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This appendix first illustrates how to use the Markov-chain approximation method
to solve a standard consumption-savings problem in continuous time. We then show
how to use the method to find the equilibrium of the dynamic Markov game in the paper,
and finally show how to extend the model in various dimensions.

In particular, Section S.1 shows how to compute value and policy functions for a sin-
gle household and how to find the distributions of households over the state space re-
sulting from the optimal policies. We consider both transitory shocks to income (Brow-
nian motion) and persistent risk (a Poisson process) so as to illustrate the method. Sec-
tion S.2 augments Section S.1 with the elements needed to compute the equilibrium
of the game in the paper, in which there are two decision makers who are imperfectly
altruistic for each other. Section S.3 then shows how to adapt the altruism model to
an overlapping-generations framework and a finite-horizon economy, as well as how
to augment the model by an endogenous risk-taking decision or other choices.

Matlab code for the single-agent consumption—savings problem as well as the al-
truism model (and some of its extensions) is available on the journal website; see the
respective passages of this appendix for references to the code. The code uses an object
with a large number of generalized routines for continuous-time finite-element meth-
ods; see Doc_FinE10bj .pdf for documentation.

S.1. A CONSUMPTION—SAVINGS PROBLEM

Consider the problem of a consumer with initial wealth 1 > 0, and a stochastic income
stream with time-dependent mean y; and standard deviation o, who has access to a safe
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asset.! The consumer chooses a consumption function c(¢, W;) to maximize

)
EO/ e Plu(cs)dt
0
S.t. dVVtz(rVVt+yt—Ct)dt+a'dBt,

c>0, w =0, Wy given,

where W stands for wealth, r stands for the return on a risk-free asset, y stands for flow
labor income, ¢ stands for consumption, and o is the per-period standard deviation of
income and B; is standard Brownian motion.? Per-period utility is constant relative risk
aversion (CRRA), thatis, u(c) = clfy/(l — v) with y > 0.

The code for the consumption-savings problem can be found in Bewley_main.m
in the folder Bewley.

S.1.1 Deriving the HJB

We first heuristically derive the Hamilton-Jacobi-Bellman equation (HJB). This deriva-
tion will highlight the connection of the numerical approximation method to the under-
lying continuous-time problem.

We start by thinking about a discrete-time problem in which time is chopped up
into small intervals of size Ar. Using Bellman'’s principle, we separate the consumption—
savings problem into a trade-off between consuming today and saving for tomorrow
(ahorizon Af), taking the continuation value I of the problem as of time 7+ At as given,

V(t, W) = magi{u(c)At + e PAEV (1 + At, Wigan) )
c=

(S.1)
S.t. I/V[_;,_AI—I’V[:(VVVt-Fyt—C)At-i-O'ABt,
—_—

=a(t,Wr)

where a(-) is the drift of wealth and AB; = B, A, — B; is the increment of the Brownian
motion (read: the i.i.d. shock to income). We assume for now that ¥, > 0 is large enough
so that the constraint W > 0 will not bind over [z, t + At].

1We work with a time-dependent problem because it highlights the workings of the Markov-chain
method. We choose a Brownian specification for income shocks in this section so as to explain how to
deal with such shocks computationally; in Section S.2, we switch to a Poisson process for labor earnings
(as in the paper), which is easier to deal with. The income process we choose is the continuous-time anal-
ogon to an independent and identically distributed (i.i.d.) income process y; with time-dependent mean
E[y/] = y; and variance E[y, — y[]2 = ¢2. In continuous time, the household receives income ydt+o0dB;in
each instant. Over a unit of time, say a year, this adds up to fol yedt + fol odB; = fol y;dt + o(By — By). Since
Brownian motion has standardized variance, Eg[B; — By]? = 1, and independent increments, yearly income
has standard deviation o and serially uncorrelated shocks.

ZNote that in practice we have to ensure that the variance of the Brownian motion becomes small as
wealth goes to zero so as to ensure that wealth remains nonnegative. This can be done by having the vari-
ance depend on wealth (e.g., o W).
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Now, take a second-order Taylor approximation of V(¢ + At, W;;4,) in At around
(t, Wp),

V(t+At, Win) =V (i, Wp)
~ Vi(t, WAt + Vi (£, W) (Wigar — Wo) + Vi At (S.2)

1
+ 5 Virw (6 W) Wogar - W2 + Viw (8, WAt (Wi ar — W),

where subscripts denote partial derivatives. Now, apply the rules of stochastic calculus
to the cross-products:

Wisar — W)? ~ o?At,
At(I/I/[-I—AI — H/t) ~ (TAtAB[.

