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Empirical welfare analysis for discrete choice:
Some general results
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This paper develops nonparametric methods for welfare-analysis of economic
changes in the common setting of multinomial choice. The results cover (a) si-
multaneous price-change of multiple alternatives, (b) introduction/elimination
of an option, (c) changes in choice-characteristics, and (d) choice among nonex-
clusive alternatives. In these cases, Marshallian consumer surplus becomes path-
dependent, but Hicksian welfare remains well-defined. We demonstrate that un-
der completely unrestricted preference-heterogeneity and income-effects, the
distributions of Hicksian welfare are point-identified from structural choice-
probabilities in scenarios (a), (b), and only set-identified in (c), (d). In program-
evaluation contexts, our results enable the calculation of compensated-effects,
that is, the program’s cash-equivalent and resulting deadweight-loss. They also fa-
cilitate a theoretically justified cost-benefit comparison of interventions targeting
different outcomes, for example, a tuition-subsidy and a health-product subsidy.
Welfare analyses under endogeneity is briefly discussed. An application to data on
choice of fishing-mode illustrates the methods.

Keywords. Multinomial choice, general heterogeneity, income effects, compen-
sating variation, deadweight loss, multiple price change, elimination of alterna-
tive, change in characteristics, weak separability, nonexclusive choice, compen-
sated program-effects.
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1. Introduction

Welfare calculations, based on the compensating and equivalent variation (CV and EV,
henceforth), lie at the heart of economic policy analysis. Although theoretically well
understood, these measures are rarely calculated or reported as part of econometric
program evaluations. Indeed, empirical studies—both reduced-form and structural—
usually adopt a paternalistic view and evaluate a policy intervention in terms of its un-
compensated effects on individual outcomes. But they ignore the compensated effects
which are required for cost-benefit analysis of the intervention. For example, in an ed-
ucational context, researchers typically evaluate the impact of a tuition subsidy via its
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net effect on college-enrollment (cf. Ichimura and Taber (2002), Kane (2003)). But they
stop short of evaluating how much the subsidy is valued by the potential beneficiaries
themselves, that is, the lump-sum income transfer that would result in the same indi-
vidual utilities as the subsidy, and any resulting deadweight loss thereof.1 The present
paper develops methods for calculating such welfare effects as part of program eval-
uation studies, without imposing restrictive assumptions on the nature of preference-
heterogeneity or income effects. The setting is where we observe individual level data
on a cross section of consumers making choices among discrete alternatives, and the
goal is to estimate the effects of hypothetical economic changes on consumer welfare.

In practical settings, allowing for general heterogeneity in consumer preferences
makes empirical welfare analysis a challenging problem. Some advances based on Roy’s
identity have recently been made for the case of a continuous good, such as gasoline
consumption (cf., Hausman (1981), Hausman and Newey (2016, 2017), Lewbel (2001),
Lewbel and Pendakur (2017)). However, many important real-life decisions involve dis-
crete choice, such as college attendance, choice of commuting method, school choice,
retirement decisions, and so forth. The Roy’s identity based methods used for continu-
ous choice cannot be applied to these settings, owing to the nonsmoothness of individ-
ual demand in price and income.2

Until recently, available methods for welfare analysis in discrete choice settings were
based on restrictive and arbitrary assumptions on preference heterogeneity, for exam-
ple, quasilinear preferences implying absence of income effects (cf., Domencich and
McFadden (1975), Small and Rosen (1981)), or parametrically specified utility functions
and heterogeneity distributions (McFadden (1981), Dagsvik and Karlstrom (2005)). In-
deed, two key concerns with parametric analyses are (a) model misspecification lead-
ing to erroneous substantive conclusions, and (b) identification of welfare distribu-
tions solely from functional form assumptions. Recently, Bhattacharya (2015) has shown
that for heterogeneous consumers facing the choice between discrete alternatives, the
marginal distributions of EV/CV resulting from ceteris paribus price change of a sin-
gle alternative can be expressed as closed-form transformations of choice probabilities.
Taking Bhattacharya (2015) as the point of departure, the present paper makes three
new contributions, as follows.

Our first set of results, presented in Section 2, concern welfare effects of simulta-
neous price changes of several alternatives. Multiple price changes are common in real
life. For example, a reduction in the ticket price of an airline serving a route is likely

1Stiglitz (2000, p. 276) noted that empirical researchers typically ignore income effects owing to the per-
ceived difficulty of calculating them, and Goolsbee (1999, p. 10) pointed out that whereas the economic
theory of welfare concerns compensated elasticities, common program evaluation studies in public finance
typically report uncompensated effects.

2The closest parallel to Roy’s Identity for discrete choice is the so-called Daly–Williams–Zachary theorem
(McFadden, (1981, Section 5.8)), which shows that in an additive random utility model with scalar hetero-
geneity, the choice probabilities equal certain derivatives of the average indirect utility. Even if we restrict
preferences in this way, this result is not useful for analysis of individual welfare distributions, since the
income compensation that maintains average utility is not the same as the average of the income compen-
sations that maintain individual utilities, unless preferences are quasilinear. We are interested in the latter
distribution, and hence the DWZ theorem is not relevant to our problem.
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to lower the prices of competing airlines; a tuition subsidy in an area with prevalence
of teenage labor is likely to raise teens’ wages in response; a rise in gasoline prices is
likely to raise prices of several transport alternatives, and so on. The impact of such
simultaneous price changes on consumer welfare is the key consideration for policy-
makers in regard to their decision on whether to implement a proposed policy change
(cf., Willig, Salop, and Scherer (1991)). We show that under completely general hetero-
geneity, money-metric welfare effects of such price changes continue to remain well-
defined, whereas the analog of the Marshallian Consumer Surplus becomes path de-
pendent (Proposition 1). Furthermore, EV/CV distributions in this case are expressible
as closed-form transformations of estimable choice probabilities (Theorem 1). These
results cover situations where some price changes are negative, some zero and some
positive. A key issue here, elaborated in Section 2.1 below, is that although welfare ef-
fects of multiple price changes are well-defined, their distributions cannot be obtained
by iterating results for a single price change. This is because the income at which welfare
distributions are to be evaluated varies in an unobservable way across individuals from
the second iteration onward, due to unobservable preference heterogeneity, and thus
cannot be conditioned on. Consequently, new results are required for welfare analysis
in these situations.

For welfare evaluations in applications, it has been common practice to use the so-
called log-sum formula (cf., Small and Rosen (1981), Train (2009)), which relies on strong
parametric assumptions regarding both preferences and heterogeneity; see Carneiro,
Das, and Reis (2016) and Knittel and Metaxoglou (2014) for some applications.3 Here, we
show that under completely general preference heterogeneity and income effects, one
can express welfare distributions resulting from multiple simultaneous price changes
in terms of simple transformations of choice probability functions, thereby reducing
welfare analysis to the problem of estimating choice probabilities. Crucially, our wel-
fare expressions (a) hold when income effects are nonnegligible, as is likely for bigger
purchases like children’s education and consumer durables, and (b) apply to arbitrary
patterns of price changes across alternatives, thereby making the results useful across a
wide range of empirical situations.

The above results are also shown to imply the distribution of welfare loss result-
ing from elimination of an existing alternative, or equivalently, retrospective welfare
gain from having added a new alternative to the choice set. Previous econometric stud-
ies of such problems either ignored consumer heterogeneity, and implicitly assumed a
“representative consumer” model, and/or worked under restrictive parametric assump-
tions (Willig, Salop, and Scherer (1991), Hausman (1996), Hausman and Leonard (2002),
Hausman (2003), Trajtenberg (1989)). In contrast, our set-up allows for (a) unrestricted
consumer heterogeneity, and (b) arbitrary effects of eliminating the alternative on the

3Some of these restrictive assumptions have subsequently been replaced with less stringent parametric
assumptions; cf. Herriges and Kling (1999), McFadden and Train (2000), Dagsvik and Karlstrom (2005), and
Goolsbee and Klenow (2006). All of these still require specification of the dimension and distribution of
unobserved heterogeneity and functional form of utility functions, about which no a priori information is
available. Indeed, all welfare related measures are identified in these settings solely from assumed knowl-
edge of these functional forms.
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price of existing alternatives, thus greatly increasing the scope of the results.4 Impor-
tantly, these results are robust to failure of parametric assumptions, and clarify which
features of welfare distributions can and which ones cannot be learned from demand
data alone without functional form assumptions. Indeed, we show below that Hicksian
welfare distributions in this case can again be expressed as closed-form transformations
of choice probabilities without any assumption on heterogeneity. Nonetheless, calculat-
ing the tails of these distributions require observation of demand at prices where aggre-
gate demand at an adjusted income level reaches zero. At high income levels, such prices
may not be observed, since producers have no incentive to set a price where aggregate
demand is zero. In that case, a lower bound on the welfare distributions can be obtained
using the value of aggregate demand at the highest observed price.5 A heuristic empir-
ical practice, popular in empirical research, for calculating welfare effects of new goods
involves integrating the choice probability function from the current price to infinity.
We provide a formal justification of this ad hoc practice, and show that this does indeed
yield the average EV, if prices of substitutes remain unchanged; however, calculation of
the average CV and/or allowing for prices of substitutes to change entail different ex-
pressions.

Section 3 of this paper considers two extensions, namely welfare analysis for
(i) change in characteristics of an alternative, with or without an accompanying price
change, and (ii) multinomial choice with nonexclusive options. An example of the for-
mer is the classic transport choice setting where, say, increasing the frequency of buses
would raise utility from choosing the bus option, as opposed to driving or walking. Typ-
ically, characteristics of alternatives do not appear as additive components of net in-
come in utilities, unlike prices (via the budget constraint), and hence the price change
results are not useful for analyzing welfare effects of quality changes. We show that typ-
ically such welfare distributions are not identified from structural choice probabilities;
nonetheless, bounds can be constructed on them, and hence on average welfare. We
also show that further restrictions on preferences, such as weak separability of hetero-
geneity, restores point identification.

Our second extension pertains to choice among nonexclusive options. An example is
where a cable-TV company offering a sports package and a movie package raises prod-
uct prices; the resulting welfare calculations require new results because the packages
are not exclusive alternatives for a potential consumer. We show that the welfare distri-
bution resulting from a single price change can be directly expressed as a closed-form
functional of choice probabilities but that for multiple price changes it cannot, unlike
the case of multinomial choice among exclusive options. We then show how to construct
nonparametric bounds for these distributions.

Taken together, these results provide new insights into welfare analysis in practical
discrete choice situations, as well as providing practitioners with useful empirical tools

4Welfare calculations in the two scenarios described above correspond to situations where the price vec-
tors before and after are given. The process through which the final price vector following the relevant
change is calculated requires modeling the supply side; see Hausman and Leonard (2002, pp. 256–258), for
an illustration of the methodology.

5For common parametric models, like mixed logit, these issues are assumed away, and welfare distribu-
tions are point-identified simply via functional form assumptions.
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for evaluating policy changes in real life settings. In Section 4, we discuss some issues
related to practical implementation of our results, and state a new and useful finding,
namely that under income endogeneity and corresponding to a price increase, the EV
but not the CV can be used for legitimate welfare analysis even in the absence of instru-
ments or control functions.

Section 5 provides an empirical illustration of our methods in a setting of multino-
mial choice among modes of fishing. Using microdata, previously analyzed in Herriges
and Kling (1999), we conduct private welfare analysis of price and quality changes, and
the elimination of choice alternatives (e.g., for environmental protection). We show that
logsum based estimates are substantively very different from those obtained using our
methods. In particular, our estimates vary much less with income, and more impor-
tantly, have an income-gradient of the opposite sign, implying the exact opposite con-
clusion regarding progressivity of the economic changes, compared with the logsum es-
timates.

The proofs of all theoretical results are provided in the Appendix.

2. Multiple price changes

Set-up and notation: Consider a multinomial choice situation where alternatives are in-
dexed by j = 1� � � � � J; individual income is denoted by Y , and price of alternative j by
Pj . Individual utility from choosing alternative j is Uj(Y − Pj�η), j = 1� � � � � J, where η

denotes individual heterogeneity of unknown dimension; η is distributed in the pop-
ulation with unknown marginal CDF Fη(·). We have a cross-sectional random sample
of consumers, and observe their characteristics including income, the prices they face,
and the choice they make. The following analysis implicitly conditions on observable
nonincome characteristics.

Define the structural choice probability for alternative j evaluated at price vector p
and income y, denoted {qj(p� y)}, j = 1� � � � � J, as

qj(p� y) =
∫

1
{
Uj(y −pj� r) > max

k�=j

{
Uk(y −pk� r)

}}
dFη(r)� (1)

In words, if we randomly sample individuals from the population, and offer the price
vector p and income y to each sampled individual, then a fraction qj(p� y) will choose
alternative j, in expectation.

Assumption 1. Assume that for each η and for each j = 1� � � � � J, the utility function
Uj(·�η) is continuous and strictly increasing.

