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Model averaging, asymptotic risk, and regressor groups

Bruck E. HANSEN
University of Wisconsin

This paper examines the asymptotic risk of nested least-squares averaging esti-
mators when the averaging weights are selected to minimize a penalized least-
squares criterion. We find conditions under which the asymptotic risk of the
averaging estimator is globally smaller than the unrestricted least-squares esti-
mator. For the Mallows averaging estimator under homoskedastic errors, the con-
dition takes the simple form that the regressors have been grouped into sets of
four or larger. This condition is a direct extension of the classic theory of James—
Stein shrinkage. This discovery suggests the practical rule that implementation of
averaging estimators be restricted to models in which the regressors have been
grouped in this manner. Our simulations show that this new recommendation re-
sults in substantial reduction in mean-squared error relative to averaging over all
nested submodels. We illustrate the method with an application to the regression
estimates of Fryer and Levitt (2013).
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1. INTRODUCTION

Model averaging is receiving growing attention in statistics and econometrics. Averaging
is a smoothed extension of model selection, and substantially reduces risk relative to se-
lection. The key issue is weight selection. A traditional approach to model selection is to
minimize an information criterion that is an estimate of the risk of the selected estima-
tor (e.g., Akaike (1973), Mallows (1973)). Similarly, averaging weights can be selected by
minimizing an information criterion that is an estimate of the risk of the averaging es-
timator, as proposed in Hansen (2007). While the asymptotic nonparametric optimality
of such estimators has been established, our understanding of the sampling distribution
remains incomplete.

Following Hjort and Claeskens (2003), Schorfheide (2005), Saleh (2006), and Hansen
(2013), this paper explores the asymptotic distribution and risk of nested averaging es-
timators in a local asymptotic framework where the coefficients are in a root-xn neigh-
borhood of 0. We derive the asymptotic distribution of a general class of averaging es-
timators that minimize a penalized least-squares criterion. We show that the asymp-
totic distribution can be written as a (nonlinear) function of the normal random vector
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that characterizes the unrestricted estimator. We then derive a representation for the
asymptotic risk that is similar in form to those of shrinkage estimators (as presented,
for example, in Lehmann and Casella (1998)). Using this representation, we derive suffi-
cient conditions for the asymptotic risk of the averaging estimator to be globally smaller
than the risk of the unrestricted estimator. We find that this condition is a simple gen-
eralization of the classic condition for shrinkage estimators. In particular, the Mallows
averaging estimator of Hansen (2007) satisfies this condition under homoskedasticity if
the regressors are grouped in sets of four or greater. This means that if we restrict atten-
tion to submodels that are differentiated by four or more regressors, we can guarantee
that the Mallows averaging estimator will have reduced mean-squared error (MSE) rel-
ative to the least-squares estimator, regardless of the values of the coefficients or the
distributions of the regressors or regression errors.

We find in a simple simulation experiment that this modified averaging estima-
tor has substantially reduced risk relative to the standard averaging estimator as well
as the least-squares estimator, and has much better risk performance than alternative
methods such as the least absolute shrinkage and selection operator (Lasso) (Tibshirani
(1996)), smoothed Akaike information criterion (AIC) (Burnham and Anderson (2002)),
and approximate Bayesian model averaging (BMA).

The message from this analysis is simultaneously subtle yet profound. First, it rein-
forces our view that selection and averaging methods should be derived from rigorous
theory, not from intuition or analogy. Second, it points to the need for careful examina-
tion of the submodels used for estimation. Rather than simply estimating every possible
submodel, we should limit the number of submodels and enforce the constraint that the
separation between each submodel be four coefficients or greater.

Nested model selection and averaging rests on the implicit assumption that the re-
gressors are individually ordered, from “most relevant” to “least relevant.” Similarly, our
method requires that the regressors are groupwise ordered. In practice, it may be much
easier to order regressors by groups rather than individually. For example, the difference
between specifications may be whether or not all state dummy variables are included,
which is a 50-member grouping. In this sense, our focus on groupwise ordering is some-
what attractive.

A limitation of our analysis is that it is critically confined to nested models. Nesting
permits the application of Stein’s lemma (Stein (1981)), which lies at the heart of our risk
calculations. It would be greatly desirable to extend our results to the case of nonnested
models, but it unclear how to do so.

This paper builds on an extensive literature. Stein (1956) first showed that a Gaussian
estimator is inadmissible when the number of coefficients exceeds two. A feasible esti-
mator with smaller risk than the Gaussian estimator was introduced by James and Stein
(1961). Baranchick (1964) showed that a positive-part James-Stein estimator has even
smaller risk. Efron and Morris (1973b) showed the close connection between Stein and
empirical Bayes estimators. Akaike (1973), Mallows (1973), and Schwarz (1978) intro-
duced information criteria suitable for model selection. Judge and Bock (1978) provided
an extensive evaluation of the Stein-rule estimator in linear regression. Leamer (1978)
proposed the method of Bayesian model averaging. Akaike (1979) proposed the expo-
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nential AIC as an analog of Bayesian probability weights. Lehmann and Casella (1998)
provided an excellent introduction to the theory of shrinkage estimation. Saleh (2006) is
arecent review of statistical shrinkage methods.

The idea of grouping regressors for shrinkage has been investigated previously in the
statistics literature, including Efron and Morris (1973a), Berger and Dey (1983), Dey and
Berger (1983), and George (1986a, 1986b).

Model averaging is an extension of the idea of forecast combination, which was in-
troduced by Bates and Granger (1969) and spawned a large literature. The idea of us-
ing Bayesian model averaging for forecast combination was pioneered by Min and Zell-
ner (1993). Some excellent reviews include Clemen (1989), Diebold and Lopez (1996),
Hendry and Clements (2004), Timmermann (2006), and Stock and Watson (2006). Re-
lated ideas are the empirical Bayes regressions of Knox, Stock, and Watson (2004), and
the bagging method of Inoue and Kilian (2008).

Model averaging methods are receiving an explosion of interest in econometrics and
statistics. Averaging methods for linear regression have been proposed by Buckland,
Burnham, and Augustin (1997), Hjort and Claeskens (2003), Danilov and Magnus (2004),
Hansen (2007), Hansen and Racine (2012), Liu (2012), and Liu and Okui (forthcoming).
The theory has been further studied in Magnus (2002), Magnus, Powell, and Priifer
(2010), Wan, Zhang, and Zou (2010), Liang, Zou, Wan, and Zhang (2011), and McCloskey
(2012). Averaging for instrumental variable and generalized method of moments esti-
mation has been proposed by Kuersteiner and Okui (2010), Liao (2012), Lee and Zhou
(2011), and DiTraglia (2013).

The remainder of the paper is organized as follows. Section 2 introduces the re-
gression model and submodels. Section 3 introduces the submodel estimators. Sec-
tion 4 presents the class of penalized weight criteria, and Section 5 rewrites the cri-
teria using cumulative weights. Section 6 demonstrates the connection between the
averaging estimator and James-Stein shrinkage. Section 7 presents the asymptotic dis-
tribution of the averaging estimator in the local asymptotic framework, and Section 8
calculates the asymptotic risk. Section 9 simplifies the conditions under bounded het-
eroskedasticity. Section 10 discusses weight selection under heteroskedasticity. Sec-
tion 11 presents the results of simulation experiments. Section 12 is an empirical ap-
plication to a regression example from Fryer and Levitt (2013). Section 13 presents a
conclusion. Mathematical proofs are presented in the Appendix. Further simulation
results are presented in a supplemental appendix, available on the journal website,
http://geconomics.org/supp/332/supplement.pdf. The replication codes for the sim-
ulation experiment and empirical application are also posted on the journal website,
http://qeconomics.org/supp/332/code_and_data.zip.

