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This supplemental appendix is composed of two distinct parts. The first part con-
tains statements and proofs of some of the theorems and those not included in the
Appendix to the main paper. The second part provides a more complete discus-
sion of models and results for simultaneous systems of equations (e.g., games).

Part 1. Triangular discrete response model

Proof for Theorem 3.2, part (ii)

We provide an upper bound on information; Recall the expression in the main text for
the information in the incomplete information triangular model,

Iα = ∥∥D1(x1�x;α0� g)
∥∥2
L2(π1)

+ ∥∥D1(x1�x;α0� g)−D2(x1�x;α0� g)
∥∥2
L2(π2)

� (SA.1)

whereD1 andD2 are defined as in the main text.
Consider the expression for the information in the incomplete information triangu-

lar model expressed in (SA.1):

Iα = ∥∥D1(x1�x;α0� g)
∥∥2
L2(π1)

+ ∥∥D1(x1�x;α0� g)−D2(x1�x;α0� g)
∥∥2
L2(π2)

�

We construct the measure π∗∗ (it may not be a probability measure) that is constructed
as an integral over dπ∗∗

dν = max{dπ1
dν �

dπ1
dν }, where the maximum is considered in the

pointwise sense over all regular points of measures π1 and π2, and where dπ1
dν is the

Radon–Nykodim density with respect to the σ-finite measure ν. Then we note that
π∗∗(R2) < Π <∞, assuming that both measures are defined on the entire R

2. We de-
note w(t)=Φ(t) and t = (x− v)/σ , and express

D1(x1�x;α0� g)= σ2
∫
w(t)g

(
x1 + α0w(t)�x− σt)dt

≤ σ2
∫

max
w∈[0�1]

g(x1 + α0w�x− σt)dt
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and

D2(x1�x;α0� g)−D1(x1�x;α0� g)= σ2
∫ (

1 −w(t))g(x1 + α0w(t)�x− σt)dt
≤ σ2

∫
max
w∈[0�1]

g(x1 + α0w�x− σt)dt�

As a result, we find that

Iα ≤ ∥∥D1(x1�x;α0� g)
∥∥2
L2(π∗∗) + ∥∥D1(x1�x;α0� g)−D2(x1�x;α0� g)

∥∥2
L2(π∗∗)

≤ 2σ2
∥∥∥ max
w∈[0�1]

gu(x1 + α0w)
∥∥∥2

L2(π∗∗)
�

Note that gu(·) is a probability density. Then, we find that

∥∥∥ max
w∈[0�1]

gu(x1 + α0w)
∥∥∥2

L2(π∗∗)
≤

(
sup
x
gu(x)

)2 = ḡ2
u�

given that g(·� ·) is twice continuously differentiable with finite moments. As a result,
we provided an upper bound Iα ≤ 2σ2ḡ2

u. As σ → 0 this upper bound converges to 0,
meaning that Iα → 0.

Part 2. Nontriangular systems: Games of complete and

incomplete information

A static game of complete information

Here we consider a simultaneous discrete system of equations where we no longer im-
pose the triangular structure. A leading example of this type of system is a two-player
discrete game with complete information (e.g., Bjorn and Vuong (1985) and Tamer
(2003)).

We will distinguish the behavioral models from the statistical one, where the latter
corresponds to which variables are observed by the econometrician and the former cor-
responds to which are observed by the agents.

Economic model A simple binary game of complete information is characterized by
the players’ deterministic payoffs, strategic interaction coefficients, and random payoff
components U and V . There are two players i= 1�2 and the action space of each player
consists of two points Ai = {0�1} with the actions denoted Yi ∈Ai. The payoff to player
1 from choosing action Y1 = 1 can be characterized as a function of observed covariates
and player 2’s action,

Y ∗
1 =Z′

1γ0 + α10Y2 −U�
where Z1 denotes a vector of covariates; the payoff of player 2 from choosing action
Y2 = 1 is characterized as

Y ∗
2 =Z′

2δ0 + α20Y1 − V �
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where Z2 denotes a vector of covariates. The variables (γ0� δ0�α10�α20) denote coeffi-
cients and, analogous to before, the econometrician is primarily interested in the pa-
rameters α10 and α20, often referred to as the interaction parameters in the empirical
industrial organization literature. Because of this, for convenience of both notation and
analysis we assume the parameters γ0 and δ0 are known, and we change notation to
X1 = Z′

1γ0 and X2 =X ′
2δ0. We normalize the payoff from action Yi = 0 to zero, and we

assume that realizations of covariatesX1 andX2 are commonly observed by the players
along with realizations of the variables U and V . Thus, in the game of complete infor-
mation, each player observes all the variables in both payoff functions.

Under this information structure, the pure strategy of each player is the mapping
from the observable variables into actions: (U�V �X1�X2) �→ 0�1.

A pair of pure strategies constitutes a Nash equilibrium if the strategies reflect the
best responses to the rival’s equilibrium actions. This is the equilibrium concept we as-
sume players use in our behavioral model.

Statistical model In the statistical model, the econometrician observes a random sam-
ple of equilibrium outcomes as well as the covariates. The realizations of the random
variables U and V are not observed by the econometrician and characterize the unob-
served heterogeneity of the players’ payoffs.