Substitute these into (S.2), take the expected value, divide by A¢, and drop terms of order
lower than A¢ to obtain

E |:V(I+Afa Wiar) =V (1, Wt)]
t

At

5 (S.3)

g

Now, approximate e~ PA! by 1 — pAt in (S.1) and subtract V' (¢, W;) on both sides to
obtain

PEV (¢ + At Wegao) |At = max{u(e) At + B[V (£ + AL Wigan) = V(& WD}
c=

Finally, divide by A¢, use (S.3), and take the limit as A7 — 0 to obtain the HJB

—Vit, W) = —pV (t, W)
(5.4)

2
+ma5c{u<c) + Vin (t, Wa(t, W) + %VWWO, Wa},
>

where the drift a(-) is defined in (S.1).

S.1.2 The At problem

We describe the numerical solution method to (S.1) in three stages: first for o =0 (no
risk), second for o > 0 (transitory risk), and, finally, we introduce persistent earnings
risk by letting y, follow a discrete-state Markov process (Poisson process). Throughout,
the grid for the state variable W is uniformly spaced with mesh size denoted by AW
The solution method consists of iterating backward on the Hamilton-Jacobi-Bellman
equation. This is analogous to value function iteration in discrete time.3

3As in discrete time, it is also possible to iterate on the Euler equation in continuous time; see Barczyk
and Kredler (2014), who use this method. For our altruism problem, however, this is not practical because
consumption policies have discontinuities.
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S.1.3 Backward equation: o =0

We start from Bellman’s principle given in (S.1), supposing that we know the value func-
tion V' as of time ¢ + At on the discretized state space. For all points off the grid, the
values are linearly interpolated and denoted by V/, using interpolation weights w* and
w ,as

V(t+ AL Wega) =V (E+ AL W) + ot [V(E+ AL W +AW) =V (t + A, W))]
(S.5)
—o [V+ AL, W)=V (i+ AL, W — AW)],

where W is a grid point and W, 5, results from the budget constraint. The interpolation
weights contain the influence of the decision maker on the direction of the state’s law of
motion and are given by

ot = max{ Z—%ﬁ, O} and o = max{—%, 0}.
If the drift a is positive, the household is saving so that the state moves in an upward (+)
direction. Vice versa, if the household consumes more than her current income, wealth
decreases and the state moves downward (—).

Also, note that for given AW and a given drift a, we need to choose Ar small enough
so that the weights o™ and o~ do not exceed the bounds [0, 1] for the interpolation
in (S.5) to be valid. This yields the Courant—Friedrichs—Lax (CFL) condition, which is
well known from the theory on finite-difference solution methods for partial differential
equations (PDEs):

lat, W)IAL _

AW <L (5.6)

Whenever one encounters problems with the solution algorithm, one should first check
if this condition is met for all points of the state space and for all ¢.

To link the discussion in this section to the stochastic case later on, we now point out
that we can also interpret the interpolation Equation (S.5) in a stochastic sense. Suppose
the household can only hold wealth levels that equal the points on the W grid, and that
itjumps up (down) one grid point with probability ™ (w ™) from ¢ to ¢+ Az or stays at the
same grid point with probability (1 — o+ — w ™). Then this household has an expected
continuation value as given by (S.5), and the three probabilities are well defined if and
only if the CFL (S.6) holds.

We now substitute the linear interpolation (S.5) for the continuation value in (S.1).
Furthermore, we approximate e 2’ by 1 — pAt. Ignoring the max operator for now, the
At problem is then given by

V(t, W)=~ u(c)At+ (1 — pAOV (t + At, W)
+ (1= pAD o[V (t+At, W + AW) =V (1 + A1, W)]
—(1=pAD™ [V (t+ AL, W) =V (t+At, W — AW)].
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Using this equation, we could already update the value function backward in time. But
we will now bring it into a form that is closer to the partial differential equation (PDE)
given by the HJB (S.4).