2. REGRESSION MODEL

We have observations {y;,x;:i =1, ..., n}, where y; is real-valued and x; is K x 1. The
observations are assumed to satisfy the linear projection equation

Vi=X;B+ei,
1)
Ex;e;) =0.
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In matrix notation, we write the equation as

y=XB+e.
We assume that the regressors can be partitioned into ordered groups as x; =
8 p group
(X};» X - -+ » X)p;)', where x;; is k; x 1 and the total number of regressors is K = k1 +--- +

kyr. We then consider M nested submodels, where the mth can be written as

m
Yi= Y X,,B;+ei(m)

j=1

That is, the mth submodel includes the regressors x;; through x,,; and excludes the re-
maining regressors.
In matrix notation,

y=) X;B;+e(m)
=1
o @)
=XmB,, +e(m).

Note that the mth submodel has
Kpn=ki+ - +kn 3

regressors and that the regressors xy; are included in all models. Notationally, we allow
k1 =0, in which case there is no x;; and model 1 is the zero vector. Note that the error in
equation (2) is not a projection error, as the coefficients are defined in the full model (1)
and thus have common meaning across models. Another way of thinking about this is
that equation (2) has omitted variables.

The ordering of the groups is important, as xy; is included in all submodels, xy; is in-
cluded in all submodels except for model 1, and so on. Thus it is prudent for the user to
construct the ordering so that the variables expected to be most relevant are included in
the first groups, and those expected to be least relevant are included in the final groups.
If the regressors have been standardized to have zero mean and common variance, then
it would be ideal if the regressors are ordered so that their coefficients are descending in
absolute value. The performance of our averaging estimator will depend on this order-
ing, in the sense that the efficiency gains will be greatest when the regressors have been
so ordered. However, for all of our theoretical results, we do not impose any assumption
on the ordering; it is not required to be “correct” in any sense.

3. ESTIMATION

The unconstrained least-squares estimator of 8 in the full model is
Bis = (XX)

with residual €; = y; — x/B g or in vector notation as € =y — XB.

1 X/y
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The standard estimator of the coefficient vector B8 in the mth submodel is the least-
squares estimate of y on the included regressors X,,,. Notationally, let

_ Ik
o= %)

be the K x K,, matrix that selects the included regressors; thus X,, = XS,,,. The least-
squares estimate of 8,, in the mth submodel is

B=(%,%n) X,y

and that of B is
Bow = SmBo = S (S, XXS,,) '8, Xy.

The correspgnding residual i8S €,; = yi — X,,,;Bn = Vi — x}ﬁm, and in vector notation as
€n=yY—XuB,=y— Xﬁm. Note that since model M contains all regressors, then EM =
Bis and ey =e.

An averaging estimator of B is a weighted average of the submodel estimates. Let
w = (wy, wy, ..., wy) be aweight vector. We require that w,, > 0 and Z%Zl wy;,; =1, and
thus is an element of the unit simplex in R¥:

M
H= w:meO,Zwmzl ) (5)

m=1

An averaging estimator of B is
M
BW) =" wnB,. (6)
m=1
The residual from the averaging estimator is
M
Ci(w) =yi —XBW) =D Wi
m=1

or in vector notation

M
ew) = Y- Xﬁ(w) = Z Wy €.
m=1

4. PENALIZED WEIGHT CRITERIA
A general class of penalized least-squares criteria take the form

M
Ca(W) = (W) EW) +2 ) win T @

m=1
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The leading term

ew)ew) =) ei(w)’ = Z Z Wi W Z CmiCui

i=1 m=1/{=1

is the sum of squared residuals from the averaging estimator.

The constants T}, are (possibly data-dependent) penalties satisfying Ti\<Th<- <
TM For example, the Mallows averaging criterion (Hansen (2007)) sets Tm =35 Km,
where K, is the number of coefficients in model m as defined in (3), and

1

2 N~
8

nKe ®

is the standard estimator of the unconditional error variance o2 = E (e%). Thus the Mal-
lows averaging criteria is

M
C,l1\/[a110WS (W) = ’é(w)//é(w) + 2S2 Z Wi K. ®

m=1

Given the criterion (7), the selected weight vector w is the element of the unit simplex
that minimizes (7):

~

W= (wy, ..., wy) = argmin C,(w). (10)
weH

The averaging estimator (6) computed with the weights (10) is then

Bi=> WuB,,. (11)

For the weight vector WwMMA which minimizes the Mallows averaging criteria (9),

Hansen'’s (2007) Mallows model averaging (MMA) estimator is

Bynia = Z opMAB (12)

5. CUMULATIVE WEIGHT CRITERIA

It turns out that there is a convenient alternative representation of the averaging estima-
tor (11) in terms of the cumulative weights:

Wy =wi + -+ W

Setw* = (wj, ..., wjy,). Notice that w € H is equivalent to w* € H*, where
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Similarly, define the selected cumulative weights
Wy, =W1 + -+ W
and set
W= (W}, ..., Wy). (13)
We can equivalently discuss averaging in terms of the weights w € # or cumulative

weights w* € H*. Notice that (6) is equivalent to

M—-1
E(w) = ELS - Z w;kn(Eerl - Em) (14)
m=1

and (11) is equivalent to

M—-1
Ba=Bis— > 0;Brii — Bu)- (15)

m=1

The representation in terms of the cumulative weights w* is convenient, as the pe-
nalized least-squares criterion (7) can be written as a simple function of w*. Define the
marginal penalty for model m + 1 as

~

Iny1 = Tm+1 = Tm.

Note, for example, that for the Mallows criterion, we have 7,1 = s?k,,1. Also, let L,, =
€€, denote the sum of squared residuals in the mth model.
LemwmA 1. For the penalized criterion (7),

Co(W) = CE(W*) + Ly + 2T,

where
M—1
Ci(W*) = (WA (Lm — Lyng1) — 2w g1 (16)
m=1
Hence
W* = argmin C;; (w"). (17
wHeH*

Lemma 1 shows that C,(w) and C;;(w*) are equivalent up to the term Ly + ZTM,
which does not depend on the weight vector and thus the cumulative weights (13) are
the minimizers of (16). We call C;;(w*) the cumulative criterion. It is a simple function of
w*, as it is quadratic with no cross-terms.

The representation (15)-(17) turns out to be useful because it facilitates an asymp-
totic distribution theory for the averaging estimator, as we show in Section 7.



502 Bruce E. Hansen Quantitative Economics 5 (2014)

6. JAMES—STEIN SHRINKAGE

Consider the case of two submodels so M =2 and for simplicity suppose k1 = 0. In this
case, write w = w; = w} and 7="7, so that (16) equals

C¥(w) = w?(Ly — Ly) — 2wi
= w’B'XXB — 2wl

where the second line uses the substitution L, — L, =y'y — e = B X'XB.
The solution (17) minimizes this function subject to the constraint 0 < w < 1, and
equals

7 SO
| =——, ifBXXB=7,
w=1{ BXXB

1, otherwise.

It follows that the averaging estimator (15) equals
B.a= (1

where (a) = al,> is the positive part operator.

This averaging estimator (18) is the classic James—Stein estimator with shrinkage pa-
rameter 7. That is, when there are two models, averaging estimators whose weights min-
imize penalized least-squares criteria of the form (7) are numerically identical to the
James-Stein estimator. This is fascinating as it shows that averaging estimators are in
the class of shrinkage estimators. Furthermore, note that the classic James-Stein recom-
mendation was to set 7 = s2(K, — 2), while the Mallows criterion sets 7 = s2K,,. This is a
modest difference for small K, and is quite minor when K, is large.

