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Unbiased instrumental variables estimation
under known first-stage sign

IsATIAH ANDREWS
Department of Economics, MIT

TIMOTHY B. ARMSTRONG
Department of Economics, Yale University

We derive mean-unbiased estimators for the structural parameter in instrumen-
tal variables models with a single endogenous regressor where the sign of one or
more first-stage coefficients is known. In the case with a single instrument, there
is a unique nonrandomized unbiased estimator based on the reduced-form and
first-stage regression estimates. For cases with multiple instruments we propose
a class of unbiased estimators and show that an estimator within this class is ef-
ficient when the instruments are strong. We show numerically that unbiasedness
does not come at a cost of increased dispersion in models with a single instru-
ment: in this case the unbiased estimator is less dispersed than the two-stage least
squares estimator. Our finite-sample results apply to normal models with known
variance for the reduced-form errors, and imply analogous results under weak-
instrument asymptotics with an unknown error distribution.
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1. INTRODUCTION

Researchers often have strong prior beliefs about the sign of the first-stage coefficient
in instrumental variables (IV) models, to the point where the sign can reasonably be
treated as known. This paper shows that knowledge of the sign of the first-stage coeffi-
cient allows us to construct an estimator for the coefficient on the endogenous regressor
that is unbiased in finite samples when the reduced-form errors are normal with known
variance. When the distribution of the reduced-form errors is unknown, our results lead
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to estimators that are asymptotically unbiased under weak-IV sequences as defined in
Staiger and Stock (1997).

As is well known, the conventional two-stage least squares (2SLS) estimator may be
severely biased in overidentified models with weak instruments. Indeed the most com-
mon pretest for weak instruments—the Staiger and Stock (1997) rule of thumb, which
declares the instruments weak when the first-stage F-statistic is less than 10—is shown
in Stock and Yogo (2005) to correspond to a test for the worst-case bias in 2SLS rela-
tive to ordinary least squares (OLS). While the 2SLS estimator performs better in the
just-identified case according to some measures of central tendency, in this case it has
no first moment.! A number of papers have proposed alternative estimators to reduce
particular measures of bias, for example, Angrist and Krueger (1995), Imbens, Angrist,
and Krueger (1999), Donald and Newey (2001), Ackerberg and Devereux (2009), and
Harding, Hausman, and Palmer (2015), but none of the resulting feasible estimators is
unbiased either in finite samples or under weak instrument asymptotics. Indeed, Hirano
and Porter (2015) show that mean, median, and quantile unbiased estimation are all im-
possible in the linear IV model with an unrestricted parameter space for the first stage.

We show that by exploiting information about the sign of the first stage we can cir-
cumvent this impossibility result and construct an unbiased estimator. Moreover, the
resulting estimators have a number of properties that make them appealing for appli-
cations. In models with a single instrumental variable, which include many empirical
applications, we show that there is a unique unbiased estimator based on the reduced-
form and first-stage regression estimates. Moreover, we show that this estimator is sub-
stantially less dispersed than the usual 2SLS estimator in finite samples. Under stan-
dard (“strong-instrument”) asymptotics, the unbiased estimator has the same asymp-
totic distribution as 2SLS, and so is asymptotically efficient in the usual sense. In overi-
dentified models many unbiased estimators exist, and we propose unbiased estimators
that are asymptotically efficient when the instruments are strong. Further, we show that
in overidentified models we can construct unbiased estimators that are robust to small
violations of the first-stage sign restriction. We also derive a lower bound on the risk
of unbiased estimators in finite samples, and show that this bound is attained in some
models.

In contrast to much of the recent weak-instruments literature, the focus of this pa-
per is on estimation rather than hypothesis testing or confidence set construction. Our
approach is closely related to the classical theory of optimal point estimation (see, e.g.,
Lehmann and Casella (1998)) in that we seek estimators that perform well according to
conventional estimation criteria (e.g., risk with respect to a convex loss function) within
the class of unbiased estimators. As we note in Section 2.4 below, it is straightforward
to use results from the weak-instruments literature to construct identification-robust
tests and confidence sets based on our estimators. As we also note in that section, how-
ever, optimal estimation and testing are distinct problems in models with weak instru-
ments, and it is not in general the case that optimal estimators correspond to optimal

11f we instead consider median bias, 2SLS exhibits median bias when the instruments are weak, though
this bias decreases rapidly with the strength of the instruments.
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confidence sets or vice versa. Given the important role played by both estimation and
confidence set construction in empirical practice, our results therefore complement the
literature on identification-robust testing.

The rest of this section discusses the assumption of known first-stage sign, intro-
duces the setting and notation, and briefly reviews the related literature. Section 2 intro-
duces the unbiased estimator for models with a single excluded instrument. Section 3
treats models with multiple instruments and introduces unbiased estimators that are ro-
bust to small violations of the first-stage sign restriction. Section 4 presents simulation
results on the performance of our unbiased estimators. Section 5 discusses illustrative
applications using data from Hornung (2014) and Angrist and Krueger (1991). Proofs
and auxiliary results are given in a separate appendix.?

1.1 Knowledge of the first-stage sign

The results in this paper rely on knowledge of the first-stage sign. This is reasonable in
many economic contexts. In their study of schooling and earnings, for instance, Angrist
and Krueger (1991) note that compulsory schooling laws in the United States allow those
born earlier in the year to drop out after completing fewer years of school than those
born later in the year. Arguing that quarter of birth can reasonably be excluded from
a wage equation, they use this fact to motivate quarter of birth as an instrument for
schooling. In this context, a sign restriction on the first stage amounts to an assumption
that the mechanism claimed by Angrist and Krueger (1991) works in the expected di-
rection: those born earlier in the year tend to drop out earlier. More generally, empirical
researchers often have some mechanism in mind for why a model is identified at all (i.e.,
why the first-stage coefficient is nonzero) that leads to a known sign for the direction of
this mechanism (i.e., the sign of the first-stage coefficient).

In settings with heterogeneous treatment effects, a first-stage monotonicity assump-
tion is often used to interpret instrumental variables estimates (see Imbens and Angrist
(1994), Heckman, Urzua, and Vytlacil (2006)). In the language of Imbens and Angrist
(1994), the monotonicity assumption requires that either the entire population affected
by the treatment be composed of “compliers” or that the entire population affected by
the treatment be composed of “defiers.” Once this assumption is made, our assumption
that the sign of the first-stage coefficient is known amounts to assuming the researcher
knows which of these possibilities (compliers or defiers) holds. Indeed, in the examples
where they argue that monotonicity is plausible (involving draft lottery numbers in one
case and intention to treat in another), Imbens and Angrist (1994) argue that all individ-
uals affected by the treatment are compliers for a certain definition of the instrument.

