Supplement to "Model averaging, asymptotic risk, and regressor groups"

(Quantitative Economics, Vol. 5, No. 3, November 2014, 495–530)

BRUCE E. HANSEN University of Wisconsin

SIMULATION DETAILS

The simulation programs were written in R and run under Windows Vista. The programs are available on the journal website http://qeconomics.org/supp/332/code_and_data.zip.

The results are presented graphically, with MSE displayed as a function of R^2 . The value of R^2 was varied on the 19-point grid $\{0.00, 0.05, 0.10, 0.15, \dots, 0.90\}$. For a fixed α and R^2 , the value of c was then determined as

$$c = \sqrt{\frac{R^2}{\sum_{j=1}^{M} j^{-2\alpha} (1 - R^2)}}.$$

Given c, we then set $\beta_j = cj^{-\alpha}$ and

$$y_i = \beta_0 + \sum_{j=1}^{M} \beta_j x_{ji} + e_i$$

with $\beta_0 = 0$.

We varied $\alpha \in \{0, 1, 2, 3\}$ and $n \in \{50, 150, 400, 1000\}$.

The default model (Model 1) set the errors e_i and regressors x_{ji} as i.i.d. N(0, 1) and set M = 12. The remaining models explored the deviations from these default settings.

We explored nonnormal errors, heteroskedastic errors, correlated regressors, and M = 24.

All models were designed so that the error is conditionally mean zero and has an unconditional variance of 1.

The results for Model 1 and Model 6 are calculated using 10,000 simulation replications. For Models 2–5, the calculations used 2000 simulation replications.

1. Model 1: Normal regression

• $e_i \sim N(0, 1)$

Bruce E. Hansen: behansen@wisc.edu

 $\label{linear_control_common_common} Copyright @ 2014 \ Bruce \ E. \ Hansen. \ Licensed \ under the \ Creative \ Commons \ Attribution-NonCommercial \ License \ 3.0. \ Available \ at \ http://www.qeconomics.org.$

DOI: 10.3982/QE332

- uncorrelated regressors
- *M* = 12
- 2. Model 2: Nonnormal error
 - $e_i \sim \frac{4}{5}N(-\frac{1}{3},\frac{5}{9}) + \frac{1}{5}N(\frac{4}{3},\frac{5}{9})$
- 3. Model 3: Heteroskedastic error
 - $e_i \sim N(0, \frac{1}{2}(1 + x_{2i}^2))$
- 4. Model 4: Correlated regressors
 - $e_i \sim N(0, 1)$
 - $E(x_{ji}^2) = 1$, $E(x_{ji}x_{ki}) = 0.5$ for $j \neq k$
- 5. Model 5: Increased number of regressors
 - $e_i \sim N(0, 1)$
 - *M* = 24
- 6. Model 6: Autoregression

In the paper, the figures display the normalized MSE for the estimators MMA_4 , MMA_5 , Stein, Lasso, and BMA. Here, we also display the normalized MSE for the estimator SAIC and the MMA_4 estimator with the regressors ordered in reverse (from smallest to largest coefficients) and labeled as "Reversed."

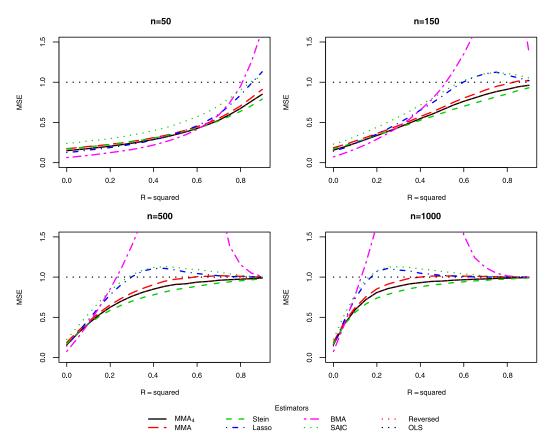


Figure 1. Model 1: $\alpha = 0$.