The first part of Assumption 1 simply says that utilities are nonsatiated with respect
to the numeraire. Note that this assumption leaves the dimension of heterogeneity com-
pletely unspecified, and says nothing about how utility changes with unobserved het-
erogeneity.

Now consider a hypothetical change in the price vector from p0 ≡ (p10�p20� � � � �pJ0)

to p1 ≡ (p11�p21� � � � �pJ1). Then the EV at income y for an η type consumer is the in-
come reduction S in the initial situation that would lead to attainment of the eventual
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indirect utility. Formally, the EV is the solution S to the equation:

max
{
U1(y −p11�η)�U2(y −p21�η)� � � � �UJ(y −pJ1�η)

}
= max

{
U1(y − S −p10�η)�U2(y −p20 − S�η)� � � � �UJ(y −pJ0 − S�η)

}
�

(2)

Similarly, the CV is the income compensation in the eventual situation necessary to re-
store the initial indirect utility; formally, the CV is the solution S to the equation:

max
{
U1(y + S −p11�η)�U2(y + S −p21�η)� � � � �UJ(y + S −pJ1�η)

}
= max

{
U1(y −p10�η)�U2(y −p20�η)� � � � �UJ(y −pJ0�η)

}
�

(3)

As η varies in the population, the CV and EV will have a distribution across consumers.
Our goal is to estimate these distribution functions using the cross-sectional dataset.

Note that by analogy with the single price change case, one can attempt to define
the change in average Marshallian consumer surplus in the multiple price change case
via the line-integral

CS(L) = −
∫
L

J∑
j=1

qj(p� y)dpj� (4)

where L denotes a path from p0 to p1 (cf. Auerbach (1985, equation (2.2))). The negative
sign stems from the fact that rise in price leads to a loss in consumer surplus.

In the set-up described above, we first show that for arbitrary price changes, the EV
and CV are well-defined under Assumption 1, but the Marshallian Consumer Surplus is
not. We then show why one cannot get welfare distributions for multiple price changes
by iterating a simpler result for a single price change, and then establish the first main
result of this paper, namely that the marginal distributions of individual-level EV and CV
for arbitrary changes in the price vector can be obtained as closed-form functionals of
the structural choice probabilities.

We will assume without loss of generality that

pJ1 −pJ0 ≥ pJ−1�1 −pJ−1�0 ≥ · · · ≥ p11 −p10� (5)

That is, label the alternative with the smallest price change (the smallest could be a neg-
ative number, representing a fall in price) alternative 1, the next smallest as alternative 2
and so on.

Now, it is well known that for continuous choice with multiple prices changing si-
multaneously, the Marshallian Consumer Surplus is generically undefined in the sense
that the corresponding line-integral is path-dependent, but the Hicksian CV and EV con-
tinue to remain well-defined (cf., Tirole (1988, p. 11)). Our first result establishes that the
same conclusion holds for discrete choice.

Proposition 1. Consider the multinomial choice set-up with J alternatives. Consider
a price change from p0 ≡ (p10�p20� � � � �pJ0) to p1 ≡ (p11�p21� � � � �pJ1). Under Assump-
tion 1, the individual compensating and equivalent variations are uniquely defined.
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Proof. Let p0 = (p10�p20� � � � �pJ0) denote the initial price vector and p1 = (p11�p21�

� � � �pJ1) denote the final price vector. By definition,

max
{
U1(y −p11�η)� � � � �UJ(y −pJ1�η)

}
= max

{
U1(y −p10 − S�η)� � � � �UJ(y −pJ0 − S�η)

}
�

(6)

Since each Uj(·�η) is continuous, the RHS must be continuous in S. Now, if S < p11 −p10,
then the RHS will be larger than the LHS, and if S > pJ1 − pJ0, then the RHS will be
smaller than the LHS. By continuity and the intermediate value theorem, there must ex-
ist at least one S that solves (6). Now, since each Uj(·�η) is strictly increasing, the RHS of
(6) is strictly decreasing in S. Therefore, the solution must be unique. An exactly analo-
gous argument works for the CV where the corresponding equality is

max
{
U1(y −p11 + S�η)� � � � �UJ(y −pJ1 + S�η)

}
= max

{
U1(y −p10�η)� � � � �UJ(y −pJ0�η)

}
�

(7)

�

Marshallian consumer surplus: It can be shown that for discrete choice with multiple
price changes, the integral (4) is path-dependent. In the Appendix, we demonstrate this
for the case with 3 alternatives.

2.1 Welfare distributions for multiple price changes

Bhattacharya (2015) showed that in the above setting, when the price of a single alter-
native changes ceteris paribus, the resulting CV and EV distributions can be expressed
as closed-form functionals of choice probabilities. Interestingly, one cannot iterate this
single price change result to obtain the welfare distribution for simultaneous changes
in the prices of multiple alternatives. This fact is shown in the Appendix. Consequently,
an independent result is required for welfare analysis corresponding to simultaneous
changes in multiple prices, and it is given by the following theorem.

Theorem 1. Consider the multinomial choice set up with J exclusive alternatives. Con-
sider a price change from p0 ≡ (p10�p20� � � � �pJ0) to p1 ≡ (p11�p21� � � � �pJ1) satisfying (5).
Denote pj1 − pj0 by �pj for j = 1� � � � � J. Under Assumption 1, the marginal distribution
of the individual EV evaluated at income y is given by

Pr(EV ≤ a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0� if a < �p1�
j∑

k=1

qk

(
p11� � � � �pj1�

pj+1�0 + a� � � � �pJ0 + a� y

)
�

if �pj ≤ a < �pj+1� a ≥ 0�1 ≤ j ≤ J − 1�
j∑

k=1

qk

(
p11 − a� � � � �pj1 − a�

pj+1�0� � � � �pJ0� y − a

)
�

if �pj ≤ a < �pj+1� a < 0�1 ≤ j ≤ J − 1�

1� if a ≥ �pJ�

(8)
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while that of the individual CV evaluated at income y is given by

Pr(CV ≤ a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0� if a < �p1�
j∑

k=1

qk

(
p11� � � � �pj1�

pj+1�0 + a� � � � �pJ0 + a� y + a

)
�

if �pj ≤ a < �pj+1� a ≥ 0�1 ≤ j ≤ J − 1�
j∑

k=1

qk

(
p11 − a� � � � �pj1 − a�

pj+1�0� � � � �pJ0� y

)
�

if �pj ≤ a < �pj+1� a < 0�1 ≤ j ≤ J − 1�

1� if a≥ �pJ�

(9)

where qks are defined above in equation (1). (The separate entries for a ≥ 0 and a < 0
in each line of (8) and (9) arise from accommodating rise and fall of prices, respec-
tively).

These distributional results cover positive, zero, and negative price changes. For ex-
ample, in the 3-alternative case, suppose alternative 2 is the outside option with price
p21 = p20 = 0, and �p1 < 0 <�p3, then (8) becomes

Pr(EV ≤ a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0� if a < �p1�

q1(p11 − a�0�p30� y − a)� if �p1 ≤ a < 0�

q1(p11�0�p30 + a� y)+ q1(p11�0�p30 + a� y)� if 0 ≤ a < �p3�

1� if a ≥ �p3�

(10)

Finally, note that in the above results, Assumption 1 guarantees that the CDFs are
non-decreasing. For instance, in the 3-alternative case, for the CV we require

q1(p11�p20 + a�p30 + a� y + a) ≤ q1
(
p11�p20 + a′�p30 + a′� y + a′) (11)

whenever p11 − p10 ≤ a < a′. But this is true because the LHS is the probability of the
event

U1(y + a−p11�η)≥ max
{
U2(y −p20�η)�U3(y −p30�η)

}
⇒ U1

(
y + a′ −p11�η

)≥ max
{
U2(y −p20�η)�U3(y −p30�η)

}
� since a′ > a

⇐⇒ U1
(
y + a′ −p11�η

)≥ max

{
U2
(
y + a′ − (p20 + a′)�η)�

U3
(
y + a′ − (p30 + a′)�η)

}
�

whose probability is the RHS of the previous display.
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Remark 1. It is implicit throughout that the price changes do not alter the distribution

of heterogeneity, for example, a large tuition subsidy in a district might attract outsiders

with a strong preference for education to migrate in, altering the distribution of prefer-

ences relative to the status-quo. In other words, the price changes considered here are

assumed to be modest enough to have no impact on the distribution of η, as is implicitly

assumed in this literature.

The expected welfare change and deadweight loss follow from the CDF. For example,

if (10) results from a subsidy |�p1| on alternative 1, and a tax �p3 on alternative 3, then

E(Deadwt_Loss) = E(EV)−�p1 × q1(p11�0�p31� y)

−�p3 × q3(p11�0�p31� y +�p3)�

2.2 Elimination of an alternative

Consider a setting of multinomial choice among exclusive alternatives {1� � � � � J + 1}.

Suppose the alternative J + 1 is eliminated subsequently, which can potentially affect

consumer welfare by both restricting the choice set and also by affecting the prices of

other alternatives. Assume that we have data on a cross section of individual choices in

the preelimination situation. We wish to calculate the distribution of Hicksian welfare

effects that would result from eliminating the J + 1th alternative. Applied researchers

typically use the heuristic idea that eliminating an alternative is “like” raising its price to

infinity, and thereafter use the welfare formulae for price change to evaluate welfare ef-

fects of eliminating an alternative. Our analysis below provides a formal justification for

this heuristic approach, and shows that it is valid only when prices of other alternatives

do not change and when one is interested in the EV. Furthermore, the incorporation of

preference heterogeneity and income effects reveals interesting differences between CV

and EV based formulae and identifiability of their distribution.

Toward that end, consider an individual at income y and unobserved heterogene-

ity η whose utility from consuming alternative j at price pj is given by Uj(y − pj�η).

The problem is to find the distribution of welfare effects across such individuals result-

ing from potentially eliminating alternative J + 1. Suppose from an initial price vec-

tor (p10� � � � �pJ0�pJ+1), following elimination of the J + 1th alternative, the eventual

price vector becomes (p11� � � � �pJ1). The marginal distributions of EV and CV result-

ing from this change are given by the following corollary, whose proof appears in the

Appendix.

Corollary 1. Suppose Assumption 1 holds for all alternatives. Also assume that for any

bundle (j� y −pj), if pj ↑ ∞ with prices of other alternatives finite, then for each η at least

one other bundle (k� y −pk) will be strictly preferred to (j� y −pj). Let qk(·� � � � � ·� y) be as
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defined in (1), with J + 1 alternatives. Then

Pr(CV ≤ a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0� if a < �p1�

j∑
k=1

qk

⎛
⎜⎝p11� � � � �pj1�

pj+1�0 + a� � � � �pJ0 + a�pJ+1 + a�

y + a

⎞
⎟⎠ �

if �pj ≤ a < �pj+1� j = 1� � � � � J − 1� a≥ 0�
j∑

k=1

qk

(
p11 − a� � � � �pj1 − a�

pj+1�0� � � � �pJ0�pJ+1� y

)
�

if �pj ≤ a < �pj+1�1 ≤ j < J − 1� a < 0�

1 − qJ+1(p11� � � � �pJ1�pJ+1 + a� y + a)� if �pJ ≤ a�a ≥ 0�

1 − qJ+1(p11 − a� � � � �pJ1 − a�pJ+1� y)� if �pJ ≤ a < 0�

(12)

On the other hand,

Pr(EV ≤ a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0� if a < p11 −p10�
j∑

k=1

qk

(
p11� � � � �pj1�

pj+1�0 + a� � � � �pJ0 + a�pJ+1 + a� y

)
�

if �pj ≤ a < �pj+1� j = 1� � � � � J − 1� a≥ 0�
j∑

k=1

qk

(
p11 − a� � � � �pj1 − a�

pj+1�0� � � � �pJ0�pJ+1� y − a

)
�

if �pj ≤ a < �pj+1�1 ≤ j < J − 1� a < 0�

1 − qJ+1(p11� � � � �pJ1�pJ+1 + a� y)� if �pJ ≤ a�a ≥ 0�

1 − qJ+1(p11 − a� � � � �pJ1 − a�pJ+1� y − a)� if �pJ ≤ a < 0�

(13)

As in the previous theorem, the pairs of results for a < 0 and a ≥ 0 correspond to
which existing alternatives have become more and less expensive, respectively, follow-
ing the elimination of the J + 1th alternative. Also, note that in order to calculate the
probabilities appearing in Theorem 2, we need to observe adequate cross-sectional vari-
ation in the price of all J + 1 alternatives in the preelimination period.

