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Buy price auctions merge a posted price option with a standard bidding mech-
anisms, and have been used by various online auction sites including eBay and
General Motors Assistance Corporation. A buyer in a buy price auction can ac-
cept the buy price to win with certainty and end the auction early. Intuitively, the
buy price option may appeal to bidders who are risk averse or impatient to obtain
the good, and a number of authors have examined how such mechanisms can
increase the seller’s expected revenue over standard auctions. We show that data
from buy price auctions can be used to identify bidders’ risk aversion and time
preferences. We develop a private value model of bidder behavior in a buy price
auction with a temporary buy price. Bidders arrive stochastically over time, and
the auction proceeds as a second-price sealed bid auction after the buy price dis-
appears. Upon arrival, a bidder in our model is allowed to act immediately (i.e., ac-
cept the buy price if it is still available or place a bid) or wait and act later. Allowing
for general forms of risk aversion and impatience, we first characterize equilib-
ria in cutoff strategies and describe conditions under which all symmetric pure-
strategy subgame-perfect Bayesian Nash equilibria are in cutoff strategies. Given
sufficient exogenous variation in auction characteristics such as reserve and buy
prices and in auction lengths, we then show that the arrival rate, valuation distri-
bution, utility function, and time-discounting function in our model are all non-
parametrically identified. We also develop extensions of the identification results
for cases where the variation in auction characteristics is more limited.

Daniel Ackerberg: daniel.ackerberg@gmail.com
Keisuke Hirano: hirano@psu.edu
Quazi Shahriar: qshahria@mail.sdsu.edu
We thank the editor, the referees, Martin Dufwenberg, Jin Hahn, Phil Haile, Greg Lewis, Isabelle Perrigne,
Bernard Salanié, Quang Vuong, John Wooders, Robert Zeithammer, and seminar participants at Univer-
sity of Arizona, UC Irvine, UCLA, Carnegie Mellon, Columbia, Brown, Harvard, University of Michigan,
University of South Florida, Yale, and the Conference on Identification of Demand at Brown University for
comments and suggestions. Special thanks are due Robert Ackerberg for particularly helpful discussions.
All errors are our own.

Copyright © 2017 The Authors. Quantitative Economics. The Econometric Society. Licensed under the
Creative Commons Attribution-NonCommercial License 4.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE469

http://www.qeconomics.org/
mailto:daniel.ackerberg@gmail.com
mailto:hirano@psu.edu
mailto:qshahria@mail.sdsu.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE469


810 Ackerberg, Hirano, and Shahriar Quantitative Economics 8 (2017)

Keywords. Nonparametric identification, auctions, risk aversion, time prefer-
ences.

JEL classification. C14, C57, D44, L81.

1. Introduction

This paper studies identification of bidder preferences in single-unit buy price (BP) auc-
tions. BP auctions merge a posted price selling environment with an auction environ-
ment, and have been used by eBay (in their “Buy-It-Now” auctions), General Motors
Acceptance Corporation (GMAC), and other organizations as an alternative to standard
first- or second-price auctions. We show that data from BP auctions can be particularly
informative about risk aversion and time preferences among potential bidders in a way
that standard auctions are not. As a result, it is possible to recover bidder preferences
from widely available observational data or to carry out experiments to obtain appro-
priate data and recover those preferences. Knowledge of these preferences may be im-
portant for various reasons, perhaps foremost to assess optimal auction design.

There is a large theoretical literature that shows how BP auctions can increase ex-
pected revenue over standard auctions; see Budish and Takeyama (2001), Mathews
(2004), Mathews and Katzman (2006), Hidvégi, Wang, and Whinston (2006), Gallien and
Gupta (2007), Wang, Montgomery, and Srinivasan (2008), and Reynolds and Wooders
(2009). BP auctions allow some or all potential bidders to purchase the item immedi-
ately at a posted buy price. If this does not happen, a standard auction is held. Intuitively,
the buy price option may appeal to bidders who are risk averse or impatient to obtain
the good. The existing theoretical models typically assume risk aversion, impatience, or
both, on the part of bidders, and show that BP mechanisms can increase expected rev-
enue to the seller. Since bidders’ decisions in BP auctions depend on their risk aversion
and their impatience, one might conjecture that observed data from BP auctions could
be informative about risk aversion and impatience.

Many of the existing theoretical models of BP auctions abstract significantly from
the specific mechanisms used in practice. For example, some of the models are purely
static, whereas in practice many BP auctions have two phases, a buy price phase and
a bidding phase, with particular rules about when the bidding phase starts and how
long it lasts. The models of Mathews (2004) and Gallien and Gupta (2007) do feature se-
quential arrival of bidders and an auction format closely modeled on eBay auctions, but
impose specific parametric forms on time discounting or risk aversion. We first develop
a theoretical model for a BP auction that captures some key dynamic features of real-
world BP auctions and allows for general forms of both risk aversion and impatience,
but leads to a tractable equilibrium and relatively straightforward identification results.
In our model, bidders have independent private values and arrive according to a time-
varying Poisson process. Any potential bidder who arrives in the buy price phase can
purchase the good at the buy price (thereby winning the item and ending the auction),
can bid (thereby initiating the bidding phase), or can wait. Potential bidders who ar-
rive during the bidding phase (or bidders who arrived during the buy price phase and
have waited) can place bids. The bidding phase lasts for a fixed amount of time and is
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modeled as a second-price sealed bid auction.1 We describe conditions under which all
symmetric, pure-strategy, subgame-perfect Bayesian Nash equilibria (BNE) of this game
are in cutoff strategies, where a potential bidder arriving in the buy price phase accepts
the posted price if her valuation is sufficiently high.

Having characterized equilibrium strategies for potential bidders in the auction, we
consider identification. The key idea is that bidders facing a choice between buying the
good at the buy price or bidding for the good are choosing between a certain prospect
and a lottery. If there is sufficient variation in these lotteries and we can determine their
certainty equivalents, we can recover bidders’ preferences. In our model, bidders are
heterogeneous in their valuations, but have common utility and time-discounting func-
tions. This allows bidders to be risk averse, impatient, or both. Our setup imposes some
restrictions on the nature of bidder preferences, but under these assumptions, we show
that the arrival rate function, the distribution of valuations, the utility function, and the
time-discounting function are nonparametrically identified under an assumption of ex-
ogenous variation in the auction setup (e.g., reserve and buy prices) and some support
conditions. The assumption that reserve and buy prices vary exogenously is somewhat
strong, but provides a natural starting point for identification analysis and could poten-
tially be relaxed in various ways. Our results could also be used by sellers (or economists)
who wish to experiment with reserve and buy prices so as to learn about the prefer-
ences of buyers. Elfenbein, Fisman, and McManus (2012) and Einav, Kuchler, Levin, and
Sundaresan (2015) provide evidence that sellers on eBay may experimentally vary auc-
tion features, presumably to guide their auction design. We also show that the model
is overidentified, in the sense that it imposes testable restrictions on the distribution of
observed data. In addition, if the support conditions are not fully met, then certain local
versions of the structural objects are identified.

Although our model captures many features of real-world BP auctions, it does differ
in some details from the BP auctions used by both eBay and GMAC. We show that un-
der some additional assumptions, primarily used to guarantee that bidders use cutoff
strategies immediately upon arrival, our identification arguments can be extended to
these two cases. The extended identification results for eBay-style Buy-It-Now auctions
are being used in ongoing empirical work Ackerberg, Hirano, and Shahriar (2006). As
in many other papers on identification in auctions, we restrict attention to cases where
auctions are isolated (ruling out multiple sequential auctions, for example). This likely
limits the applicability of our results to many eBay markets, but there are some cases
where this assumption may be plausible, and our work provides a starting point for pos-
sible future extensions to sequential auctions models in the spirit of Jofre-Bonet and
Pesendorfer (2003) or Backus and Lewis (2016).

Our findings contribute to the literature on identification of auction models, and
more generally to the literature on recovering risk aversion and other features of pref-
erences from revealed behavior. Beginning with Guerre, Perrigne, and Vuong (2000), Li,
Perrigne, and Vuong (2002), and Athey and Haile (2002), a large literature has emerged

1Our fixed length bidding phase differs from the setup of Mathews (2004) and Gallien and Gupta (2007),
who assume a fixed overall length of the auction (similar to eBay). The reason we consider this alterna-
tive is because it makes our basic identification results most straightforward. In Section 5, we extend our
identification results to eBay-style models.
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that explores identification in various auction formats.2 If bidders are risk averse, iden-
tification becomes much more challenging in these formats; see, for example, Campo,
Guerre, Perrigne, and Vuong (2011), Bajari and Hortacsu (2005), Campo (2012), Perrigne
and Vuong (2007), Lu and Perrigne (2008), Athey and Haile (2007), and Guerre, Perrigne,
and Vuong (2009). To our knowledge, our paper is the first to examine identification of
bidder preferences in BP auctions, and our identification results indicate that these auc-
tions can provide considerable information on bidder risk preferences. Moreover, our
results show that bidder propensities to accept buy prices can be used to infer both their
risk aversion and time preferences. The importance of handling these jointly has been
emphasized by Andersen, Harrison, Lau, and Rutström (2008) in a parametric setting.
If there is a temporal component to a risky option, ignoring time preferences can bias
estimates of risk aversion.

Chiappori, Gandhi, Salanie, and Salanie (2009) provide a general framework for
studying nonparametric identification of risk preferences. Our approach is similar in
spirit but we also incorporate time preferences and seek to jointly identify risk and time
preferences nonparametrically. As in Chiappori et al. (2009) and other work on non-
parametric identification of structural models (for a recent survey, see Matzkin (2013)),
an important restriction of our model is that unobserved heterogeneity across bidders
is summarized by a scalar. In our setting, this scalar unobserved heterogeneity takes the
form of variation across bidders in their valuation of the item (following the majority of
the auction literature), while the utility and time-preference functions are assumed to
be identical across bidders. It may be possible to consider alternative models where the
scalar unobserved heterogeneity enters other parts of the model, such as heterogeneity
in risk preferences. However, it would likely be very challenging to allow multidimen-
sional unobserved heterogeneity unless one imposes other restrictions on the model.

2. Model and equilibrium

We start with a simple continuous-time, independent private value (IPV) BP auction.3

The auction starts at time 0, has a reserve price (minimum bid) r ∈ [0�∞), and has a
buy price p ∈ [r�∞). At times t > 0, potential bidders arrive at the auction according to a
Poisson process with rate λ(t). These potential bidders have private valuations v drawn
independently from the distribution FV (v).

There are two phases in the auction. At any time t in the the first phase (the buy price
phase), any potential bidder who has previously arrived at the auction can take one of
the following actions:

(i) Immediately purchase the object at p (accept the BP). In this case, the auction
ends.

(ii) Submit a sealed bid b > r for the object (reject the BP). In this case, the buy price
phase ends and the auction immediately enters the second phase (the bidding phase).

2See Haile and Tamer (2003), Bajari and Hortacsu (2005), Song (2004), Adams (2004, 2007, 2009),
Gonzales, Hasker, and Sickles (2004), Canals-Cerda and Pearcy (2013), Nekipelov (2008), Zeithammer and
Adams (2010), and Backus and Lewis (2016), among others. Athey and Haile (2007) survey identification
results for auction models.

3See Shahriar (2008) for a model of BP auctions with common values.



Quantitative Economics 8 (2017) Preferences in buy price auctions 813

The bidding phase lasts for fixed length τ > 0. During the bidding phase, potential
bidders no longer have the option to purchase the object immediately at p. Other po-
tential bidders who either have already arrived or arrive during the bidding phase, can
also submit a sealed bid b > r for the object. These sealed bids can be placed at any time
during the bidding phase.

At the end of the bidding phase, the auction ends and the object is awarded to the
bidder who has placed the highest sealed bid. The winning price is the maximum of
either the reserve price r or the highest sealed bid of the other bidders. We assume that
bidders do not directly observe the actions or arrivals of other bidders. However, we
assume that any bidder who is present at the auction at t knows whether the auction
is currently in the buy price phase or the bidding phase, and if the latter is true, that the
bidder knows at what point in time the auction entered the bidding phase.

