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Appendix D: Proof of Theorem 1

Since the proof of Theorem 1 is rather cumbersome, it is useful to break it into several
lemmas.

We first rewrite the objective function in terms of the integrals I1, I2, Î2, I3, and I4,
defined as

I1 ≡
∫

e(v)1−γ dm(v)� (58)

I2 ≡
∫ (

Mb1(v)+ b2(v)+Mη1(v)+η2(v)
)
e(v)−γ dm(v)� (59)

Î2 ≡
∫ (

b1(v)+η1(v)
)
e(v)−γ dm(v)� (60)

I3 ≡
∫ (

1 − e(v)− g(v)+Mη1(v)+η2(v)
)1−σ

dm(v)� (61)

and

I4 ≡
∫ (

1 − e(v)− g(v)+Mη1(v)+η2(v)
)−σ

dm(v)� (62)

In terms of these equations, our problem becomes

max
e(v)

[
α1MI

γ−1
1 Î

1−γ
2 + α2(1 −MI−1

1 Î2
)1−γ] I1

1 − γ
+ α2ξ

I3

1 − σ
(63)

subject to

logξ + γ log
(
1 −MI−1

1 Î2
) + log(I4 − I3)− log(I1 − I2) = 0� (64)

Note that I3 has a monotone effect on the objective function and that I4 enters in the
constraint but not in the objective function.
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If we find a perturbation to a given trajectory ê that changes I3, but not I1, I2, Î2,
or I3 − I4, we can improve on ê while keeping the constraint holding. Therefore, at an
optimum this cannot happen.

We will proceed as follows:

(i) Lemma 1 first restricts the cases in which the optimal solution ê may lie on a
boundary, that is, at 0 or at 1 − g.

(ii) Under the special case of constant and deterministic government spending and
coupon payments, Lemma 2 shows that ê can take at most three values, except on a set
of m-measure 0.

(iii) Under the special case of Lemma 2, Lemma 3 strengthens the result and proves
that ê may take at most two values only, except on a set of m-measure 0.

(iv) We generalize the proof by removing the assumption that led us to study the spe-
cial case. As we will see, the proof of the general case will work by “conditioning” on the
values of (gt� b1

t � b
2
t �η

1
t �η

2
t ) and reducing the problem to our special case. This step will

not be trivial but will not contain any further insights.

D.1 Statement and proof of Lemma 1

Lemma 1. Assume that Condition 1 holds. Then the optimal choice ê for maximizing
(63) subject to (64) may not be equal to 0, except on sets of m-measure 0, and it can only
be equal to 1 − g +Mη1 +η2 if it is equal to that value almost everywhere with respect to
the measure m.

Proof. We first consider the boundary ê(v)= 0. If γ ≥ 1, choosing ê(v) = 0 with positive
measure leads both consumers to infinite negative utility; the government will never
pick such a policy whenever an alternative policy is available.

Consider now the case γ < 1, (gt�η2
t +b2

t �η
1
t +b1

t ) �= 0. Since g < 1+Mη1 +η2 by our
assumptions that a competitive equilibrium exists, equation (51) implies x2(v) > 0. The
leisure of type-2 agents can be positive while their consumption is 0 only if the tax rate is
100% in the state we are considering, that is, τ(v) = 1. In this case, these agents will not
work at all, which implies x2(v) = 1: this can be consistent with market clearing only if
g(v) = Mη1(v) + η2(v). Since the price of the goods in the states with no consumption
is infinite, the budget constraints of the agents can hold only if η2(v) + b2(v) = 0 and
η1(v) + b1(v) = 0. These requirements violate Condition 1. We thus proved that e > 0
except at most on sets of m-measure 0.

We now look at the consequences of e(v) = 1 − g(v) + Mη1(v) + η2(v). From (52),
this can happen in two cases: either k2 = 0 or τ(v) = −∞. The latter case is easily
shown to be incompatible with the government budget constraint. If k2 = 0, it fol-
lows that c2(v) = 0 a.s. and, hence, from (31), x2(v) = 0 a.s. as well. We thus obtain
e(v) = 1 − g(v)+Mη1(v)+η2(v) a.s. from equation (51). �
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D.2 Statement and proof of Lemma 2

Lemma 2. Assume that (gt� b1
t � b

2
t �η

1
t �η

2
t ) take a single value almost everywhere with re-

spect to the measure m. Assume that Condition 1 holds. Then the optimal choice ê for
maximizing (63) subject to (64) may take at most three values, except on a set of m-
measure 0.

Lemma 2 corresponds to the case of no uncertainty, constant government spending,
and constant coupon payments among all the agents in the economy.

Proof of Lemma 2. We reason by contradiction. Let ê be the optimal choice by the gov-
ernment. We ruled out that ê(v) = 0 or ê(v) = 1 −g+Mη1 +η2 with positive probability,
unless ê(v) = 1 − g + Mη1 + η2 a.s., in which case our statement holds.35 Therefore, if
ê takes more than three values, we can find an open set S ⊂ (0�1 − g + Mη1 + η2) such
that ê takes more than three values in S.36 Let V ≡ ê−1(S) be the set of realizations of v
such that e(v) falls into S. We wish to prove that there exists a function e that satisfies
the constraint (64) and leads to a higher value for the objective. We restrict our search to
the space

S ≡ {
e :e is m-measurable ∧ e(v) = ê(v) ∀v ∈ [0�1] \ V ∧ e(v) ∈ S ∀v ∈ V

}
� (65)

It is easy to see that ê ∈ S .
The space S allows perturbations of ê only in the range where the function lies in S.