The observed equilibrium actions are described by random variables (from the view-
point of the econometrician) characterized by a pair of binary equations in the statistical
model

Y1 = 1{X1 + α10Y2 −U > 0}�
Y2 = 1{X2 + α20Y1 − V > 0}�

(SA.2)

where the unobserved (to the econometrician) variables U and V are correlated with
each other with an unknown distribution. From a random sample of observations of the
vector (Y1�Y2�X1�X2), the econometrician is interested in conducting statistical infer-
ence on the strategic interaction parameters α10 and α20.

As noted in Tamer (2003), the system of simultaneous discrete response equations
(SA.2) has a fundamental problem of indeterminacy, which relates to the lack of a unique
Nash equilibrium in the game. This by itself must first be resolved to attain point iden-
tification of the interaction parameters. To do so, we impose the following additional
assumption, which effectively is an equilibrium selection mechanism when multiple
equilibria arise.

Assumption SA.1. Let x1, x2, u, and v denote realizations of the random variables X1,
X2, U , and V . Denote the sets

S1 = [α10 + x1�x1] × [α20 + x2�x2]�
S2 = [x1�α10 + x1] × [x2�α20 + x2]�
S3 = [α10 + x1�x1] × [x2�x2 + α20]�
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and

S4 = [x1�x1 + α10] × [α20 + x2�x2]�
Note that S1 = ∅ if and only if (iff) α10 > 0 and α20 > 0, and S2 = ∅ iff α10 < 0 and α20 < 0.

Then we make the following assumptions:

(i) If S1 
= ∅ or S2 
= ∅, then

Pr
(
Y1 = Y2 = 1|(u�v) ∈ Sk

) ≡ 1
2

for k= 1�2�

(ii) If S3 
= ∅ or S4 
= ∅, then

Pr
(
Y1 = (1 −Y2)= 1|(u�v) ∈ Sk

) ≡ 1
2

for k= 3�4�

Assumption SA.1 requires that when the system of binary responses has multiple so-
lutions, then the realization of a particular solution is determined by a symmetric coin
flip. Furthermore, in regions where the system may have no solutions, we impose solu-
tions via randomization. This assumption addresses both the incoherency and incom-
pleteness that may arise in these models.1

Assumption SA.1 is a strong condition that we deliberately impose to demonstrate
how difficult it is to identify the interaction parameters in this model. Specifically, while
the assumption eliminates the difficulties that arise from incompleteness and inco-
herency, we will show that it does not suffice to conduct standard inference on the inter-
action parameters. We will again demonstrate this by evaluating the Fisher information
for the interaction parameters after imposing our equilibrium selection rule.

To do so, we formalize our conditions on the joint distribution of observables X1

and X2 and unobservables U and V with the following assumption, which is analogous
to Assumption 1 in the main paper in the triangular model.

Assumption SA.2. Make the following assumptions:

(i) Observables X1 and X2 have a continuous distribution with full support on R
2

(which is not contained in any proper one-dimensional linear subspace). The parameters
of interest, α10 and α20, lie in the interior of a convex compact set A1 ×A2.

(ii) The unobservables (U�V ) are independent of (X1�X2) and have a continuously
differentiable density with full support on R

2, with an integrable envelope over v and u
and joint c.d.f.G(·� ·). The partial derivatives ∂G(u�v)∂u and ∂G(u�v)

∂v exist and are strictly pos-
itive on R

2.

(iii) For each t1� t2 ∈ R, there exist functions q1(·) and q2(·) with E[q1(X1�X2)
2] <∞

and E[q2(X1�X2)
2]<∞ that dominate ∂G(x1+t1�x2+t2)

∂u and ∂G(x1+t1�x2+t2)
∂v , respectively.

1Following the terminology introduced in Tamer (2003), incoherency refers to the nonexistence of an
equilibrium and incompleteness refers to multiplicity of equilibria.
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Before considering the Fisher information for the interaction parameters, we first

establish identification.2

Theorem SA.1. Suppose that Assumptions SA.1 and SA.2 are satisfied. Then the interac-

tion parameters α10 and α20 in model (SA.2) are identified.

Having established the identifiability of the parameters of interest, we now study the

information associated with the strategic interaction parameters. The following result

establishes that the information associated with the interaction parameters in the static

game of complete information is zero. The insight is that in the light of the identification

result in Theorem SA.1, this result is not related to the incoherency or incompleteness of

the static game.

Theorem SA.2. Suppose that Assumptions SA.1 and SA.2 are satisfied. Then the Fisher

information associated with parameters α10 and α20 in model (SA.2) is zero.

Proof. To derive the information of the model, we follow the approach in Chamberlain

(1986) by demonstrating that for each complete information static game model gen-

erated by a distribution satisfying the conditions of Theorem SA.2, we can construct a

parametric submodel passing through that model for which the information for param-

eters α1 and α2 is equal to zero.