It is important to note, however, that knowledge of the first-stage sign is not always a
reasonable assumption, and thus that the results of this paper are not always applicable.
In settings where the instrumental variables are indicators for groups without a natural
ordering, for instance, one typically does not have prior information about signs of the
first-stage coefficients. To give one example, Aizer and Doyle (2015) use the fact that

2The Appendix is available in a supplementary file on the journal website, http://geconomics.org/supp/
700/supplement.pdf and http://qeconomics.org/supp/700/code_and_data.zip.
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judges are randomly assigned to study the effects of prison sentences on recidivism.
In this setting, knowledge of the first-stage sign would require knowing a priori which
judges are more strict.

1.2 Setting

For the remainder of the paper, we suppose that we observe a sample of 7' observations
(Ys, X, Z)), t =1,...,T, where Y, is an outcome variable, X, is a scalar endogenous
regressor, and Z; is a k x 1 vector of instruments. Let Y and X be T x 1 vectors with row
t equal to Y; and X;, respectively, and let Z be a T' x k matrix with row ¢ equal to Z;. The
usual linear IV model, written in reduced form, is

Y=ZmB+U,

(1)
X=Zm+V.

To derive finite-sample results, we treat the instruments Z as fixed and assume that the
errors (U, V') are jointly normal with mean zero and known variance-covariance matrix
Var((U’, V")).3 As is standard (see, for example, Andrews, Moreira, and Stock (2006)), in
contexts with additional exogenous regressors W (for example an intercept), we define
Y, X, and Z as the residuals after projecting out these exogenous regressors. If we denote
the reduced-form and first-stage regression coefficients by ¢; and &, respectively, we

can see that
& (zz)'z'y B\ (31 i
= ~N , 2
()= (020 ((2)- G 32) ®

(2 2\ r =1 o NINET

for

We assume throughout that 3 is positive definite. Following the literature (e.g., Moreira
and Moreira (2013)), we consider estimation based solely on (£1, &), which are sufficient
for (7, B) in the special case where the errors (U;, V;) are independent and identically
distributed (i.i.d.) over ¢. All uniqueness and efficiency statements therefore restrict at-
tention to the class of procedures that depend only on these statistics. The conventional
generalized method of moments (GMM) estimators belong to this class, so this restric-
tion still allows efficient estimation under strong instruments. We assume that the sign

3Following the weak-instruments literature we focus on models with homogeneous 3, which rules out
heterogeneous treatment effect models with multiple instruments. In models with treatment effect het-
erogeneity and a single instrument, however, our results immediately imply an unbiased estimator of the
local average treatment effect. In models with multiple instruments, on the other hand, one can use our
results to construct unbiased estimators for linear combinations of the local average treatment effects on
different instruments. (Since the endogenous variable X is typically a binary treatment in such models,
this discussion applies primarily to asymptotic unbiasedness as considered in Appendix B rather than the
finite-sample model where X and Y are jointly normal.)
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of each component ; of 7 is known, and in particular assume that the parameter space
for (w7, B) is

O ={(m B): mell C(0,00)%, B c B} 4)

for some sets II and B. Note that once we take the sign of ; to be known, assuming
7r; > 0 is without loss of generality since this can always be ensured by redefining Z.

In this paper we focus on models with fixed instruments, normal errors, and known
error covariance, which allows us to obtain finite-sample results. As usual, these finite-
sample results will imply asymptotic results under mild regularity conditions. Even in
models with random instruments, nonnormal errors, serial correlation, heteroskedas-
ticity, clustering, or any combination of these, the reduced-form and first-stage estima-
tors will be jointly asymptotically normal with consistently estimable covariance matrix
3 under mild regularity conditions. Consequently, the finite-sample results we develop
here will imply asymptotic results under both weak- and strong-instrument asymp-
totics, where we simply define (&1, &) as above and replace 3 by an estimator for the
variance of ¢ to obtain feasible statistics. Appendix B provides the details of these re-
sults.? In the main text, we focus on what we view as the most novel component of the
paper: finite-sample mean-unbiased estimation of 8 in the normal problem (2).

1.3 Related literature

Our unbiased IV estimators build on results for unbiased estimation of the inverse of a
normal mean discussed in Voinov and Nikulin (1993). More broadly, the literature has
considered unbiased estimators in numerous other contexts, and we refer the reader to
Voinov and Nikulin (1993) for details and references. Recent work by Mueller and Wang
(2015) develops a numerical approach for approximating optimal nearly unbiased esti-
mators in a variety of nonstandard settings, though they do not consider the linear IV
model. To our knowledge the only other paper to treat finite-sample mean-unbiased es-
timation in IV models is Hirano and Porter (2015), who find that unbiased estimators do
not exist when the parameter space is unrestricted. In our setting, the sign restriction
on the first-stage coefficient leads to a parameter space that violates the assumptions of
Hirano and Porter (2015), so that the negative results in that paper do not apply.® The
nonexistence of unbiased estimators has been noted in other nonstandard econometric
contexts by Hirano and Porter (2012).

The broader literature on the finite-sample properties of IV estimators is huge: see
Phillips (1983) and Hillier (2006) for references. While this literature does not study un-
biased estimation in finite samples, there has been substantial research on higher order

4The feasible analogs of the finite-sample unbiased estimators discussed here are asymptotically unbi-
ased in general models in the sense of converging in distribution to random variables with mean S. Note
that this does not imply convergence of the mean of the feasible estimators to B, since convergence in
distribution does not suffice for convergence of moments. Our estimator is thus asymptotically unbiased
under weak and strong instruments in the same sense that limited information maximum likelihood (LIML)
and just-identified 2SLS, which do not in general have finite-sample moments, are asymptotically unbiased
under strong instruments.

SIn particular, the sign restriction violates Assumption 2.4 of Hirano and Porter (2015), and so renders
the negative result in Theorem 2.5 of that paper inapplicable. See Appendix C for details.
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asymptotic bias properties: see the references given in the first section of the Introduc-
tion, as well as Hahn, Hausman, and Kuersteiner (2004) and the references therein.

Our interest in finite-sample results for a normal model with known reduced-form
variance is motivated by the weak-IV literature, where this model arises asymptotically
under weak-IV sequences as in Staiger and Stock (1997) (see also Appendix B). In con-
trast to Staiger and Stock (1997), however, our results allow for heteroskedastic, clus-
tered, or serially correlated errors as in Kleibergen (2007). The primary focus of recent
work on weak instruments has, however, been on inference rather than estimation. See
Andrews (2016) for additional references.

Sign restrictions have been used in other settings in the econometrics literature, al-
though the focus is often on inference or on using sign restrictions to improve popula-
tion bounds, rather than estimation. Recent examples include Moon, Schorfheide, and
Granziera (2013) and several papers cited therein, which use sign restrictions to partially
identify vector autoregression models. Inference for sign restricted parameters has been
treated by Andrews (2001) and Gouriéroux, Holly, and Monfort (1982), among others.