-~

BXXB/ +

7. ASYMPTOTIC DISTRIBUTION

We require that the least-squares estimator is asymptotically normal. The following con-
dition is sufficient for our needs.

ASSUMPTION 1.

1. Either (a) {yi, X;} is independent and identically distributed (i.i.d.) with finite fourth
moments or (b) {y;, x;} is a strictly stationary and ergodic time series with finite q > 4
moments and E(e;|Fi—1) =0, where Fi_1 = 0 (Xj, Xj—1, .+ -5 €i—1, €i—2, - - .)-

2. Q=Exx)) > 0.

The following conditions are required to obtain an asymptotic distribution for the
penalized weight criterion.

ASSUMPTION 2. Asn — oo,

1 T2 T form=1,..., M,
2. nl?B, — &, form=2,...,M.
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Assumption 1 states that the penalties in (7) converge in probability to constants. For
example, in the case of Mallows averaging with i.i.d. data, Ty, = 2Ky —> Ty = 02Kyn.

Assumption 2 is a local asymptotic framework and it specifies the coefficients B,, to
be in a local n~1/? neighborhood of 0. The coefficients 8 are not included in Assump-
tion 2 since these variables are included in all models.

The local asymptotic framework is a technical device commonly seen in model se-
lection and averaging asymptotic theory, for example, Hjort and Claeskens (2003) and
Schorfheide (2005). It allows the application of asymptotic theory, for in a constant pa-
rameter model, the largest model will always dominate and the asymptotic analysis will
not produce a useful approximation. Alternatively, Assumption 2 could be omitted and
replaced by the assumption that the errors e; are i.i.d. N(0, o%) with known o2, in which
case the results described below are exact and finite sample, rather than asymptotic.
The virtue of the local asymptotic framework of Assumption 2 is that it does not require
i.i.d. normality and thus allows application to the wide variety of practical econometric
applications. It is not a practical restriction.

THEOREM 1. Under Assumptions 1 and 2, as n — oo,

VnBis — B) -5 Z~N(0, V), (19)
where
v=Q'a2qQ,
(20)
0= E(xix;-e%),
and
VB —B) -5 Z—n(Z+86), 1)

where 8 = (8}, 8,,...,8),) with 8, =0,

M-1
nx) =Y )Py — Pr)QX (22)
m=1
with
P, =5,(S,,QS,) ' S) (23)
w*(x) = argmin C*(w*, x), (24)
and
M-1
Cr(w*,x) = Y (WX Q(Prp1 — Pr) QX — 2w b1 1) (25)

m=1
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with
Imy1 = Tm+1 — Tm.

The function n(Xx) is absolutely continuous, and w*(Xx) satisfies the following character-
ization. For all x, there exists an integer J(x) < M and index set {m(X),...,mj(X)} C
{1,...,M}suchthatforj=1,...,J(x),

Tonjy0 — Tmjo

wy (X) = ,
¢ X/Q(Pm i+1(X) — Pm -(x))Qx
J J

mj(x) <{< mijiq (x), (26)

and

wy(x) =1, my(x)<L=<M. (27)
The index set {my(X), ..., my(X)} has the property that if mj(x) < M, then

XQPy — Py x) QX < Tt — Ty (x)- (28)

The main contribution of Theorem 1 is (21), which is a representation of the asymp-
totic distribution of the averaging estimator as a (nonlinear) function of the limiting nor-
mal random vector Z. The characterization of this function in (22)-(28) will allow us to
apply Stein’s lemma to calculate the estimator’s asymptotic risk. In addition, the asymp-
totic distribution (21) may be useful for alternative purposes such as inference.

The representation (21)-(22) shows that the weights are asymptotically random
functions of the limiting distribution (19) plus the localizing parameters 6. The char-
acterization of the weights in (26)—(28) shows that given the random variable x=Z7Z + §,
there is a set of models {m;(x), ..., my(x)} that receive positive weight and the remain-
ing models receive zero weight. The set of models that receive positive weight is random
(depends on Z), but largely influenced by the localizing parameters 6.

8. ASYMPTOTIC RISK

The asymptotic trimmed risk or weighted mean-squared error (MSE) of an estimator 8
for B is

R(B,B) = Jim liminf £ min{n(B - B)QB - B), ¢}. (29)

While we use the matrix Q to weight the estimates, in principle other weight matrices
could be used. The choice Q is particularly convenient for two reasons. One, it induces
invariance to parameter scaling and rotation. Two, with this choice, the MSE function
(29) plus o corresponds to out-of-sample mean-squared forecast error (under station-
arity), which is a natural risk measure in time-series applications. The trimming in (29)
conveniently avoids the need to establish uniform integrability.

When B has an asymptotic distribution, that is, v/7( — B) 4, i, then the asymp-
totic trimmed risk equals E(i’Q) and is thus straightforward to calculate. For example,
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the unrestricted least-squares estimator B;g from (19) has the asymptotic distribution
ﬁ(ELS -B) LN Z ~N(0, V). Thus its asymptotic trimmed risk is

R(Bus, B) = E(ZQZ) = r(QV) = r(Q'©2).

We are now in a position to calculate the asymptotic risk of the averaging estimator.
It will be convenient to define the matrices

A, =(S,QS,,)”"'S,,2S,,
= (E®ni%yy;) " E(®ni%,i?)
and the constants
Dy = tr(Am) = E(X,,,Q, Xmic?), (30)

where Q,, = E(XniX,,;). As we discuss in the next section, under conditional ho-
moskedasticity, we have the simplifications 2 = Qo? and D,,, = 0*K,,, so D,, is a mea-
sure of the number of coefficients adjusting for heteroskedasticity.

THEOREM 2. Under Assumptions 1 and 2,

R(Bs, B) =tr(Q1Q2),

o~ (31)
R(B 4, B) =tr(Q'2) — E(q(Z+5)),
where
J—-1
(Tmjy — Tm ) 2(Dmj .y — D) — (Tjy — Tinp)]
q(x) — J+ J - J J J J
jzzl X Q(Pm]url - PmJ)Qx
_ 4§ (Tm]url - Tm])
32)
X X/Q(ij+1 - Pm,)Q(PmJH - Pm])QX

+[2(Dym — Dimy) — X Q(Prr — Py )QX] Ly < 1)

Equations (31)—(32) give an expression for the asymptotic risk of the averaging esti-
mator. We now use this expression to show that its risk is smaller than the unrestricted
least-squares estimator under a mild condition.

Let Amax(A) denotes the largest eigenvalue of a symmetric matrix A and define

T= Amx(Q202Q 7172 (33)
and

dm=Dpm — Dy,—1. (34)



506 Bruce E. Hansen Quantitative Economics 5 (2014)

AssuMPTION 3. Forallm > 2,

(@ dy > 22,
(b) 0 <ty <2(dyy —2N).

THEOREM 3. Under Assumptions 1, 2, and 3,
R(B4,B) < RPBys, B)- (35)

Theorem 3 states that the averaging estimator has smaller asymptotic trimmed risk
than the unrestricted estimator. This holds regardless of the values of the coefficients
B or other characteristics of the data distribution. Notice in particular that the result
does not depend on the ordering of the regression groups. That is, (35) holds even if
the groups have been improperly ordered. This shows that in a quite generic sense, the
averaging estimator 8 , dominates the least-squares estimator ;.

The key condition is Assumption 3. Condition (a) states that the number of coef-
ficients in each regression group, adjusted for heteroskedasticity, is sufficiently large.
Condition (b) states that the marginal penalties ¢#,, are all positive, but not too large. No-
tice that condition (a) is necessary for condition (b) to be feasible.

