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Appendix C gives additional sufficient conditions for monotonicity and shows
how the results may be applied. Appendix D shows the algorithms deliver cor-
rect solutions and incidentally shows how additional state variables (for which
one does not want to exploit monotonicity) may be handled. Appendix E quan-
titatively evaluates binary monotonicity with sorting while also showing (1) how
binary monotonicity with sorting can be used to solve some problems that do not
immediately fit the class of nonmonotone problems and (2) how choice variables
for which one does not want to (or cannot) exploit monotonicity may be handled.
Appendix F contains all the omitted proofs and lemmas.

APPENDIX C: ADDITIONAL SUFFICIENT CONDITIONS AND APPLICATIONS

This Appendix expands on the discussion of monotonicity sufficient conditions in Sec-
tion 5 in two ways. First, Section C.1 gives sufficient conditions for choice correspon-
dences to be ascending and for functions to exhibit increasing differences. Second, Sec-
tion C.2 applies these sufficient conditions and the ones from the main text to establish
monotonicity in the RBC model, the Arellano (2008) model, and the sorted problem (6).
Appendix F gives the proofs.

C.1 Ascending correspondences and increasing differences

Proposition 3 requires the choice correspondence to be ascending. One way to ensure
this is for every choice to be feasible. The following lemma, which relies on increasing
differences, provides an alternative.

LEmMA 1. LetZ, 7' CR,andl' : 7 — P(Z').Supposel' (i) ={i' € T'|hp(i,i) >0 forallm €
M} with M arbitrary. If I is increasing, hy, is decreasing in i’, and h,, has increasing dif-
ferencesonZ x T’ (for all m), then I' is ascending on T.
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For an example application of Lemma 1, consider the RBC model and define
c(k',k,z):= =k’ + zF(k) + (1 — d)k. Since c is increasing in k£ and decreasing in &/,
the budget constraint {k’ € K|c(k, k', z) > 0} will be ascending on K for each z as long as
¢ has increasing differences in k, k'.

To apply the sufficient conditions Proposition 3 and Proposition 4 or to apply
Lemma 1, one must establish functions have increasing differences. The following
lemma provides a number of sufficient conditions for establishing that this is the case.
Some additional conditions may be found in Topkis (1978) and Simchi-Levi, Chen, and
Bramel (2014).

LEMMA 2. ForZ,7' cR,and S CcI x T, f : S — R has increasing differences on S if any
of the following hold:

(@ f(,i")= p@)+q(') forarbitrary p and q.

(b) f(i,7) = p(i)+q(i") +r(i)s(i) for arbitrary p and q with r and s both increasing or
decreasing.

(¢) f(i,i') agrees with g : L C R*> — R, a C? function having g, > 0 and L a hypercube
withS C L.

(d) f(i, 1) is a nonnegative linear combination (i.e., f = oy fr with ay > 0) of func-
tions having increasing differences.

(e f(,i")=h(g(i, 1)) for h an increasing, convex, C? function and g increasing (in i
and ') and having increasing differences.

®) f@,i")=h(g(,1i")) for h an increasing, concave, C? function and g increasing in i,
decreasing in i’, and having increasing differences.

(@ f(, 1) = [zg(h(,¢),i")dF () with g having increasing differences on {(fz, i’)|fz =
h(i,e),e€ E, (i,i') € S} and h increasing in i.

() f(,i") = maxyerq,in g(i, i, x) exists for all (i,i') € S, S is a lattice, I' : S — P(X),
X CR, the graph of I is a lattice, and g has increasing differences in i, i’ and i, x and i’, x
onT xT',7TxX,andT x X, respectively (forall i, i’, x).

Since our method primarily exploits monotonicity of one choice variable, it will be
convenient in some cases to construct an indirect utility function over the other choices
and then establish that the indirect utility function has increasing differences. Lemma 2
part (h) gives one sufficient condition for this, but its conditions can be difficult to guar-
antee unless every choice is feasible. Proposition 5 provides an alternative sufficient
condition that may be easier to verify.

PROPOSITION 5. Let S C R? be open and convex. Let f : S — R be defined by f(i,i') =
maxyex U(g(x,i,i'), x) where u is differentiable, increasing, and concave in its first argu-
ment and X is arbitrary. Then f has increasing differences on S if :

1. f is well defined and C' in i on the closure of S, and

2. for any optimal policy x* and any (i,i') € S, g2(x*(i, i), i, i) exists, is positive, and is
increasing in i’ and g(x*(i, i), i, i) is decreasing in i'.



Supplementary Material Divide and conquer algorithm 3

C.2 Applying the sufficient conditions

We now show how the preceding results can be applied to establish monotonicity in the
RBC model, Arellano (2008), and the sorted problem (6).

C.2.1 Monotonicity in k in the RBC model Consider the RBC model where we defined
c(k',k,z)=—k'+ zF (k) + (1 — §)k. By Lemma 2 part (a), ¢ has increasing differences in
k, k'. Then u(c(k’, k, z)) and u(c(k’, k, z)) + BE;Vo(k', z') have increasing differences
by parts (f) and (d), respectively. Consequently, an application of Proposition 3 (not-
ing the budget constraint is ascending by Lemma 1) gives that argmax;, u(c(k’, k, z)) +
BE. . Vo(k', 2') is ascending on K. As stated in the main text and proven in Appendix D,
this means binary monotonicity can be used to compute an optimal policy £'(k, z) that
is monotone in k.

C.2.2 Monotonicity in z in the RBC model With additional assumptions, one can also
use these results to establish £’ is monotone in z, although doing so is more complicated.
Identical arguments to the above give the optimal choice correspondence as ascending
in z if E,;Vo(k’, Z') has increasing differences in &, z. By Lemma 2 part (g), this will
hold as long as z’ is increasing in z and V{(k, z) has increasing differences in k, z. To en-
sure this is the case at each step of the Bellman update (assuming the initial guess has
increasing differences), one can use Lemma 2 part (h) if the graph of the choice corre-
spondence is a lattice and u o ¢ + BE,|;} has increasing differences in k, z. A sufficient
condition for the former is that every choice is feasible. A sufficient condition for the lat-
ter, by Lemma 2 part (c), is that J*u(c) /(dk dz) > 0, which is the same condition required
in Hopenhayn and Prescott (1992).

C.2.3 Monotonicity in k in the RBC model with elastic labor supply One can establish
monotonicity of k' (k, z) in k for the RBC model with elastic labor supply by using Propo-
sition 5 to establish increasing differences of the indirect utility function followed by an
application of Proposition 3. Specifically, the maximization problem for a given z can
be written as maxy U(k, k") + BE .V (k', z') where U (k, k) := maxe[o,1) u(c(l, k', k), )
and c(l, k, k') := max{0, —k’ + zF (k, ) + (1 — 8)k}. If U is differentiable and solutions
are interior—that is, [* € (0, 1) and c(/*, k, k') > O—then ¢ (I*, k, k') = zF; (k,I*) +1 -8
exists, is positive, and is weakly increasing in k’. If in addition consumption is a normal
good so that c(/*, k, k') is decreasing in k’, then Proposition 5 gives U as having increas-
ing differences. In this case, Proposition 3 gives monotonicity of k'(k, z) in k.

C.2.4 Monotonicity in the Arellano (2008) model and the sorted problem Proposition 4
may be used to establish monotonicity in the Arellano (2008) model and the sorted
problem (6). For the Arellano (2008) model, the budget constraint may be written as
c(b,b';y)=b+y—q(b,y)b, which is increasing in b. By Lemma 2 part (a), ¢ has in-
creasing differences in b, b'. Moreover, the continuation utility W (b'; y) := BE,,V (D', y)
(where V' is the upper envelope of the repayment and default value functions) is weakly
increasing in »’. Consequently, Proposition 4 applies. An identical argument may be
used for the sorted problem.
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APPENDIX D: ALGORITHM CORRECTNESS FOR A MORE GENERAL PROBLEM

This appendix shows binary monotonicity and the other algorithms deliver correct so-
lutions in a more general formulation of (1). Section D.1 gives the more general formu-
lation and states the correctness result. Section D.2 shows how the result applies in the
RBC and Arellano (2008) models while incidentally showing how additional state vari-
ables, for which one does not want to exploit monotonicity, may be handled.

D.1 A more general formulation

In both the RBC and Arellano (2008) model, there is no guarantee that every choice is
feasible. Consequently, one cannot directly use binary monotonicity because the maxi-
mization problems do not directly fit (1). To handle this issue in a general way, suppose
that the feasible choice setis I'(i) C {1, ..., n’}, which may be empty, and that the objec-
tive function is given by some 7 (i, i') only defined for (i, i") such that i’ € I'(i). For every
i such that I’ (i) is nonempty, define

(i) = max #(i, ). @
el (i)

Let 7 denote a lower bound on #,” and define

w(i, i)  ifI'() #vand i eI'(i),
w(i,i)={x ifI'(i) £ @ and i’ ¢ I'(i), ®)
1[i' =1] ifI'()=0.

Further, formalize the notion of concavity in the following way.

DEeFINITION 3. The problem is concave if, for all i such that I'(i) £ @, I'(i) = {1, ..., 7 (i)}
for some monotone increasing function 7'(i) and (i, -) is either first strictly increasing
and then weakly decreasing; or is always weakly decreasing; or is always strictly increas-
ing (where defined).

Now we can state the correctness result.

ProposiTiON 6. If I’ is increasing, then any of brute force, simple, or binary mono-
tonicity combined with any of brute force, simple, or binary concavity applied to (1)
with the objective function defined as in (8) delivers an optimal solution to (7) provided
argmax; .y ;) 7 (i, i') is ascending and the problem is concave as required by the algorithm
choices.

For the proof, see Appendix F.

A theoretical lower bound on 7 is —1 + min; min; ¢ iy (i, i"). While this particular bound is not prac-
tically useful (because computing it would be very costly), the smallest machine-representable number
serves as a lower bound for computational purposes.
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D.2 Examples

To see how this result may be applied and how the RBC model can be cast into (7), con-
sider the problem’s Bellman update,

V(ka z)= c lgll??élc u(c) + B]EZ’|Z%(k/7 Z/)a
= 9
st.c+k'=zF(k)+ (1 -8k

for k € K, z € Z where K = {kq, ..., k,} with the k; increasing. (While here we have used
inelastic labor supply, elastic labor supply can be incorporated by replacing the period
utility function with an an indirect utility function as we discuss in Appendix C.) Now,
create a separate problem for each z and write

I1,(i) = max 7,(i, i),
() = max 2(i, 1) (10)

where 7, and I, are defined as

72 (i, 1) == u(—ky + zF (k;) + (1 — 8)k;) + BE Vo ki, 2),

(11)
I():={i"e{l,...,n}lky < zF (ki) + (1 — O)k;}.

Then (10) is just (9) with k and k£’ given by grid indices. Moreover, (10) has the same
form as (7). Further, because I, has the form {1, ..., 7,(i)} for an increasing function
(i), Proposition 6 shows the monotonicity and concavity algorithms will deliver cor-
rect solutions.

The Arellano (2008) model can be mapped into (7) in the same fashion. The main
computational difficulty in that model is solving the sovereign’s problem conditional on
not defaulting. Specifically, the problem is to solve, foreachb e Band y € ),

Vn(bay): max u(c)—I—ﬁIEyqymaX{V"(b/,y/),Vd(y/)},
c>0,b'eB (12)
st.ct+q(b,y)b'=b+y,

where b is the sovereign’s outstanding bonds, ¢(?’, y) is the bond price, y is output, and
1’4 is the value of defaulting. Taking B as {b1, ..., b,} with the b; increasing and creating
a separate problem for each y, one has

Iy (i) = max (i, ), (13)

i'ely (i)
where 7, and 1 ; are defined as
ay(i, i) := u(—q(byr, )by + bi +y) + BEyy max{V" (by, y), V(y')}, a4
(i) =i e {1,...,n}| = q(by, )by + b +y = 0}.

Then (13) has the same form as (7) and /| is increasing. Consequently, the monotonicity
algorithms will deliver correct solutions.
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APPENDIX E: ADDITIONAL RESULTS FOR THE CLASS OF NONMONOTONE PROBLEMS

This appendix builds on Section 4 by testing the quantitative performance of binary
monotonicity with sorting. The application, a sovereign default model with endogenous
capital accumulation, is described in Section E.1. Section E.2 assesses the algorithm’s
performance inclusive of sorting costs. Last, Section E.3 shows how binary monotonic-
ity with sorting can be used to solve some problems that do not fit (6) by transforming
them into two-stage problems. It also illustrates how choice variables for which one does
not want to (or cannot) exploit monotonicity may be handled.