We can approximate V (-, W + AW) =V (-, W) =~ Vy (-, W)AW . Using this approxima-
tion, we see that terms like pAt[V (-, W + AW) — V' (-, W)] are of second order and can be
neglected.* With this in mind, we can write

—[V+AL, W) =V (t, W)~ —pAtV (1 + At, W) + u(c)At
+ ot [V +ALW+AW) =V (i +At, W)]
—o [V+AL, W)=V (t+At, W — AW)].

Finally, substitute the expressions for o™ and o, and divide through by A¢,

V(it+At, W)=V (t, W)
At
~—pV (t+ At, W)+ u(c)

(8.7
+[V(t+At,W+AW)—V(l+At, W)]a+(t, W
AW
V(t+At, W) —V(t+At, W —AW)T] _
_[ AW ]a (ta W)a

where we define the positive and negative parts of drift a as
a*t (1, W) =max{a(t, W), 0}, a”(t, W) =max{—a(t, W), 0}.

In (S.7), we recognize a finite-difference approximation of the continuous-time HJB
(S.4), leaving the max operator aside for now.

Equation (S.7) is of central importance since it tells us how the value function
changes along the time dimension, specifically, backward in time. Note that the left-
hand side is a numerical approximation to —V;(¢, W) and the right-hand side is known.
Using this information, we update the value function by moving a A¢ period in the back-
ward direction:

V(t, W)XV (t+At, W) —Vi(t, W)At.

If we are interested in computing a stationary solution, we continue to iterate backward
until convergence, that is, until V; is close to zero everywhere on the grid.

To fully understand Equation (S.7), note that the quotients on the right-hand side in
the square brackets correspond to the numerical approximation of the partial derivative
V. That is,

VAW A+ AW) —V(t+ AL W)

Vw AW and
Vo~ Vi+At, W)=V (t+At, W — AW)
W AW

“In the algorithm, At linearly decreases as AW gets smaller, so we see that the term in question is of order
AW?, Terms of second order can, in general, be neglected.
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are the forward and backward first-order difference quotients in W, respectively. This
way of computing partial derivatives numerically is referred to as upwind differenc-
ing since differences are taken in the direction the system is moving. We can see that
whether the forward or backward difference is used to approximate V4 depends on the
drift of the economy. If a > 0, then the forward difference is used. When a < 0, we use
the backward difference.’

S.1.4 Backward equation: o > 0

We now proceed analogously for the case o > 0. Once again, the value function V' is
assumed to be known as of time ¢ + At on the discretized state space.

When Brownian motion is present, in principle the state W, s, can take on values far
away from the current level of wealth W;. Fortunately, it has been shown that the true
process can be well approximated with a three-state Markov chain that takes on values
on the grid. The approximating process has the property that it either stays at the same
grid point with probability m,,, jumps up to the next-higher grid point with probability
7y, or jumps down to the next-lower grid point with probability 7;. The probabilities are
pinned down by requiring it to share the first and second (conditional) moments with
the true process.®

The probabilities are then used to approximate the continuation value as

EV (t + At, Witar)

=V +AL W)+ 7,V (E+ AL W AW + 7,V (E+ A, W — AW)
(5.8)
=V(t+A, W) +m[V(E+ A, W+AW) =V (e +At, W)]

— [Vt + AL, W)=V (t+At, W — AW)],

where we denote the expectation operator by E to indicate that this constitutes an ap-
proximation. To pin down the transition probabilities, we proceed in two steps: (i) set
the drift to zero and (ii) add back in the drift. Finally, we discuss the method of centered
differencing instead of upward differencing.

S.1.4.1 Approximating Brownian motion Suppose for now that the drift is zero. The
law of motion consists only of the Brownian shocks o dB;. To approximate this pro-
cess,we choose probabilities m,,, 74, and 7, so as to match the first and second (con-
ditional) moments of this Brownian process:

EWipar — Wo) = myAW — mgAW =0,
E[(Weiae = W] = mu(AW)? + my(AW)? = oAt

5Upwind differencing is often advocated as the preferred way to compute derivatives since information
enters from the direction the system is moving to. Below we briefly outline centered differencing as another
way to compute derivatives.