Corollary 2. If elimination of the alternative has no effect on prices of the other alter-
natives, then pj1 = pj0 for all j = 1� � � � � J, and the above results simplify to

Pr(CV ≤ a) =
{

0� if a < 0�

1 − qJ+1(p10� � � � �pJ0�pJ+1 + a� y + a)� if 0 ≤ a�
(14)

Pr(EV ≤ a) =
{

0� if a < 0�

1 − qJ+1(p10� � � � �pJ0�pJ+1 + a� y)� if 0 ≤ a�
(15)
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The corresponding average values are given by

E(CV) =
∫ ∞

pJ+1

qJ+1(p10� � � � �pJ0� r� y + r −pJ+1)dr� (16)

E(EV) =
∫ ∞

pJ+1

qJ+1(p10� � � � �pJ0� r� y)dr� (17)

using the change of variable r = pJ+1 + a.

The expression (17) is commonly used as an ad hoc measure of the welfare effect of
introducing a new product. Thus it follows from the above discussion that if elimination
of the alternative entails no price change for the other alternatives, then the commonly
used expression happens to equal the mean EV, but ceases to be so if one is interested in
the mean CV, or prices of substitutes also change.

In order to calculate the above expressions nonparametrically, a researcher needs to
observe demand up to the price where the choice probability becomes zero. Typically,
in a dataset, one is unlikely to observe such prices, since producers have no incentive
to raise prices where revenue is zero. But then one can obtain a lower bound for E(CV)
by integrating up to the highest price observed in the dataset where demand from con-
sumers is nonzero. This is in contrast to the case of price changes for multiple alterna-
tives, reported in equation (8) above, where welfare distributions are nonparametrically
identified as long as the hypothetical price changes are within the range of the observed
price data. Of course, for parametric choice probabilities, for example, random coef-
ficient logit, expressions like (17) are identified directly from functional form assump-
tions.

Finally, note that the above expressions can also be used for retrospective calculation
of welfare distributions corresponding to introduction of a new alternative, simply by
interchanging the labels of EV and CV. Here, “retrospective” means that we must have
consumption data after the product has been introduced.

3. Two extensions

In this section, we develop results for nonparametric welfare analysis in two practically
important settings, namely (i) quality change in an alternative, and (ii) price changes
when alternatives are nonexclusive. In these two cases, in general, one cannot express
the distribution of welfare using functionals of structural choice probabilities; nonethe-
less, bounds can be constructed on the welfare distribution functions, and thus, on av-
erage welfare, as shown below.

3.1 Change in characteristics

The first setting we consider is where characteristics of a choice alternative changes. For
example, consider a household in a poor country that is deciding whether to send its
teenage daughter to school, or to let her stay at home. It is intuitive that the teacher
student ratio in the local school would be an important determinant of the utility from
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school attendance. Similarly, in transportation choice settings, increasing the frequency
of buses would raise every individual’s utility from choosing the bus option, as op-
posed to driving or walking. These characteristics, unlike prices, do not appear as ad-
ditive components of net income inside utilities. The additivity of price, resulting from
the budget constraint, was instrumental in deriving the results of the previous section.
Therefore, welfare analysis of changes in characteristics would require a result that is
different from those above. In this subsection, we develop such a result.

To keep the exposition transparent, we will focus on binary choice, and then out-
line how to generalize to the multinomial case. Accordingly, suppose an individual at
income y and preference η is choosing between two options 0 and 1, with utilities given
by U0(y�η) and U1(y − p�x�η), where x represents a vector of characteristics of option
1. For example, in the schooling example, option 0 is staying at home, option 1 is going
to school, p is the tuition fee, and x is the teacher- student ratio in the local school. De-
fine the structural choice probability of alternative 1 at price p, income y and quality x

as

q1(p� y�x)=
∫

1
{
U1(y −p�x� r) > U0(y� r)

}
dFη(r)� (18)

where Fη(·) represents the marginal distribution of unobserved heterogeneity.
We will make the following assumption.

Assumption 2. (i) For each x and η, U1(·�x�η) is strictly increasing and continuous;
additionally, for each η. U0(·�η) is strictly increasing and continuous.

Now, suppose from an initial price p0 and initial quality x0, the price and attribute
change to p1 and x1, respectively. It is reasonable to assume that improvement of quality
will be funded, at least partially, by an increase in prices, and hence we consider p1 ≥ p0.
Setting p1 = p0, we can cover the case where there is no change in price, for example,
the improvement is funded by external resources.

The private CV resulting from this change is defined by the solution S to the equation

max
{
U0(y�η)�U1(y −p0�x0�η)

}= max
{
U0(y + S�η)�U1(y + S −p1�x1�η)

}
� (19)

Our first result is that the distribution of S cannot be identified from knowledge of
the structural choice probabilities. We demonstrate this in the Appendix via a counterex-
ample, and state the conclusion as a theorem.

Theorem 2. Under Assumption 2, the marginal distribution of S is not identified from
the structural choice probabilities (the proof is in the Appendix).

One can, of course, construct bounds on these distributions, which are provided in
Propositions 2 and 3 in the Appendix. To see where these bounds come from, note from
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(19) and Assumption 2(i), that for a < 0,

Pr(CV ≤ a)

= Pr

⎡
⎢⎢⎣

max
{
U0(y�η)�U1(y −p0�x0�η)

}
≤ max

{
U0(y + a︸ ︷︷ ︸

<y

�η)�U1(y + a−p1�x1�η)
}
⎤
⎥⎥⎦

= Pr
[
max

{
U0(y�η)�U1(y −p0�x0�η)

}≤U1(y + a−p1�x1�η)
]
�

The Frechet upper bound on this is given by

min

{
Pr
[
U0(y�η)≤U1(y + a−p1�x1�η)

]
�

Pr
[
U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]
}

= min

{
q1(p1 − a� y�x1)�

Pr
[
U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]
}
�

The ultimate upper bound comes from a lower bound on Pr[U1(y − p0�x0�η) > U1(y +
a−p1�x1�η)], obtained using

Pr
[
U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
≥ max

y ′ Pr
[
U1(y −p0�x0�η)≥U0

(
y ′�η

)≥U1(y + a−p1�x1�η)
]
�

and then applying Frechet bounds to this. In the application below, we provide explicit
numerical expressions for these bounds.

It is straightforward to extend the above result to the case of multinomial choice. For-
mally, if we have alternatives 0�1� � � � � J with the quality of alternative 1 changing from
x10 to x11, and price changing form p0 to p1, then the CV solves

max
{
U0(y�η)�U1(y −p0�x10�η)�U2(y −p2�x2�η)� � � � �UJ(y −pJ�xJ�η)

}
= max

{
U0(y + S�η)�U1(y + S −p1�x11�η)�

U2(y + S −p2�x2�η)� � � � �UJ(y + S −pJ�xJ�η)

}
�

Letting

U−1(y�p�x�η)≡ max
{
U0(y�η)�U2(y −p2�x2�η)� � � � �UJ(y −pJ�xJ�η)

}
�

the previous display reduces to

max
{
U−1(y�p�x�η)�U1(y −p0�x10�η)

}
= max

{
U−1(y + S�p�x�η)�U1(y + S −p1�x11�η)

}
�

which is the same as (19) with U0(y�η) replaced by U−1(y�p�x�η). The corresponding
bounds on the CV distribution (see equation (44) in the Appendix) would involve replac-
ing q0(·)s with the probability of not buying alternative 1.
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Remark 2. Defining and proving “sharpness” of such bounds without any assumptions
on the structure of preferences and dimension of heterogeneity (except Assumption 2)
would be an interesting exercise. We believe that such results are best developed as
corollaries of some fundamental revealed preference type results, related to McFadden
and Richter (1990). As such, there is sufficient material here for an independent paper.
We are currently exploring these and some related questions in a separate project.

We conclude this subsection with the observation that further restrictions on pref-
erences, though short of fully parametric specifications, can yield point-identification
of welfare distributions for quality change. One such restriction is that the utility from
alternative 1 is weakly separable in unobserved heterogeneity, that is, U1(y − p�x�η) ≡
V1(h1(y − p�x)�η), where V1(·�η) is strictly increasing for each η, and h1(·� ·) is contin-
uous and strictly increasing in the first component. A special case of weak separability,
where the functional form of h1(·� ·) is assumed known up to estimable real parameters
is the familiar “index restriction,” popular in the semiparametrics literature. Weak sepa-
rability has been used previously in econometrics for identifying effects of endogenous
dummy variables (cf. Vytlacil and Yildiz (2007)), while index restrictions have been used
for achieving identification in general demand systems; cf. Berry and Haile (2015).

Consider a change from (p0�x0) to (p1�x1) satisfying the following condition.

Condition S. Assume that the change from (p0�x0) to (p1�x1) is small enough that
there exists a finite a satisfying

h1(y + a−p1�x1)= h1(y −p0�x0)�

This basically says that the quality and price change are not so large that no amount
of compensation can restore the utility from consuming alternative 1 to the prechange
level for any η.

Proposition 2. Suppose weak separability holds. Consider a change from (p0�x0) to
(p1�x1) satisfying condition (S). Then there is a unique ā that solves q1(p1 − ā� y�x1) =
q1(p0� y�x0). Furthermore, the distribution of individual CV resulting from this change is
point-identified from the structural choice probabilities, and it is given by the following
expressions:

If ā≤ 0, then

Pr(S ≤ a)=

⎧⎪⎪⎨
⎪⎪⎩

0� if a < ā�

q1(p1 − a� y�x1)� if ā≤ a < 0�

1� if a≥ 0�

If ā > 0, then

Pr(S ≤ a) =

⎧⎪⎪⎨
⎪⎪⎩

0� if a < 0�

q0(p0 + a� y + a�x0)� if 0 ≤ a < ā�

1� if a≥ ā�

(The proof is in the Appendix.)
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3.2 Nonexclusive discrete choice

Assume that there are two binary choices which are nonexclusive among themselves.
For example, suppose choice 1 for a household is whether to subscribe to a sports pack-
age offered by a cable TV network which costs P1 and choice 2 is whether to subscribe
to a movie package which costs P2. A household with income Y and preferences η then
has four exclusive options—{1}, {2}, {1�2}, {0} (where {0} denotes choosing none of the
two packages) with respective utilities U1(Y −P1�η), U2(Y −P2�η), U12(Y −P1 −P2�η),
and U0(Y�η), respectively.

Single price change: Consider the CV corresponding to a rise in the price of the sports
package from p10 to p11 with the price of the movie package fixed at p2. The CV evalu-
ated at income Y = y is the solution to the equation

max

{
U0(y + CV�η)�U1(y + CV −p11�η)�

U2(y + CV −p2�η)�U12(y + CV −p11 −p2�η)

}

= max

{
U0(y�η)�U1(y −p10�η)�

U2(y −p2�η)�U12(y −p10 −p2�η)

}
�

(20)

Now, group option {1} and {1�2} together (call it group A) and options {0} and {2}
together and call it group B. Define

ε
def= (p2�η)�

VA(y −p1� ε)
def= max

{
U1(y −p1�η)�U12(y −p1 −p2�η)

}
�

VB(y�ε)
def= max

{
U0(y�η)�U2(y −p2�η)

}
�

Then (20) becomes

max
{
VA(y + CV −p11� ε)�VB(y + CV� ε)

}= max
{
VA(y −p10� ε)�VB(y�ε)

}
� (21)

If the U functions are strictly increasing in the first argument for each η, then so are
VA(·� ε) and VB(·� ε) for each ε. Now we can apply Theorem 1 of Bhattacharya (2015)
for binary choice to this problem and get the marginal distribution of the compensating
variation. For example, for 0 ≤ a < p11 −p10, Theorem 1 of Bhattacharya (2015) gives

Pr(CV ≤ a)

= Pr
[
VB(y + a�ε) ≥ VA

(
y + a− (p10 + a)�ε

)]

= Pr

⎡
⎢⎢⎢⎣

max
{
U0(y + a�η)�U2(y + a−p2�η)

}
≥ max

{
U1
(
y + a− (p10 + a)�η

)
�

U12
(
y + a− (p10 + a)−p2�η

)
}
⎤
⎥⎥⎥⎦

= q0(p10 + a�p2� y + a)+ q2(p10 + a�p2� y + a)�
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Thus

Pr(CV ≤ a) =

⎧⎪⎪⎨
⎪⎪⎩

0� if a < 0�

q0(p10 + a�p2� y + a)+ q2(p10 + a�p2� y + a)� if 0 ≤ a < p11 −p10�

1� if a ≥ p11 −p10�

Multiple price changes: The key fact enabling us to write (20) as the binary choice CV
(21) is that P2 is being held fixed at p2; if P2 also varied across individuals, then the distri-
bution of ε would vary beyond the variation of η and the binary formulation would no
longer be applicable. Indeed, for multiple price changes in the nonexclusive alternatives
case, welfare distributions can no longer be written in terms of choice probabilities. To
see this, consider a simultaneous rise in P1 and P2 from (p10�p20) to (p11�p21). Assume
that 0 <p11 −p10 <p21 −p20.