Suppose that Γ contains all distributions of errors that satisfy the conditions of The-

orem SA.2 along with distributions of indices x1 and x2. First we construct the likelihood

function of the model and introduce the notation

P11(t1� t)= Pr(U ≤ t1� V ≤ t)=G(t1� t)�
P01(t1� t)= Pr(U > t1� V ≤ t)�
P10(t1� t)= Pr(U ≤ t1� V > t)�

and

P00(t1� t)= Pr(U > t1� V > t)�

Without loss of generality, we focus on the case where the signs of coefficients α1

and α2 coincide. We construct the probability mass that corresponds to the region with

multiple equilibria as

Δ(t1� t2;α1�α2)= Pr(t1 <U ≤ t1 + α1� t2 < V ≤ t2 + α2)�

2A proof of identification follows immediately from arguments used in Tamer (2003), so we do not in-
clude it here.
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We write the density of the data as

r(y1� y2�x1�x2;α�P)=
(
P11(x1 + α1�x2 + α2)− 1

2
Δ(x1�x2;α1�α2)

)y1y2

× P01(x1 + α1�x2)
(1−y1)y2P10(x1�x2 + α2)

y1(1−y2)

×
(
P00(x1�x)− 1

2
Δ(x1�x2;α1�α2)

)(1−y1)(1−y2)

with respect to the measure μ defined on Ω= {0�1}2 × R
2 such that for any Borel set A

in R
2,

μ
({1�1} ×A) = μ({1�0} ×A) = μ({0�1} ×A) = μ({0�0} ×A) = ν(A)�

where P((X1�X2) ∈A)= ∫
A dν.

Let h1 : R2 �→ R and h2 : R2 �→ R be continuously differentiable functions supported
on the compact set with continuous derivatives in the interior of that compact set such
that ∂hi(u�v)∂u ≥ B and ∂hi(u�v)

∂v ≥ B for some constant B on that compact set, and i = 1�2.

Define Λ̃ as the collection of paths through the original model that we design as

λ11(t1� t2;δ1� δ2)= P11(t1 + δ1
(
h1(t1� t2)+ 1

)
� t2 + δ2

(
h2(t1� t2)+ 1

))
�

λ01(t1� t2;δ1� δ2)= P01(t1 + δ1
(
h1(t1� t2 + α2)+ 1

)
� t2

)
�

λ10(t1� t2;δ1� δ2)= P11(t1� t2 + δ2
(
h2(t1 + α1� t2)+ 1

))
�

and

λ00(t1� t2;δ1� δ2)= P11(t1� t)�

γ(t1� t2;α1�α2� δ1� δ2)= Pr
(
t1 <U ≤ t1 + α1 + δ1

(
h1(t1 + α1� t2 + α2)+ 1

)
�

t2 < V ≤ t2 + α2 + δ2
(
h2(t1 + α1� t2 + α2)+ 1

))
�

where we note that these paths maintain the properties of the joint probability distribu-
tion (bounded between 0 and 1, summing up to 1) and, in a sufficiently small neighbor-
hood about the origin containing δ, they also maintain the monotonicity of the c.d.f. (as
the partial derivatives of h1(·� ·) and h2(·� ·) are bounded from below).

Denote the likelihood function corresponding to the perturbed model
lλ(y1� y2�x1�x2;α�δ). Provided the assumed dominance condition holds, it will be mean-
square differentiable at (α0�0). In other words, we can find vector functions ψα(x1�x2)

and ψδ(x1�x2) such that

l
1/2
λ (·;α�δ)=ψα(x1�x2)

′(α− α0)+ψδ(x1�x2)
′δ+Rα�δ

with

E
[
R2
α�δ

]
/
(|α− α0| + |δ|)2 → 0 as α→ α0� δ→ 0�
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We can explicitly derive the mean-square derivatives. For convenience, we introduce the
notation

P++(x1�x2;α)= P11(x1 + α1�x2 + α2)− 1
2
Δ(x1�x2�α1�α2)�

P−+(x1�x2;α)= P01(x1 + α1�x2)�

P+−(x1�x2;α)= P10(x1�x2 + α2)�

and

P−−(x1�x2;α)= P00(x1�x2)− 1
2
Δ(x1�x2�α1�α2)�

In particular, the components of the derivative with respect to the finite-dimensional
parameter can be expressed as

ψα1(x1�x2)= 1
4
{
y1y2P

++(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2}

× ∂G(x1 + α1�x2 + α2)

∂u
− 1

2
(1 − y1)y2P

−+(x1�x2;α)−1/2 ∂G(x1 + α1�x2)

∂u

and

ψα2(x1�x2)= −1
4
{
y1y2P

++(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2}

× ∂G(x1 + α1�x2 + α2)

∂v
− 1

2
y1(1 − y2)P

+−(x1�x2;α)−1/2 ∂G(x1�x2 + α2)

∂v
�

The derivative with respect to λ can be expressed as

ψδ�1(x1�x2)= 1
4
{
y1y2P

++(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2}

× ∂G(x1 + α1�x2 + α2)

∂u

(
h1(x1 + α1�x2 + α2)+ 1

)
− 1

2
(1 − y1)y2P

−+(x1�x2;α)−1/2

× ∂G(x1 + α1�x2)

∂u

(
h1(x1 + α1�x2 + α2)+ 1

)
and

ψδ�2(x1�x2)= −1
4
{
y1y2P

++(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2}

× ∂G(x1 + α1�x2 + α2)

∂v

(
h2(x1 + α1�x2 + α2)+ 1

)
− 1

2
y1(1 − y2)P

+−(x1�x2;α)−1/2

× ∂G(x1�x2 + α2)

∂v

(
h2(x1 + α1�x2 + α2)+ 1

)
�

We note that the corresponding score has mean zero.
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We use the fact that the Fisher information can be bounded as

Iλ�α1 ≤ 4
∫
(ψα1 −ψδ�1)2dμ

=
∫

1
4

([
P++(x1�x2;α0)