In the terminology of Gallien and Gupta (2007), our auction features a “temporary
buyout option,” which disappears once the buy price is rejected and the bidding phase
begins.4 However, as long as no potential bidder accepts or rejects the BP, the auction
continues indefinitely. There are a number of possible variations on this mechanism.
For example, we could consider a design where, by time T − τ, if no bidder has accepted
or rejected the BP, the auction automatically enters the bidding phase. Alternatively, as
in eBay’s By-It-Now auctions, we could fix the overall length of the auction at T (unless
the BP is accepted). We could also consider alternative forms for the bidding phase, for
example, by explicitly modeling eBay’s proxy bidding system. We begin with our styl-
ized setup because it simplifies the equilibrium analysis, in part by eliminating certain
equilibria, and leads more directly to identification results. In Section 5, we consider
identification under some of these alternative BP auction designs and are able to extend
our results under additional assumptions.

Consider a bidder who arrives at time t with a valuation v for the object. We assume
that if this bidder wins the object at time t∗ and pays price p∗, she obtains payoff

δ
(
t∗ − t

)
U

(
v −p∗)�

where U(·) is a utility function and δ(·) is a function capturing impatience, that is, the
idea that a bidder would prefer to win the object earlier. If the bidder does not obtain
the object, she obtains utility 0. The functions λ(·), FV (·), U(·), and δ(·) are primitives of
our model; the variables (p� r� τ) characterize the auction setup. We make the following
assumptions on these primitives.

Assumption 1. The model primitives {λ(·)�FV (·)�U(·)�δ(·)} satisfy the following state-
ments:

(i) The terms {λ(·)�FV (·)�U(·)�δ(·)} are common knowledge to all potential bidders.

(ii) The function λ(·) is twice continuously differentiable and satisfies 0 < λ(t) < ∞
for all t ≥ 0.

4In contrast, under Gallien and Gupta’s “permanent buyout option” scheme, the option to purchase the
good at price p remains for the entire duration of the auction. This was used by Yahoo! on their now defunct
auction site.
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(iii) The function FV (·) is twice continuously differentiable on [0�∞); FV (0) = 0 and
FV (v) > 0 for all v > 0;

∫ ∞
0 FV (v)dv = 1.

(iv) The functions U(·) is twice continuously differentiable.

(v) We have U ′(·) > ε for some ε > 0.

(vi) We have −C <U ′′(·) ≤ 0 for some 0 <C <∞ (weak risk-aversion).

(vii) We have δ′(·) < 0 (strict impatience) and δ(·) > 0.

(viii) We have U(0) = 0, U ′(0) = 1, and δ(0) = 1 (normalizations).5

We additionally make the following assumption about bidder behavior.

Assumption 2. Bidders do not play weakly dominated strategies.

The bidding phase is essentially a second-price sealed bid auction, which generally
has unusual equilibria in weakly dominated strategies (Milgrom (1981), Plum (1992),
Blume and Heidhues (2004)). Assumption 2 is a simple way to rule out these unusual
equilibria, and it ensures that we get unique equilibrium play in the bidding phase where
bidders follow the weakly dominant strategy of submitting bids equal to their valuations
(or not submitting a bid if v < r).

With these assumptions, we can make the following statement.

Proposition 1. Under Assumptions 1 and 2, any symmetric, pure-strategy, perfect
Bayesian Nash equilibrium (BNE) of this auction game has the following properties:

(i) Potential bidders with v < r never take any action.

(ii) Potential bidders with v > r who arrive during the buy price phase immediately
either (a) accept the BP, that is, purchase the good at p, or (b) reject the BP by placing a
sealed bid equal to v.

(iii) Potential bidders with v > r who arrive during the bidding phase place a sealed
bid equal to v at some point before the end of the auction.

Most proofs are provided in the Appendix or the Supplement, available as a supplemen-
tary file on the journal website, http://qeconomics.org/supp/469/supplement.pdf.

Part (ii) of the proposition states that in equilibrium, potential bidders with v > r

arriving during the buy price phase do not wait—they either accept or reject the BP
immediately. The incentives to act immediately in equilibrium arise from two sources.
First, waiting delays the time at which the bidder may potentially win the item, generat-
ing lower utility due to impatience. Second, waiting engenders more competition from
other potential bidders for the object. For example, delaying accepting the BP incurs the
risk that another potential bidder will enter and accept the BP first. Delaying rejecting
the BP lengthens the time until the end of the auction (since the bidding phase has fixed

5These conditions on U are location–scale normalizations that maintain the uniqueness of the utility
function up to affine transformations.

http://qeconomics.org/supp/469/supplement.pdf
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length τ), increasing the expected number of competitors that the bidder will face in the
sealed bid auction.6

Part (iii) (combined with part (ii)) of the proposition implies that we get the well
known second-price sealed bid auction outcome for any auction that enters the bidding
phase. Specifically, the bidder with the highest valuation wins the object at the valuation
of the second highest bidder or r when there are no other bids placed.7

2.1 Optimal BP decision and conditions for a cutoff equilibrium

Proposition 1 does not fully characterize the BNE, as it does not specify whether a po-
tential bidder arriving during the buy price phase (with v > r) will accept or reject the BP.
We now characterize this decision. Consider such a bidder who arrives at t. If the bidder
accepts the BP option immediately, she will obtain payoff

UA(v�p) := U(v −p)�

If the bidder rejects the BP and places a sealed bid at time t, then she will win the object
if she has placed the highest sealed bid by time t + τ, and will pay a price equal to the
valuation of the next highest bidder (if there is another bid) or equal to r if there are no
other bids placed. Let

γ =
∫ t+τ

t
λ(s)ds�

so the number of other bidders who arrive after t is Poisson(γ). (Note that γ is a function
of t and τ, but we suppress this in the notation.) Then the bidder’s expected utility from
rejecting the BP is

UR(v� r� τ� t) := δ(τ) ·
{
e−γU(v − r)+

∞∑
n=1

γne−γ

n! Fn
V (v)En

[
U

(
v − max{r�Y })|Y ≤ v

]}
�

where Fn
V (v) = [FV (v)]n and En is the expectation when Y has cumulative distribution

function (CDF) Fn. In this formulation, n represents the number of other bidders that ar-
rive after the BP is rejected, and Y represents the maximum of these other bidders’ valu-
ations. The term UR(v� r� τ� t) does not depend on p, because Proposition 1 implies that
any bidder arriving prior to t with v > r would have already either accepted or rejected

6Most parts of the proof of Proposition 1 are fairly straightforward based on this intuition. However, for
part (ii)(a) of the proposition, there may be realizations of opponent arrival times and valuations such that,
ex post, it would have been better to wait to accept the BP (e.g., while waiting, an opposing bidder with a low
v bids, no other bidders enter, and the first entrant wins the item at a price that is lower than the BP). Proving
that waiting to accept the BP cannot be an equilibrium strategy requires computing an expectation over the
distribution of opponents’ arrival times and valuations. To establish these results in our continuous-time
setting with no upper bound on the number of opponents, the proof establishes a point process notation
for the game.

7Our results would hold under other models of the bidding phase (e.g., if in the bidding phase, bidders
could see other bidders’ bids) as long as the bidding stage has the feature that the highest valuation bidder
wins the item at the valuation of the second highest valuation bidder.
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the BP. Hence, a bidder who arrives while the BP is still available knows, in equilibrium,
that no prior arriving bidder has v > r.

The following proposition provides a simpler expression for UR(v� r� τ� t) that we will
use extensively in the sequel.8

Proposition 2. We have

UR(v� r� τ� t) = δ(τ)

(
α(r� τ� t)U(v − r)+

∫ v

r
U(v − y)h(y� τ� t)dy

)
�

where

α(r� τ� t) = exp
(
γFV (r)− γ

)
�

h(y� τ� t) = exp
(
γFV (y)− γ

)
γfV (y)�

and α(r� τ� t) and h(y� τ� t) satisfy

α(r� τ� t)+
∫ ∞

r
h(y� τ� t)dy = 1 and

∂α(r� τ� t)

∂r
= h(r� τ� t)�

From the perspective of a bidder rejecting the BP at t, α(r� τ� t) is the probability that
no other bidder will arrive during the bidding phase with a valuation greater than r, and
h(y� τ� t) is the density of the maximum of the valuations of bidders who arrive during
the bidding phase.

With expressions for UA(v�p) and UR(v� r� τ� t) in hand, we can now characterize the
choice of whether to accept or reject the BP. In particular, we examine conditions under
which this decision depends on a bidder’s valuation v in a particularly simple way: the
bidder accepts the BP option if her valuation is above a cutoff value and rejects the BP
(i.e., initiates bidding) otherwise. We call this a cutoff strategy.

Given Proposition 1, bidders with v > r who arrive during the buy price phase im-
mediately either accept or reject the BP. Clearly, in any BNE, the bidder must accept the
BP if and only if

UA(v�p)≥UR(v� r� τ� t)

or

U(v −p)≥ δ(τ)

(
α(r� τ� t)U(v − r)+

∫ v

r
U(v − y)h(y� τ� t)dy

)
�

Define

M(v� r� τ� t)= U−1
(
δ(τ)

(
α(r� τ� t)U(v − r)+

∫ v

r
U(v − y)h(y� τ� t)dy

))
∀r� v ≥ r� t� τ�

which is the certainty equivalent of the random outcome obtained by rejecting the BP
option. Whether or not the BP decision follows a cutoff strategy depends on how the
certainty equivalent varies with v. Consider the following assumption.

8The simple characterizations of α(r� τ� t) and h(y�τ� t) arise from the properties of the Poisson distri-
bution. We presume these or similar results are known to researchers in point process theory, but we were
unable to find the result in the literature, so we provide a proof in the Appendix.
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Assumption 3. Let Mv(v� r� τ� t) denote the partial derivative of M(v� r� τ� t) with respect
to v. For some ε > 0, Mv(v� r� τ� t) < 1 − ε ∀r� v ≥ r� t� τ.

This is a sufficient condition for equilibrium BP decisions to follow cutoff strategies.9

Proposition 3. Under Assumptions 1, 2, and 3, in any symmetric, pure-strategy, per-
fect BNE, there exists a finite-valued cutoff function c(p� r� τ� t), implicitly defined by the
equation

U
(
c(p� r� τ� t)−p

)
= δ(τ)

(
α(r� τ� t)U

(
c(p� r� τ� t)− r

) +
∫ c(p�r�τ�t)

r
U

(
c(p� r� τ� t)− y

)
h(y�τ� t)dy

)
�

(1)

such that a potential bidder who arrives at t during the buy price phase with v > r im-
mediately accepts the BP if v > c(p� r� τ� t), immediately rejects the BP if v < c(p� r� τ� t),
and is indifferent between immediately accepting and immediately rejecting the BP if
v = c(p� r� τ� t). The cutoff function c(p� r� τ� t) satisfies the following statements:

(i) We have cp(p� r� τ� t) > 0, cr(p� r� τ� t) < 0, and cτ(p� r� τ� t) < 0.

(ii) We have c(r� r� τ� t)= r and c(p� r� τ� t) > p when p> r.

Assumption 3 is a high level assumption. In general, whether or not it holds will de-
pend on the forms of U(·), α(r� τ� t), h(y� τ� t), and δ(τ). Some intuition can be obtained
in the the case where the bidder is risk neutral, that is, U(x) = x. Then we have

M(v� r� τ� t) = δ(τ)

(
α(r� τ� t)(v − r)+

∫ v

r
(v − y)h(y� τ� t)dy

)
�

Mv(v� r� τ� t) = δ(τ)

(
α(r� τ� t)+

∫ v

r
h(y� τ� t)dy

)
< δ(τ) < 1 ∀t� τ� v ≥ r�

since α(r� τ� t) + ∫ v
r h(y� τ� t)dy < 1, δ(0) = 1, and δ′(τ) < 0. Hence under risk neutrality,

equilibria always involve cutoff strategies, regardless of the forms of α(r� τ� t), h(y� τ� t),
and δ(τ). The intuition is fairly clear in the risk neutral case. When a bidder’s valuation
v increases from v∗ to v∗ + 1, UA(v�p) increases by 1. On the other hand, UR(v� r� τ� t)

increases by less than 1 because of discounting, and because some of the utility gains
from the valuation increase are lost to competing bidders with valuations between v∗
and v∗ + 1. Since the utility from accepting the BP option increases in v faster than the
utility from rejecting the BP option, optimization implies a cutoff rule where bidders
with high valuations accept the BP and bidders with low valuations reject the BP.

It is possible to obtain more primitive conditions that ensure an equilibrium in cut-
off strategies. For example, in Appendix SB (in the Supplement), we show that U ′′′(x) ≤ 0
is a sufficient condition for Assumption 3 to hold for any primitives {λ(·)�FV (·)�δ(·)} sat-
isfying our conditions. However, given a particular {λ(·)�FV (·)�δ(·)}, there will generally
be utility functions that do not satisfy U ′′′(x) ≤ 0 but do satisfy Assumption 3.