E.1 A sovereign default model with capital

The model is similar to Bai and Zhang (2012) but lacks capital adjustment costs (in Sec-
tion E.3 we use adjustment costs to illustrate how two-stage reformulations allow bi-
nary monotonicity to be used). A sovereign has total factor productivity a that is Markov
and chooses bonds ' and capital k&’ from sets B and K, respectively, with 0 € 5. If the
sovereign defaults, output ak® falls by a fraction «. In equilibrium, the discount bond
price g satisfies g(b’, k', a) = (1+ r)_1Ear|a(1 —d(b', k', a")) where r is an exogenous risk-
free rate and d gives the default decision. The sovereign’s problem is to solve

V(b,k,a)= max dV%k,a)+ (1 —d)V"b,k,a), (15)
de{0,1}
where the value of defaulting is

c

itk )= max u(e) + BEaa(0V (K. a') + (1= OV (0. K. d)),
>0,k'e

(16)
st.c+k'=(1—k)ak®+ (1 -8k
and the value of repaying is
Vb, k,a)= Eq1V (b, k', d'),
( a) 20.0eB Kek u(©) + BV ( @) a7

st.c+q(b', k', a)b' + k' =ak® + (1 — 8)k +b.

The most difficult part of computing this model is solving for I’". Note the optimal
policies for the problem are generally not monotone: An increase in bonds b or capital
k may cause a substitution from b’ into k’ or vice versa. This is true even if one uses a
cash-at-hand formulation. Nevertheless, binary monotonicity can be used to solve this
problem by mapping it into (5) and then sorting to arrive at (6). Specifically, suppose
the states (b, k) and choices (¥, k') both lie in a set X = {(b;, k;)} having cardinality ».
Creating a separate problem for each g, one may then write

Vi) = max  u(c)+ W(7),
¢>0,i'ef1,...,n} (18)

s.t. ¢ = z4(i) — wa (1),
where W,(i') := BanaV(bi/,k,'/,a/), za(0) == akf‘ + (1 — 8)k; + b;, and w,() =

q(by, ky,a)by + ky. Generally, z, and W, will not be increasing. However, by sorting
them, one can solve the model using binary monotonicity.
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TaBLE 3. Run times and evaluations for the combined Arellano (2008) and RBC model.

Run times Evaluations per state
Points (m) Brute Simple Binary Brute Simple Binary Speedup
Original formulation
50 1.73 (m) 37.1 (s) 2.64 (s) 2500 1273 14 14.1
100 26.4 (m) 9.48 (m) 9.35 (s) 10,000 5100 16 60.8
250 16.1* (h) 5.83* (h) 1.10 (m) 62,500* 31,936* 19 317.9*
500 10.3* (d) 3.72% (d) 5.02 (m) 250,000* 127,919* 21 1066.8*
1000 157* (d) 57.0% (d) 21.1 (m) 1,000,000* 512,379* 23 3890.5*
Cash-at-hand formulation
50 3.14 (s) 1.21 (s) 0.85 (s) 2500 1304 379 1.4
100 17.5 (s) 8.03 (s) 4.16 (s) 10,000 5127 860 1.9
250 4.12 (m) 1.76 (m) 31.0 (s) 62,500 31,723 2467 34
500 32.3 (m) 12.8 (m) 2.27 (m) 250,000 126,354 5432 5.6
1000 4.23* (h) 1.55* (h) 10.1 (m) 1,000,000* 503,277* 11,855 9.2*

Note: Run times are in seconds (s), minutes (m), hours (h), or days (d). The last column gives the run time for simple relative
to binary; an * means the value is estimated; times and average evaluations are over the first 200 value function iterations.

E.2 Performance

As stated in the main text, binary monotonicity with sorting is O(nlogn) + O(n'logn’)
as either n or n’ grow. While the cost depends only on the total number of points » and
7/, in the case of tensor grids with a fixed number of points m along each dimension,
n=m?and n’ = m? grow quickly in m when d and d’ (the dimensionality of states and
choices, resp.) are bigger than 1. The cost in these terms is O(m™#¢-4'} Jog m) for binary
monotonicity and O(m9*<) for brute force. While theoretically this results in a massive
improvement when d = d’ > 1, the extreme cost of using brute force in this case means
one would almost surely reformulate the problem in terms of cash-at-hand, effectively
reducing d to 1.

Table 3 reports the run times and evaluation counts for brute force, simple mono-
tonicity, and binary monotonicity for different grid sizes .2 In the top panel, the cash-
at-hand reformulation has not been used, and so binary monotonicity vastly outper-
forms the other methods. For 50 points in each dimension, binary monotonicity is al-
ready 14 times faster than simple monotonicity and 39 times faster than brute force.
For a 1000 points, simple monotonicity’s estimated run time is 2 months while binary
monotonicity’s actual run time is only 21 minutes. A doubling of the grid sizes makes
the speedup increase by roughly a factor of 4, which agrees with binary monotonicity
being O(m?logm) and brute force being O(m*). The speedups measured in evaluation
counts are even more dramatic as they exclude time spent sorting.

Reformulating the problem using cash-at-hand (with m points for the cash-at-hand
state variable) makes brute force an O(m?3) algorithm but has no change on binary

8For this example, productivity follows an AR(1) with a persistence parameter of 0.945 and standard
deviation of 0.025, the default cost « is 0.05, the risk-free rate r is 0.017, the discount factor 8 is 0.952, and
the capital share, risk aversion, and depreciation rate are as in the RBC calibration.
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monotonicity’s asymptotics (which are still O(m?logm)). Consequently, binary mono-
tonicity still has an advantage, but it is much smaller. This can be seen in a comparison
of the top and bottom panels of Table 3. With the cash-at-hand formulation, brute force
and simple monotonicity are faster by a factor of roughly m, but binary monotonicity
is only twice as fast. Overall, binary monotonicity still outperforms simple monotonic-
ity, but by a more modest factor of 1.4 to 9.2 for run times. The better evaluation count
speedups, which are in the 3.4 to 42.5 range, show that sorting costs are playing a non-
trivial role. When only n or n’ grow, sorting costs dominate, and here that is essentially
the case because n’ = m? grows much faster than n = m. However, the speedups mea-
sured against brute force—which may be a better benchmark since the sorting of con-
tinuation utilities is, to our knowledge, novel—are roughly twice as large.

E.3 Two-stage reformulations

Some models, such as models with adjustment costs, do not directly have the additive
separability in the budget constraint of (6). However, they might when breaking the max-
imization problem into two stages. For instance, adding capital adjustment costs to our
example results in a budget constraint

c+q(b, kK, a)b + K + E(K' — k)* = ak® + (1 — &)k +b, (19)

which can be written as ¢ = z,(b, k, k') — w,(b', k, k') where z,(b, k, k') := ak® + (1 —
Sk +bandw, (b, k, k') :=q(b', k', a)b’ + k' + (k' — k)?. Consequently, the problem has
the form
Vi, )= max u(e)+Wa(l', J'),
c>0,7,j (20)
st.e=2z4(i, /. J)) —wa(?', J, 1),
so that there is additive separability between the i and i’ variables conditional on a j,
J pair. Binary monotonicity can be used to solve (20) by breaking it into a two-stage
problem where ;' is chosen in the first stage and /' in the second:

Vi j) = max V' (i, j, /'),
j/
Vi, j, j') = max u(c) + Wa(i', j'), (21)
c>0,1'

st.e=2z4(i, /, J') —wa(i', J, J')-

For each j, j/ combination, one can sort z(-, j, j/) and W (-, j') so that the optimal policy of
the second-stage problem is monotone in i. For grids of size m in each dimension, binary
monotonicity with sorting can be used to solve for I7a” in O(m>logm) operations and
then V' in O(m?) operations. So, the total cost is O(m> log m), which compares favorably
with brute force’s O(m*).

In general, if one wants to use binary monotonicity for one choice variable (say ')
but not another (say j'), a two-stage reformulation must be done. The above example
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illustrates one way to do this: First, choose j* and make it a state variable when choos-
ing i’. The other way is to first choose i’ and make it a state variable when choosing j'.
The RBC model with elastic labor supply provides an example of this latter approach,
and one may consult Section C.2.3 of Appendix C for more details.

APPENDIX F: OMITTED PROOFS AND LEMMAS

This appendix gives omitted proofs and lemmas. Section E1 gives the results for the
monotonicity-related sufficient conditions. Section E2 gives proofs and lemmas show-
ing binary monotonicity and the other algorithms work correctly. Section E3 gives the
proofs and lemmas for the cost bounds in established in Propositions 1 and 2 in the
main text.

F.1 Monotonicity sufficient condition proofs and lemmas

To give the omitted sufficient condition proofs, we first give some definitions and a
lemma.

E1.1 Definitions and a lemma Lattices are general mathematical structures. For our
purposes, we need only lattices consisting of subsets of Euclidean space with the
component-wise ordering, that is, x <y for x, y € R" if x; < y; for all j where z; denotes
the jth component of z. In this context, the join operation Vv gives the component-wise
maximum, namely, x vV y = (max{x, y1}, ..., max{x,, y,}). Likewise, the meet operation
A gives the component-wise minimum, x A y = (min{xy, y;}, ..., min{x,, y,}). A lattice
consists of a set X C R” with the component-wise ordering such that x, y € X implies
xVy,x Aye X.Note that if X C R, it constitutes a lattice with our ordering: x,y € X
implies min{x, y}, max{x, y} € X. A function f : X — R where X is a lattice is said to be
supermodular (submodular) if f(x) + f(y) < (>)f(x Ay) + f(x v y) for all x, y € X; if
the inequality is strict for all x and y that cannot be ordered, then the function is strictly
supermodular (submodular).

For part of Lemma 2, we will need a slightly broader definition of increasing differ-
ences than what was given in the main text.

DEFINITION 4. Let X C R”. Use the notation (x_;, y;, y;) to denote the vector x but with
the ith and jth component replaced with the ith and jth component of y, respectively.
Afunction f : X — R has increasing differences on X iffor all i, j with i # j and for all y;, y;
having x; < y; and Xj <y (such that (X—ij» Yis Xj)5 (X—ij> Xi5 Xj), (X—ij, Vi, ¥j), (X—ij» Xi, Yj) €
X) one has

FOezij, yir xj) — f(x—ij, xi, Xj) < f(x—ij, yir ¥j) — f(x—ij, Xi, y))-

The function f has decreasing differences if f(x_;,yi,x;)) — f(x_ij,xi,xj) >
f(x_ij,yi»y)) — f(x_ij, xi, ;). The differences are strict if the inequality holds strictly
(whenever x; < y; and x; < y;).
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Note that this is equivalent to having increasing differences—as defined in the main
text—for all pairs of components. Any univariate function has increasing differences be-
cause the condition requires i # j.

We will also need to appeal to the following partial equivalence between increasing
differences and supermodularity.

LEMMA 3. Suppose X C R" is a lattice. If f is (strictly) supermodular on X, then f has
(strictly) increasing differences on X. If X = []i_; X; with X; C R for all i and f has
(strictly) increasing differences on X, then f is (strictly) supermodular on X .

ProoF. Let X denote the direct product (a generalization of the Cartesian product).?
Then Theorem 2.6.1 of Topkis (1998) gives that if X, is a lattice for each « in a set A,
X is a sublattice of X . 4 Xo, and f(x) is (strictly) supermodular on X, then f(x) has
(strictly) increasing differences on X . Taking A = {1, ..., n}and X, = Rforall « € A4 gives
X 4e 4 Xa =R" (which is example 2.2.1 part (c) on Topkis (1998, p. 12)). Consequently, X
is a sublattice of R” and the theorem applies to show the (strict) supermodularity of f
on X implies (strictly) increasing differences of f on X.

Corollary 2.6.1 of Topkis (1998) gives that if X; is a chain (by definition, a partially
ordered set that contains no unordered pairs of elements) for i = 1,...,n and f has
(strictly) increasing differences on X’_; X;, then f is (strictly) supermodular on X_, X;.
Since X; C R, it is a chain, and the direct product X_, X; is just the Cartesian product
[T, X;. Hence (strictly) increasing differences on X implies (strict) supermodularity
onX. O

E.1.2 Proofs

Proor oF ProprosiTiON 3. Because 7' C R, it is a lattice. Additionally, — (i, i") has
decreasing differences and is trivially submodular in i’ (as well as supermodular). So
Theorem 6.1 of Topkis (1978) gives that argmin; ., —m(i, ') is ascending on the set
of i such that a solution exists. Theorem 6.3 strengthens this to strongly ascending
when —(i, ') has strictly decreasing differences. Noting G (i) := argmax; .y ;y m(i,i') =
argmin, ;) —7(i, ') then gives the result. O

ProOOF OoF LEMMA 1. To have I” ascending on 7 one needs i1 < i, i} € I'(i1), and i, €
I'(ip) to imply min{#, i5} € I'(i1) and max({#}, i;} € I'(i2). Since I’ is increasing, i} € I'(i2)
and so max{#}, i,} € I'(ip). If ;, > 7|, then one has min{}, i,} = i} € I'(i1). So, take i, < 7}.