6This method is in spirit comparable to Tauchen (1986) and is studied by, for example, Kushner and
Dupuis (2001). They show that for the approximating process to converge to the true process as At — 0, it
is enough to ensure that the Markov transition probabilities given by ,, 7, and m, are locally consistent
(i.e., they have the same first and second conditional moments as the underlying process).
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Solving these two equations for the two unknowns yields

oAt

Ty = T4
For the probabilities to be positive, again a stability condition (the CFL) has to hold. That
is, to ensure that 7,;, > 0, we need to have that

o2At <1
(Aw)r =~

Note that the binomial approximation method arises as a special case when At is set
1

such that 7, = 0. In this case, p = 5.
S.1.4.2 Adding back the drift Now suppose that o = 0. Looking back at (S.5) and inter-
preting the interpolation weights as transition probabilities shows that we have already
done the work. Suppose, for example, that the drift equals zero. Then m,, = 1 and the
household remains at the same level of wealth a A¢ period later. When the drift is pos-
itive, we take away probability mass from the middle and shift it upward. Vice versa,
probability mass is shifted downward when the drift is negative.

We now add the drift to the Brownian-motion process, which itself has no drift. To do
this, we take the jump probabilities found before and then shift probability mass from
the middle up- or downward. The transition probabilities then become

A 2
7T(W,W+AW)E7Tu=p+w+=(N/;ﬂ(%—i—AWaJr(t,W)),
_ At o? _

aTW,Wy=mp,=1—m, —my.

Of course, we have to ensure again that all probabilities are positive. Again, A¢ has to be
chosen small enough such that 7, > 0.

We will now show again that using these probabilities leads to a finite-difference
interpretation of the HJB. Substituting p and the w’s into (S.8), we obtain

BV (t+ At, Wiiar)
=V(EW)+p[VEWHAW)+ V(W —AW) =2V (-, W)]
+ o [V, WHAW) =V W) =0 [VEW) =V (W —AW))],

where we have replaced the argument ¢ + At by a dot for the sake of better readability.
The expression

PV W+AW)+V (W —AW) =2V (-, W)]

oAt [V(-, W4+AW)+ V(W -AW) =2V (, W)]
2 (AW)?
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involves the second-order difference quotient in I (the fraction in brackets), which ap-
proximates the second derivative of IV with respect to W. The terms related to the w’s
are the same forward and backward first-order difference quotients in W as for the de-
terministic case in (S.7).

We now get the analogous equation to (S.7) by following the same steps that led up
to (S.7), except that a term related to uncertainty is now included:

_ Vit+At, W) -V, W)
At
~—pV(t+ At, W) + u(c)

N V(E+At, W+ AW) =V (t+At, W)
AW

V(t+At, W) —V(t+At, W — AW)
AW

N oz[V(t+At,W+AW)+V(t+At,W—AW) — 2V (t+ At, W)}

]a+(t, W) (S.10)

]a_(t, W)

2 (AW)?

We again recognize a finite-difference version of the continuous-time HJB (S.4), again
leaving the max operator for ¢ aside for later.

The significance of (S.10), just like that of (S.7), is that it provides information on
how the value function changes going backward in time. The backward-iteration steps
for the value function are again given by

where the approximation for —V;(¢, W;) is given by the left-hand side of (S.10). To com-
pute a stationary solution, we iterate until 1} is close to zero on the entire grid.

S.1.4.3 Centered differencing We now briefly describe a different method of dealing
with the drift term. Note that we can directly approximate dW; = a(¢t, W) dt + o dB; on
the trinomial lattice, pinning down the probabilities by requiring a three-state Markov
chain to have the correct mean and variance, an approach similar to Tauchen (1986):

E(I/VI+AI - I/Vl) = WMAW - 7TdAVV = a(ta W)At’

E[(Wirar — W] = mu(AW)? + m4(AW)? = oAt
Here, we have neglected to take into account that E,(W; a,) # W; if a(t, W;) # 0 in the
calculation of the variance. This is not important: it can easily be show that the terms
arising from this are of second order and may thus be neglected.

From the first equation, we get 7y = 7, — (a(¢t, W)At)/AW, and from the second
equation, we obtain m; = (02At)/(AW)? — 7. From this it follows that

Ty

=307 [0+ a(t, W)AW],

At

_ 2 _
= 2(AW)2[U a(t, W)AW].

md
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So this approach shifts probability away from the bottom (and not from the middle) and
shifts it to the top if the drift « is positive. For a negative drift, probability mass is shifted
from the top to the bottom. Again, we have 7, = 1 — 7, — 7, and we have to choose
At small enough to respect the obvious stability condition arising from the inequality
Tm > 0.