9A necessary condition for the accept/reject decision to follow a cutoff strategy for any p, r, t, and τ is
that Mv(v� r� τ� t) ≤ 1.
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Regarding the properties of c(p� r� τ� t), it is intuitive that when the BP p increases,
the cutoff increases, making a bidder less likely to accept the BP. When the reserve price
r increases, the cutoff decreases because the expected utility from rejecting the BP de-
creases. When τ increases, the expected utility from rejecting the BP decreases and the
cutoff decreases. There are two reasons for this. First, increasing τ increases the expected
number of competitors entering in the bidding phase, lowering the expected utility from
rejecting the buy price. Second, the expected utility from rejecting the BP decreases as τ
increases due to impatience. Property (ii) simply states that when the BP exactly equals
the reserve price, all entering bidders with v > r will accept the BP. As p increases above
r, c(p� r� τ� t) also increases and is strictly above p. Last, note that ct(p� r� τ� t) may be
positive or negative (or 0), depending on how the Poisson rate λ(t) varies across t.

2.2 Inverse cutoff function p(c� r� τ� t)

Given that the cutoff function c(p� r� τ� t) is strictly increasing in p, we can invert it to
obtain an inverse cutoff function p(c� r� τ� t). The inverse cutoff function tells us, for a
given r, τ, and t, what the BP would have to be for a bidder with valuation c to be indif-
ferent between accepting and rejecting the BP. Following equation (1), the inverse cutoff
function solves

U
(
c −p(c� r� τ� t)

) = δ(τ)

(
α(r� τ� t)U(c − r)+

∫ c

r
U(c − y)h(y� τ� t)dy

)
� (2)

Unlike the cutoff function, we can explicitly solve for the inverse cutoff function as a
function of model primitives, that is,

p(c� r� τ� t)= c −U−1
(
δ(τ)

(
α(r� τ� t)U(c − r)+

∫ c

r
U(c − y)h(y� τ� t)dy

))
� (3)

The inverse cutoff function and this alternative representation of the indifference con-
dition will be useful in the identification arguments below. The following properties will
also be helpful.

Proposition 4. Under Assumptions 1, 2, and 3, the inverse cutoff function p(c� r� τ� t)

satisfies the following properties:

(i) We have 0 <pc(c� r� τ� t) < 1, pr(c� r� τ� t) > 0, pτ(c� r� τ� t) ≥ 0.

(ii) We have r ≤ p(c� r� τ� t)≤ c, p(c� r� τ� t)= c if and only if (iff) c = r.

(iii) We have that pcc(c� r� τ� t), prr(c� r� τ� t), and pcr(c� r� τ� t) exist and are bounded
away from ∞ and −∞.

(iv) Let z denote a dummy argument. Then

pc(z� z� τ� t) = 1 − δ(τ)α(z� τ� t)�

pr(z� z� τ� t) = δ(τ)α(z� τ� t)�

pcc(z� z� τ� t) = −U ′′(0)δ(τ)α(z� τ� t)
(
1 − δ(τ)α(z� τ� t)

) − δ(τ)h(z� τ� t)�
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prr(z� z� τ� t) = −U ′′(0)δ(τ)α(z� τ� t)
(
1 − δ(τ)α(z� τ� t)

) + δ(τ)α′(z� τ� t)�

pcr(z� z� τ� t) = U ′′(0)δ(τ)α(z� τ� t)
(
1 − δ(τ)α(z� τ� t)

)
�

Property (iv) in this proposition concerns the behavior of the inverse cutoff function
when the buy price (and thus the cutoff) equals the reserve price (in which case all ar-
riving bidders with v > r accept the BP). Since we assume that p ≥ r (and thus c ≥ r), the
derivatives when c = r should be interpreted as one-sided derivatives.

3. Identification

We now consider identification of the structural demand parameters {FV (·)�λ(·)�U(·)�
δ(·)} of this model. Heuristically, we suppose we have many independent observations
of auctions with the same {FV (·)�λ(·)�U(·)�δ(·)}, and exogenous variation in the re-
serve price (r), buy price (p), and bidding phase length (τ). Formally, we define ran-
dom variables R, P , and Υ , whose realizations are r, p, and τ. Let Fr�p�τ denote their
joint distribution. Conditional on R = r, P = p, and Υ = τ, we have a distribution for
the auction outcomes determined by the (fixed) structural demand parameters, and the
auction mechanism and equilibrium solution described in Section 2. Given knowledge
of the joint distribution of R, P , and Υ and the auction outcomes, we want to recover the
structural demand parameters.

The assumption that variation in the reserve price, buy price, and length is exoge-
nous may be strong in some situations. Even if we view the identification analysis as
conditional on auction-level covariates, the variation in r, p, and τ could arise from un-
observed (to the econometrician) differences across auctions that sellers take into ac-
count when choosing the auction features (Krasnokutskaya (2011), Asker (2010), Roberts
(2013), Decarolis (2009)). It may be possible to relax this exogeneity assumption using
instrumental variables techniques, but we do not pursue this in the current paper. How-
ever, the assumption may be credible in some markets where one believes the majority
of variation in auction setup is due to seller characteristics rather than unobserved de-
mand factors, or in lab or field experiments with randomized variation in the auction
features (and as mentioned in Section 1, some recent studies show evidence of sellers
experimenting on eBay).

Our single-unit theoretical model in Section 2 also embodies an assumption that
there are no other auctions, either simultaneously or in the future. This is often assumed
in the auction literature (with some notable exceptions, e.g., Jofre-Bonet and Pesendor-
fer (2003), Zeithammer (2006, 2007, 2010), Nekipelov (2008), Zeithammer and Adams
(2010), and Backus and Lewis (2016)), but it may be questionable for some product cat-
egories on eBay and similar markets.

3.1 Observational model

Now we specify the auction outcomes that are observed. Let T1 be the time of the first
action (either accepting or rejecting the BP) taken by any bidder in the auction. Let B = 0
indicate that the first acting bidder rejected the BP and let B = 1 indicate that the first
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acting bidder accepted the BP. The parameters of the model {FV (·)�λ(·)�U(·)�δ(·)} de-
termine a joint distribution for (T1�B) given (P = p�R= r�Υ = τ). Let F1(·|p� r� τ) denote
the conditional distribution of T1 given (P = p�R = r�Υ = τ) and let Pr(B = 1|p� r� τ� t1)
denote the conditional probability of the BP option being accepted given (P = p�

R = r�Υ = τ�T1 = t1).
Our basic identification results will only require that the outcomes T1 and B are ob-

served (along with the “exogenous” variables (P = p�R = r�Υ = τ)). This will be enough
to identify the structural parameters {FV (·)�λ(·)�U(·)�δ(·)}, using the implications of
Propositions 1 and 3. In principle, we might observe other outcome variables, for exam-
ple, the final price in the auction, or the sealed bids placed by participants, or the proxy
bids in eBay auctions.10 In Sections 4 and 5, we examine the identifying power of some
of these other outcome variables.

To derive the simplest version of our identification results, we make the following
assumption on the support of (R�P�Υ).

Assumption 4. The marginal distribution of R has support [0�∞) and the conditional
distribution of P given R = r has support [r�∞). The conditional distribution of Υ given
(R = r�P = p) has support [0�∞).

This large support condition is relaxed in Section 4.

3.2 Identification of λ(·) and FV (·)
We begin by examining identification of the arrival rate and valuation distribution. Our
arguments for identification of these two objects are similar to Canals-Cerda and Pearcy
(2013), who consider identification in eBay auctions without buy prices (and without
impatience or risk aversion). Recall that potential bidders arrive according to a Poisson
process with arrival rate λ(t), and by Proposition 1, if no other action has yet been taken,
the arriving bidder takes an action if her valuation V ≥ r. Hence the time of the first
observed action T1 in an auction, given (P = p�R = r�Υ = τ), has conditional hazard
rate

θ(t1|p� r� τ)= λ(t1)
(
1 − FV (r)

)
� (4)

To separately identify λ(·) and FV (·), note that when r = 0, then FV (r) = 0, so

λ(t1)= θ(t1|p�0� τ)�

Since the Poisson intensity is bounded, T1|P�R = 0 has full support [0�∞), so condition-
ing on R = 0 identifies λ(·) on [0�∞). Put simply, when the reserve price is zero, every
potential bidder who arrives takes an action, so we can recover the arrival rate of bidders.

Given that λ(·) has been identified, we can identify FV (·) by using equation (4) for
values of r other than 0. This identifies FV (·) on [0�∞).

10In some cases, these other variables may be hard to interpret (e.g., eBay’s proxy bids).
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Since λ(·) and FV (·) are identified, it follows that α(r� τ� t1) and h(y� τ� t1) are iden-
tified over their full supports, since we can form γ = ∫ t1+τ

t1
λ(s)ds for any t1 and then

directly construct

α(r� τ� t1)= exp
(
γFV (r)− γ

)
�

h(y� τ� t1)= exp
(
γFV (y)− γ

)
γfV (y)�

3.3 Identification of c(p� r� τ� t1) and p(c� r� τ� t1)

To identify the cutoff function and its inverse, we use the observed distribution of B

given (P = p�R = r�Υ = τ�T1 = t1). For a bidder who takes an action at time t1, the dis-
tribution of her valuation V is FV truncated below at r. By Proposition 3, this bidder will
accept the buy price if V ≥ c(p� r� τ� t1). Therefore,

Pr(B = 1|p� r� τ� t1) = 1 − FV

(
c(p� r� τ� t1)

)
1 − FV (r)

�

Given knowledge of FV and the conditional probability of B = 1, we can invert to obtain

c(p� r� τ� t1)= F−1
V

(
1 − (

1 − FV (r)
)

Pr(B = 1|p� r� τ� t1)
)
�

This identifies the cutoff function on the joint support of (P�R�Υ�T1). Having identified
c(p� r� τ� t1), we can then invert it to obtain the inverse cutoff function p(c� r� τ� t1) and
the first and second derivatives of p(c� r� τ� t1) with respect to c and r.

3.4 Identification of U(·) and δ(·)
We now consider identification of the utility and impatience functions. Our approach
is related to the general identification strategy of Chiappori et al. (2009), although they
only consider identification of a utility function without a time-preference component.
As in their paper, we have a one-dimensional form of unobserved heterogeneity (the
bidder valuations v), and the implication of our model that bidders use cutoff strategies
amounts to a single-crossing property. Chiappori et al. (2009) propose to use indiffer-
ence conditions to recover U(·). In our situation with U(·) and δ(·), this indifference
condition is

U
(
c(p� r� τ� t1)−p

) = δ(τ)

(
α(r� τ� t1)U

(
c(p� r� τ� t1)− r

)
(5)

+
∫ c(p�r�τ�t1)

r
U

(
c(p� r� τ� t1)− y

)
h(y� τ� t1)dy

)
�

where α(r� τ� t1), h(y� τ� t1), and c(p� r� τ� t1) have already been identified from the argu-
ments above. This integral equation will hold for all t1 ∈ [0�∞), r ∈ [0�∞), p ∈ [r�∞), and
τ ∈ (0�∞). We need to show that there is a unique utility function U(·) and impatience
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function δ(·) that satisfy this equation. To simplify the discussion, fix t1 = t0
1 and τ = τ0,

resulting in

U
(
c(p� r)−p

) = δ

(
α(r)U

(
c(p� r)− r

)
(6)

+
∫ c(p�r)

r
U

(
c(p� r)− y

)
h(y)dy

)
∀r ∈ [0�∞)�p ∈ [r�∞)�

Now the question is whether there is a unique function U(·) and scalar δ = δ(τ0) that
satisfy this indifference condition. (Throughout this section, uniqueness of U will mean
uniqueness up to affine transformations.) Note that if this can be shown to be the case,
it can be also be done for other values of τ to identify the function δ(·) over the support
of τ.

3.4.1 General formulation of problem We start by relating our identification question
to existing literature on certainty equivalents. This provides a general overview of the
identification arguments necessary to separately identify the utility and impatience
functions. We then show how the specific variation in p and r in our BP situation leads to
an identification result. For illustration purposes, first suppose there is no impatience,
that is, δ = 1. Then equation (6) matches certain outcomes (of the form c(p� r) − p) to
lotteries with distributions determined by the functions α and h and the auction setup
p and r. A general form of the problem is the following: given a collection of probability
distributions F and a certainty equivalence functional M : F →R, is there a unique (up
to affine transformations) utility function U(·) such that

M(F) =U−1
(∫

U(x)dF(x)

)
∀F ∈ F� (7)

where in our specific case, the collection of distributions F is generated by the variation
in auction setup p and r,11 and the certainty equivalent function M(F) = c(p� r)−p?