Notice that Assumption 3 does not impose any conditions on the regressors x;; that
are included in all models. The set of such regressors can have any dimension, including
0, and still satisfy Assumption 3.

9. BOUNDED HETEROSKEDASTICITY

We can simplify Assumption 3 in a leading case of interest. Define the conditional vari-
ance function

E(e%|xi =X) = o (x),

its maximal and minimal values

2 — sup 0'2(X),

X

T
g2 = inf a'z(x),
X

and the “variance ratio”

(3}

9,/ S

In the leading case of conditional homoskedasticity, E(¢?|x;) = 0%, and then ° = g

and r = 1. The deviation of r from 1 measures the degree of heteroskedasticity.
We now give a sufficient condition for Assumption 3.

ASSUMPTION 4. r < oo and forallm > 2,
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@ k> 2r,
() 0 <ty <2(km —2r)c2.

LeEmMmA 2. Assumption 4 implies Assumption 3.

CoROLLARY 1. Under Assumptions 1, 2, and 4, the averaging estimator (11) satisfies

R(B 4, B) < R(Bis, B).

Assumption 4(a) states that the number of coefficients in each regression group is
larger than twice the variance ratio .

In the context of two models (M = 2) and homoskedasticity, Assumption 4 is identi-
cal to the conditions required for a Stein-type estimator to be minimax—to have globally
smaller risk than the unrestricted estimator. Assumption 4 extends these conditions to
the case of multiple models, that each regressor “group” x;; has three or more regressors
and the marginal penalties satisfy 0 < t,, < 2(k,, —2)o>.

In the important special case of the Mallows averaging estimator (12), a sufficient
condition for the asymptotic marginal penalties t,, = 0°k,, to satisfy Assumption 4 is
km>=4r/(2—r).

ASSUMPTION 5. r <2 and forallm=>2, k,, > 4r/(2 —r).

COROLLARY 2. Under Assumptions 1, 2, and 5, the Mallows averaging estimator Bypa
satisfies R(Byma> B) < R(Bis, B)-

Corollary 2 is a powerful and important result. It shows that for regression models,
the Mallows averaging estimator By of Hansen (2007) globally dominates the least-
squares estimator ELS as long as the degree of heteroskedasticity is not too large and
the regressor groupings each have a sufficiently large number of regressors. Corollary 2
shows that this modification guarantees that the estimator is a strict improvement on
least squares.

A particularly important case of interest is conditional homoskedasticity E (e%|x,-) =
0'2.

COROLLARY 3. Suppose Assumptions 1 and 2 hold, E(ez|x,) = o2, and k,, > 4 for all
m > 2. Then the Mallows averaging estimator ﬁMMA satisfies R(BMMA, B < R(BLS, B).

Corollary 3 is our clearest statement of the gains from regressor grouping. It shows
that for homoskedastic regressions, a sufficient condition for the global dominance of
the Mallows averaging estimator over the least-squares estimator is that each regressor
grouping has four or more regressors. This is a simple modification of the averaging esti-
mator. In Section 11, we show that this modification results in significant improvements
in finite sample mean-squared error.

As a final remark, we note that for the case M = 2 under homoskedasticity, the condi-
tion k,, > 4 is both necessary and sufficient for R(ﬁMMA, B) < R(ﬁLS, B), as the inequal-
ity 0 < t < 2(k —2)0? is both necessary and sufficient for the James-Stein estimator to be
minimax, and this condition is violated when k = 3 and ¢ = 3¢2. However, when M > 2,
the necessity of k,, > 4 is unclear.



508 Bruce E. Hansen Quantitative Economics 5 (2014)

10. HETEROSKEDASTICITY

When heteroskedasticity is present, it may be desirable to use alternative penalties. We
describe two possible approaches and their properties.

First, the upper bound in Assumption 4(b) suggests that the penalties could be based
on estimates of the smallest conditional variance ngr\ather than the unconditional vari-
ance o”. Let g2 be an estimate of o. For example, o2 = min|;<, 0>(X;), where 5>(x) is
a Nadaraya-Watson estimator of o%(x) = E (el?|x,~ =x) from a standard kernel regression

of the squared residuals ’e‘%. Setting fm = é\sz, then 7, SN tm = ok, and Assump-
tion 4(b) is satisfied if k,,, > 4r.

Alternatively, we can set the penalty T, to be a consistent estimate of D,, defined in
(30), so that the marginal penalty T is a consistent estimator of d,,, defined in (34). An ex-
ample is the heteroskedasticity-robust Mallows criterion of Liu and Okui (forthcoming),
which sets the penalties to equal

~LO n ~_15
where

—~ 1— —

Qn =X, X,

1 n

0O 2 :— 5 32
n 1
=

The penalties YN",I;,O are moment estimators of D,, with a degree-of-freedom adjust-
ment n/(n — K), which Liu and Okui suggest is useful in finite samples. It follows that
o Lt =dn > 0%k, the final inequality shown in (51) in the Appendix. It follows
that Assumption 4(b) is satisfied if £, > 4r.

ASSUMPTION 6.

@ Tp= ?Km, where?!\2 L6 or Ty = T,}io from (36).

(b) Forallm=>2,k,, >4r.

COROLLARY 4. Under Assumptions 1, 2, and 6, the averaging estimator B 4 satisfies

R(B.4,B) < R(Bis, B)-

The condition k,, > 4r in Assumption 6 is considerably less restrictive than the con-
dition k., > 4r/(2 — r) in Assumption 5. This suggests that averaging estimators using
these modified penalties should have broader robustness properties than the Mallows
averaging estimator.

Closely related to the Liu-Okui estimator is the jackknife model averaging (JMA)
estimator of Hansen and Racine (2012). This is an averaging estimator (11), where the
weights are selected to minimize the cross-validation criterion

M M n
IMA, (W) =YY " wanwe Y emitei,
i=1

m=1¢(=1
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where ¢,,,; = y; — )_(;niﬁ_i,m is the leave-one-out prediction residual, which is easily com-
puted using the algebraic equivalence é,,; = €,;/(1 — hp;) with h,; = i;ni()_(;n)_(m)‘lim,-.
The jackknife criterion JMA,,(w) is close to the Liu—Okui heteroskedasticity-robust Mal-
lows criterion and thus has similar MSE properties under conditional heteroskedasticity.

11. FINITE SAMPLE SIMULATIONS

We now use simulation! to investigate the finite sample performance of the averaging
estimators. We explore both cross-section and time-series settings.

11.1 Cross-section regression

The cross-section model is similar to that used in Hansen (2007). The data are generated
by the linear regression

M
YiZBo+Zﬁjxji+ei 37
j=1

with E(e;|x;) =0 and E(e%) =1. We set x;; ~ N(0, 1). For the results reported here, we set
e; ~N(0,1) and M = 12, though we discuss sensitivity to these assumptions below. We
vary the sample size » among {50, 150, 500, 1000}.

The coefficients are set as Bp =0 and B; = ¢j~* for j > 1 with a > 0. Higher values of
« mean that the coefficients 8; decline more quickly to zero as j increases. Lower values
of @ mean that the coefficients §; are of relatively similar magnitude. Thus « controls the
trade-off between bias and parsimony, a key issue in model selection. We vary &« among
{0, 1, 2, 3}. Notice that in contrast to the asymptotic theory, we will treat the coefficients
as fixed when we vary the sample size, so that the experiments reported here correspond
to actual econometric practice.

The coefficient ¢ is selected to vary the population R? = 3"}, B3 /(1+ POy B} ona
19-point grid in [0.00, 0.90].