−1 + P−−(x1�x2;α0)
−1](∂G(x1 + α1�x2 + α2)

∂u

)2

+ P−+(x1�x2;α0)
−1

(
∂G(x1 + α1�x2)

∂u

)2)
h2

1(x1 + α1�x2 + α2)dν(x1�x2)�

We define the measure on Borel sets in R
2 as

π1(A)=
∫
A

1
4

([
P++(x1�x2;α0)

−1 + P−−(x1�x2;α0)
−1](∂G(x1 + α1�x2 + α2)

∂u

)2

+ P−+(x1�x2;α0)
−1

(
∂G(x1 + α1�x2)

∂u

)2)
dν(x1 − α1�x2 − α2)�

allowing us to characterize Iλ�α1 ≤ ‖h1‖2
L2(π1)

. Chamberlain (1986) demonstrates that the
space of differentiable functions with compact support is dense in L2(π). Replicating
the argument in the proof of zero information for the triangular system with complete
information in the main paper, we can demonstrate that inf

λ∈Λ̃ Iλ�α1 = 0. Similarly, we
can also show that inf

λ∈Λ̃ Iλ�α2 = 0. �

Our results fully illustrate why the zero Fisher information of the interaction param-
eters is a problem that is not related to the lack of their point identification or the mul-
tiplicity of equilibria. We have proven point identification of these parameters under
general conditions and regarding multiplicity, we have explicitly completed the model
using randomization of outcomes so that it is complete, yet we still cannot attain posi-
tive information. We conclude that the estimation and inference for the interaction pa-
rameters are nonstandard even in a simplified model.

Analysis of the game with incomplete information

We now modify the model to allow for incomplete information.

Economic model Our model is based on standard two-player game theory models with
incomplete information. Game theoretical results have demonstrated that the introduc-
tion of what is referred to in that literature as payoff perturbations leads to a reduction
in the number of equilibria.3

In the two-player game with incomplete information we again interpret the binary
variables Y1 and Y2 as the actions of player 1 and player 2. Each player is characterized
by the deterministic payoff (corresponding to linear indices X1 and X2), an interaction
parameter, unobserved heterogeneity terms U and V , and what we refer to here as pay-
off perturbations, denoted by η1 and η2. The payoff of player 1 from action Y1 = 1 can

3See the seminal work of Harsanyi (1995). Multiplicity of equilibria can still be an important issue in
games of incomplete information as noted in Sweeting (2009) and de Paula and Tang (2012).
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be represented as Y ∗
1 = X1 + α̃10Y2 − U − ση1, while the payoff from action Y1 = 0 is

normalized to 0.
In the economic model, player 1 observesX1,X2,U , V , a1 but does not observed η2;

player 2 observesX1,X2, U , V , and η2, but does not observe η1.
This model is a generalization of the incomplete information model usually consid-

ered in empirical applications because we allow for the presence of unobserved hetero-
geneity componentsU and V , whose distribution we leave unspecified. We feel this is an
important generalization, as most of the empirical results in the industrial organization
literature devoted to the analysis of incomplete information games heavily rely on func-
tional form assumptions regarding the distribution of unobserved heterogeneity. Hotz
and Miller (1993), Bajari, Hong, and Ryan (2010), and Rust (1987) are just a few of many
important examples.

In the economic model the strategy of player i is a mapping from the observable
(to the agents) variables into actions: (X1�X2�U�V �ηi) �→ {0�1}. Furthermore, player i
forms beliefs regarding the action of his/her rival. Provided that η1 and η2 are indepen-
dent, the beliefs are functions only of U , V , and linear indices. Thus, if Pi(X1�X2�U�V )

are players’ beliefs regarding the actions of opponent players, then the strategy, for in-
stance, of player 1 can be characterized as a random variable

Y1 = 1
{
E

[
Y ∗

1 |X1�X2�U�V �η1
]
> 0

}
= 1

{
X1 −U + α̃10P2(X1�X2�U�V )− ση1 > 0

}
�

(SA.3)

Similarly, the strategy of player 2 can be written as

Y2 = 1
{
X2 − V + α̃20P1(X1�X2�U�V )− ση2 > 0

}
� (SA.4)

We note the resemblance of equations (SA.3) and (SA.4) to the first equation of the tri-
angular system with treatment uncertainty. As in that section, we alter the notation for
the interaction parameters, as now they represent coefficients on what are different re-
gressors in the incomplete model.

To characterize the Bayes–Nash equilibrium in the simultaneous move game of in-
complete information, we consider a pair of strategies defined by (SA.3) and (SA.4).
Moreover, the beliefs of players have to be consistent with their action probabilities con-
ditional on the information set of their rival.

Taking into consideration the independence of player types ηi and the fact that their
c.d.f. is known, we can characterize the pair of equilibrium beliefs as a solution to the
system of nonlinear equations

σΦ−1(P1)= x1 − u+ α̃10P2�

σΦ−1(P2)= x2 − v+ α̃20P1�
(SA.5)

Our informational assumption regarding the independence of the unobserved hetero-
geneity components U and V from payoff perturbations η1 and η2 enables us to define
the game with a coherent equilibrium structure. This would not be the case if we allow
correlation between the payoff-relevant unobservable variables of the two players, as
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their actions should reflect such correlation and the equilibrium beliefs should also be
functions of the noise components.