By the Kolmogorov–Nagumo–De Finetti theorem De Finetti (1931), if F contains all
probability distributions (on a bounded interval) and M satisfies some basic conditions,
there is a continuous, strictly increasing function U(·) satisfying (7), and U(·) is unique.
This establishes that a wide range of certainty equivalence functionals can be rational-
ized (over all lotteries) by some utility function. For the purposes of identification, we
know that such a utility function exists (because the certainty equivalent is generated by
it) and instead want to show that a relatively small set of distributions F (generated by
the variation in r and c) suffice to recover it uniquely from knowledge of M . In fact, in-
spection of a classical proof of the theorem given in Hardy, Littlewood, and Polya (1952)
shows that uniqueness can be established when F is a certain one-dimensional class
of lotteries—those generated by mixtures of the endpoints of the bounded interval sup-
porting the lotteries. (We review this argument briefly in Appendix SC.) This suggests
that, at least when there is no impatience, a simple class of lotteries may be enough to

11Note that F will have a point mass at the point r and its support will be bounded at c(p� r).
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trace out the utility function from its certainty equivalents if the variation across lotteries
is of a suitable form.

Identification become more complicated when we incorporate impatience. We now
have

M(F) =U−1
(
δ

∫
U(x)dF(x)

)
∀F ∈ F� (8)

where δ also needs to be identified. Fortunately, in our setting the BP lotteries are in-
dexed by two parameters, p and r. Suppose that we have two sets of lotteries F1 =
{F1(x;θ1)} and F2 = {F2(x�θ2)} indexed by scalar parameters θ1 and θ2. Suppose that
the parametrizations are such that θ1 and θ2 are equal to the certainty equivalents of the
corresponding lottery. Then we have

U(θ1) = δ

∫
U(x)dF1(x;θ1)�

U(θ2) = δ

∫
U(x)dF2(x;θ2)�

Each of these equations is a homogeneous Fredholm equation. For a given value of δ,
one of these two equations would typically suffice to recover U up to normalization, and
in some cases U could be recovered by standard methods for solving Fredholm equa-
tions. However, when δ is unknown, a single equation would not generally suffice, but
the richer class of lotteries F1 ∪ F2 may allow one to recover both U and δ. Verifying
this is likely to be possible only on a case-by-case basis. Next, we show that the varia-
tion in lotteries generated by θ1 and θ2 (i.e., p and r) in our BP setting is sufficient to
identify both U(·) and δ. Moreover, we show that the particular manner in which p and
r affect the kernels of the two Fredholm equations allows us to recover U by solving a
simple first-order differential equation, and we can also obtain a closed form expres-
sion for the Arrow–Pratt measure of risk aversion as a function of the observable data
distribution.

3.4.2 BP identification To show identification of U(·) and δ(·) in our BP model, it is
helpful to express the integral equation indifference condition in the space of the inverse
cutoff function rather than the cutoff function (recall, that the inverse cutoff function
p(c� r� τ� t) gives the BP p that would make a bidder with valuation c indifferent between
accepting or rejecting the BP). As noted in Section 2, this indifference condition can be
written as

U
(
c −p(c� r� τ� t1)

) = δ(τ)

(
α(r� τ� t1)U(c − r)+

∫ c

r
U(c − y)h(y� τ� t1)dy

)
� (9)

This integral equation will hold for all t1 ∈ [0�∞), r ∈ [0�∞), c ∈ [r�∞), and τ ∈
(0�∞). To identify the utility function U(·), we need to show that given knowledge of
α(r� τ� t1),h(y� τ� t1), and p(c� r� τ� t1), there is a unique utility function U(·) that satisfies
this integral equation.



824 Ackerberg, Hirano, and Shahriar Quantitative Economics 8 (2017)

We can differentiate the integral equation with respect to c,

U ′(c −p(c� r� τ� t1)
)(

1 −pc(c� r� τ� t1)
)

= δ(τ)

(
α(r� τ� t1)U

′(c − r)+
∫ c

r
U ′(c − y)h(y� τ� t1)dy

)
�

(10)

and with respect to r,

U ′(c −p(c� r� τ� t1)
)(−pr(c� r� τ� t1)

)
(11)

= δ(τ)

(
−α(r� τ� t1)U

′(c − r)+U(c − r)

(
∂α(r� τ� t1)

∂r
− h(r� τ� t1)

))
�

U ′(c −p(c� r� τ� t1)
)(−pr(c� r� τ� t1)

) = −δ(τ)α(r� τ� t1)U
′(c − r)� (12)

where the second line follows because ∂α(r�τ�t1)
∂r = h(r� τ� t1).

Under our assumptions, each side of (12) is bounded away from 0. Dividing (10) by
(12) cancels the delay term (and eliminates the impatience term), and differentiating the
resulting equation with respect to r results in an ordinary first-order linear differential
equation in U ′(·), that is,

U ′′(c − r) = 
r(c� r� τ� t1)+ h(r� τ� t1)


(c� r� τ� t1)
U ′(c − r)� (13)

where


(c� r� τ� t1) = α(r� τ� t1)

[(
1 −pc(c� r� τ� t1)

)
pr(c� r� τ� t1)

− 1
]
�

Intuitively, the ratio of derivatives answers the following question: for a given in-
crease in r from r0 to r1 (which decreases the cutoff), what is the increase in p from p0
to p1 (which increases the cutoff) that would lead to the same cutoff value, that is, the
same indifferent bidder? The increase in r from r0 to r1 not only decreases the mean
payoff from rejecting the BP, but also decreases the variance of this payoff (since r trun-
cates the distribution of outcomes from rejecting). Both of these effects are known from
the arrival process and distribution of valuations that we previously identified. Thus, the
difference between p0 and p1 (which determine the certain payoff from accepting the
BP) tells us how bidders value the decreased risk moving from r0 to r1 (controlling for the
known change in mean payoff moving from r0 to r1). The impatience function does not
enter the above argument because it cancels from equation (13).

Since h(r� τ� t1) and all the components of 
(c� r� τ� t1) have already been shown to
be identified, we only need to consider whether there is a unique solution U(·) to this
differential equation (with U(0) = 0 and U ′(0) = 1).

Proposition 5. Under Assumptions 1, 3, and 4, there is a unique U(·) on support [0�∞)

satisfying (13). Hence, U(·) is identified on support [0�∞).

First-order linear differential equations like (13) typically have a unique solution
given an initial condition (which in our case is U ′(0) = 1). Note that (13) holds for any
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values of (c(p� r� τ� t1)� r� τ� t1). So, for example, one can fix (r� τ� t1) and use variation in
p across its support (i.e., in c(p� r� τ� t1)) to trace out U(·). Since this can be done at any
(r� τ� t1), this will generate overidentifying restrictions, which we discuss in the next sec-
tion.

Equation (13) can be rewritten as

U ′′(c − r)

U ′(c − r)
= 
r(c� r� τ� t1)+ h(r� τ� t1)


(c� r� τ� t1)
� (14)

As a result, to identify the Arrow–Pratt measure of risk aversion at a certain point one
only needs to compute the values of 
(c� r� τ� t1), 
r(c� r� τ� t1), and h(r� τ� t1) at that
point. On a related note, we investigate how sensitive our identification results are to
the support condition (Assumption 4) in Section 4.1.

Last, consider identification of the impatience function. The impatience function
does not enter the above argument because it cancels from equation (13). However,
given identification of U , δ can be identified from the level of the cutoff, because a higher
cutoff implies more patience.

Manipulating the indifference condition (9) gives us

δ(τ) = U
(
c −p(c� r� τ� t1)

)
α(r� τ� t1)U(c − r)+

∫ c

r
U(c − y)h(y� τ� t1)dy

� (15)

Since all of the terms on the right-hand side have already been shown to be identified, it
is clear that δ(·) is identified. Since τ varies over support (0�∞) and we have normalized
δ(0) = 1, δ(·) is identified on [0�∞). As noted above, the precise way that p and r vary the
auction lottery are key to this fairly simple proof of identification (and the closed form
representation of the Arrow–Pratt measure of risk aversion). For example, note that in
(9), r only enters through the point mass term and the limit of integration. This means
that the integral disappears when differentiating with respect to (w.r.t.) r, and allows the
simple cancellation of the impatience term when taking the ratio of the derivatives.

4. Extensions

4.1 Relaxing support conditions

Assumption 4 requires that the exogenous random variables (R�P�Υ) have large sup-
ports, which may be unrealistic in many applications. We now examine how restrictions
on the supports affect our identification results. First consider a situation where all the
auctions in the data set have a fixed bidding phase length τ0.

Assumption 5. The marginal distribution of R has support [0�∞) and the conditional
distribution of P given R = r has support [r�∞). The conditional distribution of Υ given
(R�P) has Pr(Υ = τ0|R�P)= 1 almost surely.

Proposition 6. Under Assumptions 1, 3, and 5, {FV (·)�λ(·)�U(·)} are identified over
their full supports and δ(τ) is identified at τ0.
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Intuitively, if the bidding phase has fixed length τ0, we can only identify δ(·) at that
point. However, the other structural functions are identified over their entire supports
by our previous arguments.

In practice, it may also be difficult to estimate λ(t) for large t, because this would
require observing many auctions that last until time t without an action being taken. To
capture this situation, we suppose that observations on auctions are truncated at some
time T .

Assumption 6. There is some T > τ0 such that we only observe (T1�B) when T1 < T .

In this case, even though we can only identify the Poisson process prior to time T ,
we can still identify FV (·) and U(·). Specifically, the following result follows from the
arguments in Section 3.

Proposition 7. Under Assumptions 1, 3, 5, and 6, {FV (·)�U(·)} are identified over their
full supports, λ(·) is identified on support [0�T ), and δ(τ) is identified at τ0.

Next, we consider restricting the support of R to the bounded set [r� r].

Assumption 7. The marginal distribution of R has support [r� r] and the conditional
distribution of P given R = r has support [r�∞). The conditional distribution of Υ given
(R�P) has Pr(Υ = τ0|R�P) = 1 almost surely. There is some T > τ0 such that we only ob-
serve (T1�B) when T1 < T .

Proposition 8. Under Assumptions 1, 3, and 7, λ(t)(1 − FV (r)) is identified on (r� t) ∈
[r� r] × [0�T ), δ(τ) is identified at τ0, and U(·)is identified on [0� r − r].

In this case, since the reserve price never goes below r, we cannot distinguish be-
tween a non-arrival and an arrival of a bidder with valuation below r. As a consequence,
λ(t) and FV (r) are not separately identified. However, over limited supports, we can
identify the composite function λ(t)(1 − FV (r)), and through this α(r� τ� t1), h(y� τ� t1),
and c(p� r� τ� t1).12 A slight modification of our original identification argument leads to
the final result. The support on which U(·) is identified depends on the range of the
reserve price in the support of the data.

Last, we further restrict the support of the buy price P .

Assumption 8. The marginal distribution of R has support [r� r] and the conditional
distribution of P given R = r has support containing [p0 − ε�p0 + ε] for some ε > 0. The
conditional distribution of Υ given (R�P) has Pr(Υ = τ0|R�P) = 1 almost surely. There is
some T > τ0 such that we only observe (T1�B) when T1 < T . There exists r∗ ∈ (r� r) and
t∗ < T − τ0 such that c(p0� r

∗� τ0� t
∗) ∈ (r� r).

12What prevents separate identification of λ(t) and FV (r) is the lower bound r. This is only restrictive if
one wants to consider alternative auction setups with reserve prices below r. If the reserve price is above r,
it is not important to distinguish non-arrival of bidders from arrival of bidders with valuations below r.
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Proposition 9. Under Assumptions 1, 3, and 8, λ(t)(1 − FV (r)) is identified on (r� t) ∈
[r� r]×[0�T ), δ(τ) is identified at τ0, and U ′′(·)

U ′(·) is identified at the point c(p0� r
∗� τ0� t

∗)−r∗.