The estimators B of B are assessed by finite sample mean-squared error

MSEB,B)=EB - B) (B - B).

We calculate MSE(8, B) by simulation, averaging across 10,000 independent replica-
tions. We also normalize the MSE by the MSE of the unconstrained ordinary least-
squares estimator ﬁLS. Thus a reported MSE below 1 indicates that the estimator has
smaller MSE than unconstrained ordinary least squares (OLS), and a reported MSE
above 1 indicates that the estimator has larger MSE than unconstrained OLS.

The estimates were constructed from M + 1 separate regressions of the form

yi=Bo(m)+ Y Bj(m)xj; +¢;(m)

j=1

IThe R code used for the simulation is available on the journal website.
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for m =0, ..., M and then B(m) = (Bo(m), B1(m), Ba(m), ..., Bm(m),0,...,0) was set.
These are nested regression models ranging from intercept only to unconstrained.
From these M + 1 regressions, the following estimates were compared.

1. OLS: Ordinary least squares Bys = B(M).
2. MMA: The Mallows model averaging estimator using all M + 1 models.

3. MMA,: The Mallows averaging estimator, grouping regressors in sets of four. For
M =12, this includes models m = {0, 4, 8, 12}.

4. Stein: A James-Stein estimator, shrinking the unconstrained least-squares estima-
tor B(M) toward the intercept-only model B(0).

5. Lasso: Least-angle regression (Tibshirani (1996)) with penalty A selected to mini-
mize fivefold cross-validation.

6. BMA: Approximate Bayesian model averaging or smoothed Bayesian information
criterion.

7. SAIC: Smoothed Akaike information criterion (Akaike (1979), Buckland, Burnham,
and Augustin (1997), and Burnham and Anderson (2002)).

Methods 4-7 are alternative averaging and shrinkage methods that are included for
comparison.

As discussed in Section 6, the Stein estimator is equivalent to the MMA estimator
restricted to two submodels. Thus by comparing MMA, with the Stein estimator, we
illustrate the gains by averaging over more than two models.

The Lasso is a popular method for regression shrinkage that does not require regres-
sor ordering. We use the glmnet function in R with all default settings.

BMA and SAIC are two popular model averaging methods. The estimators take the
form (11) with the weights w,, proportional to exp(—%BICm) (where BIC denotes the
Bayesian information criterion) and exp(— %AICm), respectively, with

1 n

BIC,, = nlog(— Z'éfm) +log(n)Km,

n
i=1

1 n
AIC,, = nlog(— Z’éfm) + 2K .
n
i=1

The results are reported graphically in Figures 1-4. Each figure corresponds to a sin-
gle value of «, and each figure has four panels, for n = 50, 150, 500, and 1000. Each panel
plots the normalized MSE of the estimators as a function of the population R?. To re-
duce the clutter in the figures, the SAIC method is not displayed here, but is displayed in
the plots in the supplemental appendix available on the journal website. (In most cases,
SAIC performs quite similarly to MMA.)

From the results, we can see some clear trends. First, both the MMA,4 and the Stein
estimators globally have reduced risk relative to OLS (their normalized MSEs are every-
where less than 1), but the MMA estimator has risk that is greater than OLS for some
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FIGURE1l. a=0.

parameter values. This confirms a strong prediction of the asymptotic theory. Second,
for most parameter values, the MMA, estimator dominates the Stein estimator. This is
especially the case for large values of @ and for small sample sizes. This is because the
MMA, estimator is able to exploit the ordering of the regressors, while the Stein esti-
mator treats all symmetrically. For larger «, the differences in MSE are quite substantial.
Third, for most parameter values, the MMA4 estimator dominates the MMA estimator.
This is especially the case for large sample sizes. In summary, by grouping the regressors
in sets of four before applying Mallows averaging, MSE is reduced for most parameter
settings, and the averaging estimator globally dominates OLS.

The results also show that the MMA, method compares quite well relative to the
alternative averaging and shrinkage methods. In particular, the BMA method has er-
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FIGURE 2. a=1.

ratic performance, with some parameterizations leading to extremely high MSE, and
this poor performance gets worse with larger sample sizes. MMA, also generally has
lower MSE than the Lasso and SAIC methods for most parameterizations and sample
sizes.

To explore the sensitivity of the simulation results to the design, we varied some of
the assumptions. We summarize the results here for brevity: graphs of the results can
be found in the supplemental appendix available on the journal website. First, we sam-
pled the error e; from a skewed nonnormal distribution, and there was no change in
the results. Second, we sampled the error from the heteroskedastic distribution e; ~
N(O, (1 + x%i) /2), and there was no change in the results. Third, we introduced correla-
tion between the regressors. The performance of several of the shrinkage and averaging
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FIGURE 3. a=2.

estimators greatly improved (relative to OLS), especially for small «, but otherwise the
qualitative results were unchanged. Fourth, we increased the number of regressors to
M = 24. Again, the performance of the shrinkage and averaging estimators greatly im-
proved relative to OLS, but otherwise the qualitative results were unchanged.

As a final important robustness check, we investigated the sensitivity of the results
to the ordering of the regressors. The MMA, MMA4, BMA, and SAIC methods all depend
on the ordering of the regressors, and the above results are constructed using the correct
ordering (ordering the regressors by the magnitude of the true coefficients). To investi-
gate the sensitivity of the MMA4 method to this knowledge, we reverse the order of the
regressors and then implement the MMA, method. This should be most unfavorable to
nested model averaging, as the regressors are ordered from smallest to largest coeffi-
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cients. The results are quite interesting. In nearly all cases (except « = 0, where reversing
the order has no effect), the reversed-order MMA, method has nearly identical perfor-
mance to the Stein estimator. Thus its MSE is better than OLS, but not as good as the
MMA,4 method with the correct order. This confirms the asymptotic prediction that re-
gardless of the ordering, MMA, will have lower MSE than OLS. The reason MMA4 has
nearly identical MSE with the Stein estimator is because in this context the MMA, crite-
rion typically puts all weight on only two models—the intercept-only model and the full
model. The other models are irrelevant and thus receive zero weight. What this shows
is that the cost of misordering regressors is not too severe, and the MMA, estimator has
improved efficient relative to OLS.
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Overall, the simulation results confirm the predictions from the asymptotic theory.
Averaging can greatly reduce estimation error relative to unconstrained estimation if the
averaging weights are selected by minimizing a penalized least-squares criterion and the
regressors are grouped in sets of four or larger.

11.2 Time-series regression

Our second simulation experiment explores the performance of the method in a simple
time-series autoregression. The model is an AR(M),

Yye=PBo+B1y—1+ -+ Bmyi—m +e;

with By =0, e, i.i.d. N(0, 0?), 02 = 1, and the coefficients set to be monotonically de-
creasing as

L 1-j/M+D
Y a- g+
4

B

The parameter 6 controls the magnitude of the coefficients and is varied from 0 to 0.95
in steps of 0.05.

As in the previous experiment, we set M = 12 and »n = {50, 150, 400, 1000}. We apply
the same set of estimators and again calculate the MSE of the coefficient estimates nor-
malized by the MSE of the OLS estimator.

The results are displayed in Figure 5. The findings are quite similar to the cross-
section results, with the exception that the MMA, method does not uniformly dominate
OLS, as for small samples and large 6 (high persistence) the ordering is reversed. We
suspect that this is a consequence of the fact that as # approaches 1, the autoregression
approaches nonstationarity and the asymptotic approximations become unreliable.