The reason for this is to be sure that a Fréchet differential is properly defined.
Note first that if e ∈ S , then its restriction to V (ê|V ) belongs to L1

m(V ), which is a
Banach space. Furthermore, the space of all the restrictions to V of functions in S is an
open subset of L1

m(V ). Since all the perturbations we consider coincide outside of V by
our construction of S , we only consider their restriction on V .

We can treat I1, I2, Î2, I3, and I4 as functions of e|V . It is more convenient to replace
I2 and Î2 in our analysis with

Ĩ2 ≡
∫

e(v)−γ dm(v)� (66)

In the case we are considering here, we have I2 = (Mb1 + b2 + Mη1(v) + η2(v))Ĩ2 and
Î2 = (b1 +η1)Ĩ2: both I2 and Î2 are simply proportional to Ĩ2, so that a perturbation that
does not affect the latter integral will not affect the two former integrals either.

Let thus I ≡ (I1� Ĩ2� I3� I4) :S → R
4. I is Fréchet differentiable and its Fréchet differ-

ential is given by

δI(e|V ;h) =

⎡
⎢⎢⎢⎢⎣

(1 − γ)
∫
V h(v)e(v)−γ dm(v)

−γ
∫
V h(v)e(v)−γ−1 dm(v)

(1 − σ)
∫
V h(v)(1 − e(v)− g +Mη1 +η2)−σ dm(v)

−σ
∫
V h(v)(1 − e(v)− g +Mη1 +η2)−σ−1 dm(v)

⎤
⎥⎥⎥⎥⎦ � (67)

35For simplicity of notation, we can here drop the dependence of g, b1, b2, and η1 on v, since they are
constant functions almost everywhere with respect to the measure m.

36Note that we require S to be a strict subset of (0�1 − g + Mη1 + η2). This is convenient to ensure that
all our integrals will be properly defined.
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We know that if ê is a regular point for the mapping I, then we can find a perturbation
that will leave I1, I2, and I3 − I4 unchanged while increasing or decreasing I3.37 This
would imply that it is possible to improve upon the choice of ê and, therefore, ê would
not be optimal.

We, therefore, need to show that ê is a regular point for the mapping I whenever it
takes more than three values in V with positive measure m. ê will be a regular point for
I whenever its Fréchet differential is onto R

4.
Since the function h is an arbitrary function in L1

m(V ), δI(e|V ;h) will not be onto R
4

if and only if there is a nonzero vector a ≡ (a1� a2�−a3�−a4) such that

a ·

⎡
⎢⎢⎣

e(v)−γ

e(v)−γ−1

(1 − e(v)− g +Mη1 +η2)−σ

(1 − e(v)− g +Mη1 +η2)−σ−1

⎤
⎥⎥⎦ = 0 (68)

for all v ∈ V , except at most a set of m-measure 0.
The remainder of the proof of Lemma 2 shows that equation (68) can never hold in

more than three points. To do this, we define

f1(y) ≡ a1y
−γ + a2y

−γ−1� (69)

f2(y) ≡ a3
(
1 − y − g +Mη1 +η2)−σ + a4

(
1 − y − g +Mη1 +η2)−σ−1

� (70)

and we look for the maximum number of intersections between f1 and f2 in (0�1 − g +
Mη1 + η2). By enumerating and studying each possible sign that each component of a
can take, it is possible to show that in no case can there be more than three intersections
between f1 and f2. Note that by linear homogeneity, we can restrict our attention to
a1 = 1 or a1 = 0, a2 = 1. I only present here the analysis of the most complicated case,
that is, a1 = 1, a2 < 0, a3 > 0, a4 < 0. The other cases are available upon request.38

In this case, f1 is negative39 for y < −a2, strictly increasing for y < −a2(γ+1)
γ , strictly

concave for y < −a2(γ+2)
γ , and has a strictly positive third derivative for y <−a2(γ+3)

γ .

f2 is strictly positive for y < 1 − g +Mη1 +η2 + a4
a3

, strictly increasing for y < 1 − g +
Mη1 +η2 + a4(σ+1)

a3σ
, strictly convex for y < 1 − g+Mη1 +η2 + a4(σ+2)

a3σ
, and has a strictly

positive third derivative for y < 1 − g +Mη1 +η2 + a4(σ+3)
a3σ

.

We will prove that f ′
1 − f ′

2 has at most two roots over (0�1 − g + Mη1 + η2). This is
enough to establish that f1 − f2 has at most three roots. We distinguish seven subcases.