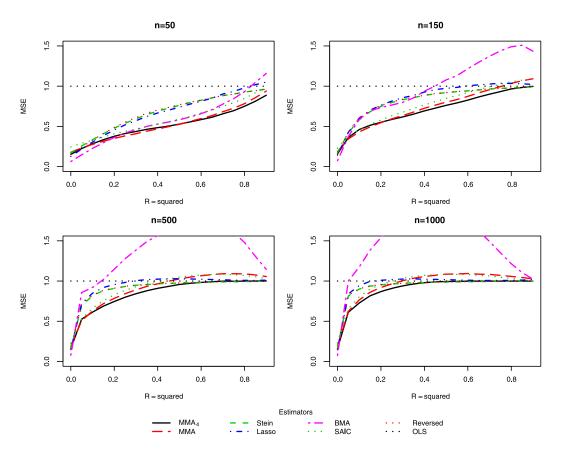


FIGURE 2. Model 1: $\alpha = 1$.

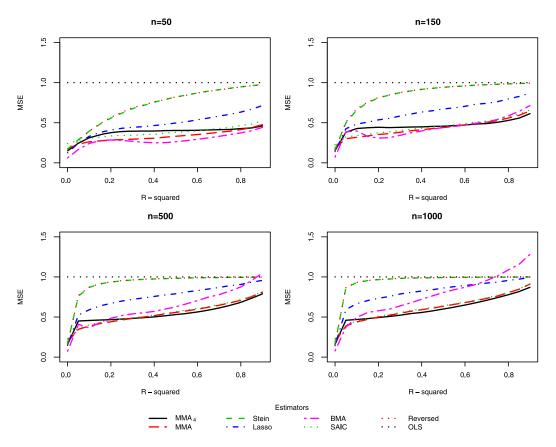


Figure 3. Model 1: $\alpha = 2$.

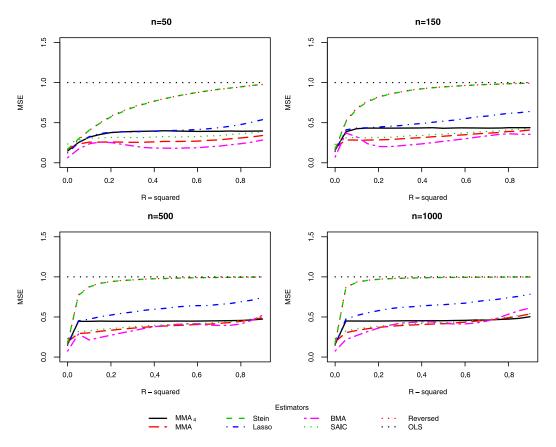


Figure 4. Model 1: $\alpha = 3$.

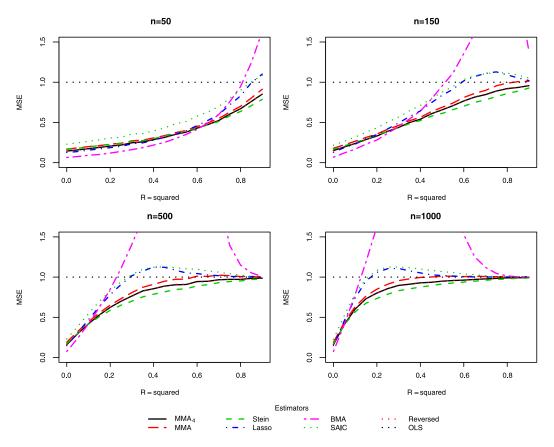


FIGURE 5. Model 2: $\alpha = 0$.

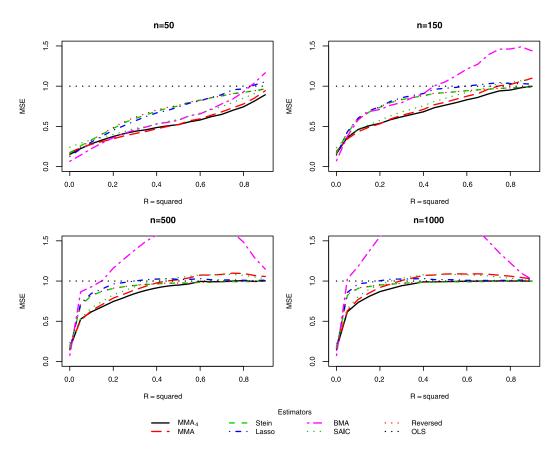


FIGURE 6. Model 2: $\alpha = 1$.