12. TESTING FOR RACIAL DIFFERENCES IN THE MENTAL ABILITY OF YOUNG CHILDREN

To illustrate the method, we apply the grouped MMA estimator to the regression anal-
ysis of Fryer and Levitt (2013). Their goal was to assess whether there are measurable
differences across races in the mental ability of very young children, especially after con-
trolling for birth, demographic, and socioeconomic factors. The answer to this question
helps shed light on the extent to which ability is genetic versus environmental.

Fryer and Levitt use two data sets, but primarily focus on the Early Childhood Lon-
gitudinal Study Birth Cohort (ECLS-B), which is a sample of over 10,000 children born
in 2001 and includes two waves of mental functioning tests, the first when most of the
children were between 8 and 12 months of age, and the second when the children were
close to 2 years old.

For each test wave, Fryer and Levitt estimated six nested regressions of children’s
test scores on racial categories plus varying sets of controls. These control groups are as
follows:
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FIGURE 5. Autoregression.

Model 1. No controls beyond racial groups.
Model 2. Adds interviewer fixed effects.

Model 3. Adds age and gender of child (age in eight categories for first wave, in three
categories for second).

Model 4. Adds socioeconomic status quintiles (four categories).

Model 5. Adds home environment variables (number of siblings as dummy cate-
gories, family configuration, region, mother’s age as fifth order polynomial, parent-as-
teacher measure as fifth order polynomial).

Model 6. Adds prenatal variables (child’s birth wight in four categories, number of
days premature in twelve categories, singleton birth, twin birth).
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TaBLE 1. Mallows model averaging estimates using Fryer—Levitt (2013) regressions.

Models

1 2 3 4 5 6 MMA

First wave (children approximately 9 months of age)

Black —0.054 —-0.073 —0.063 —0.036 —0.015 0.015 0.013
Hispanic —0.018 0.001 —0.037 —0.005 —0.004 —0.007 —0.007
Asian —0.007 0.026 —0.018 —-0.017 —0.014 —0.010 -0.010
Other —0.026 —0.024 —0.034 —0.016 —0.010 —0.001 —0.002
Wi 0.031 0.000 0.000 0.000 0.000 0.969
Second wave (children approximately 2 years of age)

Black —0.383 —0.402 —0.402 —0.250 —0.228 —-0.213 -0.229
Hispanic —0.423 —0.405 —0.422 —0.253 —0.247 —0.249 —-0.265
Asian —-0.217 —0.277 —0.285 —0.301 —-0.297 —0.296 —0.289
Other —0.246 —0.249 —0.248 —0.152 —0.138 —0.136 —0.146
Wi 0.093 0.000 0.000 0.000 0.000 0.907

Note: Data are from Fryer and Levitt (2013). The dependent variable is normalized to have a mean of 0 and a standard
deviation of 1. Non-Hispanic whites are in the omitted race category. Estimation is by weighted least squares. The number of
observations is 8871. As in Fryer and Levitt, observations with missing test scores, race, interviewer identification, or sampling
weight are excluded, and for other covariates an indicator variable for missing values is included.

Table 1 lists the OLS estimates of the coefficients on the racial groups from these
six models. The top section of the table displays the estimates for the first test wave
(children approximately 9 months of age) and the bottom section displays the estimates
for the second test wave (children approximately 2 years of age). Fryer and Levitt use
these estimates to make the point that for infants, the mean differences across racial
groups is small and diminishes after controlling for covariates, yet the differences are
meaningful for toddlers. Tables of this form are commonly seen in empirical economics.

Yet there is an inherent ambiguity about how to concisely summarize the findings
from these six regression estimates. Which is the best estimate? What number is the
best summary? The richer models have more controls (so less omitted variable bias) yet
have higher variances due to larger number of estimated parameters. The conventional
estimates do not give one concise summary estimate.

The method of model averaging (MMA) gives a single estimate, averaging across the
six regression estimates, and our theory shows this estimator has reduced risk (mean-
squared error) relative to ordinary least-squares estimation of the full model. Thus MMA
is a concrete way to concisely summarize the point estimates. We computed the MMA
estimates for the Fryer—Levitt estimates and include these estimates in the seventh col-
umn of the table. We also report the MMA weights w,, at the bottom of each column. The
MMA estimates are the weighted average of the individual model estimates using these
weights, and these weights are selected to minimize the Mallows averaging criterion.

We can see that the MMA criterion puts a weight of 97% on the full estimates for
the first wave and a weight of 91% on the full model for the second wave, so that for
both regressions, the MMA estimates are close to the full regression estimates. The fact
that MMA puts most of the weight on the full model is largely a consequence of the way
that Fryer and Levitt ordered their regressors. Some of the most important regressors
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(birth weight and days premature) are only included in the full model, and thus it is not
surprising that MMA wants to give a high weight to this model.

To rectify this situation, we redefined and reordered the regressors. We treated age,
birth weight, number of days premature, and the number of siblings as continuous vari-
ables (rather than grouping them into categories) and included powers up to order 5 (as
done for the parent-as-teacher measure and mother’s age), but only included the higher
powers in the largest models. We estimated eight nested models. The first two are the
same as Fryer and Levitt; the remaining six are as follows:

Model 3’. Adds gender of child, number of siblings, mother’s age, parent-as-teacher
measure, birth weight, and number of days premature.

Model 4. Adds socioeconomic status quintiles, family configuration, region, single-
ton birth, twin birth.

Model 5. Adds second power of continuous variables (number of siblings, mother’s
age, parent-as-teacher measure, birth weight, and number of days premature).

Model 6’. Adds third power of continuous variables.
Model 7. Adds fourth power of continuous variables.

Model 8'. Adds fifth power of continuous variables.

Table 2 reports the OLS estimates from these eight nested model, plus the MMA es-
timates in the final column and the MMA weights w,, at the bottom. What is noticeable
is that the MMA method distributes weights differently across the models. For the first
wave data set (children aged 9 months), 53% of the weight is put on the full model, 21%
on the fifth model (the one with quadratic terms), 14% on the seventh model, and 11%
on the third model. For the second wave data set (2-year-old children), MMA puts no
weight on the full model, 51% on the sixth model, and the remainder is split between
models 1, 4, 5, and 7.

TaBLE 2. Mallows model averaging estimates: reordered regressions.

Models

1 2 3 4’ 5 6 7' 8 MMA

First wave (children approximately 9 months of age)

Black —0.054  —-0.073 0.006  —0.023 0.023 0.024 0.022 0.020 0.018
Hispanic —0.018 0.001  -0.014  -0.002 -0.003 —-0.003 —-0.003 —0.003 -0.005
Asian —0.007 0.026 0.008 0.002 -0.010 -0.012 -0.013 -0.012 —0.010
Other —0.026  —0.024  —0.002 0.010  —0.000 0.000 —0.001 —0.006 —0.001
Wi 0.015 0.000 0.108 0.000 0.208 0.000 0.139 0.529
Second wave (children approximately 2 years of age)

Black —0.383  —0.402 -0.284 -0.208 -—-0.209 —-0.206 —0.207 —0.207 —0.220
Hispanic —0.423 —0.405 —0.350 —0.251 —0.253 —0.253 —0.253 —0.253 —0.265
Asian -0.217  -0.277 -0.263 -0.291 -0.297 -0.296 —0.298 —0.298 —0.290
Other -0.246  —-0.249 -0.181 -0.129 -0.132 -0.131 —-0.132  —0.132  -0.139

Wi 0.072 0.000 0.000 0.149 0.093 0.571 0.115 0.000
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The MMA estimate of the controlled 9-month test score difference between non-
Hispanic whites and blacks is 0.02 standard deviation units (blacks outscore whites,
but by an infinitesimal amount). For 2-year-olds, the MMA estimate is that, on average,
whites outscore blacks by 0.22 standard deviation units. Our theory suggests that these
are the best estimates of the key parameters of interest.