1. −a2(γ+1)
γ ≤ 1−g+Mη1 +η2 + a4(σ+2)

a3σ
. In all of these subcases, f ′

1 −f ′
2 has exactly one

root in the interval (0�−a2(γ+1)
γ ]: f ′

1 −f ′
2 is strictly decreasing; it converges to +∞ as y → 0

37This is an application of Theorem 1 in Section 9.2 of Luenberger (1969).
38All the other cases are considerably simpler and most of them are trivial. In particular, this is the only

case for which we need to study derivatives of up to the third order!
39The complete statement would say that f1 is strictly negative for y < −a2, 0 for y = −a2, and positive

for y > −a2. In this statement and all the following ones, we will leave the equality and the other side of the
inequality implicit. This is just for brevity.
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and it is strictly negative in −a2(γ+1)
γ . Furthermore, f ′

1 − f ′
2 has no roots (−a2(γ+1)

γ �1−g+
Mη1 +η2 + a4(σ+1)

a3σ
], since it is strictly negative in this interval.

1a. −a2(γ+1)
γ < −a2(γ+2)

γ ≤ 1 − g + Mη1 + η2 + a4(σ+1)
a3σ

. In this case, f ′
1 − f ′

2 is strictly

increasing on (1 − g + Mη1 + η2 + a4(σ+1)
a3σ

�1 − g + Mη1 + η2). It is strictly negative at
the lower bound and tends to +∞ at the upper bound; we, therefore, have exactly one
intersection. In subcase 1a, we, therefore, have exactly two intersections between f ′

1 and
f ′

2 in (0�1 − g +Mη1 +η2).

1b. −a2(γ+1)
γ < 1 − g +Mη1 +η2 + a4(σ+1)

a3σ
< −a2(γ+2)

γ < 1 − g +Mη1 +η2. Let us first

consider the interval (1 − g+Mη1 +η2 + a4(σ+1)
a3σ

�−a2(γ+2)
γ ]. In this interval, f ′

1 is strictly
convex, whereas f ′

2 is strictly concave; it follows that f ′
1 − f ′

2 is strictly convex. Since
f ′

1 −f ′
2 is strictly negative at the lower bound of the interval, it can have either zero or one

roots in the interval, depending on the sign it takes at the upper bound. In the interval
(−a2(γ+2)

γ �1−g+Mη1 +η2), f ′
1 −f ′

2 is strictly increasing and its limit at 1−g+Mη1 +η2

is +∞; if it is nonnegative at the lower bound, this implies that there was exactly one
root in (1 − g + Mη1 + η2 + a4(σ+1)

a3σ
�−a2(γ+2)

γ ] and there is no root in (−a2(γ+2)
γ �1 − g +

Mη1 + η2); if it is strictly negative at the lower bound, then there was no root in
(1 − g+Mη1 +η2 + a4(σ+1)

a3σ
�−a2(γ+2)

γ ] and there is exactly one root in (−a2(γ+2)
γ �1 − g+

Mη1 + η2). It follows that in subcase 1b, we have exactly two intersections between f ′
1

and f ′
2 on (0�1 − g +Mη1 +η2).

1c. −a2(γ+1)
γ < 1 −g+Mη1 +η2 + a4(σ+1)

a3σ
< 1 −g+Mη1 +η2 ≤ −a2(γ+2)

γ . In this case,

f ′
1 − f ′

2 is convex over the interval (1 − g + Mη1 + η2 + a4(σ+1)
a3σ

�1 − g + Mη1 + η2); it is
strictly negative at the lower bound and it converges to +∞ at the upper bound, so that
it has exactly one intersection in the considered interval. In subcase 1c, we thus have
exactly two intersections between f ′

1 and f ′
2 on (0�1 − g +Mη1 +η2).

2. 1 − g +Mη1 +η2 + a4(σ+2)
a3σ

<−a2(γ+1)
γ .

2a. 0 < 1 − g + Mη1 + η2 + a4(σ+2)
a3σ

< −a2(γ+2)
γ < 1 − g + Mη1 + η2. On (0�1 − g +

Mη1 + η2 + a4(σ+2)
a3σ

], f ′
1 − f ′

2 is strictly decreasing; its limit at the lower bound is +∞.
There are no roots if f ′

1 − f ′
2 is positive at the upper bound, and exactly one root if f ′

1 − f ′
2

is nonpositive at the upper bound. On (1 − g + Mη1 + η2 + a4(σ+2)
a3σ

�−a2(γ+2)
γ ], f ′

1 − f ′
2

is strictly convex. If f ′
1 − f ′

2 is positive at the lower bound, it can have zero, one, or two

roots in the interval (1 − g + Mη1 + η2 + a4(σ+2)
a3σ

�−a2(γ+2)
γ ] and, thus, the same num-

ber of roots in (0�−a2(γ+2)
γ ]. If f ′

1 − f ′
2 is nonpositive at 1 − g + Mη1 + η2 + a4(σ+2)

a3σ
, it

can have zero or one roots in (1 − g + Mη1 + η2 + a4(σ+2)
a3σ

�−a2(γ+2)
γ ] and, thus, it will

have either one or two roots in (0�−a2(γ+2)
γ ]. On (−a2(γ+2)

γ �1 − g +Mη1 +η2), f ′
1 − f ′

2 is
strictly increasing and its limit at the upper bound is +∞. If f ′

1 − f ′
2 has an even number

of roots in (0�−a2(γ+2)
γ ], then it is nonnegative at −a2(γ+2)

γ and, thus, there are no roots

in (−a2(γ+2)
γ �1 − g +Mη1 +η2); if it has an odd number of roots in (0�−a2(γ+2)

γ ], then it
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is negative at −a2(γ+2)
γ and there is exactly one root in (−a2(γ+2)

γ �1 − g + Mη1 + η2).
It follows that in subcase 2a, f ′

1 − f ′
2 has either zero or two roots over (0�1 − g +

Mη1 +η2).

