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1. Details of the numerical solution procedure

1.1 Solution method

This section describes the minimum weighted residuals method we use to obtain an
approximate solution for the value function and the risky rate. We then explain how we
assess the accuracy of the method.

Both the value function and the risky rate are approximated by a parametric function
of the form
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where Xt ≡ (Ct� x̂h�t � x̂��t �ηt) denotes the vector of state variables1 and y ∈ {V �R}. The
set of indices I is defined by

I = {
iz = 1� � � � � nz;z ∈ {C�h���η} | ic + ih + i� + iη ≤ max(nc�nh�n��nη)

}
�

Implicit in the definition of this set is that we are considering a complete basis of poly-
nomials.2 Hι(·) is a Hermite polynomial of order ι and ϕz(·) is a strictly increasing func-
tion that maps R into R. This function is used to maps Hermitian nodes into values for
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1When persistence is known, the vector of state variables reduces to Xt = (Ct�xt) and the approximant
takes the simpler form �y(Xt) = exp(
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2See Judd (1998), Chapter 7.
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the vector of state variables, Xt ≡ (Ct� x̂h�t � x̂��t �ηt),3 The parameters θy , y ∈ {V �R}, are
then determined by a minimum weighted residuals method. More precisely, we define
the residuals associated to both the direct Value function equation, RV (θ

V ;Xt), and the
Euler equations for risky assets (consumption claims and dividend claims), RR(θ

V ;Xt),
as
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where �εν�t+1 = {εxν�t+1� εdν�t+1� εgν�t+1}, with ν ∈ {h��} is a vector of standard normal
shocks with distribution F(�εν�t+1). (i) and (ii) are only present in the dividend claim case.
We also define
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In both cases, C(ν)
t+1, x̂(ν)h�t+1, x̂(ν)��t+1, η(h)

t+1, ν ∈ {h��}, are obtained using the dynamic equa-
tions described in Section B.1. These expressions are simplified when the agent is cer-

3We use this function in order to be able to narrow down the range of values taken by the state variables,
such that the approximation performs better when evaluated on the data.
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tain about the persistence. This case amounts to setting ηt = 0 for all t in the preceding
expressions and consider only one process for x̂t .

The vector of parameters θV and θR are then determined by projecting the residuals
on Hermite polynomials. This then defines a system of orthogonality conditions which
is solved for θV and θR. More precisely, we solve4
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where ω(x) = exp(−x2) is the appropriate weighting function for Hermite polynomials.
Note that since the knowledge of the risky interest rate is not needed to evaluate the
direct value function in equilibrium, the system can be solved recursively. We therefore
first solve the value function approximation problem, and use the result vector of pa-
rameters θV to solve for the risky rate problem.

Integrals are approximated using a monomial approach whenever we face a mul-
tidimensional integration problem (inner integrals in the computation of expectations
and projections) and a Gauss–Hermitian quadrature approach when dealing with uni-
dimensional integrals (outer integrals in the computation of expectations).5

The algorithm imposes that several important choices be made for the algorithm
parameters. The first one corresponds to the degree of polynomials we use for the ap-
proximation. The results are obtained with polynomials of order:

• (nc�nxh�nx��nη) = (5�2�2�2) for the value function when ρh = 0�85,

• (nc�nxh�nx��nη) = (4�2�2�2) for the value function when ρh = 0�90,

• (nc�nxh�nx��nη) = (3�3�3�3) for the interest rate,

• (nc�nxh�nx��nη) = (2�4�4�1) for the asset prices.

The second choice pertains to the number of nodes. We use eight nodes in each dimen-
sion (4096 nodes). The transform functions ϕ(·) are assumed to be linear ϕz(x) = κzx

where κz , z ∈ {c�h� ��η} is a constant chosen such that the focus of the approximation
is put on values of state variables taken in the data. More precisely, we set κc = 2�0817,
κh = 40, κ� = 350, and κη = 1.

4It should be clear to the reader that the integral refers to a multidimensional integration problem, as we
integrate over C, xh, x�, and η.

5See Judd (1998), Chapter 7.
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The number of nodes used in the unidimensional quadrature method used in the
outer integral involved in the computation of expectations is set to 12. In the case of the
multidimensional integrals, we use a degree 5 rule for an integrand on an unbounded
range weighted by a standard normal.6 Finally, the topping criterion is set to 1e−6.

Given these parameters, the algorithm associated to each problem works as follows:

1. Choose two candidate vectors of parameters θV and θR.

2. Find the nodes, rjz , jz = 1� � � � �mz , at which the residuals are evaluated. These nodes
corresponds to the roots of the different Hermite polynomials involved in the approxi-
mation, then compute the values of the state variables as
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3. Evaluate the residuals RV (θ
V ;Xt) and RR(θ

R�θV ;Xt) and compute the orthogo-
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〉
�

4. If the orthogonality conditions are satisfied, in the sense the residuals are lower
than the stopping criterion ε, then the vector of parameters are given by θV and θR. Else
update θV and θR using a Gauss–Newton algorithm and go back to step 1.

1.2 Computation of returns

Given an approximate solution for the value function and the risky return, and given a
sequence {Xt}t=t2

t=t1
= {Ct� x̂h�t � x̂��t �ηt}t=tN

t=t1
of annual observations of aggregate per-capita

consumption, beliefs and prior probabilities in the time periods t = t1 through t = tN we
compute the conditional nth order moment of the risky rate in period t as
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Similarly, given a sequence {Ct� x̂h�t � x̂��t �ηt}t=tN
t=t1

, the risk-free rate can be directly com-
puted
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Just as in the preceding section, integrals are approximated using a monomial approach
whenever we face a multidimensional integration problem (inner integrals in the com-
putation of expectations and projections) and a Gauss–Hermitian quadrature approach
when dealing with unidimensional integrals (outer integrals in the computation of ex-
pectations). The nth-order moments are then obtained in a similar fashion as for the
risky rate.

The (conditional) equity premium at time t, is the random variable denoted R
p
t ≡

E1
t Rt+1 −R

f
t . Therefore, the n-order moments of the equity premium can be computed

as in equation (2).
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