Flores et al. (2012) estimate semiparametrically “dose-response functions” un-
der the uncomfoundedness assumption, employing generalized propensity score intro-
duced by Hirano and Imbens (2004). In this paper, we revisit their analysis but adopt a
partial identification approach.

3. SMOOTH TREATMENT RESPONSE

In this section, we introduce two assumptions on treatment responses: the one we call
smooth treatment response (STR) and the other smooth monotone treatment response
(SMTR). Both conditions are stated below in terms of the local behavior of g(¢, s) with
respect to t. Recall that g(¢, s) = E[Yi()|Z; = s].

8The nonparametric conditional mean estimates are obtained by the 1oess command in R with de-
fault options and the density is estimated by the kernel density estimator using the Gaussian kernel with
the Silverman’s rule of thumb bandwidth. The bounds reported in Section 6 are computed via numerical
integration using these nonparametric estimates.
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AssumpTION 3.1 (Treatment Response Assumptions). Assume one of the following con-
ditions:

(i) (Condition STR) There exists a known constant b > 0 such that |g(t,s) — g(t', s)| <
bit—t'|Vt,t',sel.

(ii) (Condition SMTR) The STR condition in part (i) holds with a known constant b > 0.
In addition, g(t,s) > g(t',s) Vt,t', s € I satisfyingt > t'.

Assumption 3.1, which is inspired by Manski (1997) and Hausman and Newey (2016),
does not seem to be explored in the literature on models with counterfactual outcomes.
Manski (1997) introduced the notion of monotone treatment response (MTR). That is,

t=1 = Yit)=Y(l) (3.1

for each individual i. Our monotonicity assumption in the SMTR condition is in the
same spirit as Manski (1997), but slightly weaker than (3.1) since we focus on the identi-
fication region of the expected value E[Y;(?)].

What is different from Manski (1997) in this paper is that we have a bound on
changes in g(¢, s) with respect to r. Hausman and Newey (2016) used the bounds on the
income effect to partially identify average consumer surplus. We follow Hausman and
Newey (2016) to make Assumption 3.1, while allowing for the case that the treatment is
not continuous.

The “smoothness” condition in the STR condition can be rewritten as

_ 89— g(7,s)

—-b
- t—t

<b (3.2)

for all ¢ # ¢ and for all 5.° Regarding g(-, s) as a function of only the first argument for

each s, the quotient in (3.2) is called in general the difference quotient of g(-, s). Hence,

part (i) of Assumption 3.1 amounts to assuming that g(-, s), as a function of the first argu-

ment, has bounded difference quotients uniformly in s. This is equivalent to assuming

that g(-, s) is Lipschitz continuous with respect to the first argument uniformly in .19
Note that the inequalities in (3.2) can be satisfied if

< YO - Yi(*)

=P (3.3)

for all # # ¢ and for each i. Assuming (3.3) amounts to bounding the individual-level
treatment effect defined as [Y;(¢) — Y;(¢')]1/(¢t — t'). Manski and Pepper (2009) considered

9More generally, one may consider (3.2) with two different end points b; and b,, as in Hausman and
Newey (2016). Our STR and SMTR conditions are special cases of (b1, by) = (b, b) and (b1, b2) = (0, b),
respectively.

1011 order to achieve identification, it is assumed that that E[Y;(¢)|Z; = s] is smooth in ¢ for all s. Strictly
speaking, assuming smoothness on E[Y;(t)| Z; = s] is different from assuming smoothness on the bounding
function. The main nonparametric component in estimation of the bounding function is E[Y;|Z; = s]. That
is, it is necessary to assume smoothness assumption on g(t, t) for the purpose of estimation; however, we
need to have smoothness on g(, s) that is beyond the case that t =s.
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the homogeneous-linear-response (HLR) assumption such that
Yi()=B xt+4;,

where B is a slope parameter and §; is an unobserved random variable for each individ-
ual i. The STR condition is satisfied by the HLR assumption, as long as 8 < b.

REMARK 3.1. An alternative way of bounding the rate of change in the average coun-
terfactual response is to impose further global restrictions in addition to monotonicity.
Manski (1997) added concavity to the basic assumption of monotonicity and showed
formally that concavity has substantial identifying power. See also Okumura and Usui
(2014) who combined concavity with the MTS assumption. Our approach imposes
restrictions directly on the rate of change in its nature, whereas the combination of
concavity and monotonicity, as in Manski (1997) and Okumura and Usui (2014), re-
stricts the rate of change indirectly. Therefore, two approaches are distinct as well as
complementary. O

In some applications, the derivative of a counterfactual outcome function is natu-
rally bounded. For example, consider a production function for which the input is some
raw material and the output is a processed product. When measured by the weight, the
derivative cannot exceed 1. Another case is an inelastic downward sloping demand func-
tion where the treatment is price. In both cases, the STR and SMTR assumptions can be
applied with b = 1. See also Hausman and Newey (2016) for how to set bounds on the
income effect for their empirical application on gasoline demand. There will be many
other cases where we can set a plausible bound on the smoothness of the counterfac-
tual outcome.