2b. 1−g+Mη1 +η2 + a4(σ+2)
a3σ

≤ 0 < −a2(γ+2)
γ < 1−g+Mη1 +η2. On (0�−a2(γ+2)

γ ], f ′
1 −

f ′
2 is strictly convex and its limit at 0 is +∞. Therefore, it can have zero, one, or two roots

in this interval. On (−a2(γ+2)
γ �1 −g+Mη1 +η2), f ′

1 − f ′
2 is strictly increasing and its limit

at the upper bound is +∞. If f ′
1 − f ′

2 has an even number of roots in (0�−a2(γ+2)
γ ], then it

is nonnegative at −a2(γ+2)
γ and, thus, there are no roots in (−a2(γ+2)

γ �1 − g +Mη1 +η2);

if it has an odd number of roots in (0�−a2(γ+2)
γ ], then it is negative at −a2(γ+2)

γ and there

is exactly one root in (−a2(γ+2)
γ �1 − g +Mη1 +η2). Therefore, in subcase 2b, f ′

1 − f ′
2 has

either zero or two roots in (0�1 − g +Mη1 +η2).

2c. 0 < 1 − g + Mη1 + η2 + a4(σ+2)
a3σ

< 1 − g + Mη1 + η2 ≤ −a2(γ+2)
γ . On (0�1 − g +

Mη1 + η2 + a4(σ+2)
a3σ

], f ′
1 − f ′

2 is strictly decreasing; its limit at the lower bound is +∞.
There are no roots if f ′

1 − f ′
2 is positive at the upper bound, and exactly one root if f ′

1 − f ′
2

is nonpositive at the upper bound. On (1 − g + Mη1 + η2 + a4(σ+2)
a3σ

�1 − g + Mη1 + η2),

f ′
1 − f ′

2 is strictly convex and its limit at 1 − g + Mη1 + η2 is +∞. If f ′
1 − f ′

2 is positive at

1 − g + Mη1 + η2 + a4(σ+2)
a3σ

, then there can be either zero or two roots in this interval.

If f ′
1 − f ′

2 is nonnegative at 1 − g + Mη1 + η2 + a4(σ+2)
a3σ

, since it is strictly decreasing in

that point, it follows that it will have exactly one root in (1 − g + Mη1 + η2 + a4(σ+2)
a3σ

�

1 − g+Mη1 +η2). We thus have that in subcase 2c, there can be either zero or two roots
for f ′

1 − f ′
2 in (0�1 − g +Mη1 +η2).

2d. 1 − g+Mη1 +η2 + a4(σ+2)
a3σ

≤ 0 < 1 − g+Mη1 +η2 ≤ −a2(γ+2)
γ . In this case, f ′

1 − f ′
2

is convex over the whole interval (0�1 − g + Mη1 + η2); furthermore, its limits at both
bounds are +∞. It follows that it can have either zero or two roots in the interval. �

D.3 Statement and proof of Lemma 3

Lemma 3. Assume that (gt� b
1
t � b

2
t �η

1
t �η

2
t ) take a single value almost everywhere with

respect to the measure m. Assume that Condition 1 holds. Then the optimal choice ê

for maximizing (63) subject to (64) may take at most two values, except on a set of m-
measure 0.

Lemma 3 still considers the case of no uncertainty, constant government spending,
and constant coupon payments among all the agents in the economy. It starts from the
result of Lemma 2 and strengthens it by considering a different class of perturbations.

Proof of Lemma 3. From Lemma 2, we know that the optimal choice ê is a step func-
tion with at most three values, aside from sets of m-measure 0; from Lemma 1, we
know that each of the three values lies in (0�1 − g +Mη1 +η2), unless ê is the constant
1 − g +Mη1 +η2.
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We reason again by contradiction. Suppose ê takes three values, each with positive
m-measure; let e1 < e2 < e3 be the three values. The integrals I can then be rewritten as

I1 =m1e
1−γ
1 +m2e

1−γ
2 +

(
1

1 −β
−m1 −m2

)
e

1−γ
3 � (71)

Ĩ2 =m1e
−γ
1 +m2e

−γ
2 +

(
1

1 −β
−m1 −m2

)
e
−γ
3 � (72)

I3 =m1
(
1 − g +Mη1 +η2 − e1

)1−σ +m2
(
1 − g +Mη1 +η2 − e2

)1−σ

(73)

+
(

1
1 −β

−m1 −m2

)(
1 − g +Mη1 +η2 − e3

)1−σ
�

I4 =m1
(
1 − g +Mη1 +η2 − e1

)−σ +m2
(
1 − g +Mη1 +η2 − e2

)−σ

(74)

+
(

1
1 −β

−m1 −m2

)(
1 − g +Mη1 +η2 − e3

)−σ
�

where mi ≡ m({v :e(v) = ei}), i = 1�2.
As we already observed, ê cannot be optimal if we can perturb I3 in either direc-

tion while holding I1, Ĩ2, and I3 − I4 constant. For this proof, we treat I as a function
of (e1� e2� e3�m1�m2). If ê takes all three values with positive measure, we have mi > 0,
i = 1�2, and m1 + m2 < 1