The last condition of Assumption 8 requires the observed buy price p0 to be low
enough so that the cutoff at this buy price is within the range [r� r] (for some r∗ and t∗).
This is needed to identify the cutoff function. However, provided this holds, we only need
a small amount of variation in the buy price to identify the Arrow–Pratt measure of risk
aversion at a particular c(p0� r

∗� τ0� t
∗) − r∗.13 If there is a set of points (r∗� t∗) such that

r∗ ∈ (r� r), t∗ < T − τ0, and c(p0� r
∗� τ0� t

∗) ∈ (r� r), then the Arrow–Pratt measure of risk
aversion will be identified at all the corresponding values of c(p0� r

∗� τ0� t
∗)− r∗.

In summary, we can relax our original support conditions in various ways and
still obtain “local” identification of the structural objects. However, even Assumption 8
makes a significant joint support condition on r and p. Intuitively, to identify U(·) and
δ(·) locally, we need variation in the reserve price and we need that there are buy prices
low enough that the equilibrium cutoff is sometimes in this range.

4.2 Optimal auction design with a limited support and additional parametric
assumptions

While the structural parameters of the model may be of independent interest, one rea-
son for estimating them is to learn about the implications of the model for optimal auc-
tion design. In the current context, this design would include the reserve price (r), buy
price (p), and bidding phase length (τ), and a natural question is what values of (r�p�τ)
maximize expected revenue to the seller.

Clearly, if the structural parameters {FV (·)�λ(·)�U(·)�δ(·)} are fully identified, it is
conceptually simple to find the (r�p�τ) that maximize expected revenue (though in
practice this may require extensive computations). However, this is not possible in gen-
eral when the structural parameters are only partially identified due to limited supports
as in Section 4.1. Intuitively, one needs to know the utility and impatience functions at
all points to calculate expected revenue for all (r�p�τ).

Nevertheless, the results in Section 4.1 can still be helpful to the auction designer.
Specifically, if one is willing to impose additional parametric assumptions, it may be
possible to determine the optimal auction design even with a limited support.14 For ex-
ample, Proposition 9 implies that if one further assumes that the impatience function is
geometric (i.e., δ(τ)= e−δτ) and the utility function is CARA (i.e., U(x) = 1 − e−αx), then
the local variation in Assumption 8 fully identifies both U(·) and δ(·) (and therefore α

and δ). The same would hold if U(·) and δ(·) were assumed to belong to other families of

13This implies, for example, that if bidders are assumed to have a constant absolute risk aversion (CARA)
utility function, we could identify the CARA coefficient with only local variation in the buy price.

14Aradillas-López, Gandhi, and Quint (2013) have an elegant result in an ascending auction framework
with correlated private values where even though the underlying structural parameters (the distribution of
values) is not identified, one can place bounds on seller profit (and potentially the optimal reserve price)
without any additional parametric assumptions. It does not appear that such an approach would be fruitful
in our context, perhaps because of the additional two structural parameters U(·) and δ(·) and the additional
two policy parameters p and τ.
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single parameter functions (e.g., constant relative risk aversion (CRRA)). If there is more
variation in Υ and P than the very local form in Assumptions 5 and 8, one could also use
more flexible (i.e., more than a single parameter) specifications for U(·) and δ(·). The
term λ(t)(1 − FV (r)) could also be parametrically specified as a function of t and r, and
this would be identified given that Proposition 9 implies that λ(t)(1 − FV (r)) is identi-
fied on (r� t) ∈ [r� r] × [0�T ). Thus, under additional parametric assumptions, the entire
model is identified even with limited support conditions, and one can assess various as-
pects of optimal auction design. Last, even if one does not attempt to fully identify U(·)
and δ(·) by making parametric assumptions, the above results imply that one could test
for the existence of either risk aversion or impatience (using only the limited variation in
the above assumptions). Finding evidence of either one, even without fully identifying
the model, could provide evidence to a seller or auction designer that buy price auctions
might increase revenue over standard auctions.

4.3 Testable restrictions

Our model has a number of testable restrictions on the observed data (or functions of
the observed data). These follow from the discussion in Sections 2 and 3 and include the
following statements:

(i) The conditional hazard θ(t1|p� r� τ) does not depend on p or τ.

(ii) The ratio θ(t1|p�r�τ)
θ(t1|p�0�τ) does not depend on p, τ, or t1.

(iii) We have r ≤ p(c� r� τ� t1) ≤ c, 0 <pc(c� r� τ� t1) < 1, pr(c� r� τ� t1) > 0, pτ(c� r� τ� t1) >

0, pc(r� r� τ� t1)= 1 − α(r� τ� t1), and pr(r� r� τ� t1) = α(r� τ� t1).

(iv) The coefficient in the differential equation (13), that is,


r(c� r� τ� t1)+ h(r� τ� t1)


(c� r� τ� t1)
�

does not depend on τ and t1. The coefficient only depends on c and r through the differ-
ence c − r.15

These restrictions could be tested, and also imply that more flexible versions of the
model can be identified. For example, restrictions (i) and (ii) imply that one can identify
a model where the distribution of a bidder’s valuation depends on his/her time of ar-
rival, that is, FV (v� t). Restriction (iv) implies we could identify an extended model where
a bidder’s utility function depends on his/her time of arrival (i.e., δ(τ)U(v−p� t)).16 Ide-
ally, we would like to find necessary and sufficient conditions on θ(t1|p� r� τ) and Pr(B =

15The fact that (13) implies

U ′′(c − r)

U ′(c − r)
= 
r(c� r� τ� t1)+ h(r� τ� t1)


(c� r� τ� t1)

generates these restrictions.
16One could potentially investigate whether even more general models are identified or partially iden-

tified, for example, the utility function U(τ�v − p� t) or U(τ�v�p� t), or models where bidders are hetero-
geneous in their risk attitudes or their impatience rather than in their valuations. Even more challenging
would be models where bidder heterogeneity cannot be summarized by a scalar quantity.
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1|p� r� τ� t1) (which can be estimated directly from data) for these to be rationalized by
our model {FV (·)�λ(·)�U(·)�δ(·)} (see, e.g., Aryal, Perrigne, and Vuong (2016)). However,
this appears to be quite complicated in our context.For example, the inverse cutoff func-
tion (3) implies that the relationship between p(c� r� τ� t1) (and thus Pr(B = 1|p� r� τ� t1))
at two values of t1 depends in a complicated way on the arrival process between those
two points in time (as an integrand through h(r� τ� t1) and then through the inverse util-
ity function).

4.4 Additional data on final prices

Our basic identification argument in Section 3 only uses data on T1, the time of the first
observed arrival, and B, the indicator for whether the BP option was accepted or re-
jected. These data identify the arrival rate λ(t), the valuation distribution FV (v), and
the inverse cutoff equation p(c� r� τ� t1). Using λ(t) and FV (v), we can identify the func-
tions α(r� τ� t1) and h(y� τ� t1) in our integral equation (5). Given knowledge of α(r� τ� t1),
h(y� τ� t1), and p(c� r� τ� t1), we then showed identification of the utility components U(·)
and δ(·).

Perhaps the most surprising aspect of this is that we use no data on either bids or fi-
nal transaction prices. In this section, we investigate conditions under which final trans-
action prices can strengthen our identification results. We illustrate conditions under
which data on final prices allow one to further weaken the support conditions described
in Section 4.1. More specifically, we weaken Assumption 8 as follows.

Assumption 9. The marginal distribution of R has support [r� r] and the conditional
distribution of P given R = r has support containing [p0 − ε�p0 + ε] for some ε > 0. The
conditional distribution of Υ given (R�P) has Pr(Υ = τ0|R�P) = 1 almost surely. There
is some T > 0 such that we only observe (T1�B) when T1 < T . There exists r∗ ∈ (r� r) and
t∗ < T − τ0 such that c(p0� r

∗� τ0� t
∗) ∈ (r� r).

The difference between Assumption 8 and Assumption 9 is the support of T1. As-
sumption 8 requires that we observe arrivals (and BP) decisions up to time T1 > τ. This
ensures that we are able to identify enough of λ(t)(1 − FV (r)) (which incorporates the
arrival rate and distribution of values) such that we can identify α(r� τ� t1) and h(y� τ� t1)

for at least some t1 in the data. Intuitively, to identify the level of competition a bidder
will expect to face if he/she rejects the BP at time t1, we need to know λ(t)(1 − FV (r))

over the entire bidding phase (and hence we need T1 > τ).
Assumption 9 is weaker because it does not require T1 > τ. Recall that α(r� τ� t1) and

h(y� τ� t1) measure the level of competition a bidder will expect to face if he/she rejects
the BP at time t1. In the previous sections, α(r� τ� t1) and h(y� τ� t1) were constructed us-
ing λ(t)(1 − FV (r)), which was identified from arrival patterns later in the auction. In-
stead, as we show below, we can use realized final prices from those auctions to identify
α(r� τ� t1) and h(y� τ� t1). This may be particularly helpful if the data do not include many
auctions that have no activity until later in the auction.

This alternative approach requires two additional assumptions.
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Assumption 10. We observe final transaction prices Z and the identity of the winning
bidder (specifically, we can identify whether the bidder who rejected the BP is the bidder
who wins the auction).

Assumption 11. If an auction enters the bidding phase, the final price in the auction is
the second highest valuation of all bidders who arrived at the auction.

The first assumption requires that we observe final transaction prices and that we
know whether the winner of the auction was the bidder who rejected the BP. The second
assumption, which follows Haile and Tamer (2003) and Canals-Cerda and Pearcy (2013),
holds in equilibrium if the bidding phase consists of either a second-price sealed bid
auction, a button auction, or an eBay style proxy-bidding auction (up to bid increments).

Now consider an auction with setup (p� r� τ). Suppose that at T1 = t1 < T , an arriving
bidder rejects the BP option (B = 0). This bidder has value V distributed according to FV

truncated between r and c(p� r� τ� t1). Let Ỹ equal the highest valuation among bidders
arriving after time t1 or equal to R if no further bidders arrive to the auction with valua-
tions greater than r. Under our assumptions, Ỹ is conditionally independent of V , that
is,

Ỹ ⊥ V |P = p� R = r� Υ = τ� T1 = t1� B = 0�

Suppose we observe the random variable W , an indicator that the bidder who rejected
the BP option ended up winning the auction. Note that W = 1(Ỹ < V ), since the bidder
who rejected the BP only wins if her valuation is higher than the bidders entering during
the bidding phase.

Assumption 10 implies that we observe the final price in the auction, Z, conditional
on W = 1. Under Assumption 11, Z = Ỹ if W = 1. In other words, if the bidder who re-
jected the BP option wins the auction, then the final price Z is equal to the highest val-
uation of bidders arriving after time t1 (or r if there are no such bidders with valuations
greater than r). The proposition below states that, given the above data setup, we can
identify aspects of the utility function and the time-discounting function.

Proposition 10. Under Assumptions 1, 3, 9, 10, and 11, λ(t)(1 − FV (r)) is identi-
fied on (r� t) ∈ [r� r] × [0�T ), δ(τ) is identified at τ0, and U ′′(·)

U ′(·) is identified at the point
c(p0� r

∗� τ0� t
∗)− r∗.

This identification argument first uses the data on W and Z to recover the condi-
tional probability of W = 1 and the distribution of Z given W = 1. Then we can identify
α(r� τ� t1), which is the probability that, given rejection of the BP at t1, no other bidder
with valuation greater than r arrives during the bidding phase, and h(y� τ� t1), which is
the density of the maximum valuation of all future bidders arriving during the bidding
phase (or the reserve price).17 Once we have α(r� τ� t1) and h(y� τ� t1), we can use equa-
tion (5) to identify aspects of U(·) and δ(·).18

17In equilibrium, no bidder who arrived prior to t1 has valuation greater than r.
18The approach detailed in this section is related to a large literature on estimation methods for dynamic

models initiated by Hotz and Miller (1993).
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This approach allows us to identify aspects ofU(·) and δ(·) without having to identify
λ(t)(1 −FV (r)) at later points in the auction. This approach is therefore less demanding
in that we do not need to observe auctions that last a long time before any observed
arrivals, and could be particularly useful for our extension to eBay Buy-It-Now auctions
considered below. Note that this approach also provides additional testable restrictions
of the model. For example, py(y|r�p�τ� t1�B = 0) should not depend on p.

The identification proposed in this section only uses the final price conditional on
the BP rejector winning the auction. In principle, there is more information that could
be used to identify structural objects and generate testable restrictions of our model.
For example, we could use the final price regardless of who wins the auction. If we also
observe all the bids in the bidding phase and these bids represent bidders’ valuations,
then we could use this information as well.19 If we also observe click stream data that
measures when a user first visited a particular auction, this could provide an alternative
source of identification for arrival rates.