In other applications, we perceive that choosing b inherently involves some subjec-
tive belief about the maximum size of treatment effects, and our identification result is
obtained conditional on that belief. One possible route to choose b formally is to rely on
Bayesian inference using presamples or information from prior elicitation. Using exist-
ing experimental results or from previous research, one may obtain a posterior distribu-
tion regarding b and use a high quantile of the posterior distribution as a possible value
of b. If there is no related information available, the prior on b will not be updated and
we need to rely on our purely subjective belief on the value of b. We now explain how we
choose b in our examples.

ExampLE (Return to Schooling). We use a simple theoretical model of endogenous
schooling in Card (2001) to motivate how we choose b in the return to schooling exam-
ple. In Card (2001, equation (1)), an optimal schooling choice Z; for individual i satisfies
the following condition: in our notation,

F(Z)/fi(Z) =di(Z)), (3.4)

where the left-hand side f/(Z;)/fi(Z;) of (3.4) is the individual-specific marginal return
to schooling and the right-hand side d;(Z;) is the individual-specific marginal costs.
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The form of the marginal return to schooling involves a first-order derivative of f;(-),
which is the individual-level earnings function of schooling. Thus, the existence of the
marginal return implicitly assumes that the log earning function ¢ — log f;(¢) is differ-
entiable, thereby implying that the counterfactual outcome Y;(¢) = log fi(¢) is a smooth
function of . A simple specification of f/(¢)/f;(¢) in Card (2001, equation (2)) is

F(O/fi(t) = Bi — kit, (3.5)

where B; is an individual-specific random variable and k; > 0 is a constant. Equation
(3.5) implies that

1
Yi(t) =log fi(t) = a; + Bit — Eklzz, (3.6)
where «; is an individual-specific random intercept term. Note that the MTR condition
is satisfied in (3.6) if B; — k1t > 0 for each ¢ € I" and for each individual i. To motivate the
SMTR condition, suppose that #; > #, and write

1
E[Yit)|Zi=s| — E[Yi()|Zi=s]|= (1 — fz){E[BiIZi =s]— Ekl(tl + fz)}-
Thus, the SMTR condition is satisfied if there exists a known constant b > 0 such that
1
0<E[BilZ;i=5s]— Ekl(tl +n)<b

for every s, t1, r, € I'. Note that as long as E[B;|Z; = s] is bounded, the simple structural
model in (3.5) and (3.6) implies that the mapping ¢ — E[Y;(¢)|Z; = 5] is Lipschitz contin-
uous for each s with a universal constant b. In short, the theoretical argument ensures
that there exists such a constant b but it does not deliver the known value for b; it is an
empirical question how to choose b.

We now link our choice of b to the previous studies. Chamberlain and Imbens (2003)
considered a simple model of earnings and schooling and used a nonparametric ap-
proach to Bayesian inference. In their model, potential log earnings follow a linear
model with a slope parameter vy (in their notation), which is common to all individu-
als. They used Angrist and Krueger (1991)’s data to obtain the posterior distribution on
v, which is analogous to E[Y;(¢) — Y;(t — 1)] in our model, assuming that this quantity is
constant for all ¢. They found that the 97.5th percentile of the posterior distribution of y
turned out to be 0.132 and that a normal approximation with mean 0.089 and standard
deviation 0.021 would provide a good approximation to their posterior distribution.

We take b = 0.2 as the conservative baseline value. If we use the normal approxi-
mation as suggested by Chamberlain and Imbens (2003), the posterior probability that
v > 0.2 is almost zero. Roughly speaking, this corresponds to the maximum of 20 per-
centage points in the average return to 1 year of schooling. For US samples, OLS and
IV estimates of the returns to education are typically less than 0.1 (see, e.g., Card (2001,
Table II)). Using local instrumental variables estimators with NLSY data, Carneiro, Heck-
man, and Vytlacil (2011) reported a baseline estimate of 0.0815 for the average treatment
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effect of 1 year of college. Their estimate varies between 0.0626 and 0.1409, across differ-
ent samples and specifications (see Carneiro, Heckman, and Vytlacil (2011, Table 6)). In
view of these estimates, we regard our choice of b as a plausible upper bound.

ExampLE (Effects of Job Corps). We consider two outcomes: weekly earnings and em-
ployment rates. Economic theory suggests that the job training program can increase
both: the latter can be achieved by providing career counseling and encouraging indi-
viduals to enter labor force. The former may increase due to the increase in labor supply
and/or because of the increase in human capital; see, for example, Heckman, Lalonde,
and Smith (1999) for overview of evaluations of labor market programs.

In view of the standard economic models, it is reasonable to assume that total earn-
ings and employment rates are, on average, nondecreasing smooth functions of job
training intensity. For example, in modeling a worker’s optimal choice of job training
duration, marginal increases in expected total earnings or those in the probability of
being employed may be equated to marginal increases in job training costs. This effec-
tively implies that under the rational expectation assumption, counterfactual average
outcomes are smooth functions of job training intensity. Hence, the SMTR assumption
is reasonable in this example.

As in the previous example, choosing the value of b is an empirical question; and
it is helpful to have the average treatment estimates between treatment and control
groups in the NJCS data. The estimated impact on average weekly earnings and percent-
age employed 16 quarters after random assignment are 25.2 dollars and 3.3%, respec-
tively (see the last column of Table Al of Schochet, Burghardt, and McConnell (2008)).
The average duration of job training in the NJCS data is 30 weeks (see Table A-2 in On-
line Appendix F), implying that the impact estimates are translated into the increases
of 84 cents and 0.11% per week of training. These provide starting points for the choice
of b.