9Topkis (1998) defines the direct product, which he denotes by )X, in this way: “If X, is a set for each «
in a set A4, then the direct product of these sets X, is the product set X wed Xo={x=(g:ae A):xq€ X,
for each a € A}” (p. 12). The notation (x, : « € A) gives a vector that “consists of a component x, for each
a€ A” (p. 12). In words, X wed X, is the set of vectors that can be formed under the restriction that each o
component has to lie in Xj,.
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We need to show that i, € I'(iy) for i} < i, and 7, < i]. Pick an arbitrary m and sup-
press dependence on it. Then

Wi i3) — i, 5) < Ao, ) — (i1, 1)
< h(iz, 1)
< h(ia, iy),

where the first line follows from increasing differences, the second from i} € I'(i1) so
that /(iy, i) > 0, and the third from & being decreasing in i’. Consequently, —A(iy, i5) <0
which gives A (i, 7;) > 0. Since the m was arbitrary, this holds for all m and so 7, € I'(iy).
Thus, min{#}, i} € I'(i1) and so I’ is ascending on 7. O

Proor or LEMMA 2. For (a) and (b), we prove (b) which implies (a). Let (i1, i’l), (ip, i’z) €
S with i < i; and ] < 7, but otherwise arbitrary. Then

f(i2, 1) = f(i1, ) = p(i2) + q(i}) + r(i2)s(i}) — p(iv) — q(i}) — r(in)s(i))
= p(i2) — p(ir) + (r(i2) — r(iD)s(i}).
So, f(iy, i’l) — f(iy, i/l) < f(ip, i/z) — f(iy, i/z) if and only if
p(i2) = p(in) + (r(i2) = r(i)s(i) < p(iz) = p(in) + (r(i2) — r(i1))s(iy)
& 0= (r(i) — r(n)(s(i) — s(ih)),

which holds because r and s are either both increasing or both decreasing.
For (c), let (iy, i}), (i2, #}) € S with i < i and i} < 7, but otherwise arbitrary. Then f
has increasing differences if and only if

g(in, 17) — g(ir, 1)) < g(ia, 15) — g(i1, 15)

since g agrees with f on S. Because g is C?, this holds if

/ g1(0,i’1)d0§f qi(0,0)do o 05/ (51(6, 1) — g1(6, 1)) 6.
[i1,12] [i1,12]

[i1,i2]

Again, by g being C?, this holds if

Osf f g12(0, 6')do’ deé.
Li1,i2] 1} 5)]

Because L is assumed to be a hypercube containing S and g1, > 0 on L, this holds.
For (d), let (i1, i}), (i2, 7,) € S with iy < i; and 7| < i, but otherwise arbitrary. Then f
has increasing differences if and only if

Zakfk i, iy Zakfk i1, 1) Zakfk iz, i5) Zakfk(ilai/z)

& Y a(filia, i) — fi(ins 4} Zak fieli2, ) = fie(in, B3)).-
k
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A sufficient condition for this is that, for all &, f; has increasing differences so that
fk(i27 l/l) - fk(i] 5 l/l) S fk(iz’ 1/2) - fk(i] ) l/z)-

For (e) and (f), let (i1, #}), (i2, i,) € S with i; < i; and ] < i}, but otherwise arbitrary.
The composition % o g has increasing differences on § if and only if

h(g(i2, 1)) — h(g(i1, 1)) = h(g(i 15)) — h(g(ir, 15))- (22)

Because g isincreasingin i, g(iz, i) — g(i1, i) > 0. Then because # is C?, (22) is equivalent
to

glin, i) —g(i1, i) gliz,i5)—g(i1,1y)
f W (g(ir, i}) + 0) do < f W (801, 1) + 6) do.
0 0

Because g has increasing differences, g(iz, i}) — g(i1, i}) < g(i2, i5) — g(i1, i5). Hence, this
is equivalent to

glini1)—g(iri}) 8lin, i) —g(ir.iy)
/ (1 (8i1. 1) + 0) — (i1, 15) +6)) d6 < / W ((i. i) +0) do.
0 g(in, i) —g(ir,i})

Because /i’ > 0, the right-hand side is positive. So, a sufficient condition for this to hold is
that the left-hand side be negative, which s trueif 7' (g (i1, i}) +6) < h'(g(i1, i,) +6) for all
positive 6. In (f), g is increasing in its second argument, so g(iy, i{) + 6 < g(i1, i,) + 6, and,
because 4" > 0, this holds. In (g), g is decreasing in its second argument, so g(iy, i}) + 6 >
g(i1, 7)) + 6, and because 1" < 0, this holds. So, & o g has increasing differences.

For (g), let (i1, i), (i2, ;) € S with i; < i and #] < i}, but otherwise arbitrary. Then
because 4 is increasing in i and because g has increasing differences,

8(h(iz, &), iy) — g(h(i1, &), iy) < g(h(ia, €), i) — g(h(ir, €), i)

for any ¢ € E. Integrating,
/E (g(h(ia, €), 1) — g(h(ir, €), 1)) dF(s) < /E 8(h(in, &), i5) — g(h(i1, &), iy) dF (e).
From f(i, i) = [ g(h(i, €),i") dF (&), this says

Flia, i) = fins 1)) < i B5) = f(in, 85),

which establishes that f has increasing differences.

For (h), note that the pairwise increasing differences of g in i, i/, and i, x, and 7, x
gives, by definition, that g has increasing differenceson Z x 7' x X. So, g is supermodular
on the lattice Z x 7' x X by Lemma 3. Since the graph of I" is assumed to be a lattice, it is
asublattice of S x X. Last, because g is supermodular, —g is submodular. Consequently,
Theorem 4.3 of Topkis (1978) applies to show that minycr; ) —g(i, ', x) is submodular.
Therefore, —minyer(;, 1y —g(i, I’, x) is supermodular, and this equals max,cr; iy g(i, i’, x),
which by definition is f(i, i'). So, f is supermodular on the lattice S, which implies f has
increasing differences on S by Lemma 3. O
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PROOF OF PROPOSITION 4. Let a < b with a, b € Z. Define the feasible set as I'(i) := {i’ €
T'lc(i,i") > 0}. Let g1 € G(a) and g, € G(b).

To establish that G is ascending, it is sufficient to show that g; > g, implies g; € G(b)
and g, € G(a). To establish that G is strongly ascending, it is sufficient to show that
g1 > g» gives a contradiction. So, suppose g; > g». Unless explicitly stated, we only as-
sume c is weakly increasing in i, has weakly increasing differences, and that I is weakly
increasing.

First, we will show c(a, g2) > c¢(a, g1) > 0 and c(b, g2) > c(b, g1) > 0 for W weakly
increasing and c(a, g2) > c(a, g1) > 0and c(b, g2) > c(b, g1) > 0 for W strictly increasing.
To see this, note that I' is increasing. Consequently, g; € I'(b) (so c¢(b, g1) > 0), and hence
g2 € G(b) implies

u(c(b, g2)) + W(g2) = u(c(b, g1)) + W(g1). (23)

Because g, < g1 and W is weakly (strictly) increasing, this implies c¢(b, g2) > (>)c(b, g1).
So, exploiting weakly increasing differences, 0 > (>)c(b, g1) — c(b, g2) > c(a, g1) —
c(a, g») for W weakly (strictly) increasing. Also using g; € I'(a), c(a, g2) > (>)c(a, g1) >0
for W weakly (strictly) increasing. For use below, note also that because g; € G(a) and
g2 €l'(a),

u(c(a, 1) +W(g1) = u(c(a, g2)) + W(g2). (24)
Combining (23) and (24),
u(c(b, 82))+W(g2)—u(c(b, g1))—W(g1) = 0> u(c(a, g2))+W(g2) —u(c(a, g1)) —W(g1),
which implies
u(c(b, g2)) — u(c(b, g1)) = u(c(a, g2)) — u(c(a, g1)). (25)
As established above, c(b, g2) > ¢(b, g1) and c(a, g2) > c(a, g1). Using this and the differ-

entiability of u, (25) is equivalent to

c(b,g2)—c(b,81) c(a,g2)—c(a,g1)
/ u/(c(b,g1)+0)d02/ u'(c(a, g1) + 6)do.
0 0

Because of weakly increasing differences, c(a, g1) — c(a, g2) < c(b, g1) — c(b, g2) or,
equivalently, c(b, g2) — c(b, g1) < c(a, g2) — c(a, g1). Moreover, c(b, g») > c(b, g1). So, the
above inequality is equivalent to

c(a,g)—c(a,g1)
Oz/ u'(c(a, g1)+ 6)do
c(b,g2)—c(b,81)

C(bagZ)_C(bagl) , ,
—i—/o (u'(c(a, g1) +6) —u'(c(b, g1) + 0)) dob.

Because c is weakly increasing in i and u is concave, the second integral is positive. The
first must also be positive. Hence, the inequality holds if and only if

c(a, g) —c(a,g1) =c(b, g2)—c(b, g1) (CD)
AND  c¢(b,g)=c(b,g1) or c(a,g1)=c(b,gr). (C2)
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Now, consider the claims again. For the second claim, we seek a contradiction.
A contradiction obtains if ¢ has strictly increasing differences as then (C1) is violated.
Alternatively, if I is strictly increasing and c is strictly increasing in i, (C2) will be vio-
lated because c(b, g») > c(b, g1) and c(a, g1) > c(b, g1).-

For the first claim, we want to show g; € G(b) and g, € G(a). (C2) implies ei-
ther ¢(b, g2) = c(b, g1) and/or c(a, g1) = c(b, g1). Consider the cases separately with
c(b, g2) = c(b, g1) first. Then (C1) gives c(a, g2) — c(a, g1) = c(b, g2) — c(b, g1). So,
c(a, g2) = c(a, g1). Hence, the choices give the same consumption at @ and b. So, the
continuation utility must be the same: equation (23) implies W(gy) > W(g1) and (24)
implies W (g1) > W(g2). So, with the same consumption and choice utilities, g; € G(a)
gives g» € G(a) and g, € G(b) gives g1 € G(b).

Now consider the second case where c(a, g1) = c(b, g1). Because (C1) gives c(a, g2) —
c(a, g1) = c(b, g2) — c(b, g1), replacing c(a, g1) with c(b, g1) gives c(a, g2) — c(b, 1) =
c(b, g2) —c(b, g1) or c(a, g2) = c(b, g2). Then

u(c(a, g1)) +W(g1) = u(c(a, &) + W(g2)
& u(e(b, g)+W(g1) = u(c(b, g2)) + W(g2),

(26)

where the first line follows from the optimality of g; € G(a) and the second from
c(a, g1) =c(b, g1) and c(a, g2) = c(b, g2). Consequently, since g, € G(b) and (26) shows
g1 delivers weakly higher utility at b, g; € G(b).

To establish g, € G(a), the argument is similar. We have c(a, g1) = c(b, g1) and
c(a, g») = c(b, g»). Because we have shown g1 € G(b), u(c(b, g1))+W(g1) = u(c(b, g2))+
W (g»). Replacing c(b, g1) with c(a, g1) and c(b, g») with c(a, g,), this becomes

u(ca, g1)) + W(g1) =u(c(a, g)) + W(g2).
Consequently, g1 € G(a) implies g, € G(a). O
ProoF oF ProprosITION 5. Because f is assumed to be differentiable (left and right)
on the closure of §, Theorem 1 of Milgrom and Segal (2002) gives that f;(i,i') =

ur(g(x*(i, 1), i, ")) g2(x* (i, ), 1, i’) on .
To show increasing differences, we need to establish that

fia, 1) = f(in, 1)) < flia, 15) — (i1, 5)
for (iy, 1)), (i2, 15) € S with iy < i, and i} <. Since f is C! in i, this is equivalent to
ir
0< / (f:(6, 1) — £:(0.1,)) do.
151
Hence, if f; is increasing in ¢/, then increasing difference holds. Defining x;‘ = x*(i, i;.),
then f; is increasing in i’ if
0= (g5 1. 5)) 205 1) — 0 (5 7. . 1) 1)
— (g3 1)) (g2(3. 1. 15) — g .17)
({80631 1) — w8 1)) 7).
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Since uy > 0 and g(x*(i, i), i, i’) is increasing in i/, the first term is positive. Since u1; <0,
g (x*(i,1"),1,i') > 0,and g(x*(i, '), i, i) is decreasing in 7/, the second term is positive. So,
f has increasing differences. O

E.2 Algorithm correctness proofs and lemmas

We now give the omitted proofs and lemmas pertaining to the algorithm correctness.