2. UNBIASED ESTIMATION WITH A SINGLE INSTRUMENT

To introduce our unbiased estimators, we first focus on the just-identified model with a

single instrument, k = 1. We show that unbiased estimation of 8 in this context is linked

to unbiased estimation of the inverse of a normal mean. Using this fact we construct an

unbiased estimator for 8, show that it is unique, and discuss some of its finite-sample

properties. We note the key role played by the first-stage sign restriction, and show that

our estimator is equivalent to 2SLS (and thus efficient) when the instruments are strong.
In the just-identified context ¢; and ¢&; are scalars and we write

s_ 2 3\ _ of  on
31 3p o o3 ]’

The problem of estimating g8 therefore reduces to that of estimating

_ 7B _ Elé]

= . 5
T E[&] ©)

The conventional IV estimate ﬁzsLs = % is the natural sample analog of (5). As is well
known, however, this estimator has no integer moments. This lack of unbiasedness re-
flects the fact that the expectation of the ratio of two random variables is not in general
equal to the ratio of their expectations.

The form of (5) nonetheless suggests an approach to deriving an unbiased estimator.
Suppose we can construct an estimator 7 that (a) is unbiased for 1/7 and (b) depends
on the data only through &,. If we then define

5(¢.3) = (51 - "—12252), (6)
p)
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we have that E[8] = 7 227, and S is independent of 7.6 Thus, E[+8] = E[#]E[8] =

B— m ,and 76 + 712 will be an unbiased estimator of 8. Thus, the problem of unbiased

estlmatlon of B reduces to that of unbiased estimation of the inverse of a normal mean.

2.1 Unbiased estimation of the inverse of a normal mean

A result from Voinov and Nikulin (1993) shows that unbiased estimation of 1/ is possi-
ble if we assume its sign is known. Let ® and ¢ denote the standard normal cumulative
distribution function (c.d.f.) and probability density function (p.d.f.), respectively.

LEMMmA 2.1. Define
11-® o
f'(fz, 2) (‘52/ 2).

0'2 = —
oy P(&/07)

Forallm >0, Ex[#(&, 02)] = 1.

The derivation of 7(&;, 0-22) in Voinov and Nikulin (1993) relies on the theory of bilat-
eral Laplace transforms, and offers little by way of intuition. Verifying unbiasedness is a
straightforward calculus exercise; for the interested reader, we work through the neces-
sary derivations in the proof of Lemma 2.1.

From the formula for 7, we can see that this estimator has two properties that are ar-
guably desirable for a restricted estimate of 1/. First, it is positive by definition, thereby
incorporating the restriction that 7 > 0. Second, in the case where positivity of 7 is ob-
vious from the data (&, is very large relative to its standard deviation), it is close to the
natural plug-in estimator 1/£,. The second property is an immediate consequence of a
well known approximation to the tail of the normal c.d.f., which is used extensively in
the literature on extreme value limit theorems for normal sequences and processes (see
Equation 1.5.4 in Leadbetter, Lindgren, and Rootzen (1983), and the remainder of that
book for applications). We discuss this further in Section 2.5.

2.2 Unbiased estimation of 3

Given an unbiased estimator of 1/7 that depends only on §,, we can construct an unbi-
ased estimator of B as suggested above. Moreover, this estimator is unique.

THEOREM 2.1. Define

Bu(&,3) = (&, 02)8(,3) + %
2
= iM(g ﬂg ) 012
7w d&E/e) U g2
The estimator By (¢, 3) is unbiased for B provided m > 0.

6Note that the orthogonalization used to construct & is similar to that used by Kleibergen (2002), Moreira
(2003), and the subsequent weak-1V literature to construct identification-robust tests.
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Moreover, if the parameter space (4) contains an open set, then By (£, 3) is the unique
nonrandomized unbiased estimator for B, in the sense that any other estimator B(&, )
satisfying

Erp[B(&3)]=B Vmell,BeB
also satisfies

B(&,3) =By, ) as.VNmell, BeB.

Note that the conventional IV estimator can be written as

A &1 12 I12
Bsis=—=7\é——F&)+—
&L & o3 o5

Thus, By differs from the conventional IV estimator only in that it replaces the plug-in
estimate 1/¢&, for 1/ by the unbiased estimate 7. From results in, for example, Baricz
(2008), we have that 7 < 1/¢; for &, > 0, so when ¢&; is positive, éU shrinks the conven-
tional IV estimator toward o,/ 022.7 By contrast, when & < 0, By lies on the opposite
side of o1,/ 0-22 from the conventional IV estimator. Interestingly, one can show that the
unbiased estimator is uniformly more likely to correctly sign 8 — 2—1222 than is the conven-

tional estimator, in the sense that for ¢(x) = 1{x > 0},

A J12 ag12 ~ o112 012
Pr”’ﬁ{“’@l] - _2) = ‘P<B B _2)} z Prw,B{¢(BZSLS - —2) = @(B - —2> }
) %) g, o)
with strict inequality at some points.?

2.3 Risk and moments of the unbiased estimator

The uniqueness of By among nonrandomized estimators implies that 8y minimizes the
risk E, ,;E(B(f, 3) — B) uniformly over 7, 8 and over the class of unbiased estimators
B for any loss function ¢ such that randomization cannot reduce risk. In particular, by
Jensen'’s inequality By is uniformly minimum risk for any convex loss function ¢. This in-
cludes absolute value loss as well as squared error loss or L? loss for any p > 1. However,
elementary calculations show that |3y has an infinite pth moment for p > 1. Thus the
fact that By has uniformly minimal risk implies that any unbiased estimator must have
an infinite pth moment for any p > 1. In particular, while By is the uniform minimum
mean absolute deviation unbiased estimator of 3, it is minimum variance unbiased only
in the sense that all unbiased estimators have infinite variance. We record this result in
the following theorem.

THEOREM 2.2. For & > 0, the expectation of | By (¢, 3)|'* is infinite for all m, B. Moreover,
if the parameter space (4) contains an open set, then any unbiased estimator of B has an
infinite 1 4+ £ moment.

7“Under weak-instrument asymptotics as in Staiger and Stock (1997) and homoskedastic errors, o,/ 022 is
the probability limit of the OLS estimator, though this does not in general hold under weaker assumptions
on the error structure.

8This property is far from unique to the unbiased estimator, however.
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2.4 Relation to tests and confidence sets

As we show in the next subsection, By is asymptotically equivalent to 2SLS when the
instruments are strong and so can be used together with conventional standard errors
in that case. Even when the instruments are weak the conditioning approach of Moreira
(2003) yields valid conditional critical values for arbitrary test statistics and so can be
used to construct conditional z-tests based on By that control size. We note, however,
that optimal estimation and optimal testing are distinct questions in the context of weak
IV (e.g., while By is uniformly minimum risk unbiased for convex loss, it follows from
the results of Moreira (2009) that the Anderson-Rubin test, rather than a conditional ¢-
test based on By, is the uniformly most powerful unbiased two-sided test in the present
just-identified context).? Since our focus in this paper is on estimation we do not fur-
ther pursue the question of optimal testing in this paper. However, properties of tests
based on unbiased estimators, particularly in contexts where the Anderson-Rubin test
is not uniformly most powerful unbiased (such as one-sided testing and testing in the
overidentified model of Section 3), is an interesting topic for future work.10

2.5 Behavior of By when 7 is large

While the finite-sample unbiasedness of By is appealing, it is also natural to consider
performance when the instruments are highly informative. This situation, which we
will model by taking = to be large, corresponds to the conventional strong-instrument
asymptotics where one fixes the data generating process and takes the sample size to
infinity.!!