When the outcome is the employment status, we take b = 0.17% by simply increas-
ing the impact estimate of the NJCS by 50%. For the earnings, we consider two channels
of increases, as we have described above. First, we calibrate the wage effect by relying on
the results of Lee (2009), who obtains the upper bound of the wage effect of the Job Corps
program under relative weak assumptions. His point estimates of the upper bound of the
average treatment for log wages are 0.093 in Table 4 of Lee (2009) and 0.0899 in Table 5
of Lee (2009). The latter is tighter than the former because of the use of covariates. To
be on the conservative side, we take the value of 0.12, which is greater than either of the
upper ends of the 95% confidence intervals reported in Table 4 of Lee (2009), to com-
pute the upper bound of the average return to one week of additional training. Then the
value of 0.12 amounts to the average increase of 0.4% per week (= 100 x 0.12/30). Recall
that the average weekly earnings for the control group (including zeros) are about 200.2
dollars (see Table Al of Schochet, Burghardt, and McConnell (2008)). We take 80.1 cents
(0.4% increment of 200.2 dollars) as the upper bound of the wage effect. Second, we con-
sider the labor supply effect. Since the impact estimate of an additional week of training
on the probability of employment is 0.0011, its effect on earnings is 22 cents. Again to be
on the conservative side, by increasing the impact estimate by 50%, we take 33 cents to
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compute the upper bound of the labor supply effect. Adding these two effects together
and rounding it up, our baseline value of b for weekly earnings is b = 1.14 (1 dollar and
14 cents). When we look at males and females separately, we recalibrate b for weekly
earnings using their respective earnings for the control group. These are b = 1.30 for
males and b = 0.92 for females, respectively.

Generally speaking, we may interpret our identification analysis as a conditional one
indexed by b. Furthermore, we may conduct a sensitivity analysis by looking at different
values of b.!! In Section 5, we provide an example of sensitivity analyses. See Leamer
(1985), Tamer (2010), and others for general discussions on sensitivity analyses; see also
Chen, Tamer, and Torgovitsky (2011) for a recent development on sensitivity analyses in
semiparametric likelihood models in the context of partial identification.

Before we give our first identification result, recall that x* = max(x,0) and x~ =
max(—ux, 0) for any real number x. The following proposition provides sharp bounds for
g*(¢) under STR and SMTR, respectively.

ProrosITION 3.1. Assume that the support of Yi(t) is unbounded. Then the following
bounds are sharp:

() Under STR, E[Y;] - DE[|Z; —t|] < g*(t) < E[Yi] + bE[|Z; — t]].
(ii) Under SMTR, E[Y;]—bE[(Z; — )T] < g*(t) <E[Y;]+bE(Z;—1)"].

Proor. (i) Under STR, we have
[ Ervizi=z1-biz = t)uaz) < [ EYi0)1Zi= 2Juca
< [(Evizi= 21+ bz - tuddz),
equivalently,
E[Y;] - bE[|Z; - 1] = /E[Yi<r>|zi = z]u(d2) < EIYi] + bE[| Z; — t]].

Hence, we obtained the desired bound since g*(¢) = E[Y;(t)] = [ E[Yi(1)|Z; = z]u(dz).
(ii) We only prove the case for the upper bound. The proof for the lower bound is
similar. Under SMTR,

E[Yi(n)] :/

z<t

E[Y01Zi=2Ju(d) + [ E[Ya0lZi=Juidz)

z>t

< / (ELYi|Z;i = z] + b(t — 2))u(dz) +/ (ELYi|Z; = z] + 0)u(dz)
z<t z

>t

=E[Y;]+bE[(Zi— )" ].

HThere is a sensitivity parameter that is related to but different from our sensitivity parameter b in the
literature on partial identification. To study identification with contaminated and corrupted data, Horowitz
and Manski (1995) considered an ex ante known upper bound on the probability of a data error.
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The sharpness of such bounds for both parts (i) and (ii) follows from Lemma A.1. O

Proposition 3.1(i) states that under the STR condition, the sharp bound is symmetric
around E[Y;] and its width is 2bE[|Z; — ¢t|]. Proposition 3.1(ii) implies that under the
SMTR condition, the sharp bound is possibly asymmetric around E[Y;], and its width
is now bE[|Z; — t|] since |x| = xT + x~ for any real number x. Thus, adding the weak
monotonicity to the STR condition shortens the width by half. In both cases, the strength
of the identification power of the STR condition is determined by two factors: (i) the size
of b and (ii) the distribution of the realized treatment random variable Z;. Also note that
for either case, the width is minimized when the counterfactual treatment value is the
median of Z;.

We now focus on comparison between the SMTR condition and the original MTR
assumption. First, if only the MTR condition in the equation (3.1) is assumed with un-
bounded Y;(¢), then the identification region of g*(¢) is unbounded (see Corollary M1.2
of Manski (1997)). Therefore, we have demonstrated that when the support of Y;(¢) is
unbounded but the average changes in Y;(¢) are bounded, we can obtain some infor-
mative identification results.