13. CONCLUSION

This paper has extended our understanding of model selection and combination. We
examine averaging weights selected by minimizing a penalized criteria and find that
such averaging estimators have reduced risk relative to unconstrained estimation if the
regressors are grouped in sets of four or larger so that the Stein shrinkage effect holds.
The simulation shows that the gains are substantial and hold in finite samples.

While the theory of this paper has focused on the context of least-squares regression,
we believe that the concepts can be extended to other contexts including panel data and
the generalized method of moments.

The theory also is confined to the context of nested models. While it would be greatly
desirable to extend the analysis to include nonnested models, it is not clear how this
could be accomplished.

Another unexplored issue is inference. The asymptotic distributions of selection and
averaging estimators are nonstandard (at least in the local asymptotic framework used
here). This is routinely ignored in applications involving postselection estimators, but is
difficult to avoid when using averaging estimators. This is a challenging topic and quite
important for future investigation.

APPENDIX

ProoF oF LEmMa 1. Note that L; > L;,; and ’é’j?m = Lmax(j,m) by the properties of the
least-squares residuals. The penalized criterion is then

M M M
Cp(w) = Z Z ijmLmax(j,m) +2 Z Wi T (38)
j=1m=1 m=1

The first term in (38) can be rewritten as
wiLy + (w3 + 2wowy )Ly + (w3 + 2ws(wy +w2)) L3 + -
+ (wﬂ + 2wpr(wy + -+ +wy—1))Lm
=wiLy + (g +w2)? — wi) Ly + ((wy + w2 +w3)? — (wy +w2)?) L3+ -+
+ (g + -+ wp)? = (wy 4+ wy—1)?) Ly (39)
=w(L1 — Ly) + (wy +w)*(Ly — L3) +---

+(wy + -+ wy—1)*(Lyr—1 — Lag) + (wy + - +wp)* Ly
M—1
=Y w7 (Lm — Lyt1) + L.

m=1
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The second term in (38) is

M
23wl =2wi(Ty — T2) + 2wy + wo)(To = T3) + -+

m=1

+ 20wy + -+ wy— ) (Ty—1 — Tag) + (wy + -+ war) Ty (40)
M-1 B N B
= =23 Wy (Tp1 = T) + 2T

m=1
Summing (39) and (40), we find C;;(w*) + Ly + ZTM with C;;(w*) as defined in (16). O
LeMmwMmA 3. For P, defined in (23),
PmQPZ = Pmin(m,l)a
(PZ - Pm)Q(PZ - Pm) = PZ - PWla
(P; —Py)Q(P; —Py) =0,

the second and third equalities for m < ¢ < j.

ProoF. Suppose m < £. Recall the definition for S,, given in (4). Since the models are
nested, S,, is in the range space of S; and, therefore, S,, = S;G for some matrix G. Then

-1 , -1
P.QP, =S,(S,,QS,,) S,,QS,(S;QS;) 'S,
=5,,(S,,QS,) ' GS,
-1
= Sm (S/mQSm) S;n
= Pm,
as claimed. Next,
(P, —P,)Q(P, - P,) =P, QP, - P, QP, — P,QP,, + P,,QP,,
=P,—P,—P,+P,
=P, P,
and, similarly,
(P —P)Q(P, —P,) =P;QP, — P,QP, — P;QP,, +P,QP,,
ZP(—P({_Pm+Pm
=0. O

ProoF or THEOREM 1. Since xy; is included in all models, all the centered submodel
estimates B,, — B are invariant to B;, the coefficient on xy;, and thus so are both the
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least-squares and averaging estimators. Hence, without loss of generality, we set 8; = 0.
Combined with Assumption 2, this yields n!/28 — & as n — oc.

The organization of the argument is as follows. We first derive the joint asymp-
totic distribution of the least-squares estimate ELS, the differenced submodel estimates
ﬁm 11— ﬁm, and the differenced sum of squared errors L,, — L, 1. We then derive the
asymptotic distribution of the cumulative criterion C}(w*), its minimizer w*, and the
averaging estimator. After that, we characterize the minimization problem (24).

Assumption 1 is sufficient to imply that

1

“xXx-2Q 41)
n

and
1 xe 4 N, 0) 42)
NG ’

with 2 defined in (20).
Combining (41), (42), the assumption Q > 0 and the continuous mapping theorem,

. 1 1
VnBis—B) = (;X/X> <ﬁX/e)

4, N, V) (43)

= Z

which is (19). The condition n!/28 — & allows us also to deduce that

ViBrs = vi(Brs — B) +6 -5 7+ 6. (44)
Since
B = Sin(S,,XXS,,) 'S, X'y
=S,,(S,X'XS,,) 'S, XXBs

it follows from (44) that

-1

VB, = sm(s’mex’x)sm) s%(%x/x)ﬁiis
<, $,,(8,,QS,) 'S, Q(Z + &)
= P,nQ(Z+9d)
and

VBt = Bo) 5> Pt —Po)Q(Z + 8). (45)
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Since €/, +1€m =e +1’ém+1 and e, —€,,11 =X(B,,+1 — B.»), we calculate that

-~~~
Ly —Lp1=¢€,6n—€, €41

= (€n —€ni1) (€m — €pi1)
= Bu1 = B XXBys1 — Bu)
= Vi (Bpy1 EmY(%X/X) VBt =B
Applying (41) and (45), this converges in distribution to
(Z+8)QPpt1 —Pr)QPri1 —Pr)QZ+ 8)

=(Z+8)QPpi1 —Pm)QZ+8),

(46)

the equality by Lemma 3.
Using equations (16) and (46), and using Assumption 1, we find that

M-1
Cr(w*) = Y (W (Lm — Liny1) — 2w lm41)
m=1
L, cr(w*, 2+ 6)
with C*(w*, x) defined in (25). Since (17) is a convex minimization problem (C;;(w*) is
quadratic and #* is convex), we can apply the argument of Kim and Pollard (1990) and

deduce that w* —d> w*(Z + &), where w*(x) is defined in (24). Combined with (45), it
follows that

M—-1
ViBa—B) = Y Wyv/1Byi1 — Br)

m=1
J M-1
> Z— ) Wy (Z+8)(Ppri — Pu)QZ A+ ) (47)
m=1

which is (21).

We now consider the minimization problem (24). Note that this is a deterministic
problem and the solution is a function of the argument x. We now fix x and, to simplify
notation, we omit dependence (of the weights and selected models) on x.

Since C*(w*, x) is quadratic in w*, the unconstrained minimum is simply

" X/Q(Pm—H - Pm)QX

Ifw* € H*, then w* = W*, which satisfies (26)-(27) with J = M. IfwW* ¢ 1*, then w* lies on
the boundary of 74*. The latter is the union of sets of binding constraints, each constraint
corresponding to excluding a specific model m. Equivalently, each section of the bound-
ary of H* consists of the set of models {m, ..., m;} with positive weight. If a model m is
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not in this set, it receives a weight of zero and wj, = w} _,. Thus if {my, ..., m;} are the
models with positive weight, thenfor j=1,..., M — 1,

w; = w,

mj> My <l<mjyq,

and
wy=1, my<e<M.