5. Applications

5.1 eBay’s Buy-it-Now auctions

eBay’s popular Buy-it-Now auctions feature a BP option that disappears as soon as any
bidder places a bid, which our original model captures. However, in eBay’s BP auction
format, there is a fixed length for the overall auction. Since eBay’s auctions end at some
fixed time T , the bidding phase has length T − t1, not a fixed length τ as we assumed in
our model. We call our BP auction model a fixed τ BP auction, whereas eBay’s Buy-it-
Now auction is a fixed T BP auction. In a fixed T auction, the environment is defined by
(p� r�T ). The cutoff function for a bidder arriving at t1 is then c(p� r�T� t1), depending on
p, r, and the overall length of the auction T . A number of papers have empirically stud-
ied eBay (or related) Buy-it-Now auctions, including Wan, Teo, and Zhu (2003), Chan,
Kadiyali, and Park (2007), and Anderson, Friedman, Milam, and Singh (2008).

Identification of parameters in a fixed T auction is similar to that in a fixed τ auction.
Variation in reserve prices across auctions can trace out arrival rates and valuations,
variation in p identifies the cutoff function c(p� r�T� t1), and an integral equation similar
to (6), that is,

U
(
c −p(c� r�T� t1)

) = δ(T − t1)

(
α(r�T� t1)U(c − r)+

∫ c

r
U(c − y)h(y�T� t1)dy

)
� (16)

identifies U(·) and δ(·).
However, the fixed T BP auction has a complication that does not arise in our origi-

nal model. Consider a potential bidder arriving at some time t, with a valuation greater
than r but less than c(p� r�T� t). In our original model, such a bidder has an incentive to
immediately reject the BP. This is because immediately rejecting ends the auction sooner
and minimizes the expected amount of competition that the bidder faces in the bidding

19Depending on the context, bids may only provide bounds on valuations (Haile and Tamer (2003),
Zeithammer and Adams (2010)).
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phase. In contrast, in a fixed T model, this bidder does not have a strict incentive to im-
mediately reject the BP, since immediately rejecting does not end the auction sooner or
limit competition.20 This can lead to multiple equilibria, because bidders are indifferent
between rejecting the BP immediately or waiting.21 Then we may not be able to identify
FV (r), since we are not certain that observed actions are being taken by bidders who
have just arrived.22

We can resolve this problem by either modifying the model or using a solution con-
cept that ensures that bidders who reject the BP act immediately. Gallien and Gupta
(2007) discuss restricting attention to trembling hand perfect BNE, where the trembles
involve a bidder accidentally accepting the BP. This results in an equilibrium where bid-
ders who want to reject the BP do so immediately.23 The same is true if one adds a small
cost to the model that is incurred when one waits (or needs to return to the auction at a
later point) to reject the BP.24 In both cases, our identification arguments in Sections 2
and 3 can be applied to fixed T auctions.

Because we need to ensure that certain subsets of the bidders act immediately upon
entering the auction,25 we are also relying heavily on the assumption that auctions are
isolated. If the same (or a similar) good were potentially available in other eBay auctions,
then bidders might have an incentive to wait before taking an action. This suggests that
it might be valuable to investigate how our identification arguments extend to dynamic
multiple-auction settings (e.g., Jofre-Bonet and Pesendorfer (2003), Zeithammer (2006),
Backus and Lewis (2016)).26

While our extension to eBay’s Buy-it-Now auctions require some further strong as-
sumptions about behavior of bidders, our approach to identification has a number of

20Moreover, there is no reason to act immediately to prevent another bidder from entering and accepting
the BP. This is because in a model where bidders are only heterogeneous in their valuations, this other
bidder would always win the auction phase.

21In the fixed T environment, bidders with valuations above the cutoff c(p� r�T� t1) do have an incentive
to accept the BP immediately, as they do not want to lose the item to another arriving bidder.

22This point illustrates an interesting theoretical advantage of fixed τ BP auctions versus fixed T BP auc-
tions. Specifically, identification is easier in fixed τ auctions because of the stronger incentives for bidders to
act immediately. It would be interesting to compare expected revenue across the two types of BP auctions,
though that seems beyond the scope of the current paper.

23Consider a bidder who arrives with a valuation greater than r, but less than c(p� r�T� t) (i.e., he prefers
to reject the BP). If the bidder waits, there is some probability that another bidder with a lower valuation
(also greater than r) will tremble and accept the BP (this other bidder should optimally reject the BP). This
generates a strict incentive for the original bidder to reject the BP immediately.

24In another model in Gallien and Gupta (2007), there is assumed to be a point mass of “desperate” bid-
ders who are very impatient and accept the BP immediately if they arrive. This also creates incentives for
a normal bidder to reject the BP immediately. However, with this model, one would want to explicitly con-
sider identification of the point mass of desperate bidders and to check whether this affects identification of
the other model components. The same issue arises in a perturbation where one adds a small utility benefit
of participating in the bidding phase.

25We could extend the argument to allow for an exogenous random delay before acting.
26In eBay auctions it may also be hard to identify the arrival process late in the auction, because this

requires data on auctions in which no action is taken until close to the end of the auction. Hence, the
alternative approach described in Section 4.3 to identify α(r�T� t1) and h(y�T� t1) using final prices may be
especially useful here.
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attractive features. First, recall that in fixed τ auctions, if τ is fixed in the data at τ0, one
can identify δ(·) only at τ0. In a fixed T auction, even if T is fixed in the data at T0, one
can identify the impatience function δ(·) at more than one point, due to variation in t1.
Second, our identification arguments do not require data on eBay proxy bids. As noted
by Zeithammer and Adams (2010) among others, these bids may be hard to interpret on
eBay. We investigate many of these and other issues in our ongoing empirical work on
eBay’s Buy-it-Now auctions (Ackerberg, Hirano, and Shahriar (2006)).

5.2 GMAC buy price auctions

GMAC uses a type of BP auction to sell fleet cars (cars coming off lease) to auto dealers
around the United States. In these auctions, the seller (GMAC) sets a BP p and a reserve
price r. There are three distinct phases of the auction. In the first phase, only the option
to buy the car at p is available to bidders—they cannot place bids. After a fixed length of
time T̃ , the auction enters the second phase, in which bidders can either accept the BP
or reject the BP by placing a regular bid. If any bidder rejects the BP, the BP disappears
for all bidders and the auction enters the third phase, where bidders can only place bids
(using a proxy bidding system similar to eBay’s). The auction ends at a fixed point in
time T .

Thus, GMAC fleet auctions are similar to eBay auctions, except they have an intro-
ductory phase of fixed length, in which bidders cannot place regular bids and in which
the BP continues to be available unless it is accepted. The setup of a GMAC auction is
described by (p� r�T� T̃ ).

As with eBay auctions, bidders who plan to reject the BP do not have strict incentives
to do so immediately upon arrival. (Bidders who arrive at t1 < T̃ cannot immediately
reject the BP even if they want to.) We could use arguments similar to the eBay case to
ensure that bidders act immediately (when they can do so). However, we can avoid these
arguments by making use of the initial phase of the GMAC auction.

Consider a GMAC auction where p = r. For such auctions, all potential bidders have
strict incentives to act immediately. In any pure-strategy, symmetric BNE, all arriving
bidders with valuations greater than p = r immediately accept the BP, because waiting
risks the possibility that another bidder will accept the BP instead.27

Thus, if the distribution of P|R = r has positive probability P = r for r ∈ [r� r], we
can identify λ(t)(1 − FV (r)) on [r� r] for all t. This is because the hazard rate of the first
observed action, θ(t1|p� r�T� T̃ ), satisfies

θ(t1|p� r�T� T̃ ) = λ(t1)
(
1 − FV (r)

)
when p = r� (17)

To identify the cutoff function c(p� r�T� T̃ � t1), we need to also consider auctions
where p> r. When p ≥ r, the hazard rate of the first observed action satisfies

θ(t1|p� r�T� T̃ ) = λ(t1)
(
1 − FV

(
c(p� r�T� T̃ � t1)

))
for t1 < T̃ � (18)

27Note that an auction with p = r is analogous to a posted price sales mechanism. On eBay there are a
nontrivial number of auctions with p= r, but we do not know whether this also occurs in GMAC auctions.
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Note that (18) only holds when t1 < T̃ . At T̃ and after, first actions can also be taken by
bidders who arrived earlier and have been “waiting.” This complicates matters for t1 ≥ T̃ ,
because the hazard rate of first observed action then depends on equilibrium selection
issues (i.e., how long people wait). Fortunately, we will be able to identify parts of the
functions U(·) and δ(·) using only data when t1 < T̃ .

We now show that c(p� r�T� T̃ � t1) is identified over limited domains. When t1 < T̃ ,
the cutoff function c(p� r�T� T̃ � t1) can be shown to satisfy the implicit equation

θ
(
t1|c(p� r�T� T̃ � t1)� c(p� r�T� T̃ � t1)�T� T̃

) = θ(t1|p� r�T� T̃ )�
Intuitively, this says that the hazard rate in an auction at (t1�p� r�T� T̃ ) is equiva-
lent to the hazard rate in a hypothetical auction where the reserve price and buy
price are both set at c(p� r�T� T̃ � t1). The hazard on the left-hand side of the equa-
tion, that is, θ(t1|k�k�T� T̃ ), is strictly decreasing in k, and identified in the data be-
tween θ(t1|r� r�T� T̃ ) and θ(t1|r� r�T� T̃ ). The hazard on the right-hand side is identi-
fied over its entire support in the data. Hence, c(p� r�T� T̃ � t1) is identified as long as
θ(t1|r� r�T� T̃ ) < θ(t1|p� r�T� T̃ ) < θ(t1|r� r�T� T̃ ). Intuitively, we can identify the cutoff
function at all points where the cutoff is between r and r. Note that this implies that the
inverse cutoff function p(c� r�T� T̃ � t1) is identified on c ∈ [r� r]. Recall that these results
only hold when t1 < T̃ .

Next, we need to identify α(r�T� T̃ � t1) and h(y�T� T̃ � t1) in the integral equation

U
(
c −p(c� r�T� T̃ � t1)

)
= δ(T − t1)

(
α(r�T� T̃ � t1)U(c − r)+

∫ c

r
U(c − y)h(y�T� T̃ � t1)dy

)
�

(19)

The right-hand side measures the expected utility if the bidder does not accept the BP,
but the functions α(r�T� T̃ � t1) and h(y�T� T̃ � t1) are now more complicated. Bidders ar-
riving at t1 < T̃ know that there may be a set of bidders who arrived beforehand who may
participate in the bidding phase. Moreover, this set of prior arriving bidders has valua-
tion distributions truncated between r and the cutoff function (which depends on the
time28). However, given that λ(t)(1 − FV (r)) is already identified over all t and r ∈ [r� r],
and given that c(p� r�T� T̃ � t1) is already identified for all t < T̃ and on domain [r� r], one
can show that α(r�T� T̃ � t1) is identified on r ∈ [r� r] and that h(y�T� T̃ � t1) is identified on
y ∈ [r� r]. This allows one to identify δ(·) on [T�T − T̃ ) and U(·) on [0� r].

To summarize, we have shown that in the GMAC fleet auction mechanism, one can
identify the structural parameters, at least over certain domains. In contrast to the eBay
example, we did not have to perturb the model to incentivize BP rejectors to act imme-
diately. The introductory period in GMAC fleet auctions is useful because in this period,
we know that all BP rejectors must wait to place a bid. The problem is more severe on
eBay, because we cannot observe how many BP rejectors wait and how many act imme-
diately.

28Note that in this model, the equilibrium cutoff function should increase in t1 (i) because of strict dis-
counting and (ii) since in equilibrium, the later the BP is still available, the less competition one can antici-
pate in the bidding phase.
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6. Conclusion

A BP auction allows a bidder to avoid the risk of losing the auction and to obtain the
item sooner. As a result, the bidder’s behavior in a BP auction is affected by her risk and
time preferences. The existing theoretical literature on BP auctions has shown that when
bidders are known to be either impatient or risk averse, sellers can increase expected
revenue by using BP auctions. Our paper takes a different perspective, focusing on the
extent to which data from BP auctions allow a researcher (or seller) to identify bidders’
risk aversion and time preferences. Using general forms of bidders’ valuation distribu-
tions, risk aversion, and impatience, the paper develops an IPV model for an auction
with a temporary BP. We first characterize equilibria in the model and then study identi-
fication. Given sufficient variation in auction characteristics such as the reserve price,
the buy price, and the length of the bidding phase, we show that the four unknown
structural objects—the arrival rate, valuation distribution, utility function, and the time-
discounting function—are all nonparametrically identified.