When the support of Y;(¢) is bounded, the identification analysis is more compli-
cated. For example, suppose that Y;(f) < ymax < oo for some known ymax. Then we can
show that the SMTR upper bound for g*(¢) is

g (0 < / min{ymax, (E[Yi|Zi = 2] + b(¢ — 2)) }u(dz)
z<t (3-7)

+E[Y;|Z; > t]P(Z; > ).

The upper bound (3.7) cannot be larger than the upper bound under the MTR assump-
tion alone since the latter has the form (see again Corollary M1.2 of Manski (1997)):

g5(t) < ymaxP(Z; < t) + E[Yi|Z; > t]P(Z; > 1). (3.8)

Note that the SMTR upper bound strictly improves the MTR upper bound if and only if
the event such that E[Y;|Z;] + b(t — Z;) < ymax has a strictly positive probability, condi-
tional on Z; < t. Analogous results can be established for the lower bound.

REMARK 3.2. We may confine the STR and SMTR conditions to be only locally valid.
This restriction is reasonable if we suspect that the underlying counterfactual response
function exhibits nonsmooth behavior in some region of the support. Making global
assumptions may also result in an excessively large value of b, which may not lead to
informative identification results. Let I" denote a closed subset of the support of Z; and
assume that the STR and SMTR conditions locally hold on I'. Then the identification
results presented above can be translated as those for E[Y;(¢)|Z; € I'] for t € I'. As we
mentioned in Section 2.2, we will restriction I" to be [0, 40] when we analyze the effect of
the length of job training, so that all conditional expectations and probabilities in that
example are conditional on Z; € [0, 40].
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The following proposition asserts that the STR or SMTR assumption alone does
not provide a meaningful identification result for the average treatment effect A(z, t') =
git)—g () fort >t

ProrosiTiON 3.2. Consider the average treatment effect, A(t,t') = g*(t) — g*(¢') with
t > t'. Under STR, the sharp bound for A(t,t') is [—b(t — t'), b(¢t — t')]. Under SMTR, the
sharp bound for A(t,t') is [0, b(t — t')].

Although the bound with the STR or SMTR condition alone is not attractive in terms
of identifying the average treatment effects, our approach is useful to bound other pa-
rameters. To give such an example, suppose that I is the gender of individual i. Then
ETY;(t)|W; = male] — E[Y;(t)|W; = female] is the gender gap in the average counterfac-
tual outcome. The upper bound of E[Y;(¢)|W; = male] — E[Y;(¢)|W; = female] is the
difference between the upper bound of E[Y;(¢)|W; = male] and the lower bound of
E[Y;(t)|W; = female]. This bound is sharp if there is no cross restriction between males
and females. The sharp lower bound is defined analogously. Other examples of param-
eters of interest, which can be bounded sharply by the STR or SMTR condition, include
trends of the average counterfactual outcome over time; see, for example, Blundell et al.
(2007) and Lee and Wilke (2009) for related results.

3.1 Generalizations of the smoothness condition: Modulus of continuity

Our objective is to bound the magnitude of |g(¢, s) — g(¢/, s)| relative to the magnitude of
|t — | in some systematic way, and imposing Lipschitz continuity on the function g(-, s)
(uniformly in s) is likely one of the simplest such structures we can think of. A more
general form will be rather assuming |g(z, s) — g(¢, )| < w(|¢t — ¢|), where o : [0, c0) —
[0, co) with lim,_, ¢ w(x) = 0. Such a function w is called the modulus of continuity. It
quantifies the uniform continuity of functions, and a function f(-) admits a modulus of
continuity if and only if f(-) is uniformly continuous.

AssuMPTION 3.2 (Treatment Response Assumptions Under the Modulus of Continuity).
Assume one of the following conditions:

(i) (Condition STR-MoC) There exists a known function o (-) such that
g(t,8) —g(t,s)| <w(|t—1|) Vi&,i,s€T,

where w : [0, 00) — [0, 00) with lim,_, g w(x) = w(0) =0.

(ii) (Condition SMTR-MoC) The STR-MoC condition in part (i) holds with a known
function o (-). In addition, g(t,s) > g(t',s) Vt, t', s € I" satisfyingt > t'.

Note that w(x) = b|x| corresponds to our original Lipschitz continuity and w(x) =
b|x|* for a nonnegative constant a to Holder continuity. The bounds on g*(¢) can be
generalized straightforwardly. Proposition 3.1 can be modified as follows.
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ProprosITION 3.3. Assume that the support of Yi(t) is unbounded. Then the following
bounds are sharp:

(i) Under STR-MoC, EY;] — Elo(|Z; — tD] = g*(1) < E[Yi] + Elw (1Z; — t])].
(ii) Under SMTR-MoC, E[Y;] - Elo((Z; = )*")] < g*(t) < E[Yi] + E[o((Z; — )7)].

3.2 Statistical inference

Although the main theme of this paper is on identification, it is important to discuss
the corresponding inference problem. In Online Appendix E, we provide discussions on
inference using the identification results obtained in the paper and give directions for
further research by mentioning open questions in inference methods.

4. ADDING THE SMOOTHNESS ASSUMPTION TO THE MTR-MTS BOUND

In this section, we consider adding the smoothness assumption to the MTR-MTS bound
of Manski and Pepper (2000). This bound is particularly useful because combining the
MTR and MTS assumptions yields an informative bound even if Y; is unbounded, as
shown by Manski and Pepper (2000). Therefore, it is important to understand the role of
smoothness assumption for the MTR-MTS bound.