Let the objective function 7 (i, '), the maximum I1(i), and the feasible choice set
I'(i) be asin (7). Assume that I’ (i) C {1, ..., n’}—which may be empty—is monotonically
increasing, and define I :={i € {1, ..., n}|I'(i) # ¥} so that i € [ has a feasible solution.
Foralli e I, define G(i) := argmax; ;) 7(i, i'). Let w be defined via (8)—where 7 is such
that 77(i,i") > @ for all i € I and i’ € I' (i)—with I1(i) := maxy ¢, w(i, ') and G(i) :=
argmax; ., 7(,i'). Note that by construction, i’ = 1 is optimal whenever there is no
feasible choice and i’ € I (i) is always preferable to i’ ¢ I'(i) when a feasible choice exists.

Lemma 4 establishes the mathematical equivalence of these problems (but does not
say that the algorithms applied to (1) deliver a correct solution to (7)).

LEMMA 4. All of the following are true:

1. Iy =11(i) forallie .
2. G(iy=G(i) foralliel.

3. Ifé is ascending on I, then G is ascendingon {1, ..., n}.

Proor. The first claim is an implication of the second claim. For the proof of the second
claim, let i € I. Then I'(i) # @. Infeasible choices, that is, i’ € {1, ..., n'} \ I'(i), are strictly
suboptimal in the I problem (1) because any feasible choice j' € I'(i) delivers (i, j’) >
o =m(i,i"). Hence,

G (i) = argmax (i, i') = argmax (i, ') = argmax 7 (i, ') = G(i)
irel,...,n'} irel’ (i) el (i)
(where the third equality follows from the definition of ).

To show the third claim, let G be ascending on /. Now, let i; < i; and g; € G(i1) and
g2 € G(ip). We want to show that min{gy, g2} € G(i1) and max{gy, g2} € G(iy). Clearly,
this is the case if g1 < g, so take g; > g». Then since G(i) = {1} for all i ¢ I and g; >
g> > 1, it must be that i; € I (otherwise, g would have to be 1). Then, because I'(i) is
increasing, i, € I. Hence, G(i1) = G(iy) and G(iy) = G(ip). So, G ascending gives the
desired result. O

Lemmas 5 and 6 establish that, for concave problems, simple and binary concavity
deliver an optimal choice provided there is one in the search space.

Lemwma 5. If the problem is concave and w(i, j) > w(i, j + 1) for some j, then =(i, j) =
max;e(j,....»y m(i, 1) (j is as least as good as anything to the right of it). If w(i,k — 1) <
w(i, k) for some k, then (i, k) = maxyeq1,. k) (i, ') = maxpeq1, . xy (i, i) (k is as least as
good as anything to the left of if).
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Proor. Note that by the problem being concave (as given in Definition 3), there is some
increasing function »’(i) such that I'(i) = {1, ..., n'(i)} fori e I.

To prove (i, j) > (i, j+ 1) implies (i, j) = max;¢(j ...,y w(i, i), consider two cases.
First, suppose i ¢ I. Then I'(i) = @ and #(i,i) = 1[i’ = 1]. Consequently, for any j,
(i, j) =maxpc(j,....»y w(i, 1'). In other words, j is weakly better than any value to the right
of it.

Second, suppose i € I. If j > n'(i), then (i, j) = m = maxyc(j,... .y w(i, 1'). If j =n'(D),
then 7T(i,j) > T = MaXje(jtl,..,n') (i, i/) 1mply1ng W(i,j) = maXje(j, .. n'} (i, l'/). If] <
n'(i), then

.....

max w(i,i/)zmax{ max 7 (i, '), max w(i,i’)}
i'efj,...,n'} ie{j,...,n' (i)} e{n’ (H+1,...,n"}

=max{ max w(i,i’),z}
st (i)

o,
el () (i, )

R
Pl () (i, ).

All that remains to be shown for this case is 7 (i, j) = maxy e, i)y 7(i, 7). Since w(i, j) =
(i, j) and w(i, j + 1) = 7(i, j + 1), the hypothesis gives 7 (i, j) > 7 (i, j + 1). Because the
problem is concave and 7 (i, -) is weakly decreasing from j to j + 1, it must be weakly
decreasing from j to »'(i). Hence, (i, j) = maxye(j,... w @iy 7(0, 1'). So, w(i, j) = 7 (i, j) =
maxe(j,...n (i) T, ') =maxyegj,. oy 7L, 1).

Now, we prove the case for 7 (i, k — 1) < 7 (i, k). In this case, kK — 1 and k must both
be feasible, that is, k < (i), because (1) if they were both infeasible, then 7 (i, k — 1) =
a = w(i, k) and (2) if only k were infeasible, then = (i, k — 1) > = = w(i, k). Given that
k — 1 and k are feasible, w(i,k — 1) = 7 (i, k — 1) and (i, k) = 7 (i, k). Since (i, ) is
strictly increasing until it switches to weakly decreasing, 7(i,1) < --- < 7(i,k — 1) <
(i, k). Hence (i, k) = maxycq1,. xy (i, i'). Since all of 1, ..., k are feasible, 7 (i, k) =
maxy (1. k) m(i, i) = maxyeq,. kg 7, 7). O

LEMMA 6. Suppose it is known that G(i) N{a, ..., b} is nonempty. Then brute force ap-
plied to
oy
i’e?al,z.l.).(,b} (i 1)
delivers an optimal solution, that is, letting g be the choice the algorithm delivers, g €
G (i). Additionally, if the problem is concave, then the simple concavity and binary con-
cavity algorithms also deliver an optimal solution.

Proor. First, suppose i ¢ I so that 7(i,i') = 1[i’ = 1]. Then it must be that a = 1 since
G (i) = {1}. Brute force clearly finds the optimum since it checks every value of i". Simple
concavity will compare i = a = 1 against i’ = a+ 1 =2 and find i = 2 is strictly worse. So,
it stops and gives ¢ = 1, implying g € G (i) = {1}. Binary concavity first checks whether
b—a+1<2.1If so, it is the same as brute force. If not, it checks whether b —a + 1 < 3.
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If so, then b — a + 1 = 3 and it does a comparison of either (1) a and m = (b + a)/2, in
which case it correctly identifies the maximum as « or (2) m and b in which case it drops
b from the search space and does a brute force comparison of a and a + 1 (when it goes
to step 2). If b — a + 1 > 3, it will evaluate the midpoint m = |(a + b)/2] and m + 1 and
find 7 (i, m) = w(i, m + 1) = 0. It will then proceed to step 2, searching for the optimum
in {1,...,m} with a =1 and b = m in the next iteration of the recursive algorithm. This
proceeds until b — a + 1 < 3, where it then correctly identifies the maximum (as was just
discussed). Therefore, binary concavity finds a correct solution, g € G(i).

Now, suppose i € I. Because brute force will evaluate = (i, -) at every i’ € {a, ..., b},
it finds g € G(i). Now, suppose the problem is concave. The simple concavity algo-
rithm evaluates (i, ') at i’ € {a, ..., b} sequentially until it reachesa x e {a + 1, ..., b}

that #(i, x — 1) > w(i, x). If this stopping rule is not triggered, then simple concavity
is identical to brute force and so finds an optimal solution. So, it suffices to consider
otherwise. In this case, x — 1 satisfies the conditions for “;” in Lemma 5, and hence
(i, x — 1) =maxye(x_1,.. ) 7(i, i'). By virtue of not having stopped until x — 1, (i, x —
1) > maxycq,... x—1) m(i, i'). Consequently, m(i, x — 1) > maXyc(a,... x—1jufx—1,...n}) TG, 1) =
maxje(q,...»} (i, I'). Since a maximum is known to be in {a, ..., b},

()= max (/)< max =(i,{)<7m(,x—1)<II).
i'e{a,...,b} i'ela,...,n'}
So, (i, x — 1) =1I(i) giving x — 1 € G (7).

Now consider the binary concavity algorithm. If » < a + 1 (so that the size of the
search space, b — a + 1, is 1 or 2), the algorithm is the same as brute force and so finds
amaximum. If b = a + 2 (a search space of size 3), the algorithm goes to either step 3(a)
or step 3(b). In step 3(a), it stops if 7 (i, a) > 7 (i, m) (where m = (a + b)/2) taking the
maximum as a and otherwise does the same as brute force. So, suppose the stopping
condition is satisfied. A maximum is a as long as 7 (i, @) = max; ¢4, p) 7(i, i'), which it is
since a satisfies the conditions for “j” in Lemma 5. In step 3(b), it stops if 7 (i, b) > m(i, m)
taking the maximum as b and otherwise does the same as brute force. So, suppose the
stopping condition is satisfied. A maximum is b as long as 7 (i, b) = max;c,,... py 7(i, i),
which is true since b satisfies all the conditions for “k” in Lemma 5.

If b > a + 3 (a search space of 4 or more), binary concavity goes to step 4 of the algo-
rithm. In this case, it evaluates at two points m = |(a + b)/2] and m + 1. If w(i, m) >
7(i,m + 1), it assumes a maximum is in {a, ..., m}. Since m satisfies the conditions
for “j” in Lemma 5, 7 (i, m) > maXyc(m,...p 7(i, i'), which justifies this assumption. If
7(i,m) < w(i,m + 1), it instead assumes a maximum is in {m + 1, ..., b}. This again is
justified since m + 1 satisfies all the conditions for “4” in Lemma 5 and so m + 1 is bet-
ter than any value of i’ < m + 1. The algorithm repeatedly divides {a, ..., b} into either
{a,...,m}or {m+1,...,b}until the size of the search space is either two or three. Since
we have already shown the algorithm correctly identifies a maximum when the search
space is of size two or three (i.e.,, b = a + 1 or b = a + 2), the algorithm correctly finds the
maximum for larger search spaces as long as this subdivision stops in a finite number of
iterations (since then induction can be applied). Lemma 7 shows the required number
of function evaluations is finite, and so this holds. O
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We now give the proof of Proposition 6, which establishes that the monotonicity and
concavity algorithms deliver an optimal policy.

Proor or ProposiTiON 6. We will show, letting ¢ be the policy function the algorithm
finds, that g(i) € G(i) for all i, which implies g(i) € GG foralliel by Lemma 4. Each
of the brute force, simple, and binary monotonicity algorithms can be thought of as
iterating through states i (in some order that, in the case of binary monotonicity, de-
pends on =) with a search space {a, ..., b}. If every state is visited and optimal choice
is found at each state, then an optimal solution is found. So, it suffices to show that
each of the brute force, simple, and binary monotonicity algorithms explore every state
ie{l,...,n} and at each state, the following conditions are met so that Lemma 6 can
be applied: (1) {a,...,b} C{1,...,n'}; (2) a < b; and (3) G(i) N{a,..., b} # . An applica-
tion of Lemma 6 then gives g(i) € G(i) (provided an appropriate concavity algorithm is
used).

Brute force monotonicity trivially explores all states i € {1, ..., n} sequentially. At
eachi,a=1and b =r'. Consequently, G(i) N{a,....b} # ¥ and Lemma 6 can be applied.

Now, we prove simple monotonicity and binary monotonicity deliver a correct solu-
tion when G is ascending, which, by Lemma 4, gives that G is ascending.

The simple monotonicity algorithm explores all states i € {1, ..., n} sequentially al-
ways with b=r' (and so a < b). Fori=1, a=1 and so G(1) N{a,..., b} # @. Conse-
quently, Lemma 6 gives that g(1) € G(1). Now, consider some i > 1 and suppose for in-
duction that g(i — 1) € G(i — 1). Because G is ascending and g(i — 1) € G(i — 1), any
g € G(i) implies max{g(i — 1), g} € G(i). So, G(i)N{g(i—1),...,n'} # 0. Hence, Lemma 6
applies, and g(i) € G(i) completing the induction argument.

Now consider the binary monotonicity algorithm. If » = 1 or n = 2, the algorithm is
the same as simple monotonicity and so delivers a correct solution. If n > 2, then the al-
gorithm first correctly identifies g(1) (by brute force) and g(n) (using the same argument
as simple monotonicity). It then defines i = 1 and i = n and maintains the assumption
that (i) € G(i) and £(i) € G(i).