The paper also provides extensions of the results to cases where the variation in auc-
tion characteristics is limited. We show how local identification of the structural objects
can still be obtained in these cases. Under some additional assumptions, we extend our
identification results to the specific setup of eBay’s Buy-it-Now auctions and GMAC’s BP
auctions for fleet cars. Our results provide some alternative options for researchers; for
example, we show that one can recover the structural parameters using the buy price
decision and/or final prices without requiring a model for proxy bidding in eBay style
auctions. The best combination of assumptions and estimation strategies will likely be
application-specific. In addition, while our identification arguments can be used “con-
structively” to nonparametrically estimate the auction features, other methods such as
maximum likelihood or moment-matching with a flexible parametric specification may
be useful when the sample size is limited. For example, Ackerberg, Hirano, and Shahriar
(2006) develop a partial likelihood estimator for eBay’s Buy-it-Now auctions that im-
poses some parametric restrictions while avoiding a detailed specification of proxy bid-
ding.

Our paper contributes to the literature on identification in auctions and on BP auc-
tions, and, more generally, to the literature on recovering risk and time preferences from
observed behavior when there is unobserved heterogeneity. Possible future extensions
could include endogenizing auction characteristics, allowing higher dimensional bidder
heterogeneity, and considering a dynamic environment with sequential or simultane-
ous auctions.

Appendix: Proofs of propositions

Proofs of some of the propositions that are not given here may be found in the Supple-
ment.

Proof of Proposition 1

We first establish some notation. We can view our model as a random-player game
Milchtaich (2004), with the random set of players described by a point process. For back-
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ground on point processes, see Kallenberg (1983), Fristedt and Gray (1996, Chapter 29),
and Kallenberg (2010, Chapter 12).

Let Γ = R+ × R+ be the set of possible bidder types. We interpret γ = (a� v) ∈ Γ to
mean that a player arrives at time a and has valuation v. In our model, valuations are
drawn independently from a probability distribution with CDF Fv and potential bid-
ders arrive according to arrival rate λ(t). We also use Fv and λ to denote the corre-
sponding measures, and define Π = λ × Fv. By our assumptions, this defines a Pois-
son point process with intensity Π. This process selects a random set of player types
{(a1� v1)� � � � � (ak� vk)}.

By Kallenberg (1983, Theorem 11.1), a bidder who knows her own type has a poste-
rior for her competitors that is also a Poisson point process with intensity Π. (See also
Milchtaich (2004).) Thus, from the point of view of any individual bidder who has ar-
rived, her competitors are generated by the same Poisson point process.

Next, we define bidder actions and strategies. At each time t and given the history of
the auction up to time t, a bidder can accept the buy price, reject the buy price and bid,
or wait, and can choose the amount of the bid. Let S be the set of action functions that
are feasible according to the rules of the auction. A strategy σ : Γ → S maps type into
state- and time-contingent actions. We restrict attention to symmetric, pure strategies,
so (in equilibrium) a single σ will represent the strategy profile of players and will gen-
erate a collection of action profiles Σ of all the bidders. Let PΠσ denote the distribution
of Σ induced by the distribution Π over player times and the symmetric strategy σ .

Bidder i cares about the profile Σ−i that describes the state-contingent action func-
tions of players other than i. We use the notation Σ−i(R) to denote the number of other
players who play strategies belonging to the set R⊂ S. By the conditioning properties of
the Poisson process mentioned above and the assumption that bidders’ valuations are
independent, the distribution of Σ−i is also given by PΠσ . Bidder i’s realized utility in the
auction game is given by

U
(
ai� vi�σ(ai� vi)�Σ

−i
)
�

where the specific form of the utility function could be derived from the rules of the
game as described in the main text.

Consider a candidate equilibrium of this game σ . We want to show by contradiction
that under our assumptions, σ must satisfy the three statements of the proposition. We
first show Statement 1, then Statement 3, and finally Statement 2.

Statement 1. Potential bidders with vi < r never take any action.

This is straightforward to show given that Assumption 2 rules out weakly dominated
strategies.

Statement 3. Potential bidders with vi > r who arrive during the bidding phase place a
sealed bid equal to vi at some point before the end of the auction.

This is also straightforward given that Assumption 2 rules out weakly dominated
strategies.
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Statement 2. Potential bidders with vi > r who arrive during the buy price phase im-
mediately either (a) accept the BP,’that is, purchase the good at p, or (b) reject the BP by
placing a sealed bid equal to vi.

The proof of this statement is a bit more involved. Note that it involves decisions
prior to the auction entering the bidding phase. Hence, we enforce the implications of
Statements 1 and 3 on behavior in the bidding phase. In particular, if the auction ever
enters the bidding phase, all bidders arriving before the end of the bidding phase with
v > r bid their valuations.

Consider a bidder arriving at time ai while the BP is still available. Define

S1 = {s ∈ S | s prescribes accepting/rejecting the BP prior to ai}�

Then, at time ai, this bidder’s expected utility is

E
[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0� ai� vi

]
=

∫
U

(
ai� vi�σ(ai� vi)�Σ

−i
)
dP

(
Σ−i | Σ−i(S1) = 0

)
�

where P(· | ·) is the conditional probability measure of Σ−i implied by PΠσ . This condi-
tions on Σ−i(S1) = 0, because bidder i knows that the BP is still available and, hence, the
realized profile Σ−i has no points in the set S1 of state-contingent action functions under
which the BP would have been accepted or rejected prior to ai. Other than this, we do
not need to fully specify anything about P(Σ−i | Σ−i(S1) = 0), except that the opponent
strategies must satisfy the implications of Statements 1 and 3 with probability 1.

Now suppose that σ prescribes that a bidder arriving while the BP is still available
at ai with valuation vi > r waits upon arrival at ai (i.e., they do not immediately reject or
accept the BP). We want to show that this contradicts σ being an equilibrium. We can
consider three possibilities for σ , depending on what it prescribes in the hypothetical
scenario where no other bidders take actions after time ai:

Case 1. If no other bidders were to take action after ai, there is some finite t∗R > ai such
that the bidder waits until t∗R and then rejects the BP at t∗R.

Case 2. If no other bidders were to take action after ai, the bidder waits indefinitely
(i.e., never accepting or rejecting the BP).

Case 3. If no other bidders were to take action after ai, there is some finite t∗A > ai such
that the bidder waits until t∗A and then accepts the BP at t∗A.

We consider these alternatives one by one, in each case contradicting σ being an
optimal strategy.

Case 1. Consider the alternative strategy σ∗(ai� vi) that is identical to σ(ai� vi) except
that it prescribes that a bidder with (ai� vi) immediately rejects the BP. For any realization
of Σ−i (satisfying Statements 1 and 3), it must be the case that

U
(
ai� vi�σ

∗(ai� vi)�Σ−i
) ≥U

(
ai� vi�σ(ai� vi)�Σ

−i
)
�
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This is because under σ∗(ai� vi) the auction enters the bidding phase with probability 1
at ai and, therefore, the bidder will compete in the bidding phase with only bidders who
arrive prior to ai + τ. Even if the auction ends up in the bidding phase under σ(ai� vi),
the bidder competes with a weakly larger set of bidders.

It is also the case that for any opponent strategies satisfying Statements 1 and 3, there
are realizations of Σ−i with positive probability given Σ−i(S1) = 0 such that

U
(
ai� vi�σ

∗(ai� vi)�Σ−i
)
>U

(
ai� vi�σ(ai� vi)�Σ

−i
)
�

To find such a set, consider realizations of Σ−i corresponding to cases where no other
bidders arrive through time ai + τ and one other bidder (with vi > vj > r) enters in the
time interval (ai+τ� t∗R+τ]. Under strategy σ∗(ai� vi), the bidder wins the item at r, while
under strategy σ(ai� vi), the bidder wins the item at vj .

Hence, as long as opponents strategies satisfy Statements 1 and 3, it must be the case
that

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1)= 0� ai� vi

]
>E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0� ai� vi

]
�

which contradicts any strategy involving waiting to reject the BP being an equilibrium.
Case 2. Consider the alternative strategy σ∗(ai� vi) that is identical to σ(ai� vi) ex-

cept that it prescribes that a bidder with (ai� vi) immediately rejects the BP (rather than
waiting indefinitely, as prescribed by σ(ai� vi)). For any opponent strategies (satisfying
Statements 1 and 3) and any realization of Σ−i, it must be the case that

U
(
ai� vi�σ

∗(ai� vi)�Σ−i
) ≥U

(
ai� vi�σ(ai� vi)�Σ

−i
)
�

by arguments identical to Case 1.
It is also the case that for any opponent strategies satisfying Statements 1 and 3, there

are realizations of Σ−i with positive probability given Σ−i(S1) = 0 such that

U
(
ai� vi�σ

∗(ai� vi)�Σ−i
)
>U

(
ai� vi�σ(ai� vi)�Σ

−i
)
�

To find such a set, consider realizations of Σ−i corresponding to cases where no other
bidders arrive through time ai + τ and one other bidder (with vj > vi > r) enters (and
takes an action) after time ai + τ. Under strategy σ∗(ai� vi), the bidder wins the item at r,
while under strategy σ(ai� vi), the bidder never wins the item.

Hence, as long as opponents’ strategies satisfy Statements 1 and 3, it must be the
case that

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1)= 0� ai� vi

]
>E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0� ai� vi

]
�

which contradicts any strategy involving waiting indefinitely being an equilibrium.
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Case 3. Now consider two alternative strategies: σ∗(ai� vi), where a realized bidder
with (ai� vi) immediately rejects the BP, and σ∗∗(ai� vi), where a realized bidder with
(ai� vi) immediately accepts the BP. We will show that either

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1)= 0

]
>E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0

]
or

E
[
U(ai� vi�σ

∗∗(ai� vi)�Σ−i | Σ−i(S1) = 0
]
>E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0

]
�

which contradicts σ being an equilibrium.
Define

S2 = {
s ∈ S | s prescribes accepting/rejecting the BP at or prior to t∗A

}
�

We can then write

E
[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1)= 0

]
= Pr

(
Σ−i(S2)= 0 | Σ−i(S1) = 0

)
×E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S2)= 0�Σ−i(S1) = 0

]
+ Pr

(
Σ−i(S2) > 0 | Σ−i(S1) = 0

)
×E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S2) > 0�Σ−i(S1) = 0

]
�

(20)

First, note that

E
[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S2) = 0�Σ−i(S1) = 0

]
= δ

(
t∗A − ai

)
U(vi −p)

<U(vi −p)

=E
[
U

(
ai� vi�σ

∗∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
�

(21)

The strict inequality follows from strict discounting. The last equality follows because
according to σ∗∗(ai� vi), the bidder immediately accepts the BP and obtains U(vi − p)

(this assumes that either (i) there is a tie-breaking rule that if more than one bidder ac-
cepts/rejects at exactly t, the action of the most recent arrival takes precedence, or (ii)
competitor strategies are such that another bidder accepting or rejecting the BP at ex-
actly ai is a zero probability event).

Next, note that

E
[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S2) > 0�Σ−i(S1)= 0

]
≤ E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S2) > 0�Σ−i(S1) = 0

]
≤ E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
�

(22)
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The first inequality follows because for any opponent strategies satisfying Statements 1
and 3, for any realization of Σ−i such that Σ−i(S2) > 0 and Σ−i(S1) = 0, it must be the
case that

U
(
ai� vi�σ(ai� vi)�Σ

−i
) ≤U

(
ai� vi�σ

∗(ai� vi)�Σ−i
)
�

This is because for any realization of Σ−i under which bidder i wins the auction using
strategy σ(ai� vi), the bidder would also win the auction (at a weakly lower price) under
σ∗(ai� vi) (since under σ∗(ai� vi), the auction enters the bidding phase immediately).
The second inequality of (22) follows from Lemma 10 below.