Manski and Pepper (2000) introduced the following concept of monotone treatment
selection (MTS):

s>s = E[YilZi=s|=E[Yi(|Zi=5]. (4.1)

As emphasized in Manski and Pepper (2000), the MTS assumption is consistent with
standard economic models of schooling and wages that assume that individuals with
higher ability have higher counterfactual wages and choose higher levels of schooling
than do those with lower ability. Just as schooling, it is plausible to assume that indi-
viduals with higher ability stay longer in the training program than do those with lower
ability (up to 40 weeks, as we restrict the treatment space I" to be [0, 40]). Hence, the MTS
assumption is also reasonable in our second example in view of standard economic the-
ories of human capital accumulation. Thus, we will explore the identification power of
the MTS assumption in both examples.

We examine the role of smoothness assumption for the MTR-MTS bound by replac-
ing the MTR assumption with the SMTR condition. The following proposition gives the
sharp bounds for the average counterfactual outcomes.

ProposiTION 4.1. Under the SMTR and MTS assumptions together, we have that
ElYi(n)] € [l1(2), ur(1)], where

ll(l‘)Ef E[Yi|Zi=Z]/.L(dZ)+/ sup {E[YHZZ‘:S/]+b(t—S/)}/.L(dZ),
z<t z

>t s'elt,z]

ul(t)E/ inf {E[Yl’|Z[=S/]+b(t—sl)},u,(dz)+/ ElY|Z;=z]u(dz).
z z>t

<t s'€lz,1]

Moreover, this bound is sharp.
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PrRoOOF. Suppose s < t. The SMTR condition implies g(s, s) < g(¢,s) < g(s, s) + b(t — ).
Then, for all s € [s, ¢], we have g(¢,s) < g(s',s') + b(t — ') by MTS, and thus g(¢,s) <
infyeps,1(g(s',8") + b(t — s')). Thus, we obtain g(s, s) < g(¢,s) < infycs (g(s’,s") + b(t —
s')) for all s < ¢. In a similar manner, we obtain supy(, ;(g(s',s") + b(t —5)) < g(t,5) <
g(s, s) for all s > ¢. Hence, it follows that

s<t = g(s,5)<g(t,s)< iI[lf ](g(s’, s')+b(t—5)),
s'e[s,t

s=t = g(t,s)=g(,t), and

s>t = sup (g(s,s)+b(t—75)) <g(t,s) <g(s,s).
s'elt,s]
The lower and upper bounds follow immediately by integrating out s. The sharpness of
such bounds follows by Lemma A.2. O

It is useful to compare our bounds in Proposition 4.1 with the MTR-MTS bound of
Manski and Pepper (2000):

Imp(t) < E[Yi(1)] < ump (1),
where

Imp(t) = EIY)|Z; < t]P(Z; < t) + E[Y}|Z; =t]P(Z; > 1),
ump(t) = ELYi|Z; > t1P(Z; > t) + E|Y;i|Z, =t]P(Z; < 1).

To see how the SMTR-MTS bound improves the MTR-MTS bound, note that the MTR-
MTS constraint implies that E[Y;|Z; = ¢] is an increasing function of + (Manski and
Pepper (2000)). Hence, the integrand for the second term of /;(¢) can be strictly larger
than E[Y;|Z; = ] or the integrand for the first term of u;(¢) can be strictly smaller than
E[Y;|Z; = ], provided that b is sufficiently small. However, when b is large enough, the
SMTR-MTS bound reduces to the MTR-MTS bound of Manski and Pepper (2000). Thus,
the SMTR-MTS bound can be made tighter than the MTR-MTS bound only if b is rea-
sonably small, that is, the treatment response is sufficiently smooth.

To derive the sharp bounds on the average treatment effect Az, ©) = E[Y;(5)] —
E[Yi(t1)], define

fs(S, ) = sup {E[YHZ,‘ = S/] — b(s/ — tl)} for Hh=<s,

s'€[t,s]

fi(s,n) = inf {E[Yi|Zi = S/] + b(tz — S/)} for t, > s.

s'els, 2]

The following proposition gives the upper bound for the average treatment effect.

ProposITION 4.2. Suppose t, > t1. Then, under the SMTR and MTS assumptions to-
gether, A(t1, 1) € [0, ux(tq, t)1, where

Mz(fl,tz)zf min{f;(s, i) — g(s, ), b(ty — 1) }u(ds)
s<h
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+/ min{f;(s, ) — fs(s, 1), b(tr — t1) }u(ds)
H<s<f

+/ min{g(s, $) — fs(s, 1), bty — 1) hu(ds).
s>t

Moreover, this bound is sharp.