On the other hand, given that the unobserved heterogeneity components U and V
are correlated, the individual actions will be correlated. In other words, we consider the
structure of the game where the actions of players are correlated without having to an-
alyze a complicated equilibrium structure due to correlated unobserved player types.
Multiple equilibria may arise here as well as the system of equations (SA.5) can have
multiple solutions.4 To resolve the uncertainty over equilibria and maintain symmetry
with our discussion of games of complete information, we assume that uncertainty over
multiple possible equilibrium beliefs is resolved by independent coin flips.

We note that the incomplete information model that we constructed embeds the
complete information model in the previous section. When σ approaches 0, the payoffs
in the incomplete information model are identical to those in the complete information
model and are observable by both players. We illustrate the transition from the complete
to the incomplete information environment in Figure SA.1. When σ = 0, the actions of
the players are determined by U and V only. Figure SA.1(a) shows four regions, one for
each possible pair of actions in the complete information model. There is a region in the
middle where multiple pairs of actions are optimal, leading to multiple equilibria. With
the introduction of uncertainty, we can only plot the probabilistic picture of players’
actions (integrating over the payoff noise η1 and η2). We can then characterize the areas
where specific action pairs are chosen with probability exceeding a given quantile 1 − q.
A decrease in the variance of payoff noise leads to the convergence of quantiles to the
areas in the illustration of the complete information game in Figure SA.1(a).

Statistical model The econometrician observes a random sample of equilibrium out-
comes and covariates. However, the econometrician does not observe realizations of U ,
V ,η1, andη2, and knows the distributions ofη1 andη2, but not ofU and V . Under these
assumptions as well as regularity conditions detailed below, we wish to determine the
identification and information of the interaction parameters α̃10 and α̃20.

Our first result is that we establish the fact that the strategic interaction parameters
α̃10 and α̃20 are identified. Note that X1, X2, U , and V enter the system of equations
(SA.3) and (SA.4) in a way such that the equilibrium beliefs are functions of X1 −U and
X2 − V . Conditional on the realizations X1, X2, U , and V , the choices of the two play-
ers are also independent. On the other hand, given that the realizations of U and V are
not observable to the econometrician, conditional on X1 andX2, the choices are corre-
lated. The observed actions are binary and the distribution of the covariates is directly
observed in the data (due to independence of the errors (η1�η2) and the unobserved
heterogeneity (U�V ) from the covariates). Thus, the information that the data contain
regarding the model is fully summarized by the conditional expectations E[Y1|X1�X2],
E[Y2|X1�X2], and E[Y1Y2|X1�X2].

4Sweeting (2009) considers a 2 × 2 game of incomplete information and gives examples of multiple equi-
libria in that game. Bajari, Hong, Krainer, and Nekipelov (2010) develop a class of algorithms for efficient
computation of all equilibria in incomplete information games with logistically distributed noise compo-
nents.
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(a) (b)

(c) (d)

Figure SA.1. Incomplete information game.

The identification argument will then have two parts. First, one needs to solve sys-
tem (SA.5) to obtain mappings P1(X1 − U�X2 − V ) and P2(X1 − U�X2 − V ). Second,
one can relate these mappings to the observable probabilities of actions. Although, with
continuous distribution of the noise η1 and η2 the considered model has an equilib-
rium, the system of equilibrium choice probabilities can have multiple solutions. We
approach cases of multiple equilibria by resolving the uncertainty via coin flips. We thus
make the following three assumptions for the statistical model.

Assumption SA.3. Suppose that η⊥ (U�V ) and η⊥ (X1�X). The distribution of η has
a differentiable density with the full support on R and a c.d.f. Φ(·) that is known by the
economic agent and the econometrician. In addition, we assume that the density of φ(·)
has “regular” tail behavior, such that there exists Δ> 0 such that for all x for which either
Φ(x) < Δ orΦ(x) > 1 −Δ, the density φ(·) is monotone in x.

Assumption SA.4. Suppose that η1 and η2 are privately observed by the two players,
meaning player 1 observesη1 but notη2, and analogously for player 2. We assumeη1 ⊥ η2
and both satisfy Assumption SA.3.

Our next assumption pertains to the possibility of multiple equilibria that may arise
when there are multiple solutions to the following system of nonlinear equations.
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Assumption SA.5. If for some point (X1 − U�X2 − V ), the system of equations (SA.5)
has multiple solutions, then the uncertainty regarding the realization of an equilibrium
is resolved via a uniform distribution over those solutions.

In the proof of Theorem SA.3 below we show that the set of solutions is finite. As
a result, the observed choice probabilities will correspond to the average value of the
mappings P1 and P2 over the set of possible values for each givenX1 −U andX2 −V for
given values of covariates.

We then proceed with showing that there exists a set of values of observable covari-
ates (X1�X2) of strictly positive measure such that the mapping from observed choice
probabilities into the strategic interaction parameters (α̃10� α̃20) is univalent. In other
words, we can identify those parameters from observed data. Once the strategic interac-
tion parameters are identified, the joint distribution of unobserved shocks is identified
by the conditional covariance function for observed choices (Y1�Y2) given (X1�X2).

The following theorem summarizes our identification result.

Theorem SA.3. Suppose that Assumptions SA.2, SA.3, SA.4, and SA.5 are satisfied. Then
the strategic interaction terms α̃10 and α̃20 in the model defined by (SA.3) and (SA.4) are
identified.

Proof. Let P(Y1�Y2|X1�X2) be the observable conditional probability of player’s ac-
tions conditional on the covariates.