The goal of step 2 is to find the optimal solution for all i € {i, ..., }. The algo-
rithm stops at step 2(a) if i < i + 1, in which case this objective is clearly met since
{i, ..., i} ={i, i}. If the algorithm does not stop, then it computes g(m) for m = | (a+b)/2]
using the search space {g(i), ..., (i)}. By Lemma 6, an optimum is found as long as
G(m) N {g(i), ..., 8(0)} # 0. If g(i) € G(i) and g(i) € G(i), then for any ¢ € G(m), G as-
cending gives min{g (i), max{g(i), £}} € G(m). So, G(m) N{g(0), ..., §()} # P if g(i) € G()
and £(i) € G(i). This holds because of the algorithm’s maintained assumptions.'? So,
if every i € {2,...,n — 1} is the midpoint of some (i, i) after iterating some number of
times, the proof is complete. In other words, since the algorithm only solves for the op-
timal policy at midpoints once it reaches step 2, we need to prove every state (except for
i =1and i = n) is eventually a midpoint.

10Eormally, it can be shown through induction. It is true at the first instance of step 2. Since in step 2(c)
the algorithm then divides into {i, ..., m} and {m, ..., i}, it is also true at the next iteration. Consequently,
induction gives that a maximum is found for every midpoint.
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To show that every i € {2,...,n — 1} is a midpoint of some interval reached in the
recursion, fix an arbitrary such i and suppose not. Define (i, i1) = (1, n). When step 2 is
firstreached, i e {i;+1,..., i1 — 1}. Now, uniquely and recursively define (i PR i) to be the
one of (iy_y, m) and (m, ix_1) with m = [(ix_1 + ix—1)/2) such thati e {iy +1,..., i, — 1}
(because i is assumed to never be a midpoint, this is well defined).

Now, consider the cardinality of {is, ..., ix} defining it as Ny = iy — i, + 1. By con-
struction, i € {i; +1,..., iy — 1} for each k. So, a contradiction is reached if {ip+1,..., i —
1} = ¥ which is equivalent to N, < 2. So, it must be that N, > 3 for all k. If Nj,_4
is odd, then Ny = (Nj_1 + 1)/2. If Ny_q is even, Ny < N;_1/2 + 1. So, in either case
Ny < Ny_1/2 + 1. Defining M}, recursively by M; = N1 and My = M;_1/2 + 1, one can
show by induction that Ny < M} for all k. Because Ny > 3 for all k, M; > 3 for all k.
Hence M; — M;_1=1—-M;_1/2<1-3/2=-1/2. Hence M} < M;_1 — 1/2. Therefore,
M, will be less than three in a finite number of iterations, which gives a contradiction. O

E.3 Cost bound proofs and lemmas

We now give the cost bound proofs and supporting lemmas. Section E3.1 establishes
the performance of Heer and Mauf3ner’s (2005) binary concavity. Section E3.2 proves
the performance of the one-state binary monotonicity as stated in Proposition 1. Sec-
tion E3.3 provesthe performance of the two-state binary monotonicity as stated in
Proposition 2.

E3.1 Binary concavity

LEMMA 7. Consider the problem max;cq,... a+n—1) 7(i,i') for any a and any i. For any n €
Z*, binary concavity requires no more 2[log,(n)| — 1 evaluations if n > 3 and no more
than n evaluations ifn < 2.

Proor. For n =1, the algorithm computes 7 (i, @) and stops, so one evaluation is re-
quired. For n = 2, two evaluations are required (7 (i, @) and 7 (i, a + 1)). For n =3, step 3
requires (i, m) to be computed and may require (i, @) to be computed. Then step 3(a)
or step 3(b) either stop with no additional function evaluations or go to step 2 with
max{l,, 1,} = 1 where, in that case, at most one additional function evaluation is re-
quired. Consequently, » = 3 requires at most three function evaluations, which agrees
with 2[log,(3)] — 1 = 3. So, the statement of lemma holds for 1 <n < 3.

Now consider each n € {4, 5, 6, 7} for any 1,, 1, flags. Since n > 4 the algorithm is in
(or goes to) step 4. Consequently, two evaluations are required. Since the new interval is
either {a,...,m}or {m+1,...,b}and (i, m) and 7 (i, m + 1) are computed in step 4, the
next step has max{1,, 15} = 1. Now, if n = 4, the next step must be step 2, which requires
at most one additional evaluation (since max{1,, 1,} = 1). Hence, the total evaluations
are less than or equal to three (two for step 4 and one for step 2). If n = 5, then the next
step is either step 2, requiring one evaluation, or step 3, requiring two evaluations. So,
the total evaluations are not more than four. If n = 6, the next step is step 3, and so four
evaluations are required. Lastly, for n = 7, the next step is either step 3, requiring two



20 Gordon and Qiu Supplementary Material

evaluations, or step 4 (with n = 4), requiring at most three evaluations. So, the evalua-
tions are weakly less than 5 = 2 + max{2, 3}. Hence, for every n = 4,5, 6, and 7, the re-
quired evaluations are less than 3, 4, 4, and 5, respectively. One can then verify that the
evaluations are less than 2[log,(n)] — 1 for these values of n.

Now, suppose n > 4. We shall prove that the required number of evaluations is less
than o(n) :=2[log,(n)] — 1 by induction. We have already verified the hypothesis holds
for n € {4,5, 6,7}, so consider some n > 8 and suppose the hypothesis holds for all
me{4,...,n—1}.Leti be such that n € [2/ + 1, 2/*1]. Then note that two things are true,
[log,(n)] =i+ 1 and [log,( L”THJ )] = i.!! Since n > 4, the algorithm is in (or proceeds to)
step 4, which requires two evaluations, and then proceeds with a new interval to step 4
(again). If n is even, the new interval has size n/2. If n is odd, the new interval either has
a size of (n +1)/2 or (n — 1)/2. So, if n is even, no more than 2 + o (n/2) evaluations are
required; if » is odd, no more than 2 + max{c((n+1)/2), c((n—1)/2)} =2+ o ((n+1)/2)
evaluations are required. The even and odd case can then be handled simultaneously
with the bound 2 + o ( L”T“J ). Manipulating this expression using the previous observa-
tion that [logy(n)] =i+ 1 and [log, (| D1 =1,

e ]2

=242i—-1
=2[logy(n)| — 1.

Hence, the proof by induction is complete. O

FE.3.2 Binary monotonicity in one dimension In proving the performance on the one-
state binary monotonicity algorithm, we allow for many maximization techniques by
characterizing the algorithm’s properties conditional on a monotonically increasing o :
7+t — 7 that bounds the evaluation count required to solve (3).

Because of the recursive nature of binary monotonicity, the 7 evaluation bound for
general ¢ is also naturally recursive. In Proposition 7, we will show the algorithm’s cost
is 20(n') + M, (n, n") where the function M, is defined as follows.

DEerFINITION 5. For any o : Zt+ — Z*, define M, : {2,3,...} x ZT — Z™ recursively by
My(z,y)=0if z=20ry=0and

My(z,y)=0(y)+ max {MU(FJ +1, 7’) +MU<FJ +1L,y—v+ 1)}
Y ell, ..., v} 2 2

forz>2and vy > 0.

Now, we establish that M is increasing.

UThe proof is as follows. Both log,(-)1 and [log,(|-])] are weakly increasing functions. So, n €
(27 + 1,2¢*1] implies [logy(n)] € [[logy (2 + 1)1, [ogy (2111 = [i + 1,i + 1]. Likewise, [log,(|41))] €
[Tog, (| 21+ )1, Tlog, (| 255+ )1 =i, i1.
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LeEmMmA 8. Forany o, My(z,v) is weakly increasing in z and vy.

Proor. Fix a o and suppress dependence on it. First, we will show M (z, y) is weakly
increasing in vy for every z. The proof is by induction. For z =2, M(2,-) =0. For z =3,
M (3, y) = o(y) which is weakly increasing in y. Now consider some z > 3 and suppose
M(y,-) is weakly increasing for all y < z — 1. For y, > vy,

J+1,71—7'+1>}

M(z,y1)=0(y1)+ A max {MQEJJFLY/)JFMQ
Y ell,. .., v1} 2
J+1n/z—7’+1>}

Jou)

where the inequality is justified by o being increasing and the induction hypothesis giv-
ing M(|5] + 1, -) as an increasing function (note [ 5] 4+ 1 <z —1forall z > 3).

Now we will show M(z, v) is increasing in z for every . The proof is by induction.
First, note that M(2,y) =0<o(y)=M@3,y) forally>0and M(2,y) =0= M (3, y) for
v = 0. Now, consider some k > 3 and suppose that for any z;,z; <k — 1 with z; < z
that M(z1,y) < M(z,,) for all y. The goal is to show that for any z1, z; < k with z; < z,
that M (z1,y) < M(z,, ) for all . So, consider such zy, z; < k with z; < z,. If y =0, then
M(z1,y) =0=M(z,y), so take v > 0. Then

M(zy,y)=0(y)+ max {M(LﬂJ+l,y/>+M<{ﬁJ+1,y—y’+1>}
v e(l,...,y) 2 2

<o(y)+ max {MQQJ +1,v/) +MQQJ +1,7—7/+1>}
vell, ..., v} 2 2

=M(z, 7).

NN

NN
NN

<o(y2)+ max {M({

Y e{l,...,y2}

=M(z,v),

The inequality obtains since | 3] + 1 < k — 1 for all i (which is true since even if z; = k,
onehas |k/2| 4+ 1 < k — 1 byvirtue of k > 3). So, the induction hypothesis gives M ( L%J +
1,)<M( L%J + 1, -), and the proof by induction is complete. O

Now we can give a cost bound for the one-state binary monotonicity algorithm.

PROPOSITION 7. Let o : T+ — Z* be an upper bound on the number of w evaluations
required to solve (3). Then the algorithm requires at most 2a(n') + My(n, n') evaluations
forn>2andn’ > 1.

Prook. Since g is the policy function associated with (1), g: {1,...,n} - {1,...,n'}. By
monotonicity, g is weakly increasing. Define N : {1, ..., n}> — Z* by

N(a,b)y=M(b—a+1,g(b)—g(a)+1)

noting that this is well defined (based on the definition of M) whenever b > a. Addition-
ally, define a sequence of sets Z fork=1,...,n— 1 by

Ii:={G,Dli=i+kandi,ie{l,...,n}}.
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Note that for any k € {1, ..., n — 1}, Z; is nonempty and N (a, b) is well defined for any
(a,b) € I.

We shall now prove that forany k € {1, ..., n—1}, (i, i) € Z; implies N (i, i) is an upper
bound on the number of evaluations of 7 required by the algorithm in order to compute
the optimal policy for all i € {i, ..., i} when g(i) and g(i) are known. If true, then begin-
ning at step 2 in the algorithm (which assumes g(i) and g(i) are known) with (i, i) € T,
N(i, i) is an upper bound on the number of 7 evaluations.

The argument is by induction. First, consider k = 1. For any (a, b) € Z;, the algorithm
terminates at step 2(a). Consequently, the number of required 7 evaluations is zero,
which is the same as N(a,b) =M b —a+1,g(b) —gla)+1)=M2,g(b) —g(a)+1)=0
(recall M(2,-) =0).

Now, consider some k € {2, ...,n — 1} and suppose the induction hypothesis holds
forall jin 1,...,k — 1. That is, assume for all jin 1,...,k — 1 that (i,i) € Z; implies
N(i, i) is an upper bound on the number of required 7 evaluations when g(i) and g(i)
are known. We shall show it holds for £ as well.

Consider any (i, i) € Z; with g(i) and g(i) are known. Since i > i + 1, the algo-
rithm does not terminate at step 2(a). In step 2(b), to compute g(m) (wWhere m := L%J )
one must find the maximum within the range g(i), ..., g(i), which requires at most
o(g(i) — g(i) + 1) evaluations of 7. In step 2(c), the space is then divided into {i, ..., m}
and {m, ..., i}. _

If k is even, then m equals % Since (i, m) € Iy > and g(i) and g(m) are known,
the induction hypothesis gives N (i, m) as an upper bound on the number of = eval-
uations needed to compute g(i), ..., g(m). Similarly, since (m, i) € Ty and g(m) and
g(i) are known, N(m, i) provides an upper bound on the number of 7 evaluations
needed to compute g(m), ..., g(i). Therefore, to compute g(i), ..., g(i), at most o (g(i) —
g(i) + 1) + N(i, m) + N(m, i) evaluations are required. Defining y = g(i) — g(i) + 1 and
v = g(m) — g(i) + 1 and using the definition of m and N, we have that the number of
required evaluations is less than

oY) +M(m—i+1,gm)—g)+1)+M@i—m+1,83) —gm)+1)

=o(y)+M<%—i+1,y/>+M<E—I+TL+1,g(f)—g(m)+1>

:o(y)+M<:+1,y/)+M(l;2£+1,g(f)—g(m)+j/—)/+1)

[\

=o(y>+M(%+1,v/)+M(l;2£+1,g(?>—g(m)+g<m>—g(z>+1—v’+1>

=a'(y)+M<%+l,’y/)+M(l;2£+1,y—'y'+1>.