As we discussed above, the unbiased and conventional IV estimators differ only in
that the former substitutes 7(&;, 022) for 1/&,. These two estimators for 1/7 coincide with
a high order of approximation for large values of ;. Specifically, as noted in Small (2010)
(Section 2.3.4), for £, > 0 we have

0|7 (&2, 03) — 5 < =
2

3
1‘2

Thus, since &; 2 s as 7 — oo, the difference between 7(&;, 022) and 1/¢; converges
rapidly to zero (in probability) as 7 grows. Consequently, the unbiased estimator By
(appropriately normalized) has the same limiting distribution as the conventional IV
estimator [§25L5 as we take 7 — oo.

9Moreira (2009) establishes this result in the model without a sign restriction, and it is straightforward to
show that the result continues to hold in the sign-restricted model.

10Absent such results, we suggest reporting the Anderson-Rubin confidence set to accompany the un-
biased point estimate. As discussed in Appendix E3, the 95% Anderson-Rubin confidence set contains By
with probability exceeding 97%, and with probability near 100% except when 7 is extremely small.

HFormally, in the finite-sample normal IV model (1), strong-instrument asymptotics will correspond to
fixing 7 and taking 7' — oo, which under mild conditions on Z and Var((U’, V’)) will result in 3 — 0 in (2).
However, it is straightforward to show that the behavior of Bu, Basis, and many other estimators in this case
will be the same as the behavior obtained by holding ¥ fixed and taking = to infinity. We focus on the latter
case here to simplify the exposition. See Appendix B, which provides asymptotic results with an unknown
error distribution, for asymptotic results under 7' — co.
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THEOREM 2.3. As m — oo, holding B and 3 fixed,
5 5 P
m(Bu — Basts) = 0.
Consequently, By £ B and
A d
w(Bu — B) > N(0, 0f = 2Bo12 + B2073).

Thus, the unbiased estimator [§U behaves as the standard IV estimator for large
values of 7. Consequently, one can show that using this estimator along with conven-
tional standard errors will yield asymptotically valid inference under strong-instrument
asymptotics. See Appendix B for details.

3. UNBIASED ESTIMATION WITH MULTIPLE INSTRUMENTS

We now consider the case with multiple instruments, where the model is given by (1)
and (2) with k (the dimension of Z;, 7, &1, and &;) greater than 1. As in Section 1.2,
we assume that the sign of each element 7; of the first-stage vector is known, and we
normalize this sign to be positive, giving the parameter space (4).

Using the results in Section 2 one can construct an unbiased estimator for 8 in many
different ways. For any index i € {1, ..., k}, the unbiased estimator based on (&;;, £2,;)
will, of course, still be unbiased for 8 when & > 1. One can also take nonrandom
weighted averages of the unbiased estimators based on different instruments. Using the
unbiased estimator based on a fixed linear combination of instruments is another pos-
sibility, as long as the linear combination preserves the sign restriction. However, such
approaches will not adapt to information from the data about the relative strength of
instruments and so will typically be inefficient when the instruments are strong.

By contrast, the usual 2SLS estimator achieves asymptotic efficiency in the strongly
identified case (modeled here by taking || 7| — oco) when errors are homoskedastic. In
fact, in this case 2SLS is asymptotically equivalent to an infeasible estimator that uses
knowledge of 7 to choose the optimal combination of instruments. Thus, a reasonable
goal is to construct an estimator that (i) is unbiased for fixed 7 and (ii) is asymptotically
equivalent to 2SLS as |7| — oc0.!? In the remainder of this section we first introduce
a class of unbiased estimators and then show that a (feasible) estimator in this class
attains the desired strong-1V efficiency property. Further, we show that in the overiden-
tified case it is possible to construct unbiased estimators that are robust to small viola-
tions of the first-stage sign restriction. Finally, we derive bounds on the attainable risk
of any estimator for finite ||77| and show that, while the unbiased estimators described
above achieve optimality in an asymptotic sense as || 7| — oo regardless of the direction
of 7, the optimal unbiased estimator for finite 7 will depend on the direction of .

12In the heteroskedastic case, the 2SLS estimator will no longer be asymptotically efficient, and a two-
step GMM estimator can be used to achieve the efficiency bound. Because it leads to simpler exposition,
and because the 2SLS estimator is common in practice, we consider asymptotic equivalence with 2SLS,
rather than asymptotic efficiency in the heteroskedastic case, as our goal. As discussed in Appendix A.2,
however, our approach generalizes directly to efficient estimators in non-homoskedastic settings.
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3.1 A class of unbiased estimators

. 1, . i 2,
D and 3(i) = ’ ’
0 (fz,z) @ (221,1'1‘ 20,
be the reduced-form and first-stage coefficients on the ith instrument and their variance

matrix, respectively, so that BU(f(i), 3(i)) is the unbiased estimator based on the ith
instrument. Given a weight vector w € R¥ with Zle w; =1, let

Let

k
Bu(&, Zw) =Y wiBu (&), 337)).

i=1

Clearly, B, is unbiased as long as w is nonrandom. Allowing w to depend on the data
&, however, may introduce bias through the dependence between the weights and the
estimators By (£(i), 3(i)).

To avoid this bias we first consider a randomized unbiased estimator and then take
its conditional expectation given the sufficient statistic ¢ to eliminate the randomiza-
tion. Let £ ~ N (0, 3) be independent of £, and let £® = £ + ¢ and ¢ = £ — {. Then ¢@
and £® are (unconditionally) independent draws with the same marginal distribution
as &, save that 3 is replaced by 23. If T is even, Z'Z is the same across the first and sec-
ond halves of the sample, and the errors are i.i.d., then ¢@ and ¢ have the same joint
distribution as the reduced-form estimators based on the first and second halves of the
sample. Thus, we can think of these as split-sample reduced-form estimates.

Let i = w(£®) be a vector of data dependent weights with 3" 1, = 1. By the inde-
pendence of £@ and £®),

k

E[pu(¢®, 23 (™) =3 E[ii(¢®)] E[fu (£, 23())] = B ™

i=1

To eliminate the noise introduced by ¢, define the “Rao-Blackwellized” (RB) estimator
Bre = Bre(£, 31 1) = E[Bu (£, 23: w(£?))1£].