Proor. Note that

g —g' ()= / g(tr, 8) — g(t1, s)u(ds)

s<nhy

+/ g(tr, s) — g(ty, s)u(ds)
<5<t

+/ 8(12,8) — g(t1, $)p(ds).
s>1)

Fors < 11, g(t, s) — g(t1, s) isless than b(¢#, — t1) due to the smoothness condition. More-
over, it is also less than f;(s, t;) — g(s, ), which is clear if we subtract the lower bound for
g(t1, s) from the upper bound for g(#,, s), which is obtained in the proof for the Proposi-
tion 4.1. Therefore, we get fs<z1 g(tr,s) —g(ty, H)u(ds) < fs<t1 min{f;(s, &) — g(s, s), b(tr —
t1)}u(ds). The last two terms in the proposition can be derived in a similar manner.
Sharpness follows by Lemma A.3. O

Proposition 4.2 shows that the smoothness assumption can help bound the average
treatment effect when it is combined with the MTS assumption. While the sharp up-
per bound under the SMTR assumption is b(#; — t;) as shown in Proposition 3.2, the
minimum operators in u;(#, t,) show the bound can now be nontrivial, that is, less than
b(t, — t1), for the case of SMTR-MTS, and this occurs when at least one of the three terms
in the minimum operators is less than b(#, — #;). This also shows that the smaller the
smoothness parameter, the smaller the gain from assuming the MTS condition.

REMARK 4.1. When b is large enough, the upper bound u;(#, ;) reduces to the sharp
bound of the MTR-MTS bound. Specifically, if b is large enough that b(#, — #1) is not
binding in any of the minimum operators in u;(#, f,), we have that

uy (1, tp) = ump(t2) — Imp(t1).

On the other hand, when b is sufficiently small, u,(#, ;) = b(t; — ;). For intermedi-
ate values of b between these two extremes, we have a meaningful upper bound that is
strictly tighter than the MTR-MTS bound without the smoothness assumption. To em-
phasize these intermediate values, we define the effective region of b to be the range of b
which gives the smaller upper bound for the average treatment effect than the MTR-MTS
bound and also gives the smaller upper bound than b(#, — #;).

REMARK 4.2 (Ternary Treatment). Suppose there are three treatment levels: 1, ¢, and fy
with ) >t > 1p. If g(t1, t1) — g(2p, tp) > b(t] — ty), then uy (1, 1) = b(t; — ty), the trivial up-
per bound. Moreover, when g(;, t) — g(ty, ty) < b(t1 — ty), ux(ty, t1) = ump(t1) — Imp ().
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However, for the intermediate case where g(tq, t1) — g(fy, tp) < b(t] — ty) < g(tr, tp) —
g(to, ty), up(ty, t1) is smaller than both b(#; — #y) and the MTR-MTS upper bound. The
cases for the other similar parameters of interest are analogous. This shows that as the
number of possible treatment options increases, the room for improvement by imposing
the smoothness assumption increases as well, relative to the original MTR-MTS bound.
The case of binary treatment is presented in Online Appendix B.

4.1 Results under the modulus of continuity
We return to the case of modulus of continuity in Section 3.1 and obtain generalized

versions of Propositions 4.1 and 4.2.

ProposiITION 4.3. Under the SMTR-MoC and MTS assumptions together, we have that
E[Yi(D)] € 11(1), ui (1)), where

ll(t)E/ E[Y,-|Zi=z],u(dz)+/ sup {E[Yi|Zi=5"]— o(s' — 1) }u(dz),
z<t z

>t s'€lt,z]

u1(z)5/ inf {E[Y,»|Z,-=s’]+w(t—s/)}ﬂ(dz)+/ ElY;|Z; = zlu(dz).
z z>t

<t S'€lz,1]

Moreover, this bound is sharp.

Define
fs,0(s,t1) = sup {E[Yi|Zi=5]—ow(s'— 1)} fory <s,
s'e[ty,s]
f]’w(s, )= inf {E[Yi|Z,‘ = S/] + w(t2 — S/)} for h>Ss.
s'els, ]

PROPOSITION 4.4. Suppose t; > t1, and assume SMTR-MoC and MTS with o (t; — t;) > 0.
Then, A(ty, 1) € [0, uy(tq, )], where

Mz(ll,lz)E/ min{f7 (s, 1) — g(5,5), 0 (t — 1) }u(ds)
s<ty
+/ min{f7 (s, ) — fs,0(s, 11), 0 (t — 1) u(ds)
11=s<f

+/ min{g(s, s) — fs (s, 1), 0 (&2 — 1) }u(ds).
§s>1)

Moreover, this bound is sharp.

5. RETURN TO SCHOOLING: MANSKI AND PEPPER (2000) REVISITED

In this section, we return to the example in Section 2.1 and illustrate the usefulness of
our framework. In particular, we show that the SMTR-MTS bound becomes narrower
than the MTR-MTS bound, which achieves the tightest bound in Manski and Pepper
(2000), for a range of reasonable values of b.
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5.1 Bounds on average counterfactual outcomes

Recall that in this example, ¢ is years of schooling and g*(¢#) is the expectation of coun-
terfactual log hourly wages when the treatment is ¢ years of schooling. To estimate the
bounds developed in this paper and those in Manski and Pepper (2000), we need to
estimate E[Y;|Z; =t], P(Z; = t), and the end points [ymin, Ymax] Of the support of Y;. Ta-
ble I of Manski and Pepper (2000) gives information on the estimates of E[Y;|Z; = 1],
P(Z; = t), which were obtained from the NLSY. In the NBER working paper version
of Manski and Pepper (2000), Manski and Pepper (1998) used [ymin, Ymax] = [1.4,5.0] =
[In(4.25), In(150)], where $4.25 per hour is the official minimum wage in 1994 and $150
per hour exceeds the sample maximum ($138 per hour) in 1994. We use the same values
in our analysis of the MTR bound but do not use them for the STR and SMTR bounds,
following Proposition 3.1.