By virtue of monotonicity, g(m) € {g(i), ..., g(i)} and so g(m) —g(i) + 1 € (1,..., g(i) —
g(i) + 1} or equivalently y’ € {1, ..., y}. Consequently, the number of function evalua-
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tions is not greater than

i—i i—i
o(y)+ max M<—;+Ly)+M<—;+Ly—¢+Q.
yell,...,v} 2 2

The case of k£ odd is very similar, but the divide-and-conquer algorithm splits the
space unequally. If k is odd, then m equals H;_l .In this case (i, m) € Zx_1y,2 and (m, i)e
Z(k—1)/2+1-'2 Consequently, computing the policy for i, . ..., i takes no more than o (g(i) —
g(i) — 1) + N (i, m) + N (m, i) maximization steps. Defining y and y’ the same as before
and using the definition of m and N, we have that the required maximization steps is

less than

o) +Mm—i+1,y)+Mi-m+1,y—y +1)

iti-1 . L ii-1
=o(7)+M<" 5 —g—i-l,y’)—i-M(l—‘ 3 +1,y—y’+1>
i—i+1 i—i+1
=0(7)+M< 5 ,7’)+M( 2 +1,v—7’+1>-

Because M is increasing in the first argument, this is less than

_._ . 1 _._ . 1
o(y)+ max M(l£+ +1JJ4JWC L+ +Ly—¢+1).
ye(l,...,y} 2 2

Combining the bounds for k£ even and odd, the required number of 7 evaluations is
less than

o)+ max (] =L +1,y’>+M< il Sk ISV 27)
ye(l,...,y} 2 2

because if k£ is even, then Li_éﬂj = % Consequently, (27) gives an upper bound for any
(i,1) € Zy for k > 1 when g(i) and g(i) are known. If N (i, i) is less than this, then the proof
by induction is complete.

Since N (i, i) is defined as M (i — i + 1, g(i) — g(i) + 1), using the definitions of N and
M shows

NG D=M(i—i+1,80G)—g(i)+1)
=M@i—i+1,7)

_._. 1 _._. 1
=o(y)+ max {M({l it J—i—l,y/)—i—M({l i+ J—i—l,y—‘y’—}—l)}.
v'efl,..., v} 2 2

Consequently, N (i, i) exactly equals the value in (27), and the proof by induction is com-
plete.

12To see this, note that (i, i) € Z implies k =i — i. To have, (i, m) € Z_1)2, it must be that m =i + %

i

This holds: i + 551 =i+ =5 =i+

L?H =i+m+ %21 = m. Similarly, to have (m, ) € Zx_1y/24+1, one
i+i—1 | i—i—1
2

musthavef:m+(k—1)/2+1.Thisalsoobtainsm+(k%l)+1: + 55 +1:2;T_2+1:;-
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Step 1 of the algorithm requires at most 20 (#’) evaluations to compute g(1) and
g(n). If n =2, step 2 is never reached. Since M (n,n’) =0 in this case, 20(n') + M (n,n’)
provides an upper bound. If n > 2, then since (1,n) € Z,,_; and g(1) and g(n) known,
only N(1, n) additional evaluations are required. Therefore, to compute for each i €
{1,...,n},nomore than 20(n') + N(1,n) =20(n') + M(n, g(n) — g(1) + 1) function eval-
uations are needed. Lemma (8) then gives that this is less than 20(n’) + M (n, n’) since
gm)—gH+1<n—-141=n O

The preceding proposition gives a fairly tight bound. However, it is unwieldy because
of the discrete nature of the problem. By bounding ¢ whose domain is Z** with a &
whose domain is [1, c0), a more convenient bound can be found. We give this bound in
Lemma 11. For its proof, we need the following two lemmas.

LEmMMA 9. Define a sequence {m;};°, by m; =2 and m; =2m;_1 — 1 fori > 2. Then m; =
2i-1 4 1 and logy(m; —1)=i—1foralli>1.

Proor. The proof of m; = 2i-1 4+ {1 foralli>1is by induction. For i = 1, m; is defined
as 2, which equals 2'~! + 1. For i > 1, suppose it holds for i — 1. Then m; =2m;_; — 1 =
222411 —1=2"141. O

LEMMA 10. Consider any z > 2. Then there exists a unique sequence {ni}{zl such that
nm=2n;=z, L%J +1=n;_1,and n; > 2 foralli > 1. Moreover, I = [log,(z — 1)1+ 1.

Proor. The proof that a unique sequence exists is by construction. Let z > 2 be fixed.
Define an infinite sequence {z;}°, recursively as follows: define z; = T;(z) forall i > 1
with Tj(2) := z and Ti;1(2) = [ 72 | + 1. We now establish all of the following: Ti(z) > 2,
Ti(z) > T;11(2), and T;(z) > T;41(z) whenever T;(z) > 2. As an immediate consequence,
for any z > 2, there exists a unique /(z) > 1 such that Tj;) =2 and, for all i < I(z),
Ti(z) > 2. We also show for later use that T;(z) is weakly increasing in z for every i.

To show T;(z) > 2, the proof is by induction. We have T (z) = z and z > 2. Now, con-
sider some i > 1 and suppose it holds for i — 1. Then 7;(z) = LMJ +1> L%J +1=2.

To show T;(z) > T;+1(z) whenever T;(z) > 2, consider two cases. First, consider 7;(z)
even. Then T, 1(2) = | 742 | + 1= 12 + 1 and so T;1(2) < Ti(2) as long as T;(z) > 2.
Second, consider 7;(z) odd. Then T;,1(z) = L%J +1= % +1landso Tj11(z) < Ti(2)
aslongas T;(z) > 1.

To show that T;(z) > T;;1(z), all we need to show now is that 7;.1(z) =2 when
Ti(z) = 2 (since the inequality is strict if 7;(z) > 2 and T;(z) > 2 for all i). If T;(z) = 2,
then Tjy1(2) = 3] +1=2.

To establish that 7;(z) is weakly increasing in z for every i, the proof is by induction.
For a < b, Ti(a) = a < b = T1(b). Now consider some i > 1 and suppose the induction
hypothesis holds for i — 1. Then T;(a) = | T;_1(a)/2] + 1 < [ T;_1(b)/2] + 1 = T;(b).

The sequence {nj}j(zzl) defined by n; = Tj(;)—j+1(z)—that is, an inverted version

of the sequence {E(z)}{fl)—satisﬁes nrz = Ti1(z) =z, n1(z) = Tyz;y = 2, and n;_ =
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Ti)—(i-H+1 = L%J +1= L%J + 1. Also, by the definition of /(z), T;(z) > 2 for any
i > I(z). So, if we can show that I (z) = [log,(z — 1)] + 1, the proof is complete.

The proof of I (z) = [log,(z — 1)1+ 1 is as follows. Note that for z = 2, the sequence {z;}
is simply z; = 2 for all i which implies 7 (2) = 1. Since [log,(2—1)]1+1 = 1, the relationship
holds for z = 2. So, now consider z > 2. The proof proceeds in the following steps. First,
for the special {m;} sequence defined in Lemma 9, we show T;(m;) = m;,;_; for any
i > 1 and any j < i. Second, we use this to show that /(m;) = i for all i > 1. Third, we
show that z € (m;_1, m;] implies I(z) = i by showing I(m; — 1) < I(z) < I(m;). Fourth,
we show that the i such that z € (m;_1, m;] is given by [log,(z — 1)] + 1. This then gives
1(z) =Tlogy,(z — 1)1+ 1since I(z) =1(m;) =i=[logy(z — 1)1 + 1.

First, we show Tj(m;) = m;y_j forany i > 1 and any j < i. Fix some i > 1. The proof
is by induction. For j =1, Ty (m;) = m; = m;1_1. Now consider some j having2 <j <i
and suppose the induction hypothesis holds for j — 1. Then

le(mi)J i1

Ti(m;) = 5

mMir1—(j-1)
= —= 1
Bt

mii2—j
— | 2
|72 J+

2mip1-j—1
— | T g
|+

=Mit1-j,

which proves T;j(m;) = m;;1_; for j < i. The fourth equality follows from the definition
of {m;} in Lemma 9.

Second, we show I (m;) = iforalli > 1. Fixany i > 1. We just showed T;(m;) = m;1_;.
Hence, Ti(m;) = m; =2 and T;_1(m;) = mp = 3. Consequently, the definition of /—which
for a given z is defined as the smallest i > 1 such that T;(z) = 2—gives I (m;) =i (recall T}
is decreasing in j).

Third, we show that z € (m;_1, m;] implies I(z) =i by showing I(m; — 1) < I(z) <
I(m;). Note that, since z > 2 (having taken care of the z =2 case already), there is some
i > 2 such that z € (m;_1, m;] (since m; = 2). To see I(z) < I(m;), suppose not, that
I(z) > I(m;). Butthen 2 = Ty(;)(2) < Ti(m;)(2) < Ti(m;)(m;) =2, which is a contradiction.
Therefore, I(z) <I(m;).

ToseeI(m;_1) < I(z), webegin by showing T;(m;_1) < T;j(m;_1 + &) forany £ > 0 and
any j <i— 1. Since T;(m;_1) = m;_j, it is equivalent to show that m;_; < Tj(m;_1 + &),
which we show by induction. Clearly, for j = 1, we have m;_1 <m;_1 + e =Ti(m;_1 + &).
Now consider j > 1 and suppose it is true for j — 1. Then

Tj—l(m;—l + S)J i1

Tia(mi1+e)—mi_j1+m;_j
2{11(11 8)211+1 ”HJ"H

Ti(mi1+e)= {
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2

_ {le(mm +e)—mi_ji1—
B 2

Ti_ i —m;_; 2mi_;—1
Z\‘]l(mtl‘i‘g) mi_ji1 +2m;_; J+1

1
J-I—mi_j-i-l.

Now, since the induction hypothesis of 7;_1(m;_1 + &) > m;_j,1 gives T;_1(m;_1 + &) —
m;_jy1 —1>0, one has

0
T]'(mi_l + &) > \‘EJ +m,~_j+1=mi_j+1> mi_j.

Hence the proof by induction is complete.

Now, having established T;(m;_1) < Tj(m;_1 + &) for any £ > 0 and any j <i — 1,
we show I(m;_1) < I(z). Suppose not, that I(m;_1) > I(z). Then since z > m;_1, taking
e=z—m;_ywehave2="Tiu,_\(mi_1) < Tim;_,(mi—1 + &) = Tiom;_)(2) < Tiz)(2) =2,
which is a contradiction.

Lastly, we now show that the i such that z € (m;_1, m;] is given by [log,(z — 1)] + 1.
That this holds can be seen as follows. Note that z € (m;_1, m;] implies log,(z — 1) +
1 € (logy(m;—1 — 1) + 1,logy(m; — 1) 4 1]. Then, since log,(m; —1) + 1 =jforall j > 1
(Lemma 9), we have log,(z — 1) + 1 € (i — 1, {]. Then, by the definition of [-], one has
[log,(z — 1) + 171 =i, which of course is equivalent to [log,(z — 1)1+ 1 =1.

We established the i such that z € (m;_1, m;] is i = [log,(z — 1)] + 1. Also we showed
i—1=1(m;j_1) <I(z) <I(m;)=i.Hence I(z) = [log,(z — 1)] + 1, which completes the
proof. O

Now we give a more convenient bound than the one in Proposition 7. The main re-
sult will apply it with & bounds corresponding to brute force and binary concavity.

LEMMA 11. Suppose 7 :[1,00) — R is either the identity map (5 (y) = v) or is a strictly
increasing, strictly concave, and differentiable function. If a(y) > o(y) for all y € Z*7,
then an upper bound on function evaluations is

35(n) + g Va2 (n —1)+1)

if I > 2 where I = [log,(n—1)] + 1. An upper bound for I <2 is3o(n').