This gives a class of unbiased estimators, where the estimator depends on the choice of
the weight ©. Unbiasedness of Bgg follows immediately from (7) and the law of iterated
expectations. While ﬁRB does not, to our knowledge, have a simple closed form, it can be
computed by integrating over the distribution of ¢. This can easily be done by simula-
tion, taking the sample average of j3,, over simulated draws of £¢(@ and ¢*) while holding
& at its observed value.

3.2 Equivalence with 2SLS under strong-IV asymptotics

We now propose a set of weights w that yield an unbiased estimator that is asymptoti-
cally equivalent to 2SLS. To motivate these weights, note that for W = Z’Z and e, the ith
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standard basis vector, the 2SLS estimator can be written as

Basts = EW e = s EWeieilr £1i
HEWe o EWE L

=1

which is the GMM estimator with weight matrix W = Z’Z. Thus, the 2SLS estimator is a
weighted average of the 2SLS estimates based on single instruments, where the weight

for estimate &7 ;/¢>,; based on instrument i is equal to % This suggests the unbi-
2
. . . . N b &' wee;el?
ased Rao-Blackwellized estimator with weights w;“(f( )) = ﬁ
& WE
Bis = Bru(&, 3 ) = E[ By (£, 23; w* (7)) 1€]. (8)

The following theorem shows that ,éﬁB is asymptotically equivalent to Bygis in the
strongly identified case, and is therefore asymptotically efficient if the errors are i.i.d.

THEOREM 3.1. Let | 7| — oo with ||7||/ min; 7; = O(1). Then ||7r||(,é§B - /§25Ls) £,

The condition that |#|/min; 7; = O(1) amounts to an assumption that the
“strength” of all instruments is of the same order. As discussed below in Section 3.3,
this assumption can be relaxed by redefining the instruments.

' Weejm
W
It is easy to see that w} — w7 20 as |l7]| — oo. Consider the oracle unbiased es-
timator B8R = Bre(é, 3; w*), and the oracle combination of individual 2SLS estima-

tors /§§SLS = 25;1 w;“%ﬁ By arguments similar to those used to show that statistical

noise in the first-stage estimates does not affect the 2SLS asymptotic distribution under

To understand why Theorem 3.1 holds, consider the “oracle” weights w} =

strong-instrument asymptotics, it can be seen that ||7||( égSLS - BZSLS) £ 0as |77 || — oo.
Further, one can show that ﬁﬁB = [aw(g, 3 w*) = Zf-‘zl w;“ﬁu(g(i), 3(i)). Since this is just
Bog1s With By (&(D), 3(i)) replacing &;1/&;, it follows by Theorem 2.3 that ||7|(BRz —
égSLS) 2 0. Theorem 3.1 then follows by showing that ||W||(BRB — B?{B) £ 0, which fol-
lows for essentially the same reasons that first-stage noise does not affect the asymptotic
distribution of the 2SLS estimator but requires some additional argument. We refer the
interested reader to the proof of Theorem 3.1 in Appendix A for details.

3.3 Robust unbiased estimation

So far, all the unbiased estimators we have discussed required 7; > 0 for all i. Even when
the first-stage sign is dictated by theory, however, we may be concerned that this restric-
tion may fail to hold exactly in a given empirical context. To address such concerns, in
this section we show that in overidentified models we can construct estimators that are
robust to small violations of the sign restriction. Our approach has the further benefit of
ensuring asymptotic efficiency when, while ||77| — oo, the elements 7; may increase at
different rates.
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Let M be a k x k invertible matrix such that all elements are strictly positive, and

E=(LoMé  S=LoMIhLeoM), W=M'wMm.

The GMM estimator based on & and W is numerically equivalent to the GMM estimator
based on ¢ and W. In particular, for many choices of W, including all those discussed
above, estimation based on (&, W, 5) is equivalent to estimation based on instruments
ZM ! rather than Z.

Note that for 7+ = M, £is normally distributed with mean (7’3, ')’ and variance 3.
Thus, if we construct the estimator B;B from (&, W, 5) instead of (¢, W, 3), we obtain an
unbiased estimator provided 7; > 0 for all i. Since all elements of M are strictly positive,
this is a strictly weaker condition than s; > 0 for all i. By Theorem 3.1, %, constructed
from from £ and W will be asymptotically efficient as |7 || — oo as long as 77 = M is
nonnegative and satisfies ||7||/ min; 7; = O(1). Note, however, that

v . . u ~
min 7; > (minMij>||7T|| - (minM,-j)ﬁn%n > (mmM,-j)< inf U0 )||7T||,
i iJ i, M| i lull=1 [[Mu]]
so || 7r||/ min; 7; = O(1) now follows automatically from || 7| — co.
Conducting estimation based on £ and W offers a number of advantages for many
different choices of M. One natural class of transformations M is

[1 ¢ ¢
c 1 ¢

M=|c ¢ 1 Diag(3) " 9)
jc ¢ ¢ - 1_

for ¢ € [0, 1), and Diag(3,,) the matrix with the same diagonal as 3,, and zeros else-
where. For a given ¢, denote the estimator [§§B based on the corresponding (£, W, 3) by
ﬁf{B,C. One can show that B;B,O = /§§B based on (£, W, 3), and going forward we let ﬁf{B
denote EI*RB’O.

We can interpret ¢ as specifying a level of robustness to violations on the sign restric-
tion for ;. In particular, for a given choice of ¢, 7 will satisfy the sign restriction provided
that for each i,

—mi/\/ 222,ii < C- Z /A 222,js

J#L
that is, provided the expected z-statistic for testing that each wrong-signed ; is equal
to zero is less than ¢ times the sum of the expected z-statistics for j # i. Larger values
of ¢ provide a greater degree of robustness to violations of the sign restriction, while all
choices of ¢ € (0, 1) yield asymptotically equivalent estimators as ||7|| — co. For finite
values of 7, however, different choices of ¢ yield different estimators, so we explore the
effects of different choices below using the Angrist and Krueger (1991) data set. Deter-
mining the optimal choice of ¢ for finite values of 7 is an interesting topic for future
research.
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3.4 Bounds on the attainable risk

While the class of estimators given above has the desirable property of asymptotic effi-
ciency as ||| — oo, it is useful to have a benchmark for the performance for finite 7. In
Appendix D, we derive a lower bound for the risk of any unbiased estimator at a given
7*, B*. The bound is based on the risk in a submodel with a single instrument and, as
in the single-instrument case, shows that any unbiased estimator must have an infi-
nite 1 + ¢ absolute moment for ¢ > 0. In certain cases, which include large parts of the
parameter space under homoskedastic errors (U;, V;), the bound can be attained. The
estimator that attains the bound turns out to depend on the value 7=*, which shows that
no uniform minimum risk unbiased estimator exists. See Appendix D for details.