Combining (20), (21), and (22), we have

E
[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0

]
< Pr

(
Σ−i(S2) = 0 | Σ−i(S1)= 0

)
E

[
U

(
ai� vi�σ

∗∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
+ Pr

(
Σ−i(S2) > 0 | Σ−i(S1) = 0

)
E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1)= 0

]
�

Since Pr(Σ−i(S2) = 0 | Σ−i(S1) = 0)+Pr(Σ−i(S2) > 0 | Σ−i(S1) = 0) = 1, it must be the case
that either

E
[
U

(
ai� vi�σ

∗∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
>E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0

]
or

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
>E

[
U

(
ai� vi�σ(ai� vi)�Σ

−i
) | Σ−i(S1) = 0

]
�

Hence, σ cannot be an equilibrium.

Lemma 11. Under the conditions of Proposition 1,

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S2) > 0�Σ−i(S1)= 0

]
≤E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
�

Proof. It suffices to show that

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S2) = 0�Σ−i(S1)= 0

]
≥E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
�

Intuitively, the expected utility from immediately rejecting the BP is higher when we
condition on the realized Σ−i not having opponents who would have accepted or re-
jected the BP prior to t∗A. Divide the random point measure Σ−i into two components,
Σ−i
S2

and Σ−i
~S2

. Component Σ−i
S2

is the restriction of Σ−i to S2, and Σ−i
~S2

is the restriction of

Σ−i to the complement of S2. By the Poisson property, realizations of these point mea-
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sures are independent of each other, so

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S2) = 0�Σ−i(S1) = 0

]
= E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S2)= 0

]
=

∫
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
S2
�Σ−i

~S2

)
dP

(
Σ−i

~S2

)
dP

(
Σ−i
S2

| Σ−i
S2
(S2) = 0

)
=

∫
U

(
ai� vi�σ

∗(ai� vi)� {0}�Σ−i
~S2

)
dP

(
Σ−i

~S2

)
�

(23)

The first equality follows because S1 ⊆ S2. The second equality follows from the indepen-
dence of the two random point measures. The third equality follows because Σ−i

S2
(S2)= 0

implies that Σ−i
S2
(S) = 0 for any set S ⊆ S2. Therefore, conditioning on Σ−i

S2
(S2) = 0 makes

Σ−i
S2

nonrandom. (Our notation denotes this realization of Σ−i
S2

as {0}.) Similarly,

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
=

∫
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
S2
�Σ−i

~S2

)
dP

(
Σ−i

~S2

)
dP

(
Σ−i
S2

| Σ−i
S1
(S1) = 0

)
≤

∫
U

(
ai� vi�σ

∗(ai� vi)� {0}�Σ−i
~S2

)
dP

(
Σ−i

~S2

)
�

(24)

The last inequality follows because as long as opponents strategies satisfy Statements 1
and 3,

U
(
ai� vi�σ

∗(ai� vi)� {0}�Σ−i
~S2

) ≥U
(
ai� vi�σ

∗(ai� vi)�Σ−i
S2
�Σ−i

~S2

)
for any realization of Σ−i

S2
and Σ−i

~S2
(i.e., the bidder is weakly better off with weakly fewer

competitors in the auction). Combining (23) and (24), we get our desired result:

E
[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S2) = 0�Σ−i(S1) = 0

]
≥E

[
U

(
ai� vi�σ

∗(ai� vi)�Σ−i
) | Σ−i(S1) = 0

]
� �

Proof of Proposition 3

The certainty equivalent function is given by

M(v� r� τ� t)= U−1
(
δ(τ)

(
α(r� τ� t)U(v − r)+

∫ v

r
U(v − y)h(y� τ� t)dy

))
�

We want to show that given Assumptions 1, 2, and 3, there exists a cutoff function
c(p� r� τ� t) such that when v > r, the following statements hold:

(i) For v > c(p� r� τ� t), UA(v�p) >UR(v� r� τ� t).

(ii) For v < c(p� r� τ� t), UA(v�p) <UR(v� r� τ� t).

(iii) For v = c(p� r� τ� t), UA(v�p)=UR(v� r� τ� t).
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First, suppose that p = r. In this case,

UR(v� r� τ� t)= δ(τ)

(
α(p�τ� t)U(v−p)+

∫ v

p
U(v − y)h(y� τ� t)dy

)
< δ(τ)U(v −p)

<U(v −p)

= UA(v�p)

for all v > r. The strict inequalities follow from the conditions on FV , λ, U , and δ in
Assumption 1. Hence, in this case we can define the cutoff function c(p� r� τ� t) = r, since
all bidders with v > r strictly prefer accepting the BP to rejecting it (and those with v = r

are indifferent).
Now consider a buy price p> r and define c(p� r� τ� t) to be the c that solves

G(c�p� r� τ� t) := c −p−M(c� r� τ� t) = 0� (25)

We show that such a c exists and is unique and finite. First note that if c = r, G(c�p� r�

τ� t) = r −p< 0 (since M(r� r� τ� t)= 0 and p> r).
Next, Assumption 3 implies that

∂G(c�p� r� τ� t)

∂c
= 1 −Mv(c� r� τ� t) > ε > 0�

Hence, at c = r + p−r
ε , c − p − M(c� r� τ� t) > 0. Since M(c� r� τ� t) can be shown to be

continuous and strictly increasing in its first argument, there is a unique c ∈ (r� r + p−r
ε )

such that c − p − M(c� r� τ� t) = 0. By the global implicit function theorem (e.g., Ge and
Wang (2002, Lemma 1)), the function c(p� r� τ� t) exists.

Since G(c�p� r� τ� t) is strictly increasing in c, it must be the case that for v >

c(p� r� τ� t),

v −p−M(v� r� τ� t) > 0�

v −p>M(v� r� τ� t)�

U(v −p) > δ(τ)

(
α(r� τ� t)U(v − r)+

∫ v

r
U(v − y)h(y� τ� t)dy

)
�

so potential bidders with v > c(p� r� τ� t) will optimally accept the BP. Similarly, when
v < c(p� r� τ� t),

v −p−M(v� r� τ� t) < 0�

v −p<M(v� r� τ� t)�

U(v −p) < δ(τ)

(
α(r� τ� t)U(v − r)+

∫ v

r
U(v − y)h(y� τ� t)dy

)
�
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so the potential bidder will optimally reject the BP. Potential bidders with v = c(p� r� τ� t)

are indifferent between accepting and rejecting the BP. Hence, under our assumptions,
the BP decision follows a cutoff strategy.

Since c(p� r� τ� t)−M(c(p� r� τ� t)� r� τ� t) = p for p> r, we also have

c(p� r� τ� t)−p = M
(
c(p� r� τ� t)� r� τ� t

)
�

U
(
c(p� r� τ� t)−p

) = U
(
M

(
c(p� r� τ� t)� r� τ� t

))
�

U
(
c(p� r� τ� t)−p

) = δ(τ)

(
α(r� τ� t)U

(
c(p� r� τ� t)− r

)
+

∫ c(p�r�τ�t)

r
U

(
c(p� r� τ� t)− y

)
h(y�τ� t)dy

)
�

Note that this equation is also satisfied when p = r (and thus c(p� r� τ� t) = r = p), since
both sides of the equation equal 0.

To derive the properties of the derivatives of the cutoff function c(p� r� τ� t), recall
that the cutoff satisfies equation (25). Under our assumptions, G(c�p� r� τ� t) is con-
tinuously differentiable in all its arguments and, as previously shown, ∂G(c�p�r�τ�t)

∂c =
1 −Mv(c� r� τ� t) > ε > 0. Hence, by the implicit function theorem,

cp(p� r� τ� t) = −
∂G(c�p� r� τ� t)

∂p

∂G(c�p� r� τ� t)

∂c

= − −1
1 −Mv(c� r� τ� t)

> 0�

cr(p� r� τ� t) = −
∂G(c�p� r� τ� t)

∂r
∂G(c�p� r� τ� t)

∂c

= − −Mr(c� r� τ� t)

1 −Mv(c� r� τ� t)
< 0�

cτ(p� r� τ� t) = −
∂G(c�p� r� τ� t)

∂τ
∂G(c�p� r� τ� t)

∂c

= − −Mτ(c� r� τ� t)

1 −Mv(c� r� τ� t)
≤ 0�

Note that Mr(c� r� τ� t) < 0, since increasing the reserve price strictly decreases the cer-
tainty equivalent of participating in the auction. Similarly, Mτ(c� r� τ� t) ≤ 0, because in-
creasing the length of the bidding phase τ increases the level of competition in the
auction, hence decreasing the certainty equivalent. (The inequality is weak because
Mτ(c� r� τ� t) = 0 when c = r.) Since p ≥ r, the derivatives w.r.t. p and r should be in-
terpreted as one-sided derivatives when p = r. Last, c(p� r� τ� t) = r when p = r by our
construction of c(p� r� τ� t). (When p = r, all bidders with v > r prefer to accept the BP.)
Moreover c(p� r� τ� t) > p when p> r, since we have just shown that cp(p� r� τ� t) > 0.

Proof of Proposition 5

We have the differential equation

U ′′(c − r) = 
r(c� r� τ� t1)+ h(r� τ� t1)


(c� r� τ� t1)
U ′(c − r)� (26)
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where


(c� r� τ� t1) = α(r� τ� t1)

[(
1 −pc(c� r� τ� t1)

)
pr(c� r� τ� t1)

− 1
]
�

We wish to prove that this differential equation has a unique solution U(·) under our
assumptions, which include the following:

(i) The function U(·) is twice continuously differentiable.

(ii) We have U ′(·) > ε for some ε > 0.

(iii) We have 0 ≥U ′′(·) >−C for some 0 <C < ∞.

(iv) We have U(0) = 0, U ′(0) = 1.

We can show that (13) has a unique solution even when r, τ, and t1 are fixed. Hence,
we assume r = 0, τ = τ∗, and t1 = t∗1 . This results in a simple first-order linear ordinary
differential equation (ODE) with a variable coefficient,

U ′′(c) = Ψ(c)U ′(c)� (27)

where

Ψ(c)= 
r
(
c�0� τ∗� t∗1

) + h
(
0� τ∗� t∗1

)



(
c�0� τ∗� t∗1

)
has already been shown to be identified.

Since (27) implies that Ψ(c) = U ′′(c)
U ′(c) , our assumed properties of U imply that the

coefficient Ψ(c) is integrable. It is well known that when Ψ(c) is integrable, (27) has
solutions in C2 given by ∣∣U ′(c)

∣∣ = kexp
(∫ c

0
Ψ(c)dz

)
� (28)

where k is a constant that can be determined by the initial condition on U ′(·). Since
U ′(·) > 0 and we have the initial condition U ′(0) = 1, it follows that the solution to (27)
is unique and given by

U ′(c) = exp
(∫ c

0
Ψ(c)dz

)
� (29)

Since U ′(c) is identified, the initial condition U(0) = 0 identifies U(·).

Proof of Proposition 10

The term λ(t1)(1 − FV (r)) is identified over r ∈ [r� r] and t1 ∈ [0�T ) by the same argu-
ments as in the previous two proofs.

Since W is observed and Z is observed (given W = 1), we can identify

Pr(W = 1|p� r� τ0� t1�B = 0)�

Pr(W = 1|z�p� r� τ0� t1�B = 0)�
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and

pZ(z|W = 1�p� r� τ0� t1�B = 0)

over r ∈ [r� r] and p ∈ [p0 − ε�p0 + ε]. The first two terms are the probability that the BP
rejector wins the auction, with different conditions. The third term is the distribution of
the final price given that the BP rejector wins the auction. (In general the conditional
distribution of Z will have point mass at r, so we interpret conditional densities as being
with respect to the sum of Lebesgue measure and counting measure at r.)

By Bayes’ theorem, we can write

pZ(z|W = 1�p� r� τ0� t1�B = 0) = py(z|p� r� τ0� t1�B = 0)Pr(W = 1|z�p� r� τ0� t1�B = 0)
Pr(W = 1|p� r� τ0� t1�B = 0)

�

where py indicates the conditional density of Ỹ . We can use this equation to recover
py(z|p� r� τ0� t1�B = 0). This identifies α(r� τ0� t1) and h(y� τ0� t1), since

α(r� τ0� t1)= Pr(Ỹ = r|p� r� τ0� t1�B = 0)

and

h(y� τ0� t1) = py(y|p� r� τ0� t1�B = 0) for r < y < c(p� r� τ0� t1)�

Since α(r� τ0� t1) and h(y� τ0� t1) are identified, by the same arguments as in the
previous proof, the Arrow–Pratt measure of risk aversion U ′′

U ′ is identified at the point
c(p0� r

∗� τ0� t
∗
1 ) − r∗. By the same arguments as in the previous proof, δ(·) is also identi-

fied at τ0.
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