Prookr. In keeping with the notation of the other proofs, let z and y correspond to n
and #/, respectively. Fix some arbitrary z > 2. By Lemma 10, there is a strictly monotone
increasing sequence {z,~}{=1 with z; =z, z; = Z"Z“J + 1fori < I, and with I = [log,(z —
1)1 + 1 (and having z; = 2).

Fori> 1and any y > 1, define

Wi(zi,y):= max M(zi_1,7)+M(zi1,y—7 +1).
Yell,....v}
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For i = 1, define W (z;, -) = 0. The definition of M gives M (z;, y) = o(y) + W (z;, vy) for
any i > 1 with M(z1, -) =0. Note that W (z, y) = W(z1,y) =0
Define W—which we will demonstrate is an upper bound and continuous version of
W—as
W (zi,y) =" (y) + max W(zie, V) + W (zic1, v — ¥ +1)
y'ell,y
for i > 2 with
o*(y):= max a(y)+a(y—v +1). (28)
Y'ell,y]

For i =1 or 2, define W(z;, y) =0. Then W(z;, y) < W(z;,y) foralli>1and all y € Z*++.
The proof is by induction. They are equal for i = 1 and i = 2. Now consider an i > 2 and
suppose it holds for i — 1. Then

W(zi,y)= max M(zi_1,y)+M(ziii,y—7 +1)
Y ey}
= dnax_ oY) +o(y=y+1)+W(z1.¥) + Wizt y=v'+1)
ye(l,..,y

< max o(Y)+o(y—v+1)+ max W(zi_1,¥)+W(zict,y—v +1)
Y'ell,...v} Y'e(l,....v}

< max o(Y)+o(y—7+1)+ max W(z,-,l, Y)+ W(z,-,l, y—7+1)
ve(l,...,v} Y ell,...,v}

< max 5(Y)+a(y—v +1)+ max W(zi_1,Y)+W(ziet,y—7 +1)

v'ell,y] Y'ell,y]
<o"(y)+ m[allx W(zie1, V) +W(zict, vy — 7 +1)
v'e
=W(zi, ).

If 5(x) =x forall x, then o(y)+a(y—+v +1)=vy+1,which does not depend on v'.
So, 0" (y)=y+1=20(5 Yty Ifthe & function is strictly increasing, strictly concave, and
differentiable, then the ﬁrst order condition of the *(y) problem yields ¢/(y") = &' (y —
v' + 1). The derivative is invertible (by strict concavity) and so y' = 7“ . So, *(y) =
(y“) 4+ o(y — 7“ + 1), which gives o*(y) = 20(«/+ ), the same condltlon as in the
linear case.!3 Hence

+1
5*(y) = (y ) (29)
2
So, fori > 2,
7+ 1 1 X / 1 . /
W(zi,y) = —— |+ max W(zic1, V) + W(zic, y— v +1). (30)
Y'ell,yl

We will now show for i > 2 that W(z;, y) = 20(7 )+ 2W (zi_1, erl ), which gives
a simple recursive relationship for the upper bound (for i =1 or 2, W(z;,y) = 0).

13Since this is an interior solution and the problem is concave, the constraint y’ € [1, y] is not binding.
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First, note that 2W(z,, ) is just W(z;,v) + W(z;,y — ¥ + 1) evaluated at 7+l, and
SO MaXy/c(1,y] W(zi,v) + W(zi,y — v + 1) = 2W(z, 7“) So, it is sufficient to show
maxye1,y W(zi, Y)+ W(zi,y =y +1) <2W(z, yTH)- Now,

max W (z;,y')+W(zi,y -7 +1)

Y'ell,y]
"1 1 _ "+1 -y +1)+1
= max 2&<y + )+2W(zi_1,y + )+26<u>
y'ell,y] 2 2 2
_ -y +1)+1
HW(ZH,u)
2
(¥ +1 (v+1 Y +1 Y+l
=2 —_—— 1 |74 ,
y}él[ﬁl?(ﬂo‘( > >+0< > > +1)+ Ziq 5
- y+1 ' +1
. ~ 1
+W<Z, 15 3 ) +
— (= | = | - . - +1
=2 max o(y)+a i—7/+1 +W(zi, V) +W zi_l,y——7/+1
Ser] YHL 2 2
Yell, 51
1 _
<2 max 6'(5//)+6'<i—§//+1)+2 max W (zi_1,¥)
yell, 23 2 yell, 2
- +1
+W<Zi_1,yT—7/+l>
y+1
RARENE |
=2 max a(y)+ <i ~/—I—l)—i-Z W(zi,i>—2_ 2
¥ell Y‘HJ 2 2
vy+1
1 1 +1
o (X)) po (2, ) — 4 2
2 2
1 +1
=40 2 +2W<zi, > )—4_ )
_ +1
(s 7).

The first equality follows from (30). The second equality follows from algebra. The
third equality is just a change of variables where ¥ = (v 4+ 1)/2. The inequality follows
from max(f + g) < maxf + maxg for any f, g. The fourth equality follows from eval-
uating (30) at (y + 1)/2 and manipulation. The fifth equality follows from the defini-
tion of ¢* in (28). The sixth equality follows from (29). The last equality simplifies. So,
maxy et W(zi, V) + W(zi,y — ¥ + 1) =2W(z, V—erl). Using this equality to replace the
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max in (30), one has (for i > 2) that

_ 1 - 1
W(Zi,y)=2&(%) +2W<z,~_1, VJZF > 31)

Now, fix any y > 1 and define y; := y and y; = ”*TIH Then y; =2 (y; — 1) + 1.14
Then, for i > 2, (31) becomes

W (zi, vi) =26 (yi—1) + 2W (zi—1, yi-1)-
So, if I > 2, one can repeatedly expand the above to find a value for W (zr,v1):

W (zr, 1) =20 (y1—1) + 2W(z1_1, vi-1)
=25 (y1-1) + 225 (y1-2) + 2°W (212, y1-2)
=25(y1—1) + -+ 2725 (y2) + 27 W (22, v2)

=25(yi—1) + -+ 21725 (y2)
1-2 )

=> 2oy
j=1
1-2 ) _

— 22/6'(21_/_1(71 —1)+1)
j=1
1-2 ) ‘

=Y 2a2 7 (yr -1 +1).
j=1

The first equalities are algebra, the fourth uses the definition of W (z,,-) =0, and the rest
are algebra. If I <2, then W (z;, y;) =0.

Proposition 7 shows the number of required evaluations is less than or equal to
20(yr) + M(zy,yr) for z; > 2 and y; > 1. Since M(z;,y) = o(y) + W(z;,y) for any
i>1 (with M(z;,v) =0) and W(z;, y) < W(zi, v), the required function evaluations are
weakly less than 3o-(y;) + W (z;, yr) for any I (recalling W (z;, y7) = 0 for I < 2). Hence,
if I > 2, then an upper bound is

1-2
3o(yn+ Y 2a27 (v -1 +1)
j=1

and if I <2 an upper bound is 30 (7yy). O

14The proof is by induction. For i = I, y; = 2/~ (y; — 1) + 1 = y;, which holds. Consider then some i < 1,
and suppose it holds for i + 1. Then

o Yl My =D +1)+1

=2y —D+1L
i B ) (yr )+
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Proposition 1 essentially applies the formula in Lemma 11 and simplifies. In the
proof, there will be two partial sums, and we establish what they equal now.

LEMMA 12. Forr # 1, Z?:a ri= @ ="t/ —r) and Zj’:a jri = araIE:bJrl N ,a::r,)b;l

Forr=2,%0_ r/ =241 —20and y°0_ jri =202 — a) +2°*1(b - 1).

Proor. The first sum, Zj-’za rl, is the standard geometric series and its sum can be com-
pactly written as (r¢ — r®+1) /(1 — r) for r # 1. For r = 2, this is 21 — 24,

The second sum, Z?:a jr!, a sort of weighted geometric series, has no commonly
known formula, so we derive it. Define S := Z?: .Jjrl. Thenforr#1,

b b
(1=nS=Y"jri =" jri*!
j=a j=a

b ' b+1 _
=2 ir'= 3. G=br

j=a Jj=a+1

b _ b+1 _ b+1 _
DB W

j=a Jj=a+1 Jj=a+1

b _ b _ bt patl _ b42
= ar i | — ir 4+ (b+ Dr°t —_—.
(ar—!—Z]r) (Z}r+(+)r >+ =

j=a+1 Jj=a+1

The first line is algebra, the second a change of indices, the third algebra, and the fourth
separates out a term from each of the first two summations (and uses the geometric
series formula to replace the third). Canceling the remaining summations, one then has

a+l _ b+2
(1—r)S=ar"— (b+1)r"* + %
1—pybtl patl _ b2
— a_p b+1 (
ar g 1—r 1—r
a+1 _ b+1
—ar® — bbbt 4 r -r
1—r
o S ar® — brb-i-l N r”+1 . rb+1
o 1—r (1—r)?
Plugging in r =2 gives § = b20+1 — q2¢ 4 2041 _ 20+l =242 _ g) 4 2b+1(p —1). O

We can now prove Proposition 1 by applying Lemma 11 with & bounds correspond-
ing to brute force and binary concavity.
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PRrROOF OF PrROPOSITION 1. From Lemma 11, the number of evaluations required by the
algorithm is not greater than 3&(n') + W (n, n') where W (n, ') := 25;12 267 I —1)+
1) and I = [log,(n — 1)1 + 1. In the case of brute force, o(y) = vy is a valid upper bound
on o(y) = y. Plugging this into the expression for W (n,n'), one has

I1-2
W(n,n)=UI-2)(n —1)+) 2
j=1

(' =1) 4271 =

(n'=1)+
-2) (n’ 1) 4 2Mogy(n=D1 _»
_ 2) (n/ 1) + 210g2(n D+1 )

<I-2)(n' -1)+2(n—-1)-2
= ([logy(n—1)] = 1)(n' = 1) +2n—4
<(n' —1)logy(n—1)+2n—4.

where we have used Lemma 12 to arrive at the second line. So, no more than (n’ —
1)log,(n—1) + 31’ 4+ 2n — 4 evaluations are required.

In the case of binary concavity, Lemma 7 shows o(y) = 2[log,(y)] — 1 for v > 3
and o(y) = vy for y <3 is an upper bound. Now consider o(y) = 2log,(y) + 1. It is
a strictly increasing, strictly concave, and differentiable function. For y = 1 or 2, one
can plug in values to find o(y) < o(y). Additionally, for y > 3, o(y) < 2[log,(y)] — 1 <
2(1+1logy(y)) —1=0a(y) So, o satisfies all the conditions of Lemma 11.

Plugging this ¢ into the bound, one finds

[X: I[1+42logy (277 (n' — 1) +1)]

1-2
=21 =2)+2) 2logy(27/(n' = 1) +1)
j=1

(using Lemma 12). To handle the log2(2*f (n’ — 1) + 1) term, we break the summation
into two parts, one with 27/(n' — 1) < 1 and one with 27/ (n’ — 1) > 1. We do this to exploit
the following fact: For x > 1, log,(x + 1) <log,(x) + 1 since they are equal at x = 1 the
right-hand side grows more quickly in x (i.e., the derivative of log,(x + 1) is less than the
derivative of log, (x) + 1).

Let J be such that j > J implies 27/(n' — 1) < 1 and j < J implies 2~/ (n — 1) > 1. Then
since 27/(n — 1) = 1 for j = logy(n’ — 1), J is given by |log,(n’ — 1)]. Recall that in the
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statement of the proposition we assumed that n’ > 3. So, J > 1,

1-2 J

W(n,n')=@2"""=2)+2 Y 2log,(27/(n —1)+1) +2 2logy (27 (n — 1) +1)
j=J+1 -1 j=1 21
<@ =2)+2 ) 27 4+2) 2 (1+logy (27 (n' - 1)))
j=I+1 j=1
1-2 ' J ‘ ‘
=21 =2)+2) 2 +2) 2logy(27/(n' - 1))
j=1 j=1
J . .
=321 =2)+2) 2/log,(27/(n' - 1))
j=1
J .
=321 =2)+2) "2/(—j+log(n' - 1))
j=1
J J
=321 =2)-2) " j2/ +2logy (' — 1) > 2/,
j=1 j=1

The first line follows from the definition of J; the second from log,(x + 1) <1 4 log,(x)

for x > 1; the third from algebra; the fourth from the standard geometric series formula;

and the fifth and sixth from algebra. Then, using the weighted geometric sum found in
Lemma 12, thatis, Y2 j2/ =292 — a) + 20+ (b — 1),

2] 1 2)
2] 1 2)

=1 _»

-2)-
-2)-
2l-1 ) -
)

2(2'@- 1+ 2" — D) +2logy (' — 1) (2" - 2)
42712 = 1)+ 2logy(n' — 1) (27H! - 2)
4272~ 420 + DI -2)
gD+ T+ )24+ 1)
4 g2t Lol H2 L ol L 92 4T 41y

— 44273 47 -4

A LSy V'Y

The first line applies the weighted geometric sum formula, the second simplifies, the

third uses log,(n' — 1) <J + 1 (i.e., log,(n' — 1) < |log,(n’ — 1)]), and the remaining lines

use algebra.
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Now, substituting the expressions for 7 and J,
= 3. pMoga(n=D1+1-1 4 sllogy(n'=1)J+3 _ 4L10g2(”/ _ 1)J _14
<3 2Mflonin=l) g gloga("=D+3 _ 4| log, (' — 1) | — 14
=6(n—1)+8(n' —1) —4|logy(n' —1)| — 14
=6n+8n' —4|logy(n' — 1) | — 28
<6n+8n" —4(logy(n' —1) —1) — 28
=6n+ 8n' —4log,(n' —1) — 24.