Consider the system of equilibrium cutoff strategies responses (SA.3) and (SA.4) with
belief functions determined by (SA.5). Take the sequence of covariates xl2n → −∞ (e.g.,
one can take xl2n = −n) for n= 1�2� � � � . Denote

t2ln (x1�u� v;η2)= 1
{
xl2n − v+ α̃20P1

(
x1�x

l
2n�u� v

) − ση2 > 0
}
�

Note that |tln(x1�u� v;η2)| ≤ 1; moreover, for functions

τl±n (v;η2)= 1
{
xl2n − v± |α̃20| − ση2 > 0

}
we have

τl+n (v;η2)≤ t2ln (x1�u� v;η2)≤ τl−n (v;η2)�

We note that for all v and η2,

lim
n→∞τ

l+
n (v;η2)= 0

and

lim
n→∞τ

l−
n (v;η2)= 0�

Therefore, due to the inequality above, limn→∞ t2ln (x1�u� v;η2)= 0. In equilibrium

P2
(
x1�x

l
2n�u� v

) =
∫
η2

t2ln (x1�u� v;η2)fη(η2)dη2�
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Thus, by dominated convergence theorem

lim
n→∞P2

(
x1�x

l
2n�u� v

) = 0�

For the first player, we consider the function

t1ln (x1�u� v;η1)= 1
{
x1 − u+ α̃10P2

(
x1�x

l
2n�u� v

) − ση1 > 0
}
�

Note that

lim
n→∞ t

1l
n (x1�u� v;η1)= 1{x1 − u− ση1 > 0}�

We note that |t1ln (x1�u� v;η1)| ≤ 1 and, thus, we can apply the dominated convergence
theorem to find that

lim
n→∞P1

(
x1�x

l
2n�u� v

) =Φ
(
x1 − u
σ

)
�

Thus we conclude that

lim
n→∞P

(
Y1 = 1|x1�x

l
2n

) =
∫
Φ

(
x1 − u
σ

)
gu(u)du� (SA.6)

Next we take the sequence xr2n → +∞ for n= 1�2� � � � . Denote

t2rn (x1�u� v;η2)= 1
{
xr2n − v+ α̃20P1

(
x1�x

r
2n�u� v

) − ση2 > 0
}
�

As before, |trn(x1�u� v;η2)| ≤ 1 and

τr+n (v;η2)≤ t2rn (x1�u� v;η2)≤ τr−n (v;η2)�

where now

τr±n (v;η2)= 1
{
xr2n − v± |α̃20| − ση2 > 0

}
�

Note that

lim
n→∞τ

r±
n (v;η2)= 1�

This means that

lim
n→∞ t

2r
n (x1�u� v;η2)= 1�

Thus, by the dominated convergence theorem

lim
n→∞P2

(
x1�x

r
2n�u� v

) = 1�

Repeating our analysis for the first player, we conclude that

lim
n→∞P1

(
x1�x

r
2n�u� v

) =Φ
(
x1 + α̃10 − u

σ

)
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and

lim
n→∞P

(
Y1 = 1|x1�x

r
2n

) =
∫
Φ

(
x1 + α̃10 − u

σ

)
gu(u)du� (SA.7)

Thus for each x′ and x′′ such that

lim
n→∞P

(
Y1 = 1|x′�xl2n

) = lim
n→∞P

(
Y1 = 1|x′′�xr2n

)
�

the interaction parameter is identified as α̃10 = x′′ − x′. The argument for identification
of α̃20 can be expressed analogously. �

We note that the proof of identification here relies on extreme values of X1 and X2,
as was used for the identification result for the complete information game. However, for
the incomplete information game it is not necessary to rely on limiting values to attain
point identification of the interaction parameters. Consequently, as we now show, we
can attain positive Fisher information for the interaction parameters in the incomplete
information game.

Specifically, we find that for any finite variance of noise σ2 (which can be arbitrarily
small), the information in the model of the incomplete information game is strictly pos-
itive. We also provide a result that characterizes the Fisher information for the strategic
interaction parameters as the variance of players’ privately observed payoff shocks ap-
proaches 0. As in the incomplete information triangular model, the Fisher information
of those parameters approaches 0.

Theorem SA.4. Suppose that Assumptions SA.2, SA.3, SA.4, and SA.5 are satisfied.

(i) For any σ > 0, the information corresponding to parameters (α̃10� α̃20) in the in-
complete information game defined by (SA.3) and (SA.4) is strictly positive.

(ii) Asσ → 0, the information corresponding to parameters (α̃10� α̃20) in the incomplete
information game defined by (SA.3) and (SA.4) approaches 0.

Proof of Theorem SA.4. Proof of result (i). We start the proof with the following lemma
that demonstrates that the addition of our equilibrium selection mechanism does not
affect the smoothness properties of the semiparametric likelihood function.

Lemma SA.1. The set of values of strategic interaction parameters α1 and α2 in the static
game of incomplete information for which the game has multiple equilibria is a closed
connected set with a differentiable boundary Sm(α1�α2).