Figure 2 shows the SMTR, STR, and MTR bounds when the value of b is 0.2. We have
explained this choice of b in Section 3. The STR bound alone or the MTR bound alone
gives a relatively wide bound; however, the SMTR bound seems much tighter, especially
in the middle of the distribution of Z;. Note that the SMTR bound is narrower than the
envelope of the STR and MTR bounds. Figure 2 demonstrates that there could be a sub-
stantial shrinkage of the identification region if one combines the smoothness condition
with the monotonicity assumption.

5.0

4.5

4.0

35

Log Wage

2.5

2.0

15

8 10 12 14 16 18 20

Years of Education

FiGure 2. SMTR-STR-MTR comparison.
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5.2 Bounds on average treatment effects and sensitivity analysis

We now consider the average treatment effect A(#, t,) = E[Y;()] — E[Y;(¢;)] under the
SMTR-MTS assumptions. Recall that MTR-MTS constraint requires g(¢, ¢) to be weakly
increasing in ¢. However, the estimated function of g(z, t) reported in Manski and Pep-
per (2000) is not an increasing function of ¢, possibly due to random sampling errors.
Following Chernozhukov, Fernandez-Val, and Galichon (2009), we sort the estimates of
g(t, 1) in an increasing order and rearrange them to construct monotonized estimates of
g1, 1).

Using the modified estimates on g(t, t), we calculate the sharp upper bounds on
the average treatment effect for all possible values of b. Figure 3 reports how different
choices of b affect the identification region of the average treatment effect. In the figure,
the solid lines are the sharp upper bounds for A(s, ) under the SMTR-MTS assump-
tion. As b increases, the upper bound becomes flat, approaching the MTR-MTS upper
bound.!?

Recall that in Remark 4.1, we have defined the effective region of b to be the range
of b which strictly improves the upper bound for the average treatment effect under
the MTR-MTS assumption but also gives the smaller upper bound than b(t, — ;). For
A(12,16) and A(16, 18), the effective regions turn out to be [0.04, 0.14] and [0.08, 0.34],
respectively.!3

Obtaining the effective region of b amounts to conducting a sensitivity analysis in
this example. By looking at all possible values of b, we can see how the identification
region of the average treatment effect changes. This approach gives a more complete
picture of partial identification analysis than the approach with a fixed choice of b. We

12In our empirical exercise, the MTR-MTS upper bound is tighter than the one reported in Manski and
Pepper (2000) because we use the rearranged estimates of g(¢, ), whereas Manski and Pepper (2000) use
the unconstrained estimates.

133ee Table A-1 in Online Appendix F for the concrete numbers for the upper bounds.
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FiGuRE 3. The upper bound for A(12, 16) and A(16, 18).
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can see that the upper bound for A(16, 18) is improved for more values of b. This is not
surprising since the smoothness assumption can be more useful when P(Z; = t) is small
and there are fewer observations with Z; = 18 than those with Z; = 12. In fact, there is no
improvement in the upper bound for the return to college when b is our baseline value
(b =0.2) and only minimal gains when b = 0.12 or 0.14.

6. EFFECTS OF THE LENGTH OF TRAINING ON LABOR MARKET OUTCOMES

In this section, we use the example described in Section 2.2 and show how to vary identi-
fying assumptions to see the efficacy of smoothness conditions. This example is partic-
ularly appealing to rely on smoothness conditions since the treatment variable is con-
tinuously distributed. In Section 6.1, we first present empirical results for average coun-
terfactual outcomes in comparison with the control group. In this subsection, we fix b at
the baseline values that are given in Section 3. Then we move to Section 6.2 in which we
focus on average treatment effects within the treatment group and carry out sensitivity
analyses with respect to b.

6.1 Bounds on average counterfactual outcomes in comparison with the control group

In this subsection, the parameter of interest is the average treatment effect E[Y;(¢)] —
E[Y;|i € control group], where ¢ is the length of enrollment to the program. In other
words, for each ¢, we bound the average counterfactual outcomes in comparison with
the average observed outcomes for the control group in the NJCS.

Table 1 reports the estimated bounds of the average treatment effects at = 4, 16, 36
weeks, under different assumptions.'# Columns (1)-(4) show the lower bounds, whereas

14 A1l bounds are computed using nonparametric estimates, as explained in footnote 8, while rearranging

the nonparametric estimates of E[Y;|Z;] when they are nonmonotone (this happens with the estimates for
females on some small range of Z; between 30 and 40 weeks).

TaBLE 1. Bounds under different assumptions.

