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Appendix C: Additional simulation example

In this section, I present the third simulation example. This example—borrowed from
Schennach and Wilhelm (2011)—proves to be a very clever design that allows us to
neatly demonstrate the power against both the n−1/2-local alternatives defined in As-
sumption 5.1 and the n−1-local alternatives defined in Assumption 5.2.

Example 3 (Normal Mean and Variance). Let the two models compared be

F : {N(θ�1) : θ ∈ Θ⊂R
}
�

G : {N(0�β) : β ∈ B ⊂ (0�∞)
}
�

Let Y be generated from ∼N(μ�υ2), where μ =
√
e2·lr−1+υ2 − υ2, where lr ∈ {x ∈ R :

e2·lr−1+υ2 − υ2 ≥ 0}. Under DGPs of this form, E[Λi(φ
∗)] = lr . Thus, varying lr controls

how far the deviation is from H0. On the other hand, when lr = 0, varying the parameter
υ2 controls how large ω2 is. Setting υ2 = 1 makes ω2 = 0, and setting υ2 far from 1 makes
ω2 large.

First, I fix lr = 0 and study the null rejection probabilities of the different tests. The
simulation results are reported in the top three subplots of Figure 4. The figure shows
that my nondegenerate test has remarkable size control at all three sample sizes. On the
other hand, the one-step and the two-step Vuong tests, as well as the SW tests have large
size distortion at n= 100, and still some noticeable size distortion at n= 250.

Second, I fix υ2 = 5 and study the power of the different tests as lr varies from 0 to
1�6

√
250/n. The n−1/2-local power is considered because υ2 = 5 represents the nonde-

generate case ω2
P0

> 0, and local alternatives around this null DGP should have ω2
Pn

� 0.
The results are reported in the middle three subplots of Figure 4. The plots show that
the power figures of all four tests stay constant as the sample size increases with

√
nlr

kept constant. My nondegenerate test has power similar to that of the one-step and the
two-step Vuong tests, and higher than that of the SW test. The power disadvantage of
the SW test perhaps is due to the loss of efficiency from the sample splitting.
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Figure 4. Rejection probabilities for the one-step Vuong test (dash-dotted line), two-step
Vuong test (dashed line), the SW test (dotted line) and my new nondegenerate test (solid line)
for Example 3. The horizontal dotted line indicates the nominal level 5%.

Last, I fix υ2 = 1 and study the power of the four different tests as lr varies from 0 to
0�2 · (250/n). The n−1-local power is considered because υ2 = 1 represents the degener-
ate case: ω2

P0
= 0. The results are reported in the middle three subplots of Figure 4. The

plots show that the power of my nondegenerate test and that of the classical Vuong tests
are similar, and all stay approximately constant as n increases with n× lr kept constant.
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On the other hand, the SW test appears to have lower power and its power decreases as
n increases with n× lr kept constant. Thus, the power gap between my new nondegen-
erate test and the SW test increases as the sample size increases.

Appendix D: Schennach and Wilhelm (2011) test

Here I briefly describe Schennach and Wilhelm’s (2011) split sample test (SW test) in
my notation. To construct the SW test, first, split the full sample {Xi}ni=1 into two equal-

sized samples {X(1)i}n/2
i=1 and {X(2)i}n/2

i=1 (for example, split into two halves according to
the natural ordering); second, let the split-sample log-likelihood ratio estimator be

L̂R
splt
n = 2

n(2 + εn)

n/2∑
i=1

[(
log f (X(1)i� θ̂n)− logg(X(2)i� β̂n)

)
(D.1)

+ (1 + εn)
(
log f (X(2)i� θ̂n)− logg(X(1)i� β̂n)

)]
�

where εn ∈R \ {0�−2} is a user-chosen weighting. Let the variance estimator be

(
ω̂

splt
n

)2 = 2
n(2 + εn)2

n/2∑
i=1

[(
log f (X(1)i� θ̂n)− logg(X(2)i� β̂n)

)
(D.2)

+ (1 + εn)
(
log f (X(2)i� θ̂n)− logg(X(1)i� β̂n)

)]2 − (
L̂R

splt
n

)2;
third, let

T̂
splt
n = (n/2)1/2L̂R

splt
n /ω̂

splt
n � (D.3)

Finally, reject H0 if |T̂ splt
n | > zα/2. When H0 is rejected, pick model F if L̂R

splt
n > 0 and pick

model G if L̂R
splt
n < 0.1

In the 2011 version of their paper, they suggest a robust choice for the weighting
parameter εn,

ε∗
n = max

{
Covn(log fi(θ̂n)� loggi(β̂n))

Varn(log fi(θ̂n))+ Varn(loggi(β̂n))
�0

}
− 1� (D.4)

where Covn stands for sample covariance and Varn stands for sample variance.
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1Schennach and Wilhelm (2011) write their test as a Wald test from a GMM problem formed by the max-
imum likelihood estimator (MLE) f.o.c.s and the null hypothesis of the Vuong test. Some algebra shows that
their GMM estimators of θ and β are exactly the MLEs because they have to satisfy the MLE f.o.c.s, and their

regularized Wald statistic is exactly (T̂
splt
n )2.
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