Proof. Given the continuous differentiability of the distribution of random perturba-
tions, we can characterize the boundary of the set of multiple equilibria as the set of
points on R

2 where the curves corresponding to the best responses of the players to
their beliefs regarding their opponents touch for the first time. This corresponds to the
set of points on R

2 where

σΦ−1(Pi)= qi + αiPj� αiφ

(
1
σ
(qi + αiPj)

)
= (
αjφ

(
Φ−1(Pj)

))−1
� i� j = 1�2� i 
= j�
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For given parameters α1 and α2, this defines a mapping from the set of covariates q1, q2

to the beliefs. This mapping reduces the dimensionality of the overall mapping by 2, as
it incorporates the original system of equations for the beliefs and the restriction on the
derivatives of the belief functions. It will be a one-dimensional closed curve e(q1� q2)= 0.
This curve will be differentiable in the strategic interaction parameters due to continu-
ous differentiability of the density of the payoff noise. This curve represents the bound-
ary of the set of multiple equilibria, which we denote Sm(α1�α2). �

We now use the constructed set of parameters leading to multiple equilibria to form
the likelihood function of the models. The likelihood of the model can then be charac-
terized by four objects:

E[Y1Y2|x1�x2] = P11(x1�x2;α)

=
∫
Φ

(
x1 − u+ α1P2(x1 − u�x2 − v)

σ

)

×Φ
(
x2 − v+ α2P2(x1 − u�x2 − v)

σ

)
g(u�v)dudv�

E[Y1|x1�x2] =Q1(x1�x2;α)

=
∫
Φ

(
x1 − u+ α1P2(x1 − u�x2 − v)

σ

)
g(u�v)dudv�

E[Y2|x1�x2] = P1(x1�x2;α)

=
∫
Φ

(
x2 − v+ α2P1(x1 − u�x2 − v)

σ

)
g(u�v)dudv�

Pr
(
(X1 −U�X2 − V ) ∈ Sm(α1�α2)|x1�x2

)
= Δ(x1�x2;α)

=
∫

1
{
(x1 − u�x2 − v) ∈ Sm(α1�α2)

}
g(u�v)dudv�

We assume that α1�α2 > 0 without loss of generality. We construct the probabilities cor-
responding to observed equilibrium outcomes as

P++(x1�x2;α)= P11(x1�x2;α)− 1
2
Δ(x1�x2;α)�

P−+(x1�x2;α)= P1(x1�x2;α)− P11(x1�x2;α)+ 1
2
Δ(x1�x2;α)�

P+−(x1�x2;α)=Q1(x1�x2;α)− P11(x1�x2;α)+ 1
2
Δ(x1�x2;α)�

and

P−−(x1�x2;α)= 1 − P1(x1�x2;α)−Q1(x1�x2;α)+ P11(x1�x2;α)− 1
2
Δ(x1�x2;α)�
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Denote the gradients

D1(x1�x2;α)= ∂

∂α′
(
P11(x1�x2;α)− 1

2
Δ(x1�x2;α)

)
�

D2(x1�x2;α)= ∂

∂α′P
−+(x1�x2;α)�

and

D3(x1�x2;α)= ∂

∂α′P
+−(x1�x2;α)�

We focus on the square root of the density corresponding to the likelihood of the
model:

r(y1� y2|x1�x2;α)1/2 = y1y2P
++(x1�x2;α)1/2 + (1 − y1)y2P

−+(x1�x2;α)1/2

+ y1(1 − y2)P
+−(x1�x2;α)1/2 + (1 − y1)(1 − y2)P

−−(x1�x2;α)1/2�
Then we can express the mean-square gradient of this density as

ψα(x1�x2)= 1
2
{
y1y2P

++(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2

}
D1(x1�x2;α)

+ 1
2
{
(1 − y1)y2P

−+(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2

}
D2(x1�x2;α)

+ 1
2
{
y1(1 − y2)P

+−(x1�x2;α)−1/2 − (1 − y1)(1 − y2)P
−−(x1�x2;α)−1/2

}
D3(x1�x2;α)�

We note that the corresponding score has mean zero and that, conditional on the
covariates, the terms in this expression are positively correlated. Then by definition,
Iα = 4

∫
ψα(x1�x2)ψα(x1�x2)

′ dμ. Thus, if ν is the measure on R
2 corresponding to the

distribution of x1 and x, following the approach in the derivation of information of the
complete information model, we define the measures on Borel subsets of R2:

π1(A)=
∫
A

1 − P−+(x1�x2;α0)− P+−(x1�x2;α0)

P++(x1�x;α0)P
−−(x1�x;α0)

dν(x1�x)�

π2(A)=
∫
A

1 −Q1(x1�x2;α0)

P−+(x1�x;α0)P
−−(x1�x;α0)

dν(x1�x)�

and

π3(A)=
∫
A

1 − P1(x1�x2;α0)

P−+(x1�x;α0)P
−−(x1�x;α0)

dν(x1�x)�

Due to discovered positive correlation between the components of the mean-square
gradient, we can evaluate the information as

Iα ≥ ∥∥D1(x1�x2;α0)
∥∥2
L2(π1)

+ ∥∥D2(x1�x2;α0)
∥∥2
L2(π2)

+ ∥∥D3(x1�x2;α0)
∥∥2
L2(π3)

�

Then we can construct the measure π∗ that minorizes the Radon–Nikodym density of
measures π1 and π2, meaning that dπ∗

dν = min{dπ1
dν �

dπ2
dν }. Based on this structure of the
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measure, we can write

Iα ≥ ∥∥D1(x1�x2;α0)
∥∥2
L2(π∗) + ∥∥D2(x1�x2;α0)