4. SIMULATIONS

In this section we present simulation results on the performance of our unbiased esti-
mators. We study the model with normal errors and known reduced-form variance. We
first consider models with a single instrument and then turn to overidentified models.
Since the parameter space in the single-instrument model is small, we are able to obtain
comprehensive simulation results in this case, studying performance over a wide range
of parameter values. In the overidentified case, by contrast, the parameter space is too
large to comprehensively explore by simulation, so we instead calibrate our simulations
to the Staiger and Stock (1997) specifications for the Angrist and Krueger (1991) data set.

4.1 Performance with a single instrument

The estimator By based on a single instrument plays a central role in all of our results, so
in this section we examine the performance of this estimator in simulation. For purposes
of comparison we also discuss results for the two-stage least squares estimator ,ézsLs-
The lack of moments for B2g; 5 in the just-identified context renders some comparisons
with ,éU infeasible, however, so we also consider the performance of the Fuller (1977)
estimator with constant 1,

5 _ &é&it+on
BrulL= —F5———

&+ oy
which we define as in Mills, Moreira, and Vilela (2014).'3 Note that in the just-identified
case considered here ﬁFULL also coincides with the bias-corrected 2SLS estimator (again,
see Mills, Moreira, and Vilela (2014)).

While the model (2) has five parameters in the single-instrument case, (3, 7, 012, 012,
0-22), an equivariance argument implies that for our purposes it suffices to fix 8 = 0 and
o1 = o = 1, and consider the parameter space (7, o12) € (0, 00) x [0, 1). See Appendix E
for details. Since this parameter space is just two dimensional, we can fully explore it via
simulation.

1311 the case where U, and V; are correlated or heteroskedastic across ¢, the definition of /§FULL above is
the natural extension of the definition considered in Mills, Moreira, and Vilela (2014).



Quantitative Economics 8 (2017) Unbiased IV estimation 493

4.1.1 Estimator location We first compare the bias of ﬁy and épULL (we omit ,éZSLS
from this comparison, as it does not have a mean in the just-identified case). We con-
sider o, € {0.1,0.5,0.95) and examine a wide range of values for 7 > 0.1* These results
are plotted in the first panel of Figure 1.

Rather than mean bias, if we instead consider median bias, we find that 8y and Basis
generally exhibit smaller median bias than ,GFULL There is no orderlng between B v and
stLs in terms of median bias, however, as the median bias of BU is smaller than that
of BZSLS for very small values of 7, while the median bias of stLs is smaller for larger
values 7. A plot of median bias is given in Appendix E1.

4.1.2 Estimator absolute deviation We examine the distribution of the absolute devia-
tion of each estimator from the true parameter value. The last three panels of Figure 1
plot the 10th, 50th, and 90th percentiles of absolute deviation of the estimators con-
sidered from the true value B for three values of o1,. We plot the log quantiles of ab-
solute deviation (or equivalently the quantiles of log absolute deviation) for the sake
of visibility. Here, and in additional unreported simulation results, we find that 3y has
smaller median absolute deviation than Brv uniformly over the parameter space. The
10th and 90th percentiles of the absolute deviation are also lower for By than By for
much of the parameter space, though we find that there is not a uniform ranking for all
percentiles. The Fuller estimator has low median absolute deviation over much of the
parameter space, but performs worse than both By and v in certain cases, such as
when o, = 0.95 and the first-stage coefficient is small. Turning to mean absolute de-
viation, we find that the mean absolute deviation of ﬁU from B exceeds that of [§FULL
except in cases with very high p and small 7, while as already noted the mean absolute
deviation of By is infinite.

Thus, over much of the parameter space the unbiased estimator is more concen-
trated around the true parameter value than the 2SLS estimator, according to a variety
of different measures of concentration. It would be interesting to decompose the devia-
tions from the true parameter value into bias and variance components. Unfortunately,
however, the lack of second moments of both the 2SLS and unbiased estimators means
that the variance is infinite in both cases and therefore does not yield a useful compar-
ison. To get around this, we consider the distribution of the absolute deviation of each
estimator from the median of the estimator as a location-free measure of dispersion. In
Appendix E2, we examine this numerically and find a stochastic dominance relation in
which the unbiased estimator is less dispersed than the 2SLS estimator and more dis-
persed than the Fuller estimator uniformly over the parameter space.

4.2 Performance with multiple instruments

In models with multiple instruments, if we assume that errors are homoskedastic an
equivariance argument closely related to that in the just-identified case again allows

14We restrict attention to 7 > 0.16 in the bias plots. Since the first-stage F-statisticis F = 6% in the present
context, this corresponds to E[F] > 1.026. The expectation of ﬁu ceases to exist at 7 = 0, and for = close
to zero, the heavy tails of 3y make computing the expectation very difficult. Indeed, we use numerical
integration rather than Monte Carlo integration here because it allows us to consider smaller values 7. We
thank an anonymous referee for this suggestion.
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FiGure 1. The first panel plots the bias of single-instrument estimators, calculated by numer-
ical integration, against the mean E[F] of first-stage F-statistic. The remaining panels plot log
quantiles of absolute deviation from the true value of 8 for unbiased estimator, 2SLS, and Fuller,
for three values of o,. The lines corresponding to the median are plotted without markers, while
the lines corresponding to the 90th and 10th percentiles are plotted with upward and downward
pointing triangles, respectively. The absolute deviation results are based on 10 million simulation
draws.

us to reduce the dimension of the parameter space. Unlike in the just-identified case,
however, the matrix Z’Z and the direction of the first stage, 7/| ||, continue to matter
(see Appendix E for details). As a result, the parameter space is too large to fully ex-
plore by simulation, so we instead calibrate our simulations to the Staiger and Stock
(1997) specifications for the 1930-1939 cohort in the Angrist and Krueger (1991) data.
While there is statistically significant heteroskedasticity in these data, this significance
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appears to be the result of the large sample size rather than substantively important de-
viations from homoskedasticity. In particular, procedures that assume homoskedasticity
produce very similar answers to heteroskedasticity-robust procedures when applied to
this data. Thus, given that homoskedasticity leads to a reduction of the parameter space
as discussed above, we impose homoskedasticity in our simulations.

In each of the four Staiger and Stock (1997) specifications we estimate /| 7| and
Z'Z from the data (ensuring, as discussed in Appendix G, that /| 7| satisfies the sign
restriction). After reducing the parameter space by equivariance and calibrating Z’' Z and
7/||7|| to the data, the model has two remaining free parameters: the norm of the first
stage, |||, and the correlation oyy between the reduced-form and first-stage errors.
We examine behavior for a range of values for ||| and for oyy € {0.1, 0.5, 0.95}. Further
details on the simulation design are given in Appendix G.