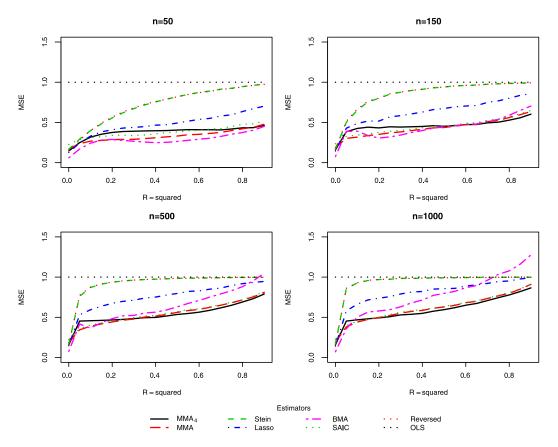


FIGURE 7. Model 2: $\alpha = 2$.

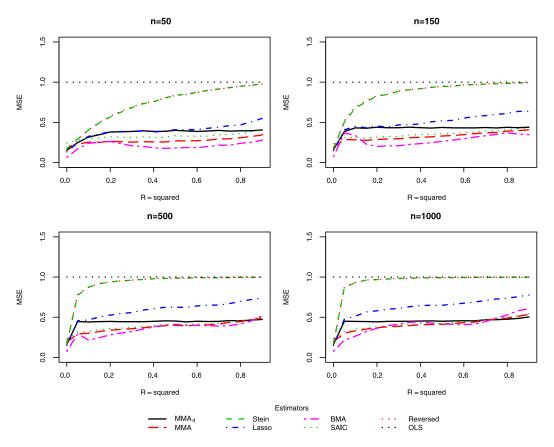


FIGURE 8. Model 2: $\alpha = 3$.

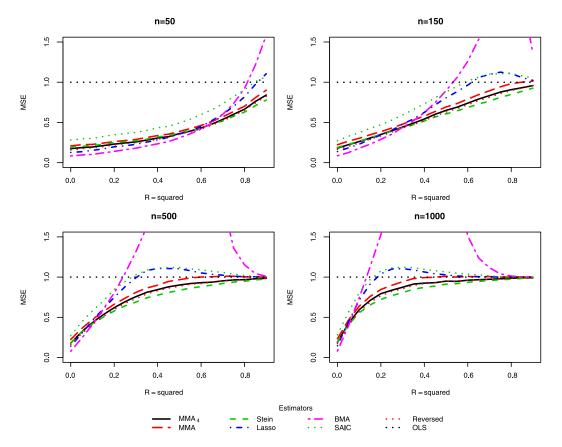


FIGURE 9. Model 3: $\alpha = 0$.

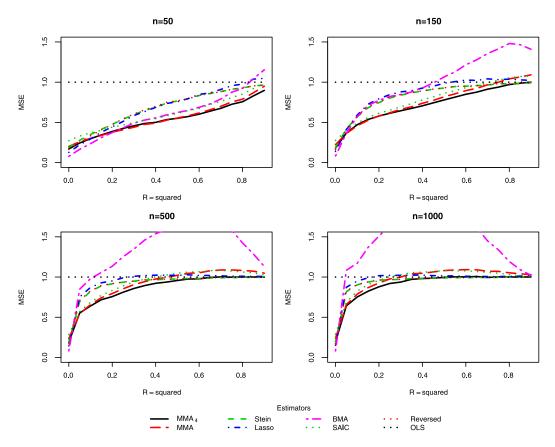


FIGURE 10. Model 3: $\alpha = 1$.

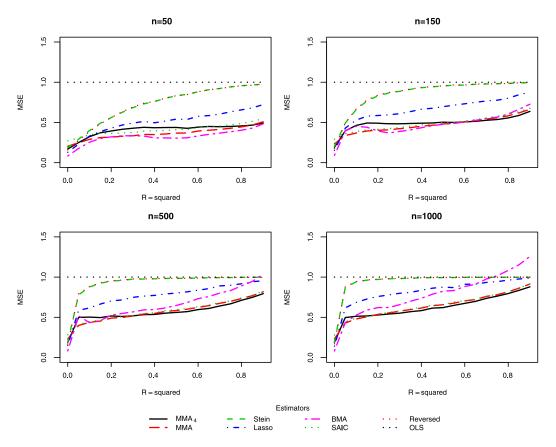


FIGURE 11. Model 3: $\alpha = 2$.