1−β . In this case, therefore, I is now a mapping from R
5 to R

4;
given our previous observations, the mapping is well defined and differentiable in an
open neighborhood of (e1� e2� e3�m1�m2). By the same theorem we applied in Lemma 2,
ê cannot be optimal if (e1� e2� e3�m1�m2) is a regular point of the mapping I, that is, if
the differential of I as a function of (e1� e2� e3�m1�m2) is onto R

4. We now prove that
(e1� e2� e3�m1�m2) is indeed a regular point of I when all three points are distinct and
all measures are strictly positive. To do this, we will just perturb (e1� e2� e3�m2) while we
will hold m1 fixed: we will show that the differential with respect to just the four elements
already spans R4. The Jacobian of the mapping I is given by40

J =

⎡
⎢⎢⎢⎢⎢⎣

e
−γ
1 e

−γ−1
1 (1 − e1 − g +Mη1 +η2)−σ

e
−γ
2 e

−γ−1
2 (1 − e2 − g +Mη1 +η2)−σ

e
−γ
3 e

−γ−1
3 (1 − e3 − g +Mη1 +η2)−σ

e
1−γ
2 −e

1−γ
3

1−γ − e
−γ
2 −e

−γ
3

γ
(1−e2−g+Mη1+η2)1−σ−(1−e3−g+Mη1+η2)1−σ

1−σ
(75)

(1 − e1 − g +Mη1 +η2)−σ−1

(1 − e2 − g +Mη1 +η2)−σ−1

(1 − e3 − g +Mη1 +η2)−σ−1

− (1−e2−g+Mη1+η2)−σ−(1−e3−g+Mη1+η2)−σ

σ

⎤
⎥⎥⎥⎥⎦ �

40For convenience, we scaled the columns by 1
1−γ , − 1

γ , 1
1−σ , and − 1

σ , respectively. This does not alter the
rank of the Jacobian and it allows us to have a shorter expression.
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which can be rewritten as

J =

⎡
⎢⎢⎢⎢⎣

e
−γ
1 e

−γ−1
1 (1 − e1 − g +Mη1 +η2)−σ

e
−γ
2 e

−γ−1
2 (1 − e2 − g +Mη1 +η2)−σ

e
−γ
3 e

−γ−1
3 (1 − e3 − g +Mη1 +η2)−σ

∫ e3
e2

y−γ dy
∫ e3
e2

y−γ−1 dy
∫ e3
e2
(1 − y − g +Mη1 +η2)−σ dy

(76)
(1 − e1 − g +Mη1 +η2)−σ−1

(1 − e2 − g +Mη1 +η2)−σ−1

(1 − e3 − g +Mη1 +η2)−σ−1

∫ e3
e2
(1 − y − g +Mη1 +η2)−σ−1 dy

⎤
⎥⎥⎥⎥⎦ �

The Jacobian J can only be singular if there exists a nonzero vector (a1� a2� a3� a4) such
that

a1e
−γ
i + a2e

−γ−1
i + a3

(
1 − ei − g +Mη1 +η2)−σ

(77)
+ a4

(
1 − ei − g +Mη1 +η2)−σ−1 = 0� i = 1�2�3�

and ∫ e3

e2

(
a1y

−γ + a2y
−γ−1 + a3

(
1 − y − g +Mη1 +η2)−σ

(78)
+ a4

(
1 − y − g +Mη1 +η2)−σ−1)

dy = 0�

From Lemma 2, we know that the function that we are integrating in (78) can have at
most three zeros in (0�1 − g + Mη1 + η2). By (77), the three zeros are e1, e2, and e3, so
that the function is never zero in any point of (e2� e3); since it is a continuous function,
it is either always strictly positive or always strictly negative. It follows that its integral
cannot be zero; therefore, J is of full rank and ê cannot be an optimal choice. �

We are now ready to prove the main theorem.

D.4 Proof of the main body of Theorem 1

Note that maximizing (56) subject to (53) can be rewritten as maximizing (63) subject to
(64), given the definitions of our integrals. As in Lemmas 2 and 3, our proof proceeds by
using the fact that we can improve upon ê if we can find a perturbation that can vary I3
in either direction while leaving I1, I2, Î2, and I3 − I4 unchanged. Recalling the definition
of ṽ in (57), we can use Fubini’s theorem and rewrite the integrals as

I1 ≡
∫ ∫ 1

0
e(ṽ�h)1−γ dhdm

(
ṽ� [0�1])� (79)

I2 ≡
∫ ∫ 1

0

(
Mb1(ṽ)+ b2(ṽ)+Mη1(ṽ)+η2(ṽ)

)
e(ṽ�h)−γ dhdm

(
ṽ� [0�1])� (80)

Î2 ≡
∫ ∫ 1

0

(
b1(ṽ)+η1(ṽ)

)
e(ṽ�h)−γ dhdm

(
ṽ� [0�1])� (81)
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I3 ≡
∫ ∫ 1

0

(
1 − e(ṽ�h)− g(ṽ)+Mη1(ṽ)+η2(ṽ)

)1−σ
dhdm

(
ṽ� [0�1])� (82)

I4 ≡
∫ ∫ 1

0

(
1 − e(ṽ�h)− g(ṽ)+Mη1(ṽ)+η2(ṽ)