Then the CV is defined via

max

{
U0(y + CV�η)�U1(y + CV −p11�η)�

U2(y + CV −p21�η)�U12(y + CV −p11 −p21�η)

}

= max
{
U0(y�η)�U1(y −p10�η)�U2(y −p20�η)�U12(y −p10 −p20�η)

}
�

Now,

Pr[CV = p11 −p10]

= Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
U1(y −p10�η)≥ max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0(y�η)�U2(y −p20�η)�

U12(y −p10 −p20�η)�

U0(y +p11 −p10�η)�

U2(y +p11 −p10 −p21�η)�

U12(y −p10 −p21�η)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Pr

[
U1(y −p10�η)≥ max

{
U2(y −p20�η)�U12(y −p10 −p20�η)�

U0(y +p11 −p10�η)

}]
�

(22)

This probability is not generically point-identified from the choice probabilities. To see
this, consider the following counterexample.

Counterexample: Consider a classic McFadden (1973) type utility specification:
Uj(a�η) = βja + ηj , for j = 0�1�2�12, where the βj are nonstochastic coefficients,
and the ηs are distributed standardized extreme valued. Then because the regres-
sors (y� y − p1� y − p2� y + p1 − p2) constitute a 3-dimensional subspace—the sum of
the 1st and the 4th regressors equals the sum of the 2nd and the 3rd implying exact
multicollinearity—the 4 coefficients (β0�β1�β2�β12) are not separately identified. A di-
rect way to verify this is to note that the Hessian of the likelihood function is of the form
W ⊗XX ′, where X ≡ (y� y−p10� y−p20� y−p10 −p20)

′ (cf. Böhning (1992, pp. 198–199)),
and so its expectation is of the form E(W ⊗ XX ′). Given that the 4th component of X
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is an exact linear combination of the first 3, in each block E(WijXX ′) of the Kronecker
product the 4th row is exactly the same linear combination of the first 3 rows. So it fol-
lows that E(W ⊗XX ′) is globally singular. Therefore, by Rothenberg (1971, Theorem 1),
the parameter vector β is not even locally identified.

Now the expression for Pr[CV = p11 −p10] in this case equals

q1(y +p11 −p10� y −p10� y −p20� y −p10 −p20)

= exp
(
β1(y −p10)

)
(

exp
(
β0(y +p11 −p10)

)+ exp
(
β1(y −p10)

)
+ exp

(
β2(y −p20)

)+ exp
(
β12(y −p10 −p20)

)
) � (23)

Since x ≡ (y + p11 − p10� y − p10� y − p20� y − p10 − p20) spans a 4-dimensional space
(unless p11 = p10), we cannot have that for some θ �= β,

q1(y +p11 −p10� y −p10� y −p20� y −p10 −p20;β)
= q1(y +p11 −p10� y −p10� y −p20� y −p10 −p20;θ)

for all p10, p11, p20, y, if the joint distribution of (p10�p11�p20� y) is nondegenerate. To
see this explicitly, consider the following thought experiment. Suppose at a specific value
x of the regressors, q1(x�β) = q1(x�θ), for some θ �= β. Now holdingp10,p20, y fixed, if we
increase p11, then the denominator of q1(·�β) will increase more (resp., less) than that
of q1(·� θ) if β0 > θ0 (resp., β0 < θ0), so that q1(·�β) = q1(·� θ) cannot continue to hold.
Therefore, we must have β0 = θ0. Next, if we increase y, p10 and p20 by the same amount
such that y −p10, y −p20 remain fixed, only the 4th term in the denominator of (23) will
change, and by the same logic as above, maintaining q1(·�β) = q1(·� θ) would require
β12 = θ12. Changing y and p10 by the same amount holding p11 and p20 fixed would
deliver β2 = θ2, and changing y while changing p20 by the same amount and changing
p11 the same amount in the opposite direction while holding p10 fixed would deliver
β1 = θ1.

Thus although there exist θ �= β which will produce the same choice probabilities
for all potentially observable values of prices and income, the expression (22) is differ-
ent with positive probability (w.r.t. the joint distribution of the regressors) if θ �= β. This
implies that the CV distribution cannot be learned from the choice probabilities unless
p11 = p10, which is the single price change scenario.

We summarize the above discussion as a theorem.

Theorem 3. For multinomial choice with nonexclusive alternatives, the marginal dis-
tribution of EV and CV resulting from a change in the price of a single alternative can
be expressed as a closed- form functional of the structural choice probabilities. For a si-
multaneous price change of multiple alternatives, the welfare distributions are not point-
identified from the structural choice probabilities.

Note that the conclusion of the above theorem is starkly different from the multi-
nomial case with exclusive alternatives where welfare distributions are point-identified
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from the structural choice probabilities for both single and multiple price changes. An
intuition for the result is that in the nonexclusive case, there is a systematic relationship
between the prices of the different ultimate options, so that in a dataset we can never
observe independent price variations across the various (composite) options, no matter
how many price combinations are observed across the constituent individual alterna-
tives.

Bounds for the CV distribution: One can nonetheless bound the probability (22) us-
ing Assumption 1. In particular, let

A =
{
p∗

1�p
∗
2� y

∗ : y∗ −p∗
1 ≥ y −p10� y

∗ −p∗
2 ≤ y −p20�

y∗ −p∗
1 −p∗

2 ≤ y −p10 −p20� y
∗ ≤ y +p11 −p10

}
�

B =
{
p∗

1�p
∗
2� y

∗ : y∗ −p∗
1 ≤ y −p10� y

∗ −p∗
2 ≥ y −p20�

y∗ −p∗
1 −p∗

2 ≥ y −p10 −p20� y
∗ ≥ y +p11 −p10

}
�

Then an upper bound consistent with Assumption 1 is given by

Pr

[
U1(y −p10�η)≥ max

{
U2(y −p20�η)�U12(y −p10 −p20�η)�

U0(y +p11 −p10�η)

}]

≤ inf
(p∗

1�p
∗
2�y

∗)∈A
Pr

⎡
⎢⎢⎣U1

(
y∗ −p∗

1�η
)≥ max

⎧⎪⎪⎨
⎪⎪⎩
U2
(
y∗ −p∗

2�η
)
�

U12
(
y∗ −p∗

1 −p∗
2�η

)
�

U0
(
y∗�η

)
⎫⎪⎪⎬
⎪⎪⎭
⎤
⎥⎥⎦

= inf
(p∗

1�p
∗
2�y

∗)∈A
q1
(
p∗

1�p
∗
2� y

∗)�

(24)

These bounds arise from the fact that if, for example, y∗ − p∗
1 ≥ y − p10, then U1(y

∗ −
p∗

1�η) ≥ U1(y − p10�η), by Assumption 1, so that the probability of U1(y − p10�η) ex-
ceeding a specific number is smaller than that of U1(y

∗ − p∗
1�η) exceeding that same

number. Similarly, y∗ −p∗
2 ≤ y −p20 implies that U2(y −p20�η)≥U2(y

∗ −p∗
2�η) so that

the probability of U2(y − p20�η) being exceeded by a number is smaller than that of
U2(y

∗ −p∗
2�η) being exceeded by it, etc.

By a similar logic, a lower bound on (22) is given by

Pr

[
U1(y −p10�η)≥ max

{
U0(y +p11 −p10�η)�U2(y −p20�η)�

U12(y −p10 −p20�η)�

}]

≥ sup
(p∗

1�p
∗
2�y

∗)∈B
Pr

⎡
⎢⎢⎣U1

(
y∗ −p∗

1�η
)≥ max

⎧⎪⎪⎨
⎪⎪⎩
U2
(
y∗ −p∗

2�η
)
�

U12
(
y∗ −p∗

1 −p∗
2�η

)
�

U0
(
y∗�η

)
⎫⎪⎪⎬
⎪⎪⎭
⎤
⎥⎥⎦

= sup
(p∗

1�p
∗
2�y

∗)∈B
q1
(
p∗

1�p
∗
2� y

∗)�

(25)
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Remark 3. In some practical situations, suppliers may provide a discount if a house-
hold buys both options. If this discounted price varies in the cross section over and
above that of the constituent options, then this setting becomes identical to a multi-
nomial choice with four alternatives and independent price variation across them. One
can then point-identify the EV/CV distributions for multiple price changes simply by
using Theorem 1.

4. Discussions on implementation

The results reported in Theorem 1, and the associated corollaries are fully nonparamet-
ric in that no functional form assumptions are required to derive them. When imple-
menting these results in practical applications, one can therefore estimate conditional
choice probabilities nonparametrically, for example, using kernel or series regressions,
and then use those estimates to calculate welfare distributions. For instance, recall the 3-
alternative case, leading to (10), where we have, say, p11 −p10 < 0 = p21 −p20 <p31 −p30.
For any random variable X with CDF F(·) and finite mean, the expectation satisfies

E(X) = −
∫ 0

−∞
F(x)dx+

∫ ∞

0

(
1 − F(x)

)
dx;

thus the mean EV from (10) is given by

−
∫ 0

�p1

q1(p11 − a�0�p30� y − a)da+
∫ �p3

0
q3(p11�0�p30 + a� y)da� (26)

where qj(p1�p2�p3� y) denotes the choice probability of alternative j when the price of
the three alternatives are (p1�p2�p3) and income is y. If the dataset is of modest size,
so that kernel regressions are imprecise, then one can alternatively use a parametric ap-
proximation to the choice probabilities. Numerical integration routines are now avail-
able in popular software packages like STATA and MATLAB, and can be used to calculate
the integrals of choice probabilities in the same way that consumer surplus was tradi-
tionally calculated by earlier researchers.

4.1 Endogeneity

In this subsection, we briefly discuss the issue of price/income “endogeneity,” that is, sit-
uations where price or income are correlated with unobserved preference heterogeneity
η, conditional on all other covariates. Note that our theoretical results in Sections 2 and 3
establish the closed-form mapping between welfare distributions and structural choice
probabilities. Once the structural choice probabilities (or nonparametric bounds on
them) are identified, our results deliver identification of the corresponding welfare dis-
tributions without requiring any additional modification due to endogeneity. Nonethe-
less, in practical applications, estimation of the structural choice probabilities would be
necessary before our results can be applied. In this subsection, we (a) briefly outline
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how existing econometric methods can be used to estimate structural choice proba-
bilities, and (b) more importantly, highlight that for price increase (resp., decrease) the
estimation of EV (resp., CV) does not require any correction for income endogeneity.

Income endogeneity: In applications, observed income may be endogenous with re-
spect to individual choice, for example, when omitted variables, such as unrecorded ed-
ucation level, can both determine individual choice and be correlated with income. Un-
der such endogeneity, the observed choice probabilities would potentially differ from
the structural choice probabilities, and one can define welfare distributions either un-
conditionally, or conditionally on income, analogous to the average treatment effect and
the average effect of treatment on the treated, respectively, in the program evaluation lit-
erature. In this context, an important and useful insight, not previously noted, is that for
a price rise, the distribution of the income-conditioned EV is not affected by income en-
dogeneity, whereas that of the CV is; for a fall in price, the conclusion holds with CV and
EV reversed.

To see why that is the case, recall the three alternative cases discussed above, and
define the conditional-on-income structural choice probability at income y ′ as

qcj
(
p1�p2�p3� y

′� y
)=

∫
1
{
Uj

(
y ′ −pj�η

)≥ max
k�=j

Uk

(
y ′ −pk�η

)}
dF(η|y)�

where F(·|y) denotes the distribution of the unobserved heterogeneity η for individuals
whose realized income is y, where y may or may not equal y ′. Now, for a real number
a, satisfying p11 − p10 ≤ a < p21 − p20, it is easy to see that similar to equation (10), the
distributions of EV at a, evaluated at income y, conditional on realized income being y,
are given by

Pr(EV ≤ a|Inc = y) = qc1(p11�p20 + a�p30 + a� y� y)� (27)

while for CV it is given by

Pr(CV ≤ a|Inc = y) = qc1(p11�p20 + a�p30 + a� y + a� y)� (28)

Now, qc1(p11�p20 + a�p30 + a� y� y), by definition, is the fraction of individuals currently
at income y who would choose alternative 1 at prices (p11�p20 +a�p30 +a), had their in-
come been y. Now if prices are exogenous in the sense that P ⊥ η|Y , then the observable
choice probability conditional on price p and income y

q̄1(p�y)

=
∫

1
{
U1(y −p1�η)≥ max

k�=1
Uk(y −pk�η)

}
f (η|p� y)dη

by P⊥η|Y=
∫

1
{
U1(y −p1�η)≥ max

k�=1
Uk(y −pk�η)

}
f (η|y)dη

= qc1(p� y� y)�
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Therefore, (27) equals q̄1(p11�p20 + a�p30 + a� y� y), so no corrections are required
owing to endogeneity. However, in (28), qc1(p11�p20 + a�p30 + a� y + a� y) is the frac-
tion of individuals currently at income y who would choose alternative 1 at prices
(p11�p20 + a�p30 + a), had their income been y + a. This fraction is counterfactual and
not directly estimable because the distribution of η is likely to be different across people
with income y + a relative to those with income y, due to endogeneity. To summarize, if
the objective of welfare analysis is to calculate the EV distribution resulting from price
rise for individuals whose realized income equals the hypothetical income, then endo-
geneity of income is irrelevant to the analysis. This implies that if exogeneity of income
is suspect and no obvious instrument or control function is available, then a researcher
can still perform meaningful welfare analysis based on the EV distribution at realized
income, provided price is exogenous conditional on income and other observed covari-
ates. Furthermore, one can calculate aggregate welfare in the population by integrating
q̄1(p�y) = qc1(p� y� y) over the marginal distribution of income.