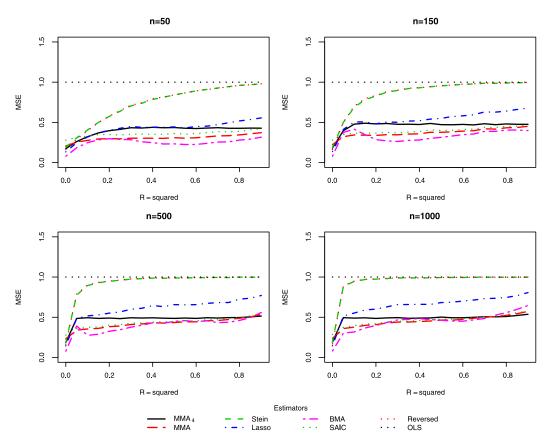


FIGURE 12. Model 3: $\alpha = 3$.

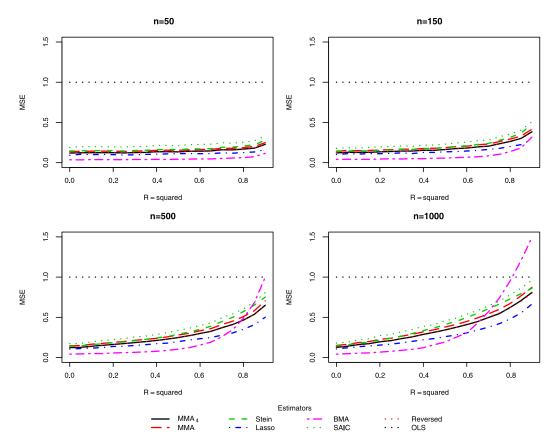


FIGURE 13. Model 4: $\alpha = 0$.

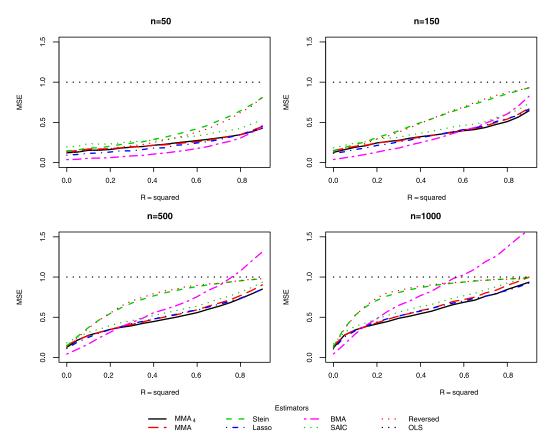


FIGURE 14. Model 4: $\alpha = 1$.

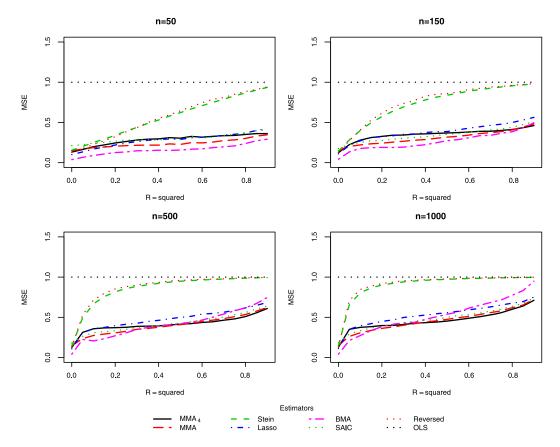


FIGURE 15. Model 4: $\alpha = 2$.

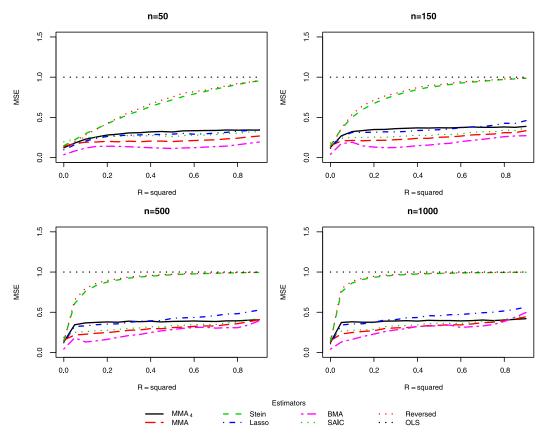


FIGURE 16. Model 4: $\alpha = 3$.