)−σ
dhdm

(
ṽ� [0�1])� (83)

Consider now the inner integrals. In these integrals we are conditioning on ṽ and in-
tegrating with respect to h alone. By the same proof as Lemmas 2 and 3, ê(ṽ�h) must
take at most two values as a function of h for each ṽ, except at most in sets of Lebesgue
measure 0,41 for otherwise we can vary the inner integral in I3 while holding the inner
integrals in I1, I2, Î2, and I3 − I4 fixed. Of course, changes in the inner integrals will be re-
flected in changes in the whole integrals only if they take place on sets that have positive
m-measure in the outside integration: therefore, ê(ṽ�h) can take more than two values
as a function of h for any given ṽ on sets of m-measure 0, but this cannot happen on sets
of positive m-measure. �

Appendix E: Uniform commodity taxation: A formal analysis

This appendix contains a formal treatment of the relationship between the results in the
main paper and the conditions under which uniform commodity taxation holds. In this
appendix, we adopt a notation that allows us to easily compare the results in the paper
with what has already been established in a static framework, in particular, by Atkinson
and Stiglitz (1972) and Atkinson and Stiglitz (1976).

We indicate by ci, i = 1�2, the vector of consumption goods consumed by type-i
agents. x is the vector of leisure consumed by the taxpayers (agents of type 2). The pref-
erences of the rentiers are described by

V 1(Γ 1(c1)) (84)

and those of the taxpayers by

V 2(Γ 2(c2)�Θ(x)
)
� (85)

where Γ i, i = 1�2, and Θ are linearly homogeneous functions, and all the functions are
assumed to be twice continuously differentiable. Equations (84) and (85) capture two of
the features that are relevant for our purposes: that preferences are separable between
leisure and the consumption goods, and that the subutilities are homothetic. These as-
sumptions are satisfied by the preferences (14) and (15) that we assumed in Section 3.

To keep notation simple, we will let ci and x be finite-dimensional vectors; cij will

denote the jth component of ci and xj will denote the jth component of x. All the re-
sults continue to hold if we switch to the appropriate notation in an infinite-dimensional
space.

The technology of the economy is characterized by

F
(
N1c1 + c2 + g�x

) ≤ 0� (86)

41Note that h is distributed uniformly, so its measure is the Lebesgue measure.
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We assume the technology exhibits constant returns to scale. To stay closer to Atkin-
son and Stiglitz (A-S), we first assume F to be twice continuously differentiable, with
a strictly positive gradient. This assumption implies that any good (or leisure) can be
transformed into another good (leisure), which is violated by our problem; we, there-
fore, will later amend this hypothesis and look at the implications of doing so.

Atkinson and Stiglitz work mostly with a small open economy (or a linear technol-
ogy) in which producer prices are given, although their results are more general; in their
case, the function F could be written as

F
(
N1c1 + c2 + g�x

) =
∑
j

q∗
j

(
N1c1

j + c2
j + gj

) +
∑
j

w∗
j (xj − 1)� (87)

where q∗
j are the international prices of the different consumption goods and w∗

j are the
international wages for the various types of leisure.

Let w be the vector of wages corresponding to the different types of leisure and let
q be the vector of producer prices of the consumption goods. If we normalize to 1 the
wage rate of time of the first type, profit maximization on the firms’ part requires

qj = − Fcj

Fx1

(88)

and

wj = Fxj

Fx1

� (89)

The budget constraints of the rentiers and the taxpayers can be written as
∑
j

pj

(
c1
j − c̄1

j

) − T ≤ 0 (90)

and
∑
j

pj

(
c2
j − c̄2

j

) +
∑
j

wa
j (xj − 1)− T ≤ 0� (91)

where c̄i is the vector of the initial endowment of each type, p is the vector of consumer
prices, wa is the vector of after-tax wages, and T is a lump-sum transfer from the gov-
ernment. We already imposed that the taxpayers start with 1 unit of time of each type;
since we are free to adjust the function F , this can be viewed simply as a normalization.

In line with A-S, we assume the government can tax the consumption goods (net
of the initial endowment) and the labor supply, but it cannot tax any type of leisure.
For a general production function F , this is a richer set of instruments than the one we
introduced in the paper, where only the labor supply can be taxed. However, we will
show later that taxing consumption in addition to the labor supply is redundant for the
particular production function that we use in the paper. One tax rate is redundant, so
we can set q1 = p1.

As in the main text, we will work with the primal problem: we will use the first-order
conditions of the consumers and the producers to substitute out the prices, and we will
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look at the Ramsey problem as one of solving for quantities.42 From the budget con-
straints and the first-order conditions of the consumers, we obtain the implementability
constraints

∑
j

Γ 1
j

(
c1
j − c̄1

j

) − Γ 1
1 T ≤ 0 (92)

and

V 2
1

∑
j

Γ 2
j

(
c2
j − c̄2

j

) + V 2
2

∑
j

Θj(xj − 1)− V 2
1 Γ

2
1 T ≤ 0� (93)

In equations (92) and (93) and in what follows, a subscript j to a function refers to the
partial derivative with respect to the jth component. We normalized the price of the
first consumption good to 1, we multiplied the first equation by Γ 1

1 , and multiplied the
second equation by V 2

1 Γ
2

1 .
In addition to the implementability constraints, the government faces the following

further constraints:

(i) The feasibility constraint, given by equation (86).