Price endogeneity: Price can be correlated with individual heterogeneity either be-
cause there are unobserved choice attributes which vary across individuals, or spa-
tial concentration of individuals with strong preferences for the good could raise local
prices. In such cases, control function methods (e.g., Blundell and Powell (2003)) can po-
tentially be used to identify structural choice probabilities. For example, prices in neigh-
boring markets (a la Hausman (1996)) can be used as instruments to generate residuals
in a first stage, and then these residuals used as control functions in a second step. Such
instruments are more likely to be valid if spatial correlation in prices result primarily
from spatial correlation in supply costs and not from spatial correlation of consumer
preferences. A complete resolution of these issues is left to future research.

5. Empirical illustration

In this section, we provide a brief empirical illustration of our methods using a dataset
on choice of fishing mode in Southern California, previously analyzed in Herriges and
Kling (1999). Our primary purpose is to see what sorts of numerical results one gets by
applying our methods to a real dataset. As an aside, we also compare our results to a fully
parametric, logsum-type approach, popular in applications.

The key features of our microdata, which are publicly available, are discussed in
Kling and Thomson (1996). The dataset consists of a cross section of 1182 individuals.
For each individual, there are 4 potential modes of fishing, namely from the beach, the
pier, a charter boat, and a private boat, labeled 1 through 4, respectively. Individual in-
come ($ per month) is recorded, together with the chosen mode, the price of each alter-
native faced by the individual, and the exogenous catch rate, that is, the average number
of fish per hour of fishing at the site (obtained from an external source) corresponding
to each option. The price reflects primarily transportation costs to the fishing site; see
Kling and Thomson (1996) for a more detailed description of the variables. Table 1 pro-
vides summary statistics.

We use these data to calculate distributions of individual compensating variation
corresponding to two hypothetical policy changes. The first is a simultaneous change in
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Table 1. Summary statistics.

Variable Mean Std. Dev. Min Max

beach 0�11 0�32 0�00 1�00
pier 0�15 0�36 0�00 1�00
private 0�35 0�48 0�00 1�00
charter 0�38 0�49 0�00 1�00
catch-rate beach 0�24 0�19 0�07 0�53
catch-rate pier 0�16 0�16 0�00 0�45
catch-rate private 0�17 0�21 0�00 0�74
catch-rate charter 0�63 0�71 0�00 2�31
income 5250 2958 500 10�000
price-beach 103�42 103�64 1�29 843�19
price-pier 103�42 103�64 1�29 843�19
price-private 55�26 62�71 2�29 666�11
price-charter 84�38 63�54 27�29 691�11

Note: Beach is a dummy for fishing from the beach, price-beach is its
price, catch-rate beach is the number of fish caught per hour, and income
is individual monthly income in dollars. Similarly for the other alternatives.

the prices of fishing from the beach, the pier, and from a private boat. The second is the
private welfare effect of availability of the private boat option and, separately, that of the
charter boat option at hypothetical prices. That is, we consider a thought experiment
where we assume that the private option was initially available at a specific price, and
was subsequently eliminated, for example, due to environmental concerns. The third
exercise involves welfare effects of quality-change, namely a lowering of the catch rate of
the beach option. For each exercise, the mean CV is reported across a range of incomes,
while keeping all other variables (i.e., those not being targeted by the change) fixed at
their mean value. We maintain the assumption of independence between budget sets
and preferences, for this illustration.

In order to avoid curse of dimensionality problems during estimation, we model the
choice probability of each alternative j in a partially linear fashion as

qj(p� y�x) = hj(y −pj)+ x′βj + (y1−j − p−j)
′γj� (29)

where hj(·� ·) denotes a cubic in income and own price, y1 − p−j denotes the vector of
income minus price of other alternatives and x denotes catch rates. These specifications
are to be interpreted as series/sieve approximations to the true nonparametric choice
probabilities.

Multiple price change: For the first exercise, we consider an initial price vector
p0 = (140�140�60�12) and final price vector p1 = (40�40�60�72). Note that the price of
alternatives 1 and 2 have fallen by 100, while that of alternative 4 has risen by 60, with
the price of 3 fixed at 60. These changes in prices correspond to a fall from approxi-
mately the 75th to the 25th percentile for alternatives 1 and 2, and a rise from the 25th
to the 75th percentile for alternative 4. The marginal distribution of individual welfare
losses at income y with catch rates set at their mean values x is given by (cf. equation
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(10))

Pr(CV ≤ a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0� if a <−100�

(q1 + q2)(40 − a�40 − a�60�12� y�x)� if − 100 ≤ a < 0�

1 − q4(40�40�60�12 + a� y + a�x)� if 0 ≤ a < 60�

1� if a ≥ 60�

(30)

We will contrast the mean welfare estimates resulting from this exercise with the popular
Small and Rosen (1981) approach using the so-called “log-sum” formula (cf., Train (2009,
p. 56)). For the multiple price change case, for example, adding income and catch rate
as controls, the log-sum values are given by

E(CV)

= 1
|α|

⎡
⎢⎢⎢⎢⎢⎣ln

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
(
b01 + αp10 +β′

1z
)+ exp

(
b02 + αp2 +β′

2z
)

+ exp
(
b03 + αp2 +β′

3z
)+ exp

(
b04 + αp40 +β′

4z
)

exp
(
b01 + αp11 +β′

1z
)+ exp

(
b02 + αp2 +β′

2z
)

+ exp
(
b03 + αp2 +β′

3z
)+ exp

(
b04 + αp41 +β′

4z
)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎦ �

(31)

where the bs represent the alternative specific intercepts, |α| is the constant marginal
utility of income and z = (x� y), the mean values of catch rates and income. The b’s and
α are estimated via the constrained “mlogit” command in Stata after imposing constant
marginal utility of income by requiring price coefficients to be identical across alterna-
tives.

The substantive difference in functional forms between (29), (30), and (31) is in
how price and income appear in them. The logsum formula is based on the constant
marginal utility of income, and thus requires price coefficients to be identical across
alternatives. In addition, income is arbitrarily incorporated as a covariate, as is usually
done in applications. Our expressions, instead, include income y as appearing in the
form of y −pj , and are thus consistent with a coherent, theoretically justified specifica-
tion.

In Figure 1, we plot the average CV by income, evaluated at mean values of con-
trols, based on the logsum formula of Small and Rosen, adding income as an additional
control,6 and then using our methods (30) with specification (29) for the choice prob-
abilities. Evidently, the logsum estimates are small, and decrease with income, whereas
our CV estimates imply larger (about 2 times) welfare losses which increase with income.
The numerical results do vary a bit if a quadratic or a linear spline is used as opposed
to a cubic, but these two substantive features continue to hold. It is also interesting to
note that due to a higher proportion (3 times) of people choosing alternative 4 whose

6The logsum formula comes from an assumption of quasilinear utilities where there is no income effect.
Taken literally, this would imply a flat welfare estimate against income. But in most empirical applications,
income is added as a demographic variable (as opposed to coming from the budget constraint), which is
what we use here.
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Figure 1. Average CV for multiple price change. Average welfare loss in $ by monthly income
from a price fall from the 75th to the 25th percentile for beach and pier fishing, and a rise from
the 25th to the 75th percentile for private-boat fishing, evaluated at mean values of income and
catch rate of all alternatives and mean price of charter-boat fishing. Solid line corresponds to our
nonparametric estimates, dashed line to the logsum estimates.

price has risen, the overall welfare is reduced, that is, average CV is positive, although
the prices of alternatives 1 and 2 have fallen by a large amount.

Eliminate alternative: Suppose the local government is considering means to reduce
environmental damage by banning either the private boat or the charter boat option. For
deciding which option to ban, it is useful to know the loss in private welfare from each.
Toward that end, we first consider eliminating the private option from a situation where
the price vector was (75�75�60�33), which are essentially the median values in the data,
and the catch rates were at their mean value, denoted x, and assuming no changes in
the prices of alternatives 1–3. In this case, average CV is given by

E(CV) =
∫ ∞

0
q4(75�75�60�33 + a� y + a�x)� (32)

These will be compared with the corresponding numbers resulting from eliminating the
charter boat option.

In Figures 2 and 3, we plot the average welfare losses from elimination of respectively
the private and the charter option. We compare our estimates using (29) and (32) with
those obtained using a logsum approach. To calculate the integral up to infinity in (32),
we simply use the highest observed price as the upper limit of the integral. As such, our
estimates may be viewed as a lower bound on the average CV.

Evidently, our estimates are much flatter against income relative to the logsum es-
timates; they are much lower (less than 50%) for elimination of the private option, and
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Figure 2. Elimination of option: LogSum vs cubic. Average welfare loss $ by monthly income
from elimination of charter-boat and of private boat fishing. Solid line corresponds to our non-
parametric estimates, dashed line to the logsum estimates. All calculations are performed at
mean values of other characteristics.

Figure 3. Eliminate charter vs pvt. Average welfare loss $ by monthly income from elimination
of charter-boat and of private boat fishing. Dashed line corresponds to charter-boat and solid
line to private boat. All calculations are performed at mean values of other characteristics.
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much higher (about twice on average for lower incomes) for the charter option. It is also
important to note that the slope of average welfare w.r.t. income has different signs, for
example, the logsum estimates imply that eliminating the charter boat option will hurt
the rich more than the poor, whereas our CV estimates imply the exact opposite. Fig-
ure 3 shows, in a slightly blown up scale, that elimination of these options entail fairly
significant losses in private welfare, amounting to about 10% of the average monthly
income.

Putting Figures 2 and 3 together, it is also evident that the logsum estimates would
imply a much larger difference in welfare losses between eliminating the private versus
the charter option, compared with our CV estimates.

Quality change: Finally, the third exercise involves decreasing the catch rate of alter-
native 1, namely beach fishing from the 4th quartile 0�53 to the 1st quartile 0�06, keeping
all other variables fixed at their mean value, denoted z.

Assuming that catch rate is a normal characteristic for all individuals, the bounds on
the CDF of the CV are given by Proposition 2 in the Appendix, namely

Pr(CV ≤ a)

{
∈ [L�U]� if a < 0�

= 1� if a ≥ 0�

where

L= max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
y ′<y

{
q1
(
75 − a+ y ′ − y� y ′� z�0�53

)
+ q0

(
75 + y ′ − y� y ′� z�0�06

)
}

− 1 − q0(75 − a�z� y�0�53)�0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ �

U = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q1(75 − a� y� z�0�53)�

min
y ′≥y

{
q1
(
75 − a+ y ′ − y� y ′� z�0�53

)
+ q0

(
75 + y ′ − y� y ′� z�0�06

)
}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ �

q0(p�z� y�x) ≡ 1 − q1(p� y� z�x)�

(33)

To compare these bounds with the logsum formulae, which are based on quasilinear
utility assumption, we use two alternative specifications of the logsum, one that incor-
porates income as an additional covariate and one that does not. The logsum expres-
sions are essentially (31) with the same prices but different catch rates in the numerator
and denominator. We finally obtain the following graph, where we plot the average wel-
fare loss (i.e., negative of the CV) by income.

The bounds (dashed lines) are relatively tight. The lower bound remains zero, but the
upper bound hovers around $7�50 for most of the income range. Relative to the logsum
estimates with income included as a covariate (the nearly straight downward sloping
line), our bounds are much flatter, and higher than the logsum estimates at high in-
comes. Indeed, the logsum estimate yields negative welfare losses, that is, welfare gains
from reduced catch rates, which is an artifact of the functional form assumption, and
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Figure 4. Avg. welfare loss from reduced catch rate. Average welfare loss $ by monthly income
from decreasing the catch rate of alternative 1, namely, beach fishing from the 4th quartile 0�53
to the 1st quartile 0�06, keeping all other variables fixed at their mean value. Lower and upper
bounds from our calculations are shown via dotted lines and Logsum estimates with no income
effect by the solid line, and with income as covariate by downward sloping, almost a straight line.

Table 2. Mean welfare loss & 95% C.I. in $ at mean income.