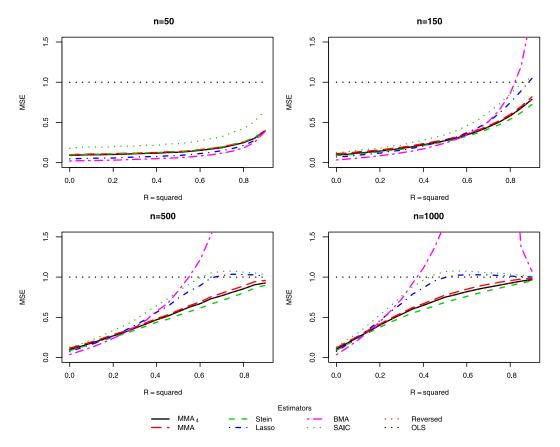


FIGURE 17. Model 5: $\alpha = 0$.

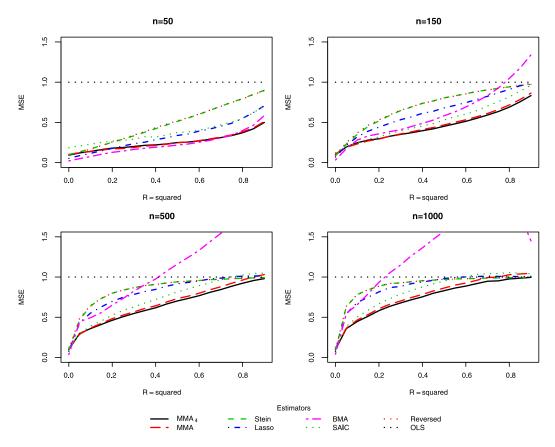


FIGURE 18. Model 5: $\alpha = 1$.

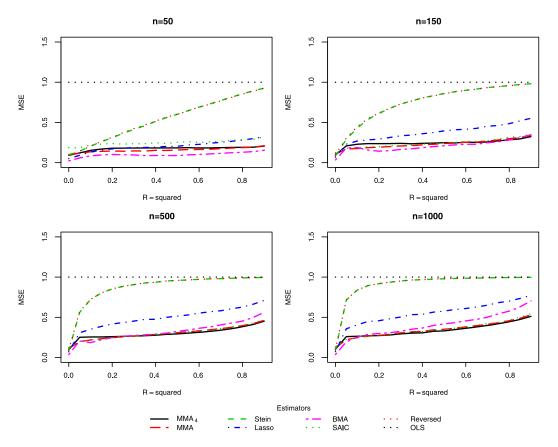


FIGURE 19. Model 5: $\alpha = 2$.

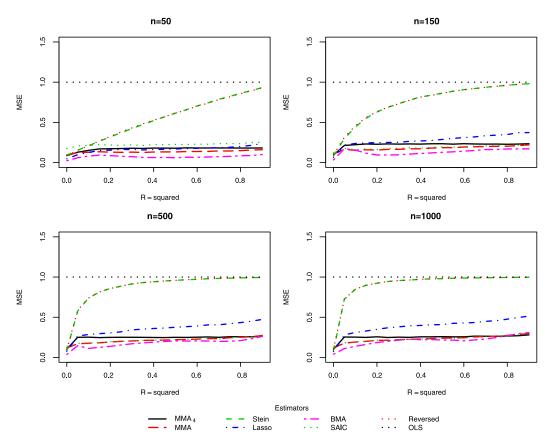


FIGURE 20. Model 5: $\alpha = 3$.

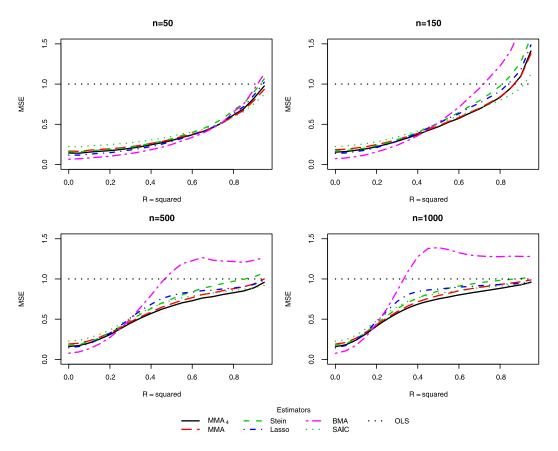


FIGURE 21. Model 6: Autoregression.

Submitted November, 2012. Final version accepted August, 2013.