∥∥2
L2(π∗) + ∥∥D3(x1�x2;α0)

∥∥2
L2(π3)

�

By combining the triangle inequality and taking into account the nonnegativity of the
square, we can evaluate

Iα ≥ ∥∥D1(x1�x2;α0)+D2(x1�x2;α0)
∥∥2
L2(π∗)�

Then we note that

D1(x1�x2;α0)+D2(x1�x2;α0)=
∫
φ

(
1
σ
Φ−1(P1)

)(
α1
∂P2

∂α
+ (P2�0)′

)
g(u�v)dudv�

We denote t1 = (x1 − u)/σ and t2 = (x− v)/σ . Then

D1(x1�x2;α0)+D2(x1�x2;α0)

= σ2
∫
φ

(
1
σ
Φ−1(P1(σt1�σt2)

))

×
(
α1
∂P2(σt1�σt2)

∂α
+ (
P2(σt1�σt2)�0

)′
)
g(σt1 + x1�σt2 + x2)dt1 dt2�

Denote

w(t1� t2)=φ
(

1
σ
Φ−1(P1(σt1�σt2)

))(
α1
∂P2(σt1�σt2)

∂α
+ (
P2(σt1�σt2)�0

)′
)
�

Then we can express

D1(x1�x2;α0)+D2(x1�x2;α0)= σ2
∫
w(t1� t2)g(x1 + σt1�x2 + σt2)dt1 dt2�

Suppose that S ⊂ R
2 is a compact set such that π∗(S) > C. Then given that g(·� ·) is con-

tinuous and strictly positive, there exists

M(t1� t2)= inf
(x1�x2)∈S

∣∣g(x1 + σt1�x2 + σt2)
∣∣

that is not equal to zero for at least some (t1� t2) ∈ R
2. We take

4√ε= sup
t∈[−B�B]×[−B�B]

∣∣M(t)∣∣�
where B is selected such that [−B�B] × [−B�B] contains at least one point where
M(t) 
= 0. Suppose that the supremum is attained at point (t∗1 � t

∗
2 ). By continuity, there

exists some neighborhood of (t∗1 � t
∗
2 ) where M(t) >

√
ε/2. Denote the size of this neigh-

borhood byR. By construction,w(t1� t2) is a continuous function that is not equal to zero
(given that we assumed that α1�α2 > 0, we have α1

∂P2
∂α1

> 0). Moreover, this function has a
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well defined limit as σ → 0. Thus, this function attains its lower bound in every compact
set and that lower bound is above zero:

inf
(t1�t2)∈BR(t∗1 �t∗2 )

∥∥w(t1� t2)∥∥ =A 4√ε > 0�

We substitute our evaluations into the bound for the information,

Iα ≥ ∥∥D1(x1�x2;α0)+D2(x1�x2;α0)
∥∥2
L2(π∗) ≥ ∥∥(

D1(x1�x2;α0)+D2(x1�x2;α0)
)
1S

∥∥2
L2(π∗)

≥ CA2σ2√ε
∥∥∥∥
∫
R

M(t1� t2)dt

∥∥∥∥
2
I2×2 ≥ 1

2
CA2R2σ2εI2×2 > 0�

where I2×2 is the identity matrix. Therefore, the information corresponding to parame-
ters α1 and α2 is strictly positive.

Proof of result (ii). Suppose that measureπ∗∗ is such that its Radon–Nikodym density
is constructed as

dπ∗∗

dν
= max

{
dπ1

dν
�
dπ2

dν

}
�

Then we can see that

Iα ≤ ∥∥D1(x1�x2;α0)
∥∥2
L2(π∗∗) + ∥∥D2(x1�x2;α0)

∥∥2
L2(π∗∗) + ∥∥D3(x1�x2;α0)

∥∥2
L2(π∗∗)

+ 2‖D1D2‖2
L2(π∗∗) + 2‖D1D3‖2

L2(π∗∗) + 2‖D2D3‖2
L2(π∗∗)�

Consider the change of variables

t1 =Φ−1(P1(x1 − u�x2 − v))
and

t2 =Φ−1(P2(x1 − u�x2 − v))�
Thus, we can write (denoting ai =φ(Φ−1(Pi)) for i= 1�2)

∣∣D1(x1�x2;α)
∣∣ ≤

∫ ⎛
⎜⎜⎝

1 + α2a2

a2
1 + α1a1

a1

⎞
⎟⎟⎠∣∣a1a2α

2
1α

2
2 − 1

∣∣

× P1P2g(x1 + α1P1 − σt1�x2 + α2P2 − σt2)dt1 dt2

≤ σ2

(
α2

α1

)∫
φ

(
Φ−1(P1)

)
φ

(
Φ−1(P2)

)
× P1P2g(x1 + α1P1 − σt1�x2 + α2P2 − σt2)dt1 dt2 + o(σ2)

≤ σ2φ̄2

(
α2

α1

)
+ o(σ2)�



Supplementary Material Discrete response models 19

provided that φ(·) ≤ φ̄ and P1�P2 ≤ 1. The same evaluation can be written for other
componentsDi(x1�x2;α) with i= 1�2�3. We evaluate the information as

Iα ≤ σ2φ̄2A+ o(σ2)
for a fixed matrix A (determined by coefficients α1 and α2). When σ → 0, this upper
bound approaches 0. Thus, the resulting information converges to zero. �
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