Cubic
Approximation Bootstrap C.I. LogSum

Multiple Price Change 42�57 40.0, 43.1 19�21
Eliminate Pvt. Boat 536�37 292.31, 705.08 1212�4
Eliminate Charter 588�16 582.4, 591.8 280�29
Decrease Catch-rate of Beach 7�05 4.55, 11.91 4�68

Note: Mean CV and associated bootstrapped confidence interval for (i) simultaneous price
change of beach and pier fishing from $140 to $40 and of private boat fishing from $12 to $72,
(ii) elimination of private, and (iii) of charter boat, and (iv) a fall in catch rate of beach fishing
from 0�53 to 0�06 per hour (upper bound of average welfare loss). All quantities are evaluated at
mean income of $4000 per month, and mean values of all other regressors.

is difficult to interpret. Of course, these differences in slopes are also important from
a policy perspective, because the variation of welfare with income determines the pro-
gressivity of the economic change. As discussed above, the key difference in functional
forms between our estimates and the logsum formulae lies in the treatment of income.
One can see from Figure 4 that if one ignores income entirely, given the quasilinear basis
of logsum estimates, then one gets the solid flat line at around $1�84 which lies entirely
within our bounds.

Our final set of results in Table 2 report the welfare changes discussed above, to-
gether with bootstrapped confidence intervals, evaluated at Income = $4000 per month,
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which is about the mean income. The confidence intervals are evaluated over 100 repli-
cations, and the top 1% and bottom 1% of values are discarded. The logsum estimates
are reported in the last column for comparison. It is evident from this table that the cubic
approximation based estimates of compensating variation are reasonably precise, and
the corresponding confidence intervals do not contain the logsum estimates, except for
the case of quality change. Finally, the sizes of the point estimates show that elimina-
tion of the private or the charter boat option entails very high welfare loss, amounting
to nearly 13% of mean income; but the change in catch rate has a very small welfare im-
pact, suggesting that it is the overall experience of fishing from one’s chosen alternative,
rather than the quantity of fish caught, that is primarily valued by individuals.

It is not obviously possible to conclude empirically whether our estimates are more
accurate than the logsum ones. But since our estimates correspond to a theoretically
consistent utility structure, do not impose constant marginal utility of income, and are
not based on specific distributional assumptions, they should be viewed as more robust
on theoretical grounds. In the above application, our estimates differ substantially from
the logsum ones, which does therefore raise doubt about the strong assumptions under-
lying the logsum approach. Indeed, our theoretical results above show that specification
of choice probabilities fully determines welfare estimates (or bounds thereof), without
any reference to underlying utility structures. So any differences between our results and
the logsum ones must necessarily arise from differences in functional forms for choice
probabilities. One could also try using alternative and more flexible parametric models
such as the mixed or nested logit, and compare them with our results. Since our pri-
mary goal here is to provide a “proof of concept” regarding empirical feasibility of our
theoretical methods, we leave such comparisons to future research.

6. Summary and conclusion

In this paper, we have developed expressions for welfare effects of economic changes
in multinomial choice settings, allowing for completely general consumer heterogene-
ity and income effects. The paper considers four practical scenarios: (a) simultaneous
change in prices of multiple alternatives, (b) the introduction or elimination of an al-
ternative, possibly accompanied by price changes of other alternatives, (c) change in
the quality of an alternative possibly accompanied by a price change, and (d) situa-
tions where choice alternatives are nonexclusive. The key results are: (1) Hicksian wel-
fare changes are well-defined in all cases under the mild assumption that the numeraire
is a normal good, (2) in cases (a) and (b) the marginal distributions of CV and EV can
be expressed as simple closed-form functions of choice probabilities without requir-
ing any assumption on the functional forms of utilities, preference heterogeneity or in-
come effects and (3) this last conclusion fails for quality change or when alternatives
are nonexclusive, but welfare distributions can still be bounded in these cases. Our ap-
proach delivers welfare analysis without requiring identification of preference distribu-
tions. As such, it strictly dominates random-coefficient based methods which require a
researcher to either make arbitrary assumptions on the distribution of random coeffi-
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cients (e.g., that they are normally distributed), or to require full support of regressors

for identification and to solve difficult ill-posed inverse problems in estimation.

At a practical level, our methods can be used in program evaluation studies to cal-

culate “compensated” program effects, that is, the program’s value to the subjects them-

selves, measured in terms of its cash equivalent, and the associated deadweight loss,

while allowing for arbitrary preference distribution in the population. These money-

metric welfare measures can also be compared across interventions with different out-

comes. For example, a tuition subsidy for school attendance, and an adoption subsidy

for take-up of a health-product cannot be directly compared in terms of their average

outcomes which are in different units; but their cash equivalents and the associated

deadweight loss can be directly compared, since both are expressible in monetary units.

This comparison can then inform the decision of which public subsidy program should

be adopted.

Appendix

Path-dependence of line integral defining Marshallian consumer surplus

for discrete choice

Consider a setting with three mutually exclusive alternatives with initial prices p0 ≡
(p10�p20�p30) and final prices p1 ≡ (p11�p21�p31). Let y denote income and qj(p� y) de-

note the choice probability of alternative j when the price vector is p and income is y.

Then the change in average consumer surplus arising from the price change from p0 to

p1 can be defined using (4) via the line integral

CS(L) = −
∫
L
q1(p� y)dp1 + q2(p� y)dp2 + q3(p� y)dp3�

where L denotes a path L(t) from t = 0 to t = 1 such that L(0) ≡ p0 ≡ (p10�p20�p30) and

L(1) ≡ p1 ≡ (p11�p22�p33). Consider two different such paths

L1(t) = (
p10 + t(p11 −p10)�p20 + t(p21 −p20)�p30 + t(p31 −p30)

)
�

L2(t) = (
p10 + t2(p11 −p10)�p20 + t(p21 −p20)�p30 + t(p31 −p30)

)
�

Then

CS(L1)= −
∫ 1

0

⎡
⎢⎢⎣
(p11 −p10)× q1

(
p0 + t(p1 − p0)� y

)
+ (p21 −p20)× q2

(
p0 + t(p1 − p0)� y

)
+ (p31 −p30)× q3

(
p0 + t(p1 − p0)� y

)
⎤
⎥⎥⎦ dt�
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But

CS(L2)

= −
∫ 1

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2t(p11 −p10)× q1

⎛
⎜⎝p0 + t(p1 − p0)+ (t2 − t

)⎛⎜⎝p11 −p10

0
0

⎞
⎟⎠ � y

⎞
⎟⎠

+ (p21 −p20)× q2

⎛
⎜⎝p0 + t(p1 − p0)+ (t2 − t

)⎛⎜⎝p11 −p10

0
0

⎞
⎟⎠ � y

⎞
⎟⎠

+ (p31 −p30)× q3

⎛
⎜⎝p0 + t(p1 − p0)+ (t2 − t

)⎛⎜⎝p11 −p10

0
0

⎞
⎟⎠ � y

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dt�

which would in general differ from CS(L1). Thus the CS is not well-defined for simulta-
neous change in multiple prices. Note that if only p1 changes, then

CS(L1) = −(p11 −p10)×
∫ 1

0

[
q1
(
p10 + t(p11 −p10)� y

)]
dt�

CS(L2) = −2
∫ 1

0

[
(p11 −p10)× q1

(
p10 + t2(p11 −p10)� y

)]
t dt

= −(p11 −p10)×
∫ 1

0
q1
(
p10 + r(p11 −p10)� y

)
dr� substituting t2 = r

= CS(L1)�

and we get back path independence. Thus the loss of path-independence arises only for
multiple simultaneous price changes.

Iterating single price change: We show that welfare analysis of multiple price changes
cannot be done by iterating the single price change result of Bhattacharya (2015). Con-
sider a choice among three alternatives (J = 3), and suppose that price of alternative 1
changes from p10 to p11, and that of 2 from p20 to p21, and price of 3 is unchanged at p3.
Suppose we try to calculate the overall CV, starting with, say, price change of alternative
1, followed by 2 (the order in which we do this does not matter, by Proposition 1) and ap-
plying Theorem 2 of Bhattacharya (2015) at each stage. Suppose the CVs corresponding
to the two price changes are denoted by S1 and S2, respectively. Then, by definition,

max
{
U1(y −p10�η)�U2(y −p20�η)�U3(y −p3�η)

}
= max

{
U1(y + S1 −p11�η)�U2(y + S1 −p20�η)�U3(y + S1 −p3�η)

}

= max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1(y + S1 + S2︸ ︷︷ ︸
=S, overall CV

−p11�η)�U2(y + S1 + S2︸ ︷︷ ︸
S

−p21�η)�

U3(y + S1 + S2︸ ︷︷ ︸
S

−p3�η)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�
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Then using Theorem 2 of Bhattacharya (2015), we can get the marginal distribution of

S1 but we cannot get the marginal distribution of S1 + S2 because the price of both alter-

natives 1 and 2 have changed between lines 1 and 3 of the previous display, and so The-

orem 2 of Bhattacharya (2015) does not apply. Second, because we cannot calculate the

value of the CV S1 for an individual (we can only calculate its distribution across all in-

dividuals), we cannot apply Theorem 2 of Bhattacharya (2015) to calculate the marginal

distribution of S2, since the income at which we could potentially apply the theorem

depends on S1 which is unknown, unlike y, which is a fixed known constant.

Proof of Theorem 1. First, consider EV.

Note that the EV is defined by

max
{
U1(y −p11�η)�U2(y −p21�η)� � � � �UJ(y −pJ1�η)

}
= max

{
U1(y − S −p10�η)�U2(y −p20 − S�η)� � � � �UJ(y −pJ0 − S�η)

}
�

(34)

We have already shown in Proposition 1 that under Assumption 1, the solution to (34)

exists and is unique. Furthermore, because the RHS is strictly decreasing in S, we have

that

EV ≤ a ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{
U1(y −p11�η)�U2(y −p21�η)� � � � �UJ(y −pJ1�η)

}
≥ max

{
U1(y − a−p10�η)�U2(y −p20 − a�η)�

� � � �UJ(y −pJ0 − a�η)

}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ � (35)

Now, if a satisfies pl1 −pl0 ≤ a < pl+1�1 −pl+1�0, then

Pr(EV ≤ a)

= Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

U1(y −p11�η)

≥ max

⎧⎪⎪⎨
⎪⎪⎩
U2(y −p21�η)� � � � �Ul(y −pl1�η)� � � � �UJ(y −pJ1�η)�

U1(y − a−p10�η)�U2(y −p20 − a�η)� � � � �

Ul(y − a−pl0�η)� � � � �UJ(y −pJ0 − a�η)

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎦

+ Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

U2(y −p21�η)

≥ max

⎧⎪⎪⎨
⎪⎪⎩
U1(y −p11�η)� � � � �Ul(y −pl1�η)� � � � �UJ(y −pJ1�η)

U1(y − a−p10�η)�U2(y −p20 − a�η)� � � � �

Ul(y − a−pl0�η)� � � � �UJ(y −pJ0 − a�η)

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎦

+ · · ·
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+ Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ul(y −pl1�η)

≥ max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U1(y −p11�η)�U2(y −p21�η)� � � � �Ul−1(y −pl−1�1�η)�

Ul+1(y −pl+1�1�η)� � � � �UJ(y −pJ1�η)

U1(y − a−p10�η)�U2(y −p20 − a�η)� � � � �

Ul(y − a−pl0�η)� � � � �UJ(y −pJ0 − a�η)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)= Pr

⎡
⎢⎢⎢⎣
U1(y −p11�η)

≥ max

{
U2(y −p21�η)� � � � �Ul(y −pl1�η)�

Ul+1(y − a−pl+1�0)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦

+ Pr

⎡
⎢⎢⎢⎣
U2(y −p21�η)

≥ max

{
U1(y −p11�η)� � � � �Ul(y −pl1�η)�

Ul+1(y − a−pl+1�0)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦

+ · · ·

+ Pr

⎡
⎢⎢⎢⎣
Ul(y −pl1�η)

≥ max

{
U1(y −p11�η)� � � � �Ul−1(y −pl−1�1�η)�

Ul+1(y − a−pl+1�0�η)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦ �

where the equality marked (1) uses the fact that y −pj1 ≥ y − a−pj�0, for all j = 1� � � � � l,
since pl1 −pl0 ≤ a. The above probability equals

q1(p11�p21� � � � �pl1�pl+1�0 + a� � � � �pJ0 + a� y)

+ q2(p11�p21� � � � �pl1�pl+1�0 + a� � � � �pJ0 + a� y)

+ · · · + ql(p11�p21� � � � �pl1�pl+1�0 + a� � � � �pJ0 + a� y)�

if a≥ 0, and equals

= q1(p11 − a�p21 − a� � � � �pl1 − a�pl+1�0� � � � �pJ0� y − a)

+ q2(p11 − a�p21 − a� � � � �pl1 − a�pl+1�0� � � � �pJ0� y − a)

+ · · · + ql(p11 − a�p21 − a� � � � �pl1 − a�pl+1�0� � � � �pJ0� y − a)�

if a < 0. This is precisely expression (8). The different expressions for a ≥ 0 and a < 0
are needed to accommodate an outside good whose price remains 0 before and after.