For each parameter value we simulate the performance of Bosts, Bruir (which
is again the Fuller estimator with constant equal Eo 1), and ﬁ’f{B as defined in Sec-
tion 3.2. We also consider the robust estimators Bjg . discussed in Section 3.3 for
¢ €1{0.1,0.5,0.9}, but find that all three choices producé very similar results and so we
focus on ¢ = 0.5 to simplify the graphs.!® Even with a million simulation replications,
simulation estimates of the bias for the unbiased estimators (which we know to be zero
from the results of Section 3) remain noisy relative to, for example, the bias in 2SLS in
some calibrations, so we do not plot the bias estimates and instead focus on the mean
absolute deviation (MAD) E g[| ,é — B|] since, unlike in the just-identified case, the MAD
for 2SLS is now finite. We also plot the lower bound on the mean absolute deviation of
unbiased estimators discussed in Section 3.4. The results are plotted in Figure 2.

Several features become clear from these results. As expected, the performance of
2SLS is typically worse for models with more instruments or with a higher degree of cor-
relation between the reduced-form and first-stage errors (i.e., higher o). The robust
unbiased estimator ,éRB,O.S generally outperforms ,é”f{B = EEB’O. Since the estimators with

¢ =0.1 and ¢ = 0.9 perform very similarly to that with ¢ = 0.5, they outperform ﬁf{B as
well. The gap in performance between the RB estimators and the lower bound on MAD
over the class of all unbiased estimators is typically larger in specifications with more
instruments. Interestingly, we see that the Fuller estimator often performs quite well,
and has MAD close to or below the lower bound for the class of unbiased estimators in
most designs. While this estimator is biased, its bias decreases quickly in ||7|| in the de-
signs considered. Thus, at least in the homoskedastic case, this estimator seems to be a
potentially appealing choice if we are willing to accept bias for small values of .

5. EMPIRICAL APPLICATIONS

We calculate our proposed estimators in two empirical applications. First, we consider
the data and specifications used in Hornung (2014) to examine the effect of seventeenth
century migrations on productivity. For our second application, we study the Staiger
and Stock (1997) specifications for the Angrist and Krueger (1991) data set on the rela-
tionship between education and labor market earnings. Before continuing, we present
a step-by-step description of the implementation of our estimators.

1511 results for the RB estimators are based on 1,000 draws of ¢.
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FiGURE 2. Mean absolute deviation of estimators in simulations calibrated to specification I-IV
of Staiger and Stock (1997). These specifications have k = 3, 30, 28, and 178 instruments, respec-
tively. Results for specifications I-III are based on 1 million simulation draws, while results for
specification IV are based on 100,000 simulation draws.

5.1 Implementation

To describe the implementation in a general setup, we introduce additional notation
to explicitly allow for additional exogenous variables (such as a constant). We have ob-
servations r = 1, ..., T with Y; a scalar outcome variable, X; a scalar endogenous vari-
able, Z; a k x 1 vector of instruments, and W, a vector of additional control variables.
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Let?:(f/l,..., ?T)/,XZ(Xh...,XT)/, Z:(Zl,...,ZT)/, and W =W,...,Wr). Let
=U-WWW)y"'"WHY,X=UI-WWW)'W)X,and Z=(UI - WWW)'W)Z
denote the residuals from regressing Y, X, and Z on W, as described in the Introduc-
tion.
Our estimates are obtained using the following steps.

Step 1. Let &1 and &, denote the estimates of the coefficient on Z;in the regressions of
Y, and X,, respectlvely, on Z, and W, and let U, and V; denote residuals from these
regressions. Let 3 denote an estimate of the variance—covariance matrix of (&, 8).
If the observations are independent (but possibly heteroskedastic), we can use the
heteroskedasticity-robust estimate

T /\2 , A A ,
_ U?z,z, UV,Z,Z -1
L (Z'2)™! 2: proter RO (Lo (Z2/2) 7).
(h®(2'2) )L_l (U,VtZ[Zt V22,7, (h®(2'2)")

We use this estimate in our application based on Angrist and Krueger (1991), while
for our application based on Hornung (2014) we follow Hornung and use a clustering-
robust variance estimator. Likewise, in time-series contexts one could use a serial-
correlation robust variance estimator, for example that of Newey and West (1987), here.

Step 2. In the case of a single instrument (so Z; is scalar), the estimate is given by
Bu(&, 3), where Bu (-, -) is defined in Theorem 2.1.

Step 3. In the case with £ > 1 instruments, let 222 denote the lower right & x k sub-
matrix of 3, and let M be the matrix given in (9) with 3, replaced by 222 for some choice
of ¢ between 0 and 1 (we find that ¢ = 0.5 works well in our Monte Carlo simulations).
Let £ = (I, ® M)¢ and S=L® M)E(Iz ® M)'. Let 3(i) denote the 2 x 2 symmetric
matrix with diagonal elements given by the i,i and (k + i), (k + i) elgments of 3, re-
spectively, and off-diagonal element given by the i, (k + i) element of 3. Generate S in-
dependent N (0, 3) vectors {1, ..., {s. Let & and {s.1 denote the k x 1 vectors with ele-
ments 1 through k of & and ¢, respectively, and let &and ¢ 5,2 denote the k x 1 vectors
with elements k + 1 through 2k of & and &, respectively. Let i) = (51, i 52,,»)/ and let

(D) = (Lo 1,0 o0, Let
k ~ ~
Bs = _wisBu (&) + &:(D),23()),
i=1
where ﬁU(-, -) is defined in Theorem 2.1 and
(&= LM (ZZ)M eiej(E — §5)
(&= LM (Z )M (& - 65)
The estimator is given by the average over S simulation draws:
1 n
B= S Z Bs-
i=1

In our application, we use S = 100,000 simulation draws.

Wi s =
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5.2 Hornung (2014)

Hornung (2014) studies the long term impact of the flight of skilled Huguenot refugees
from France to Prussia in the seventeenth century. He finds that regions of Prussia that
received more Huguenot refugees during the late seventeenth century had a higher level
of productivity in textile manufacturing at the start of the nineteenth century. To address
concerns over endogeneity in Huguenot settlement patterns and obtain an estimate for
the causal effect of skilled immigration on productivity, Hornung (2014) considers spec-
ifications that instrument Huguenot immigration to a given region using population
losses due to plague at the end of the Thirty Years’ War. For more information on the
data and motivation of the instrument, see Hornung (2014).

Hornung’s argument for the validity of his instrument clearly implies that the first-
stage effect should be positive, but the relationship between the instrument and the en-
dogenous regressors appears to be fairly weak. In particular, the four IV specifications
reported in Tables 4 and 5 of Hornung (2014) have first-stage F-statistics of 3.67, 4.79,
5.74, and 15.35, respectively. Thus, it seems that the conventional normal approxima-
tion to the distribution of IV estimates may be unreliable in this context. In each of the
four main IV specifications considered by Hornung, we compare 2SLS and Fuller (again
with constant equal to 1) to our estimator. Since there is only a single instrument in this
context, the model is just-identified and the unbiased estimator is unique. In each spec-
ification we also compute and report an identification-robust Anderson-Rubin confi-
dence set for the coefficient on the endogenous regressor. The results are reported in
Table 1.