(ii) In a competitive equilibrium, the marginal rates of substitution must be the same
for all consumers, that is,

Γ 1
j Γ

2
k = Γ 1

k Γ
2
j ∀j�k� (94)

Because of (94), the implementability constraint of the rentiers can also be written in the
following form, which will be more convenient later:

V 2
1

∑
j

Γ 2
j

(
c1
j − c̄1

j

) − V 2
1 Γ

2
1 T ≤ 0� (95)

The first-order conditions for the government are

α1V 1
1 Γ

1
i + λ1V 2

1 Γ
2
i +

∑
j>1

νj
[
Γ 1

1iΓ
2
j − Γ 1

ij Γ
2

1
] = μFci ∀i� (96)

α2V 2
1 Γ

2
i + λ1

{
V 2

11Γ
2
i

[∑
j

Γ 2
j

(
c1
j − c̄1

j

) − Γ 2
1 T

]
+ V 2

1

[∑
j

Γ 2
ij

(
c1
j − c̄1

j

) − Γ 2
1iT

]}

+ λ2
{
V 2

11Γ
2
i

[∑
j

Γ 2
j

(
c2
j − c̄2

j

) − Γ 2
1 T

]
+ V 2

1

[∑
j

Γ 2
ij

(
c2
j − c̄2

j

) − Γ 2
1iT

]

(97)

+ V 2
1 Γ

2
i + V 2

12Γ
2
i

∑
j

Θj(xj − 1)
}

+
∑
j>1

νj
[
Γ 1

1 Γ
2
ij − Γ 1

j Γ
2

1i
]

= μFci ∀i�
42Atkinson and Stiglitz follow the dual approach: they substitute out quantities and solve the problem in

terms of prices. The primal approach is easier in our case in which we have an initial endowment of more
than one good.
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α2V 2
2 Θi + λ1V 2

12Θi

[∑
j

Γ 2
j

(
c1
j − c̄1

j

) − Γ 2
1 T

]

+ λ2
{
V 2

12Θi

[∑
j

Γ 2
j

(
c2
j − c̄2

j

) − Γ 2
1 T

]
+ V 2

22Θi

∑
j

Θj(xj − 1)

(98)

+ V 2
2

∑
j

Θij(xj − 1)+ V 2
2 Θi

}

= μFxi ∀i�

and

−λ1V 2
1 Γ

2
1 − λ2V 2

1 Γ
2

1 ≥ 0 �⇒ λ1 ≥ −λ2�T ≥ 0�
(
λ1 + λ2)T = 0� (99)

where λ1, λ2, ν, and μ are the Lagrange multipliers associated with the constraints (95),
(93), (94), and (86), respectively. Given the Ramsey allocation, the conditions for a com-
petitive equilibrium imply the price system and tax policy

pi = Γ 2
i

Γ 2
1

∀i� (100)

wa
i = V 2

2 Θi

V 2
1 Γ

2
1

∀i� (101)

qi = Fci

Fc1

∀i� (102)

wi = Fxi

Fc1

∀i� (103)

τci = pi

qi
− 1 ∀i� (104)

and

τwi = 1 − wa
i

wi
∀i� (105)

where we normalized p1 = q1 = 1.
We have a uniform commodity tax when pi

qi
is independent of i or, equivalently, when

Γ 2
i

Fci
is independent of i.43 To study what conditions lead to a uniform commodity tax, it

is useful to rewrite the first-order conditions as

α1V 1
1
Γ 1
i

Fci

+ λ1V 2
1
Γ 2
i

Fci

= μ− 1
Fci

∑
j>1

νj
[
Γ 1

1iΓ
2
j − Γ 1

ij Γ
2

1
] ∀i� (106)

43Due to (94), this also implies that
Γ 1
i

Fci
is independent of i.
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Γ 2
i

Fci

{
α2V 2

1 + λ1
[
V 2

11

∑
j

Γ 2
j

(
c1
j − c̄1

j

)]

+ λ2
[
V 2

11

∑
j

Γ 2
j

(
c2
j − c̄2

j

) + V 2
1 + V 2

12

∑
j

Θj(xj − 1)
]}

(107)

= μ− 1
Fci

[
λ1V 2

1

∑
j

Γ 2
ij

(
c1
j − c̄1

j

)

+ λ2V 2
1

∑
j

Γ 2
ij

(
c2
j − c̄2

j

) +
∑
j>1

νj
(
Γ 1

1 Γ
2
ij − Γ 1

j Γ
2

1i
)] ∀i�

and

Θi

Fxi

{
α2V 2

2 + λ1V 2
12

∑
j

Γ 2
j

(
c1
j − c̄1

j

)

+ λ2
[
V 2

12

∑
j

Γ 2
j

(
c2
j − c̄2

j

) + V 2
22

∑
j

Θj(xj − 1)+ V 2
2

]}
(108)

= μ− λ2V 2
2

Fxi

∑
j

Θij(xj − 1) ∀i

together with (99).
Note that all the terms in T dropped out of equations (106), (107), and (108) because

of (99). Lump-sum transfers and taxes affect our problem only through the multipliers
λ1 and λ2: given such multipliers, the first-order conditions are identical whether T is
optimally chosen or is constrained to be 0, as in our main text. While lump-sum taxes
and transfers can reduce the incentive to distort prices, they cannot completely offset it
unless λ1 = λ2 = 0; it is easy to check that in this case the allocation is an unconstrained
Pareto optimum, which can only happen if the government does not need to levy dis-
tortionary taxes.