For example, if the lth alternative is the outside good, and thus pl1 = pl0 = 0 and a ≥ 0,

then one can evaluate the necessary probability by observing behavior at income y, for
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example,

Pr

⎡
⎢⎢⎢⎣
U1(y −p11�η)

≥ max

{
U2(y −p21�η)� � � � �Ul(y −pl1�η)�

Ul+1(y − a−pl+1�0)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦

= Pr

⎡
⎢⎢⎢⎣
U1(y −p11�η)

≥ max

{
U2(y −p21�η)� � � � �Ul(y�η)�

Ul+1(y − a−pl+1�0)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦

= q1(p11�p21� � � � �pl1�pl+1�0 + a� � � � �pJ0 + a� y)�

But if the outside alternative is l + 1, then pl+1�1 = pl+1�0 = 0 and a < 0, and so

Pr

⎡
⎢⎢⎢⎣
U1(y −p11�η)

≥ max

{
U2(y −p21�η)� � � � �Ul(y −pl1�η)�

Ul+1(y − a−pl+1�0)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦

= Pr

⎡
⎢⎢⎢⎣
U1(y −p11�η)

≥ max

{
U2(y −p21�η)� � � � �Ul(y −pl1�η)�

Ul+1(y − a)� � � � �UJ(y −pJ0 − a�η)

}
⎤
⎥⎥⎥⎦ �

But we cannot evaluate this probability by observing behavior at income y, as no one in

the data faces a price of a < 0 for the l + 1th alternative, that is, the outside good. So the

only way to learn this probability is to observe individuals at income y − a facing a price

of zero for the outside good.

Next, consider CV, defined as the solution S to the equation

max
{
U1(y + S −p11�η)�U2(y + S −p21�η)� � � � �UJ(y + S −pJ1�η)

}
= max

{
U1(y −p10�η)�U2(y −p20�η)� � � � �UJ(y −pJ0�η)

}
�

(36)

By exactly similar logic as above, CV ≤ a is equivalent to

max
{
U1(y −p10�η)�U2(y −p20�η)� � � � �UJ(y −pJ0�η)

}
≤ max

{
U1(y + a−p11�η)�U2(y + a−p21�η)� � � � �UJ(y + a−pJ1�η)

}
�

(37)
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Accordingly, we have that

Pr(CV ≤ a)

=
j∑

k=1

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uk(y + a−pk1�η)

≥ max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1(y −p10�η)� � � � �Uk−1(y −pk−1�0�η)�Uk(y −pk0�η)�

Uk+1(y −pk+1�0�η)� � � � �UJ(y −pJ0�η)

U1(y + a−p11�η)� � � � �Uj−1(y + a−pj−1�1�η)�

Uj(y + a−pj1�η)�Uj+1(y + a−pj+1�1�η)�

� � � �UJ(y + a−pJ1�η)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
j∑

k=1

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uk(y + a−pk1�η)

≥ max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1(y −p10�η)� � � � �Uk−1(y −pk−1�0�η)�

Uk+1(y −pk+1�0�η)� � � � �UJ(y −pJ0�η)

U1(y + a−p11�η)� � � � �Uj−1(y + a−pj−1�1�η)�

Uj(y + a−pj1�η)�Uj+1(y + a−pj+1�1�η)�

� � � �UJ(y + a−pJ1�η)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
j∑

k=1

Pr

⎡
⎢⎢⎢⎣
Uk(y + a−pk1�η)

≥ max

{
U1(y + a−p11�η)� � � � �Uj(y + a−pj1�η)�

Uj+1(y −pj+1�0�η)� � � � �UJ(y −pJ0�η)

}
⎤
⎥⎥⎥⎦ �

The second equality follows from the fact that k≤ j and pj1 −pj0 ≤ a, and so we have by
Assumption 1 that Uk(y + a − pk1�η) ≥ Uk(y − pk0�η). The third equality follows from
pj1 −pj0 ≤ a < pj+1�1 −pj+1�0, so by Assumption 1, Uk(y −pk�0�η)≤Uk(y + a−pk1�η)

for all k≤ j and Uk(y −pk�0�η) > Uk(y + a−pk1�η) for all k> j. Finally,

j∑
k=1

Pr

⎡
⎢⎢⎢⎣
Uk(y + a−pk1�η)

≥ max

{
U1(y + a−p11�η)� � � � �Uj(y + a−pj1�η)�

Uj+1(y −pj+1�0�η)� � � � �UJ(y −pJ0�η)

}
⎤
⎥⎥⎥⎦

≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j∑
k=1

qk(p11� � � � �pj1�pj+1�0 + a� � � � �pJ0 + a� y + a)� if a ≥ 0�

j∑
k=1

qk(p11 − a� � � � �pj1 − a�pj+1�0� � � � �pJ0� y)� if a < 0�
�

Proof of Corollary 1. The EV is the solution S to the equation:

max
{
U1(y − S −p10�η)� � � � �UJ(y − S −pJ0�η)�UJ+1(y − S −pJ+1�η)

}
= max

{
U1(y −p11�η)� � � � �UJ(y −pJ1�η)

}
�

(38)
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We seek to find the marginal distribution of S. To do so, we first show that for each η,
the S(η) solving (38) is identical to the EV T(η) for a different problem, and the dis-
tribution of T(η) in that other problem follows as a corollary of our Theorem 1 above.
The other problem is as follows: consider a multinomial choice problem with J + 1 al-
ternatives, where the price vector changes from an initial value of (p10� � � � �pJ0�pJ+1) to
(p11� � � � �pJ1�p

′), where pJ1 −pJ0 ≥ pJ−1�1 −pJ−1�0 ≥ · · · ≥ p11 −p10. Then the resulting
EV satisfies

max
{
U1(y − T −p10�η)� � � � �UJ(y − T −pJ0�η)�UJ+1(y − T −pJ+1�η)

}
= max

{
U1(y −p11�η)�U2(y −p21�η)� � � � �UJ(y −pJ1�η)�UJ+1

(
y −p′�η

)}
�

(39)

Now, suppose p′ tends to infinity. Recall the assumption that for any bundle (j� y − pj),
if pj ↑ ∞, then for each η, at least one other bundle (k� y − pk) will be strictly pre-
ferred to (j� y − pj).Therefore, the maximum on the RHS of (39) cannot be the J + 1th
term. Therefore, as p′ tends to infinity, (39) reduces to (38), and we conclude that for
each η, the EV S(η) for elimination of the J + 1th alternative is the same as the EV
T(η�p′) when the new price p′ of the J + 1th alternative increases to infinity, that is,
limp′↑∞ T(η�p′) = S(η) pointwise in η. To calculate the distribution of T(η�p′) for any
fixed p′, we can apply Theorem 1 with price of the J + 1th alternative changing to p′.
Now, observe that the random variable 1{T(η�p′) ≤ a} is bounded uniformly in p′ by 1
for each a,

∫
1dF(η) = 1 < ∞, and T(η�p′) → T(η�∞) ≡ S(η) pointwise in η as p′ ↑ ∞.

Therefore, it follows by the dominated convergence theorem that for each a,

lim
p′↑∞

Pr
(
T
(
η�p′)≤ a

) = lim
p′↑∞

∫
1
{
T
(
η�p′)≤ a

}
dF(η)

=
∫

1
{

lim
p′↑∞

T
(
η�p′)≤ a

}
dF(η)

= Pr
(
S(η)≤ a

)
�

(I am grateful to an anonymous referee for pointing out the need for the DCT argument.)
The RHS of the previous display is the object we want, namely the CDF of the EV for
problem (38), and the LHS is the limit of the CDF for EV in (39) as p′ ↑ ∞, which is
obtained from Theorem 1 by taking the new price of the J + 1th alternative to infinity.
An exactly analogous conclusion holds for the CV, and this proves Corollary 1. �

Proof of Theorem 2. The proof works by constructing a counterexample. Suppose
η ≡ (η1�η0) is jointly independent of price, income, and quality (P�Y�X) and η1 ⊥ η0.
Assume that the support of price distribution is [pL�pH], support of income Y is [yL� yH]
and that x is a scalar with support [xL�xH], with pH < yL. Let

U1(Y − P�X�η)= Y − P +Xη1�U0(Y�η) = (1 −η0)Y�

where η0 is distributed uniform (0�1) and the support of η1—denoted by [L�U]—
satisfies 0 <L< 1, U ≤ pL

xH
. Assume η1 is continuously distributed, and denote the CDF
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of η1 by G(·). An individual of type (y�η) and facing price p and quality x chooses alter-
native 1 if and only if y −p+ xη1 > (1 −η0)y.

Now, consider the choice probability in this model. Since 0 ≤ xLη1 ≤ xHη1 ≤ pL w.p.
1, it follows that for any p, y, x in the support of the data, we must have that p − y <

xη1 <p, or

0 <
p− xη1

y
< 1� w.p. 1� (40)

Therefore, the structural choice probability of alternative 1 at price p, quality x and in-
come y is given by

q1(p� y�x) = Pr
{
y −p+ xη1 > (1 −η0)y

}
= Pr{η0y + xη1 >p}

= Pr
{
η0 >

p− xη1

y

}
since y > 0

=
∫ U

L

(
1 − p− xη1

y

)
dG(η1)�

by η1 ⊥ η0� inequality (40) and η0 ∼U(0�1)

=
(

1 − p

y

)
+ x

y
E(η1)�

(41)

Now, consider a change from (p0�x0) to (p1�x1) satisfying

x1 > x0� p1 >p0�
p1 −p0

x1 − x0
∈ (L�U)� and

p1

p0
<

x1

x0
� (42)

We wish to calculate the distribution of CV resulting from this change. The CV is defined
by the solution S to the equation

max
{
U0(y�η)�U1(y −p0�x0�η)

}= max
{
U0(y + S�η)�U1(y + S −p1�x1�η)

}
�

Note that

Pr(S = 0)

= Pr
[
max

{
U0(y�η)�U1(y −p0�x0�η)

}= max
{
U0(y�η)�U1(y −p1�x1�η)

}]
= Pr

[
U0(y�η) ≥ max

{
U1(y −p0�x0�η)�U1(y −p1�x1�η)

}]
�

since U1(y −p1�x1�η)−U1(y −p0�x0�η) equals (x1 − x0)η1 +p0 −p1, which is contin-
uously distributed as η1 is continuously distributed, so that

Pr
[
U1(y −p1�x1�η)=U1(y −p1�x1�η)

]= 0�
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Therefore,

Pr(S = 0)

= Pr
[
U0(y�η) ≥ max

{
U1(y −p0�x0�η)�U1(y −p1�x1�η)

}]
= Pr

[
U0(y�η) ≥U1(y −p0�x0�η)≥U1(y −p1�x1�η)

]
+ Pr

[
U0(y�η) ≥U1(y −p1�x1�η)≥U1(y −p0�x0�η)

]
= Pr

[
(1 −η0)y ≥ y −p0 + x0η1 ≥ y −p1 + x1η1

]
+ Pr

[
(1 −η0)y ≥ y −p1 + x1η1 ≥ y −p0 + x0η1

]
= Pr

[
η0 ≤ p0 − x0η1

y
�η1 ≤ p1 −p0

x1 − x0

]

+ Pr
[
η0 ≤ p1 − x1η1

y
�η1 >

p1 −p0

x1 − x0

]

=
∫ p1−p0

x1−x0

L

(
p0 − x0η1

y

)
dG(η1)+

∫ U

p1−p0
x1−x0

(
p1 − x1η1

y

)
dG(η1)

=
∫ U

L

(
p0 − x0η1

y

)
dG(η1)+

∫ U

p1−p0
x1−x0

(
p1 − x1η1

y
− p0 − x0η1

y

)
dG(η1)

= p0

y
− x0

y
E(η1)+

∫ U

p1−p0
x1−x0

(
p1 −p0 + (x0 − x1)η1

y

)
dG(η1)

= 1 − q1(p0� y�x0)+
∫ U

p1−p0
x1−x0

(
p1 −p0 + (x0 − x1)η1

y

)
dG(η1)�

(43)

Clearly, this expression is different for different choices of G(·) with the same expec-

tation. In particular, if p1−p0
x1−x0

is smaller than E(η1), then for a degenerate distribution

G1 with point mass 1 at its expected value will yield a value of 1 − q1(p0� y�x0) for (43),

whereas a nondegenerate G2 with the same expectation will yield a strictly smaller value

than 1 − q1(p1� y�x1), since p1 − p0 + (x0 − x1)η1 < 0 if η1 >
p1−p0
x1−x0

. However, since G1

and G2 have identical expectations, they will yield identical choice probabilities for all

p, y, x, by (41). Thus we cannot identify Pr(S = 0) from the choice probabilities. �

Proof of Proposition 2. Assume U1(y−p�x�η) ≡ V1(h1(y−p�x)�η). Define ā as the

unique solution to h1(y + ā− p1�x1) = h1(y − p0�x0). The existence and uniqueness of