As we can see from Table 1, our unbiased estimates in specifications I-III are smaller
than the 2SLS estimates computed in Hornung (2014) (the unbiased estimate is smaller
in specification IV as well, though the difference only appears in the fourth decimal
place). Fuller estimates are, in turn, smaller than our unbiased estimates. Nonetheless,
the difference between the 2SLS and unbiased estimates is less than half of the 2SLS
standard error in every specification. In specifications I-III, where the instruments are
relatively weak, the 95% AR confidence sets are substantially wider than 95% confidence
sets calculated using 2SLS standard errors, while in specification IV, the AR confidence
set is fairly similar to the conventional 2SLS confidence set.

5.3 Angrist and Krueger (1991)

Angrist and Krueger (1991) are interested in the relationship between education and
labor market earnings. They argue that students born later in the calendar year face a
longer period of compulsory schooling than those born earlier in the calendar year, and
that quarter of birth is a valid instrument for years of schooling. As we note above their
argument implies that the sign of the first-stage effect is known. A substantial literature,
beginning with Bound, Jaeger, and Baker (1995), notes that the relationship between the
instruments and the endogenous regressor appears to be quite weak in some specifi-
cations considered in Angrist and Krueger (1991). Here we consider four specifications
from Staiger and Stock (1997), based on the 1930-1939 cohort. See Angrist and Krueger
(1991) and Staiger and Stock (1997) for more on the data and specification.
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TaBLE 1. Results in Hornung (2014) data. Specifications in columns I and II correspond to Ta-
ble 4, columns (3) and (5) in Hornung (2014), respectively, while columns III and IV correspond
to Table 5, columns (3) and (6) in Hornung (2014). Notation: Y = log output, X is as indicated,
and Z = unadjusted population losses in I, interpolated population losses in II, and population
losses averaged over several data sources in III and IV. See Hornung (2014). The 2SLS and Fuller
rows report two-stage least squares and Fuller estimates, respectively, while Unbiased reports
Bu. Other controls include a constant, a dummy for whether a town had relevant textile produc-
tion in 1685, measurable inputs to the production process, and others as in Hornung (2014). As
in Hornung (2014), all covariance estimates are clustered at the town level. Note that the unbi-
ased and Fuller estimates, as well as the autoregressive (AR) confidence sets, have been updated
to correct an error in the March 22, 2015 version of the present paper.

Specification Estimator 1 I 111 v
X: Percent Huguenots 2SLS 3.48 3.38 1.67
in 1700 Fuller 3.17 3.08 1.59
Unbiased 3.24 3.14 1.61
X:log Huguenots 2SLS 0.07
in 1700 Fuller 0.07
Unbiased 0.07
95% AR confidence set (—00,59.231U[1.55,00) [1.64,19.12] [-0.45,5.93] [-0.01,0.16]
Other controls Yes Yes Yes Yes
Observations 150 150 186 186
Number of towns 57 57 71 71
First-stage F-statistic 3.67 4.79 5.74 15.35

We calculate unbiased estimators ﬁf{B, BAEB’O‘I, ,éEB,O.S, and fé;B,oy' In all cases we
take W = Z’' Z. To calculate confidence sets we use the quasi-conditional likelihood ratio
(Q-CLR) (or GMM-M) test of Kleibergen (2005), which simplifies to the conditional like-
lihood ratio (CLR) test of Moreira (2003) under homoskedasticity and so delivers nearly
optimal confidence sets in that case (see Mikusheva (2010)). Thus, since (as discussed
above) the data in this application appear reasonably close to homoskedasticity, we may
reasonably expect the Q-CLR confidence set (CS) to perform well. All results are reported
in Table 2.

A few points are notable from these results. First, we see that in specifications I and
II, which have the largest first-stage F-statistics, the unbiased estimates are quite close
to the other point estimates. Moreover, in these specifications the choice of ¢ makes lit-
tle difference. By contrast, in specification III, where the instruments appear to be quite
weak, the unbiased estimates differ substantially, with /§§B yielding a negative point esti-
mate and [§§B’C for c € {0.1, 0.5, 0.9} yielding positive estimates substantially larger than
the other estimators considered.!® A similar, though less pronounced, version of this
phenomenon arises in specification IV, where unbiased estimates are smaller than those

16 A1l unbiased estimates are calculated by averaging over 100,000 draws of . For all estimates except
B’ﬁB in specification III, the residual randomness is small. For ﬁﬁB in specification III, however, redrawing ¢
yields substantially different point estimates. This issue persists even if we increase the number of ¢ draws
to 1,000,000.
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TaBLE 2. Results for Angrist and Krueger (1991) data. Specifications as in Staiger and Stock
(1997): Y = log weekly wages; X = years of schooling, instruments Z and exogenous controls
as indicated. Q-CLR (or GMM-M) is the confidence set of Kleibergen (2005). Unbiased estima-
tors calculated by averaging over 100,000 draws of . QOB, SOB, and YOB stand for quarter, state,
and year of birth, respectively.

I 11 111 v
Specification B B B B
2SLS 0.099 0.081 0.060 0.081
Fuller 0.100 0.084 0.058 0.098
LIML 0.100 0.084 0.057 0.098
Bis 0.097 0.085 —0.041 0.056
fBre, c=0.1 0.098 0.083 0.135 0.066
B, c=0.5 0.098 0.083 0.135 0.066
Brp, c=0.9 0.098 0.083 0.135 0.066
First-stage F 30.582 4.625 1.579 1.823
Q-CLR CS [0.059, 0.144] [0.046, 0.127] [—0.588, 0.668] [0.056, 0.150]
Controls
Base controls Yes Yes Yes Yes
Age, Age® No No Yes Yes
SOB No No No Yes
Instruments
QOB Yes Yes Yes Yes
QOB*YOB No Yes Yes Yes
QOB*SOB No No No Yes
No. of instruments 3 30 28 178
Observations 329,509 329,509 329,509 329,509

based on conventional methods and Bi’;B is almost 20% smaller than estimates based on
other choices of c.

As in the simulations, there is very little difference between the estimates for c
{0.1,0.5,0.9}. In particular, while not exactly the same, the estimates coincide once
rounded to three decimal places in all specifications. Given that these estimators are
more robust to violations of the sign restriction than that with ¢ = 0, we think it makes
more sense to focus on these estimates.

6. CONCLUSION

In this paper, we show that a sign restriction on the first stage suffices to allow finite-
sample unbiased estimation in linear IV models with normal errors and known reduced-
form error covariance. Our results suggest several avenues for further research. First,
while the focus of this paper is on estimation, recent work by Mills, Moreira, and Vilela
(2014) finds good power for particular identification-robust conditional ¢-tests, suggest-
ing that it may be interesting to consider tests based on our unbiased estimators, partic-
ularly in overidentified contexts where the Anderson—Rubin test is no longer uniformly
most powerful unbiased. More broadly, it may be interesting to study other ways to use
the knowledge of the first-stage sign, both for testing and estimation purposes.
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