(€3] @ 3 (4) (5) (6) @] 8

o Lower Bound Upper Bound
Training
Duration MTR SMTR MTR SMTR MTR SMTR MTR SMTR
(in Weeks) + MTS + MTS + MTS + MTS

Outcome: employment status (percentage employed)

4 —61.55 —0.08 —1.98 —0.05 5.81 2.30 2.37 2.30
16 —34.45 1.34 1.31 1.37 18.07 2.92 3.65 2.92
36 —2.44 2.24 2.25 2.25 30.18 5.41 6.24 5.39
Outcome: weekly earnings in US dollars (including zero earnings)

4 —180.20 1.97 —0.74 3.79 190.96 17.90 18.12 17.90
16 -97.36 11.49 13.31 13.31 852.17 22.06 23.67 22.06
36 2.68 17.55 17.56 17.56 1586.21 38.80 36.03 35.82

Note: The table shows the lower and upper bounds of the average treatment effect E[Y;(¢)] — E[Y;|i € control group], where
the length of enrollment to the program (¢) is 4, 16, and 36 weeks.
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F1GURE 4. Comparison between the MTR-MTS and SMTR-MTS bounds.

columns (5)-(8) the upper bounds. Results for male and female subgroups are given in
Table A-3 in Online Appendix E

We first look at the bounds for the employment rates. On one hand, the MTR bounds
are very wide, although the support of the employment status is bounded. On the other
hand, the SMTR bounds are much tighter; for example, the SMTR bounds at 16 and 36
weeks are [1.45%, 2.84%] and [2.25%, 5.04%], respectively. Under the MTR and MTS as-
sumptions together, the bounds are much tighter and comparable to those from the
SMTR bounds. Also, it can be seen that for the employment status, the MTS assumption
tightens the SMTR bound only marginally.

Moving to weekly earnings, we can see that the MTR bounds are worse for this out-
come since the support of earnings is much wider (we took the sample minimum and
maximum values for the end points of the support). As in the employment rates, the
SMTR or MTR-MTS bounds are much narrower. The tightest bounds are from the SMTR-
MTS assumption. Looking at the lower SMTR-MTS bounds, it is clear that the average
treatment effect is increasing from 4 dollars to 18 dollars as ¢ gets larger.

To see the overall effect of the smoothness assumption, Figure 4 compares the MTR-
MTS bounds with the SMTR-MTS bounds. In Figure 4, the left and right figures corre-
spond to weekly earnings and employment rates, and the horizontal axis is weeks of
training (¢). The smoothness assumption improves the lower bounds quite substantially
when ¢ is relatively small.

6.2 Bounds on average treatment effects within the treatment group

We now consider the average treatment effect A(#1, r,) = E[Yi(t;)] — E[Yi(t;)] within the
treatment group. Proposition 4.2 gives the upper bound for A(#, ;) under the SMTR-
MTS assumptions and allows us to carry out a sensitivity analysis. As an illustration, in
this subsection, we focus on A(16, 36) that measures incremental improvements in the
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TABLE 2. Sensitivity analysis on the upper bound of A(16, 36).

Y = Employment Probability Y = Weekly Earning
MTR-MTS 4.93 MTR-MTS 22.72
SMTR-MTS SMTR-MTS

b=0.1 2.00 b=05 10.00
0.15 2.99 1 18.05
0.2 3.76 1.5 21.35
0.25 4.16 2 22.58
0.3 4.46 2.5 22.72
0.35 4.67 3 22.72
0.4 4.81

Effective region: (0.11, 0.40) Effective region: (0.7, 2.2)

Note: The employment probability is in percentage. The bold font corresponds to the case when the upper bound for
A(16, 36) is strictly less than the MTR-MTS bound and also strictly less than 205.

average outcomes out of 5 more months of training, after enrolling in the program for
4 months already. This upper bound can be useful in a cost-benefit analysis; the upper
bound limits the range of the benefits of additional training and can be compared to
the costs of 5 extra months of training for the individuals who have been in the program
for 4 months.

Table 2 shows the upper bounds of both the MTR-MTR and SMTR-MTS bounds for
A(16, 36), while Figure 5 presents the graphical representation of the sensitivity analysis
results. We see from the left panel of the table that the increase in employment for all
individuals from the SMTR-MTS is at most 4.81% (with b = 0.4), one percentage point
lower than the MTR-MTS bound. Moreover, for separate analysis of males and females,
we can observe that there are strict improvements, by adding smoothness condition (up
to b = 0.4), and we find similar reductions for the weekly earnings over a wide range of b.
See Table A-4 in Online Appendix F for details.

7. CONCLUDING REMARKS

In this paper, we have investigated the identification power of smoothness assumptions
in the context of partial identification of average counterfactual outcomes. We have ob-
tained a set of new identification results for the average treatment response as well as
the average treatment effect by imposing smoothness conditions alone and by combin-
ing them with monotonicity assumptions. We have demonstrated the usefulness of our
approach by reanalyzing the return to schooling example of Manski and Pepper (2000)
and also by applying it to the Job Corps Study dataset.

Our identification analysis can be useful for policymakers. Suppose that some av-
erage treatment effect estimates are available from previous studies (for instance the
National Job Corps Study as in our empirical example, or a lower-cost pilot study using
randomized experiments). Then our approach may be suitable when a policymaker tries
to predict the average counterfactual outcome of a new policy. Also, our results may be
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F1GURE 5. Sensitivity analysis on the upper bound of A(16, 36). Notes: The dash horizontal lines
show the MTR-MTS bounds and the dash-dot upward sloping lines represent 20b. The dotted
vertical lines correspond to the baseline values of b used in Table 1.

useful when a policymaker makes contingent predictions for both the average counter-
factual outcome and the average treatment effect of a new policy, depending on various
scenarios of the effectiveness of the treatments. The latter corresponds to the sensitivity
analysis approach.

It might be important to extend our analysis to the identification of the entire distri-
bution of counterfactual responses and also to the identification of quantile treatment
effects, not just average outcomes or average treatment effects. These are interesting
topics for future research.
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