ā follow from the properties of h1(·� ·) and condition S. Then ā can be obtained as the

solution to q1(p1 − ā� y�x1) = q1(p0� y�x0), since

Pr
[
U0(y�η) ≤ V1

(
h1(y + ā−p1�x1)�η

)]
= Pr

[
U0(y�η) ≤ V1

(
h1(y −p0�x0)�η

)]
�



608 Debopam Bhattacharya Quantitative Economics 9 (2018)

Now,

Pr(S ≤ a)

= Pr

[
max

{
U0(y�η)�U1(y −p0�x0�η)

}
≤ max

{
U0(y + a�η)�U1(y + a−p1�x1�η)

}
]

= Pr

[
max

{
U0(y�η)�V1

(
h1(y −p0�x0)�η

)}
≤ max

{
U0(y + a�η)�V1

(
h1(y + a−p1�x1)�η

)}
]

=
{

Pr
[
max

{
U0(y�η)�V1

(
h1(y −p0�x0)�η

)}≤U0(y + a�η)
]
� if a < ā�

Pr
[
U0(y�η)≤ max

{
U0(y + a�η)�V1

(
h1(y + a−p1�x1)�η

)}]
� if a ≥ ā�

The first of these probabilities equals

{
0� if a < 0�

Pr
[
V1
(
h1(y −p0�x0)�η

)≤U0(y + a�η)
]
� if a≥ 0

=
{

0� if a < 0�

q0(p0 + a� y + a�x0)� if a ≥ 0�

while the second equals

{
Pr
[
U0(y�η)≤ V1

(
h1(y + a−p1�x1)�η

)]
� if a < 0�

1� if a≥ 0�

=
{
q1(p1 − a� y�x1)� if a < 0�

1� if a≥ 0�

Therefore,

Pr(S ≤ a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0� if a < min{ā�0}�
q1(p0 + a� y + a�x0)� if 0 ≤ a < ā�

q1(p1 − a� y�x1)� if ā ≤ a < 0�

1� if a ≥ max{0� ā}� �

Bounds for quality change

Proposition 3. Suppose quality is a scalar. If higher values of x represent higher quality,

that is, U1(a� ·�η) is strictly increasing for each a and η, and Assumption 2 holds, then the

marginal distribution function of CV at income y resulting from a change of (p0�x0) to
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(p1�x1) satisfies the following bounds:

Pr(S ≤ a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max

⎧⎪⎪⎨
⎪⎪⎩

max
y ′≤y

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)
+ q0

(
p0 + y ′ − y� y ′�x0

)
}

− 1 − q0(p1 − a� y�x1)�0

⎫⎪⎪⎬
⎪⎪⎭ �

min

⎧⎪⎪⎨
⎪⎪⎩
q1(p1 − a� y�x1)�

min
y ′≥y

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)
}
⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

if a < 0�

∈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max

⎧⎪⎪⎨
⎪⎪⎩
q0(p0 + a� y + a�x0)�

max
y ′≥y+a

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)
+ q0

(
p0 + y ′ − y� y ′�x0

)
}

− 1

⎫⎪⎪⎬
⎪⎪⎭ �

min

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝
q0(p0 + a� y + a�x0)

+ min
y ′≤y+a

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)
}
⎞
⎟⎟⎠ �1

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

if 0 ≤ a≤ p1 −p0�

= 1� if a≥ p1 −p0�

(44)

Corollary 3. If we allow x to be multidimensional, or that utility is increasing in qual-
ity, the corresponding (wider) bounds would involve max/min over all y ′ and not, for ex-
ample, y ′ ≤ y or y ′ ≥ y + a, etc. For example, the first line of (44) would become⎡
⎢⎢⎢⎢⎢⎢⎣

max

{
max
y ′

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)
+ q0

(
p0 + y ′ − y� y ′�x0

)
}

− 1 − q0(p1 − a� y�x1)�0

}
�

min

{
q1(p1 − a� y�x1)�min

y ′

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)
}}

�

⎤
⎥⎥⎥⎥⎥⎥⎦ � if a < 0�

etc.

Proof of Proposition 3. Note that the CV is defined as the solution S to the equation

max
{
U0(y�η)�U1(y −p0�x0�η)

}
max

{
U0(y + S�η)�U1(y + S −p1�x1�η)

}
�

Now, by Assumption 2(i),

Pr(S ≤ a)

= Pr

[
max

{
U0(y�η)�U1(y −p0�x0�η)

}
≤ max

{
U0(y + a�η)�U1(y + a−p1�x1�η)

}
]
�

(45)
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Now, for a < 0, by Assumption 2(i). (45) reduces to

Pr(S ≤ a)

= Pr

[
max

{
U0(y�η)�U1(y −p0�x0�η)

}
≤U1(y + a−p1�x1�η)

]

= Pr

[
U0(y�η) ≤U1(y + a−p1�x1�η)�

U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]
�

(46)

This probability has the Frechet upper bound given by

min

{
Pr
[
U0(y�η)≤U1(y + a−p1�x1�η)

]
�

Pr
[
U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]
}

= min
{
q1(p1 − a� y�x1)�Pr

[
U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]}
�

(47)

Now,

Pr
[
U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]
= 1 − Pr

[
U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
≤ 1 − min

y ′ Pr
[
U1(y −p0�x0�η)≥U0

(
y ′�η

)≥U1(y + a−p1�x1�η)
]

≤ 1 − min
y ′

{
max

{(
Pr
[
U1(y −p0�x0�η)≥U0

(
y ′�η

)]
+ Pr

[
U0
(
y ′�η

)≥U1(y + a−p1�x1�η)
]
)

− 1�0

}}

= 1 − min
y ′

{
max

{(
q1
(
p0 + y ′ − y� y ′�x0

)
+ q0

(
p1 − a+ y ′ − y� y ′�x1

)
)

− 1�0

}}

= min

{
min
y ′

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)�1

}}
�

Replacing in (47), we get the upper bound as

min

⎧⎪⎪⎨
⎪⎪⎩q1(p1 − a� y�x1)�min

y ′

⎧⎪⎪⎨
⎪⎪⎩
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)︸ ︷︷ ︸
If y ′<y, then this term exceeds q1(p1−a�y�x1)

⎫⎪⎪⎬
⎪⎪⎭
⎫⎪⎪⎬
⎪⎪⎭

= min

{
q1(p1 − a� y�x1)�min

y ′≥y

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)
}}

�
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The Frechet lower bound is given by

max

{
Pr
[
U0(y�η) ≤ U1(y + a−p1�x1�η)

]
+ Pr

[
U1(y −p0�x0�η) ≤ U1(y + a−p1�x1�η)

]− 1�0

}

= max

{
q1(p1 − a� y�x1)

+ Pr
[
U1(y −p0�x0�η)≤ U1(y + a−p1�x1�η)

]− 1�0

}

≥ max

⎧⎨
⎩

max
y ′
{
Pr
[
U1(y −p0�x0�η)≤ U0

(
y ′�η

)≤ U1(y + a−p1�x1�η)
]}

− q0(p1 − a� y�x1)�0

⎫⎬
⎭

≥ max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max

{
max
y ′

{
Pr
[
U0
(
y ′�η

)≤ U1(y + a−p1�x1�η)
]

+ Pr
[
U1(y −p0�x0�η) ≤U0

(
y ′�η

)]− 1

}
�0

}

− q0(p1 − a� y�x1)�0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= max

⎧⎪⎪⎨
⎪⎪⎩

max
{
max
y ′
{
q1
(
p1 − a+ y ′ − y� y ′�x1

)+ q0
(
p0 + y ′ − y� y ′�x0

)︸ ︷︷ ︸
If y≥y ′, then sum is less than 1, as a<0

}− 1�0
}

− q0(p1 − a� y�x1)�0

⎫⎪⎪⎬
⎪⎪⎭

= max

⎧⎪⎨
⎪⎩

max
{

max
y ′<y

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)+ q0
(
p0 + y ′ − y� y ′�x0

)}− 1�0
}

− q0(p1 − a� y�x1)�0

⎫⎪⎬
⎪⎭

= max

⎧⎨
⎩

max
y ′<y

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)+ q0
(
p0 + y ′ − y� y ′�x0

)}
− 1 − q0(p1 − a� y�x1)�0

⎫⎬
⎭ �

Finally, for a≥ 0, we get that

Pr(S ≤ a)

= Pr

[
max

{
U0(y�η)�U1(y −p0�x0�η)

}
≤ max

{
U0(y + a�η)�U1(y + a−p1�x1�η)

}
]

= Pr

[
U1(y −p0�x0�η)

≤ max
{
U0(y + a�η)�U1(y + a−p1�x1�η)

}
]
�

which equals 1 if a ≥ p1 −p0. If a < p1 −p0, then

Pr(S > a)

= Pr

[
U1(y −p0�x0�η)

> max
{
U0(y + a�η)�U1(y + a−p1�x1�η)

}
]

= Pr

[
U1(y −p0�x0�η) > U0(y + a�η)�

U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
�
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The Frechet lower bound on this is given by

max

⎧⎪⎪⎨
⎪⎪⎩

Pr
[
U1(y −p0�x0�η) > U0(y + a�η)

]
+ Pr

[
U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
− 1�0

⎫⎪⎪⎬
⎪⎪⎭

≥ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1(p0 + a� y + a�x0)

+ max
y ′ Pr

[
U1(y −p0�x0�η) > U0

(
y ′�η

)≥ U1(y + a−p1�x1�η)
]

− 1�0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≥ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1(p0 + a� y + a�x0)

+ max
y ′ q1

(
p0 + y ′ − y� y ′�x0

)+ q0
(
p1 − a+ y ′ − y� y ′�x1�η

)
− 2�0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�

The Frechet upper bound is given by

Pr

[
U1(y −p0�x0�η) > U0(y + a�η)�

U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]

≤ min

{
Pr
[
U1(y −p0�x0�η) > U0(y + a�η)

]
�

Pr
[
U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
}

≤ min

{
Pr
[
U1(y −p0�x0�η) > U0(y + a�η)

]
�

Pr
[
U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
}

= min

{
q1(p0 + a� y + a�x0)�

Pr
[
U1(y −p0�x0�η) > U1(y + a−p1�x1�η)

]
}
�

The previous two displays imply that the upper bound on Pr(S ≤ a) is given by

min

⎧⎨
⎩
q0(p0 + a� y + a�x0)

+ min
y ′
{
q0
(
p0 + y ′ − y� y ′�x0

)+ q1
(
p1 − a+ y ′ − y� y ′�η

)}
�1

⎫⎬
⎭

= min

⎧⎨
⎩1�

⎧⎨
⎩
q0(p0 + a� y + a�x0)

+ min
y ′
{
q0
(
p0 + y ′ − y� y ′�x0

)+ q1
(
p1 − a+ y ′ − y� y ′�x1�η

)}
⎫⎬
⎭
⎫⎬
⎭ �



Quantitative Economics 9 (2018) Empirical welfare analysis for discrete choice 613

and a lower bound by

max

{
q0(p0 + a� y + a�x0)�

Pr
[
U1(y −p0�x0�η)≤U1(y + a−p1�x1�η)

]
}

≥ max

⎧⎨
⎩
q0(p0 + a� y + a�x0)�

max
y ′
{
q1
(
p1 − a+ y ′ − y� y ′�x1

)+ q0
(
p0 + y ′ − y� y ′�x0

)}− 1

⎫⎬
⎭ �

Putting all of this together, we get that

Pr(S ≤ a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈

⎡
⎢⎢⎢⎢⎢⎢⎣

max

{
max
y ′<y

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)
+ q0

(
p0 + y ′ − y� y ′�x0

)
}

− 1 − q0(p1 − a� y�x1)�0

}
�

min

{
q1(p1 − a� y�x1)�min

y ′≥y

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)
}}

⎤
⎥⎥⎥⎥⎥⎥⎦ �

if a < 0�

∈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max

⎧⎪⎪⎨
⎪⎪⎩
q0(p0 + a� y + a�x0)�

max
y ′≥y+a

{
q1
(
p1 − a+ y ′ − y� y ′�x1

)
+ q0

(
p0 + y ′ − y� y ′�x0

)
}

− 1

⎫⎪⎪⎬
⎪⎪⎭ �

min

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝
q0(p0 + a� y + a�x0)

+ min
y ′≤y+a

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p1 − a+ y ′ − y� y ′�x1

)
}
⎞
⎟⎟⎠ �1

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

if 0 ≤ a < p1 −p0�

= 1� if a≥ p1 −p0�

For p0 = p1, we have

Pr(S ≤ a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

max

{
max
y ′<y

{
q1
(
p0 − a+ y ′ − y� y ′�x1

)
+ q0

(
p0 + y ′ − y� y ′�x0

)
}

− 1 − q0(p0 − a� y�x1)�0

}
�

min

{
q1(p0 − a� y�x1)�min

y ′≥y

{
q0
(
p0 + y ′ − y� y ′�x0

)
+ q1

(
p0 − a+ y ′ − y� y ′�x1

)
}}

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦ �

if a < 0�

= 1� if a ≥ 0� �
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