Thus (25) can be written as

J—1mjy1—1

Z Z (WX Q(Pei1 — P)QX — 2wjtey1)

j=1 t=m;

M-1
+ Z (WX Q(Pyy1 — P)QX — 2witey1)

l=my
J—1

j=1

+ (X/Q(PM - PmJ)QX —2(Tm — Tm]))a
which is minimized by
wp, = — i =y (48)
/ X/Q(Pm]'+1 - Pm,)QX

This establishes (26)-(27).
It remains to show (28). Assume that m; < M, which means that w;, = 1. Consider

minimizing (25), allowing the models {m, ..., my, M} to have positive weight (and set-
ting the remaining models to have zero weight). We know (by assumption) that the solu-
tion puts positive weight on the models {m, ..., m;} and zero weight on model M. The

constrained optimization problem can be written as
J
: * k * * *
uII)llI){C (W*, X) — \qwy,, — Z)\j(wmj - wmj_l) — A (1 —wy,),
; =

where A; > 0 are Kuhn-Tucker multipliers enforcing the constraints wy > 0, w;‘nj >wy
]

and wj, ;= 1, respectively. The first-order condition for w}, , can be solved to find

w* _TM—TmJ+)\]—/\J+1
™ xXQ(Py — Py )Qx

Since m; is a model with positive weight, then wj >wj_y and Ay = 0 (as the constraint is
not binding). Also, since model M receives zero weight, then wy, ;= 1. Thus

1:w;kn _ TM_Tm]_)\J+1 < TM_TWL] ,
7 XQPy —Ppyp)Qx T XQ(Py — Py )Qx

which implies (28) as desired. O
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The proof of Theorem 2 will require the application of a famous result known as
Stein’s lemma. We use a version from Hansen (2013, Lemma 1). (See Stein (1981).)

LEMMA 4. IfZ~N(0,V) € R, V> 0, and n(x) :RK — RX is absolutely continuous, then
J
E(n(Z+86)QZ) = Etr(an(z + 6)/QV).

Stein’s lemma allows a simple calculation of the asymptotic risk for estimators with
asymptotic distributions that take the form Z — n(Z + ).

Proor or THEOREM 2. From (21) in Theorem 1, the averaging estimator has the asymp-
totic distribution

ViBa—B) - Z -7 +6).
Thus
R(B 4, B) =E(ZQZ) —2E(n(Z+ 8)QZ) + E(n(Z + 8)Qn(Z + &)).
As discussed in the text, E(Z'QZ) = tr(Q~ '), and by Lemma 4 and QV = 2Q!,
E(n(Z+86)QZ) = Etr(%n(z + 6).(2Q‘1>.
Hence (31) holds with
d
q(x) = 2tr<5{n(X)/ﬂQ_l) - 1(x)'Qn(X). (49)

We now show that (49) equals (32).
From (22) and (26)-(27), we see that

J—1mjy1—1 M-1
M) = Y w Pep1 —POQX+ Y Pyt — P)QX1 () <)
j=1 t=m; l=my

g (ij+] - Tm,)
= Z / Py
X Q(ijﬂ - PmJ)Qx

J=1

- ij)QX + (PM - Pm])QXI(MJ<M)’

where, for simplicity, we do not write J and m; explicitly as functions of x.
Using Lemma 3, we calculate that

/ _ - (TmHl — Tmf)2 'O(P P 1
n(X)'Qn(x) = Z(X/Q(ij+] — ij)Qx> +XQ(Pyr — Pryyy ) QX1 (1) < 1)

j=1
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Next,

J-1

J Ty — T
10 = Z . Q®py,y —Py)
]

=1 X/Q(ijH Pm])Q

ij+1 — T

Z xXQP,,, — ml)QX)z QPp,,, — m].)QXX/Q(ij+1 —Py))
J J

+ Q(PM — P (my <)
We calculate that
tr(QP,,2Q7") = tr(P,,2)
= (S (S,,QS,) 'S, L2)
= tr((S,,QS,,) 'S}, 25,
=D,,

and, thus,

tr(Q(P,,, —Pm)2Q ') =Dy, — Dp;.

P I

_S (ij+1 - Tm,)(ijH _ij)
X/Q(ijH _PMj)QX

Hence,

j=1

Ty — Tin))
Z x'Q (Pm]+1 Pm})QX)ZX/Q(PmHl - ij)ﬂ(ijH — P Qx
Jj+1 j

+ (DM — D) my<M)y-
Thus,

qg(x) = S (Tm,'+1 - ij)[z(ijH - ij) — (ij+l _ ij)]
X/Q(Pmﬂ—l - ij)QX

j=1

_4§ (ij-H Tm])
=1 (X/Q(PmHl m])Q X)?

Q(Pm]url - ij)Q(Pmi+1 - ij)Qx

+ [Z(DM - Dm;) _X/Q(PM - PMJ)QX]I(m]<M)-

This is (32). O
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PROOF OF THEOREM 3. The inequality b’2b < b’bA < (£2) with b = Q!/2¢ implies
cQc = CIQI/ZQ—I/ZQQ—l/ZQl/ZC
< QcAman(Q1202Q717)
= a2 QcA,

where A is defined in (33). Setting ¢ = (P — Pp;)Qx, we find

Mjiq

XQ(Ppj, — Py )2 (P, — Pr)Qx
<X QP —Pm))Q(Pp,,, — Pp)QxA
=’ XQ(Py,, — Pp))QXA,

where the final equality uses Lemma 3. Equation (28) shows that

XQ(Pas — P )QXL (1, <ary < 02 (Tag — Ty )L (my <)

Together,
-1 B
g(x) > 04’2 (Tonyss = T 2Dy — Do) = (T, — Tony) — 411
- j=1 X/Q(ijﬂ — ij)Qx
+0*[2(Dyr = Diny) — (Tt — Tony) L my <)
J-1 S
(Tm« - Tm) J B
4 j+1 ;
-7 ' 2dgy1 —tey1) | — 44
/; X QP = Prmy)Qx [( €=2m:j
M-1
+ 0'2 Z (de-i-l - tf+1)1(m‘/<M)
€=WIJ

> 0.

The final inequality holds since Assumption 3 implies 2d,, | — t;,1 > 4A for all ¢.
For any x such that m; (x) < M, we have the strict inequality

M-1
q(x) = 0 Y 2desy — teg1) = (M —my)X > 0.

EZWI]

Thus g(x) > 0 for all x and ¢(x) > 0 for some x. Since Z has a continuous distribution, we
deduce that E(g(Z + 6)) > 0. Thus

R(B 4, B) =tr(Q'Q2) — E(q(Z+5))
=R(Brs. B) — E(q(Z +8))
<R(Bys, B)
and (35) holds. O
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ProoF oF LEMMA 2. We show below that

A<’ (50)
and

dpm > k. (51)

It follows from (51), Assumption 4(a), the definition of r, and (50) that
dm > 0%k > 20%r =202 > 2X

and thus Assumption 3(a) is satisfied.
Similarly, it follows from Assumption 4(b), (50), and (51) that

0 <ty < 2kma® — 452 < 2d,, — 4X

and thus Assumption 3(b) is satisfied.
We now show (50) and (51). Using the property of the maximum eigenvalue and the
bound E(e%|xl~) = o2(x;) < 72,
A= Amax(Q202Q71?)

= max u'Q12E(xxle7) Q1 2u
uu=

= max E((u/Q*”zxi)zez)

i
u'u=1

= max E((u/Qf]/zxi)zUz(Xi))

u'u=1

_ 2_
< max E(u'Q 1/2x,~) o
wu=1

= Amax (Q_l/zE(xix;)Q_l/z)Ez
= /\max(IK)E2
—2

=0 .

This establishes (50).
Similarly,

dm = E((%51 Q' Zmi —%y_11Q;,0 1 Xn-11)€7)
> E(X,Q; Xmi — i;n—liQ;zl—lim_li)gz
= (tr(E®ni%yi) Q') = r(E&m1%,,_1) Q1)) o
= (K — Kp-1)a’
=kno?.

This establishes (51). O
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