We can now focus on the terms that break the optimality of a uniform commodity
tax.

(i) The terms
∑

j Γ
2
ij c

1
j and

∑
j Γ

2
ij c

2
j . If Γ 2 is homogeneous of degree 1, then its

derivatives are homogeneous of degree 0 and hence
∑

j Γ
2
ij c

2
j = 0: this is the key to the

result obtained by Atkinson and Stiglitz (1972). However, it is not enough for Γ 2 (or Γ 1)
to be homogeneous of degree 1 to reduce the first of the two terms to 0. If Γ 1 and Γ 2 are
two different homogeneous functions, then the rentiers and the taxpayers will allocate
their spending over the consumption goods in different proportions; the government
will then be able to favor a group by taxing more lightly the goods it consumes in a larger
proportion, which would lead away from uniform taxation. On the other hand, if Γ 1 and
Γ 2 are the same function, then equality of the marginal rates of substitution implies
that c1 is proportional to c2 and both sums are 0: in this case, both groups allocate their
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spending in equal proportions on the consumption goods and the government would
not favor either by deviating from a uniform tax. The environment of Sections 4 and 5
satisfies the condition Γ 1 = Γ 2, so the deviations from a uniform commodity tax do not
arise from this source in our case.

(ii) The terms
∑

j Γ
2
ij c̄

1
j and

∑
j Γ

2
ij c̄

2
j . Even if Γ 1 and Γ 2 are homogeneous of degree

1 and are the same function, deviations from a uniform tax follow if c̄1 and c̄2 are not
proportional to c2 (and c1). Since c̄1 is the only source of resources for the rentiers, if it
is proportional to c1, it must be equal to it as well: we are then in a case in which the
rentiers do not trade away from their initial endowment. As we observed, the net trade
between the two types is the main determinant of the pattern of taxes we derive in this
paper. By distorting prices, taxes change the value of the initial endowment at consumer
prices; each group gets a positive (negative) income effect from increases in the prices
of goods for which it is a net seller (buyer). For this reason, a government that wants to
favor the rentiers will use some price distortion even if it can raise revenues from the
taxpayers and redistribute them lump sum; the first-order conditions show that it will
be optimal to trade off the increased distortions from the necessity of raising additional
revenues to rebate lump sum with the price distortions that a nonuniform commodity
tax implies.

(iii) The term
∑

j>1 νj(Γ
1

1 Γ
2
ij − Γ 1

j Γ
2

1i). This term comes from the constraint that
marginal rates of substitution should be equal across consumers (equation (94)). We
now show that this constraint is not binding if the previous two sources of deviation
from uniform commodity taxation are not present. To see this, assume that the func-
tions Γ 1 and Γ 2 are the same and that c̄1 and c̄2 are proportional to c1 and c2. If (94) is

not binding, then ν = 0. Under these conditions, equation (107) implies that
Γ 2
i

Fci
is in-

dependent of i and, hence, equation (106) implies the same for
Γ 1
i

Fci
; Γ 1 and Γ 2 are thus

proportional to each other and the constraint (94) is satisfied.

Notice that uniform commodity taxation does not imply uniform factor taxation. We
could easily repeat the same steps to analyze the taxes on factors; since the initial en-
dowment of each factor is 1, homotheticity will not be enough to establish uniform fac-
tor taxation unless the labor supply is constant. This is the reason why the labor tax rate
is not constant in the representative-agent economy of Lucas and Stokey (1983), even
when the separability and homotheticity requirements discussed above hold and when
there is no initial government debt.

The previous analysis requires the production function to allow for substitutability
of all input and output factors. Our technology is instead described by

Fi

(
N1c1

i + c2
i + gi�xi

) ≤ 0 ∀i� (109)

With this production function, the multiplier μ will be a vector rather than a scalar. In
this case, the Ramsey allocation identifies uniquely the consumer prices (through the
marginal rates of substitution), but not the producer prices: since there is no substi-
tutability among different goods, firms will not be able to change their production in
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response to changes in relative prices. Analogously, firms cannot substitute different fac-
tors of production and, hence, are not able to react to changes in wages before tax. The
firms’ profit maximization conditions only link the producer price of a good with the
wage before tax in the same period and state of nature. Because of this, the government
can then implement the Ramsey allocation by using consumption taxes or labor taxes
alone, as we assumed in the text; the only requirement is

1 + τcj

1 − τwj
=

FjxV
2

1 Γ
2
j

FjcV
2

2 Θj

∀j� (110)

Given equation (110), it is always possible to obtain a constant tax rate on consumption
goods or a constant tax rate on all factors of production by an appropriate choice. As an
example, in the paper, we normalized τc = 0. However, when the sources of deviations
from uniform commodity taxes and/or uniform factor taxes are present, it is not pos-
sible, in general, to have both a uniform commodity tax and a uniform factor tax. For
this reason, we obtain different tax rates on labor income even under the assumptions
of Section 4.
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