The above expression provides a bound for W (n,n'). Hence, the total number of
evaluations—which must be less than 35(n') + W (n, n')—cannot exceed

3(2logy(n') + 1) + 6n +8n’ —4log,(n' — 1) — 24
=6n+8n' +6log,(n') —4log,(n' — 1) — 21
<6n+8n" +6(logy(n' —1) +1) —4log,(n' — 1) — 21
=6n+8n' +2log,(n' — 1) — 15.
The second line is algebra, the third again uses log,(x + 1) <1+ log,(x) for x > 1 (note

n’ > 3 in the statement of the proposition), and the last simplifies. O

E.3.3 Binary monotonicity in two dimensions In proving the efficiency of the two-state
binary monotonicity algorithm, we first establish a lemma.

Lemma 13. Define m(a,b) = L%J for b > a with a,b € Z. Then m(a,b) —a + 1 <
|2=a+1 | 4 1 and b — m(a,b) +1 < | 228+ ] 4 1.

Proor. Ifexactly one of a, b is odd, then m = 24=1; otherwise, m = 24¢. So,

b+a b—a+1 1 b—a+1
m—a+1< —_— <|——|+1L

_ 1= 2
@t R

Now, take the case of exactly one of a, b being odd. Then » —aisodd and b — a + 1 is
even. In this case,

b+a-1 b—a+1 b—a+1
> T+1= — |+ 1.

If on the other hand a, b are either both even or both odd, then b — a + 1 is odd. In this
case,

b+a b—a+1 1 |b—a+1
bomtl=b— "= tl=" +§—{—7T—J+L

We now give the proof of the two-state algorithm’s cost bounds.
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ProOOF OF PROPOSITION 2. Let an upper bound on the cost of the usual binary mono-
tonicity algorithm given z states and vy choices as C(z, y). Then note that the cost of
solving for g(-, 1) is less than C(ny, n’), as is the cost of solving for g(-, ny).

Let g(+, -; 7) give the policy selected by the algorithm when the objective function
is 7. Let T®2°(j, j: 7r) denote the exact cost of the algorithm for recovering g(-, j; 7) for
all je{j+1,...,j— 1} when the objective function is 7 and g(-, j: w) and g(-, j; 7) are

known. (i.e., the cost from Step 3 onward). Define for z > 2 and y > 1,

T*z,y)=  sup  C(ny,y)+ T}, m(j, j); m) + T (m(j, ), j; ),

st.j—j+1<zj<j,

where m(a, b) is the integer midpoint L#J. For z =2, define T*(z, -) = 0. Note T*(z, y)
must be weakly increasing in both arguments.

Fix some (j, j, m) with j,j € {1,...,n2} and j < j, and note that (j, j, ) is in the
choice set of the T*(j — j + 1, g(n1, j: m) — g(1, j; m) + 1) problem. We now show 7t
is bounded by T* in that T®2°t(j, j: ) < T*(j — j+ 1, g(ny, j: ) — g(1, j; w) + 1). To see
this, note that if j — j + 1 = 2 then T®2°t(j, j; ) = 0, in which case T*(j — j + 1, ) = 0 by
definition. On the other hand, if j — j + 1 > 2, then T®(j, J; m) < C(ny, g(ny, j; 7) —
g1, j;m) + 1) 4+ T, m(j, j); ) n T (m(j, j), ji ) because C bounds the cost
of the one-dimensional alg(_)rithm. Comparing ‘with the definition of T, T*(j — j +
1, g(ny, j; m) — g(1, j; ) + 1) is necessarily larger because (j, j, 7) is in its choice set.

Now;, using this bound and the definition of T* gives B

T*(z,7v)
<sup C(ny,y) +T*(m—j+1,9'(m, j, )
jrim
+ T*(j— m+ l,g(nl,f; m)—g(l,m;m) + 1)
=sup C(m, y) + T*(m—j+1,9'(m, ], »)
Lim
+ TG —m+1,g(ny, js m) — g1, js m) + 1+ g (1, j; m) — g(1, m; )
<sup C(ny,y) + T*(m—j+ 1,9 (7 j, )
jrim
+T*(j—m+1,y+g, j;m) — g1, m; m))
= sup C(ny, y) + T*(m—j+ 1,9/, i D)
LT
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where m = m(j, j) and we have defined v/(, j, j) := g(n1, m; w) — g(1, j; w) + 1. The first
relation follows from 7%t being less than T*, the second from adding and subtracting
g(1, j; ), the third from the constraint that g(ny, j; ) — g(1, j; ) + 1 <y and T* be-
ing increasing in its second argument, and the last from adding and subtracting y' and
manipulation. With this definition of v/, the constraint g(ny, j; 7) — g(1,j; m) + 1 <y is
equivalent to y'(m, j, j) <. So, ¥/ (m, j, j) € [1, v].

Using our A-based restriction, we have as an implication of it that g(n{, m; ) —
g(1,m;m) + 1< Ag(ny, j; 7 — g1, j;w) + 1) < Ay. So, because T* is increasing in its
second argument, -

T*(z,y) < sup C(ny, y) + T*(m— j+1,v' (7, j, )))
Jsjsm
+T*(j—m+1, A+ D)y —v(m ), ).
Note now that 7 only shows up in y'. Since the choice set implies y’ € [1, y], we can drop

7 and allow v’ € [1, y] to be chosen directly:

T*(Za 7)5 sup C(nla 7)+T*(m_i+1, 7/)+T*(;_m+19(1+)\)7_7/)
jiJvell,y]

j-i+1
2

By Lemma 13, m — j + 1 and j—m+1areless than | 1+ 1 which—because of the

constraint j — J +1 < z—must be less than |51 +1.So,

T*(z,y) < sup C(n1,v)+T*<EJ+1,v’)+T*(EJ+1,(1+A)7—7/),

Jdv'elly]

which no longer depends on j or j. Hence, dropping these from the choice set, one has

T*(z,y) <C(ni,y)+ sup T*(FJJrl,v’)JrT*(EJ+1,(1+/\)7—7’)-

yell,yl 2

Defining T(z, y) := C(n1, y) +maxy iy T(L5)+1, Y)+T([5)+1, A+ M)y —y) forz > 2
and 0 otherwise, we then have T'(z, y) as an upper bound for 7*(z, y) (by induction with
T*(2,vy)=T(2,y) =0 as the base case).

Now, by Lemma 10, there is a unique sequence {z,-}{=1 with z; = z, L%J +1=2z_4,
z1=2,and z; > 2foralli > 1and I = [log,(z — 1)] + 1. Then

T(zi,y)=C, )+ sup T(zi-1,¥) +T(zit, A+ M)y —7)
Y'ell,y]
for all .
For binary monotonicity with brute force grid search, the upper bound on function
counts in Proposition 1 is linear increasing in y. So suppose C is linear increasing in 7.
In that case, we will show T'(z;, y) is linear increasing in vy for all i > 2 and that

(1+A)>
— )-

T(zi,y)=C(ny,y) + ZT<Zi—1, v
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First, note this is trivially the case for i = 2 since in that case T(z;_1,-) = T(z1,-) =
T(2,-) = 0. Now, suppose that it holds for i — 1. Then continuity gives that the maxi-
mum is attained so sup can be replaced with max. Because of linearity, T(z;_1, ') +
T(zi—1, (1+A)y—7v') isindependent of y'. Consequently, max, T(z;_1, ¥') + T(z;—1, (1 +
Ny —v)=2T(zi_1, y(1+)‘)) Hence, T(z;, y) will also be linearly increasing and satisfy

the recursive formulation above.

Now, expanding the recursive formulation and defining ¢ := (1 + A)/2,

T(zr,y)=C(n,y) +2T(z-1, yc)
=C(n1,y) + 2(C(ny, ye) + 2T (212, (ye)c)

= C(n1,y) +2C(ny, yo) + 22T (z;_2, yc?)

= C(n1,y) +2C(n, ye) + -+ 2172C (ny, ye!=2) + 217 T (21— 11y, ye!
= C(n1,y) +2C(n1, ye) + -+ 2172C (ny, yc!=2) +- 21717 (2, ye! )

= C(n1,y) +2C(ny, yo) + - -+ 2172C(ny, ye! 72)
I1—

Z (n1,yc')

i=0

Plugging in ¢ = (1 + A)/2, z; = ny (corresponding to the first time Step 3 is reached),
and y = ' (corresponding to Step 3 being reached with the worst case g(-,1) = 1 and

g, m)=n),

I1-2
T(np,n) =Y 2/C(my, 2711+ 1)'n),

i=0

where I = [log,(ny — 1)7 + 1.

With brute force grid search, a valid C is C(ny, y) = 2n1 + y(log,(n1) + 3). Then

-2
T(ny,n') = ZZi(an + (2751 4+ V)'n') (logy(ny) +3))
i=0

I1-2 1-2
=n/(logy(n1) +3) Y (1 +A) +2n1 Y 2
i=0 i=0

1—a+1t
—A

=n'(logy(n1) +3) +2n (21*] —1)

aA+10-1-1

=1/ (logy(ny) +3) +2ny (2171 - 1)

using the formulas in Lemma 12.

)
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Now, I = [log,(ny —1)1+1implies I —1 <log,(ny —1)+1. So, defining k :=log,(1+A)
sothat (14+A) =

K(I 1)) -1
T(na,n') = n'(logy(n1) + 3) +2n (2171 - 1)
<1/ (logy () +3)A 12K<’ D 2m (271 - 1)
n/(logz(nl) + 3) ]2K(10g2(n2 1)+1) + 27’1 (210g2(l’l2 1+1 1)
= n'(logy (1) +3)A~1 (210820127DY 2% 4 20 (21 — 1) — 1)
n’(logz(nl) + 3)/\ 1 ny — 1)“2% + 4niny — 6my
<n'(logy(n1) +3)A~ n5(1+)\)+4n1n2—6n1

= (14 )A ogy (n)n'ns +3(1+ M)A w'ns + dnyny — 6my
=11+ 1) log, (ny)n'ns + 3(/‘\_1 + 1)n'n% + 4nyny — 6ny.

This bound does not include the cost of solving for g(-, 1) and g(-, n,) using the standard
binary algorithm. Including this cost, the algorithm’s total cost is less than

2C(ny,n') +T(ny, n')
<2n'(logy(n1) +3) +4n; + (1 + )F]) logy (ny)n'n 4+ 3(1+ )Fl)n’n’z‘ +4niny — 6mg
<(1+ /\_1) log, (n)n'ns +3(1 + A_l)n/ng +4niny +2n'logy(ny) + 61/,

which is the bound stated in the proposition.

Now, suppose that A < 1 provides a uniform bound on (g(ny,j) — g(1,j) + 1)/
(g(ny, j+1)—g(, j—1)+1) (this also implies A > 0). So, k € (0, 1) (since k =1log,(1+A)).
To characterize the algorithm’s O(nn,) behavior when n; = n’ =: nand n, = p~'n, divide
the bound by n;n, = n?/p to arrive at

log,(n)n'tx o(n?
cigz( ; +4+ (2),
n n

where c is a positive constant. Then it is enough to show that log(n)n't* (using that
natural log has the same asymptotics as log,) grows more slowly than »2. The ratio
log(n)n'**/n? equals log(n)/n'~¥. Using LHopital’s rule as n — oo, if the limit exists it is
the same as the limit of (1/7)/((1 — k)n=%) = n~ 1% /(1 — k). This equals 0 since « € (0, 1).
Consequently, the cost is O(n1n;) with a hidden constant of 4. O
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