Following the same steps as above, we find a version of (S.10) (not shown here) in
which forward and backward first-order difference quotients in W are replaced by the
first-order centered difference quotient [V (t, W +AW) =V (t, W — AW)]/2 ~ Vi (t, W).”

S.1.5 Optimal consumption

We now turn toward the resolution of the max operator in the HJB and answer the ques-
tion, “How is optimal consumption computed (using the method of upwind differenc-
ing)?”

First, we group the terms of (5.10) in which the control variable ¢ enters into the
following discretized version of the Hamiltonian:

H(c) =u(c)+a'(t, W)[V(" W+ AW) -V (., W)}

AW
AW ’

—a (t, W)|:

The household maximizes # by choosing ¢ > 0. Note that when varying ¢, flow utility
changes as well as the drift of wealth (i.e., the savings rate), giving rise to the familiar
consumption-savings trade-off.

If the household saves, then a— = 0 and the household’s marginal value of saving is
evaluated using the forward difference in W. If it dis-saves, then a™ = 0 and the house-
hold’s marginal value of saving is evaluated using the backward difference. Finally, if
a~ =0=a", consumption equals income and the wealth position of the household re-
mains unchanged. To find optimal consumption, let ¢ vary on (0, c0) and choose the
one that leads to the largest value of .

To find a simple formula, we define the smooth, strictly concave functions in c:

H+(c) =u(c)+ W +y— C)|:V(.’ W+ AW) -V (., W):|’

AW
Ve, W)=V, W-— AW):|

’H(c)zu(c)—l—(rW+y—c)[ AW

Compute the unconstrained maximizers ¢** for H* and ¢*~ for 1, respectively, us-
ing the first-order condition. If ¢** < rW + y, then ¢* = ¢** is a forward maximizer. If
c*~ > rW +y, then ¢*~ = ¢*~ is a backward maximizer. If there exists only a forward

“If the true value function is differentiable, then both are of course the same in the limit as AW — 0. If
there are kinks in the true value function, then the upwind method is preferable since it takes into account
the relevant directional derivatives, whereas the finite-difference method takes a (usually meaningless) av-
erage between the two directional derivatives.
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maximizer (or only a backward maximizer), then this maximizer constitutes the opti-
mal consumption rate. If none of the two exists, then ¢* = rWW + y, that is, the consumer
should stick with the current wealth level. If both maximizers exist, choose the one that
yields a higher #. This last case does not arise in the case that /(¢ + At, -) is concave in
wealth.

S.1.6 Constraints and grid boundaries

The method described so far works for points that are inside the W grid. We now turn to
procedures for what to do on the margins of the grid.

At the uppermost grid point for W (call it W), we face the difficulty that we do not
know the value function at W + AW. There are two ways to deal with this. First, one can
extrapolate the value function (say, by requiring the third derivative to be constant, as
we do in our code). Second, one can reflect agents back into the grid in case they re-
ceive a positive shock and jump out. This amounts to adding our previous value for
to 7, and setting 7, = 0 at the uppermost grid point. In our computations, we find that
extrapolation leads to better approximations for policies and value functions close to
the grid boundary; this is because reflection rules out upside risk at W and thus makes
this grid point radically different from interior points. However, reflection turns out to
be the more stable method, especially once altruism is added into the setting. This is
presumably the case because reflection induces a meaningful economic game on a dis-
crete, bounded grid, whereas extrapolation does not. When using the reflection method,
we have to make sure that agents are very unlikely to reach the regions in the state space
where the influence of the boundary is apparent. This can always be ensured by choos-
ing a large-enough grid for .

At the bottom grid point W = 0, we have to check whether agents are constrained.
To do this, we compute the optimal consumption policy given the forward derivative
[V (t+ At, AW) —V (¢t + At,0)]/AW . If this consumption policy is feasible, then it consti-
tutes the optimal consumption policy: the agent is unconstrained and saves. If it is not
feasible, then the optimal consumption policy is to consume the entire income and stay
at W = 0. As mentioned before, it is important in practice to impose an income-shock
process that vanishes as W goes to zero (such as oW dBy) so as to avoid complications
at the boundary.

S.1.7 Persistent income shocks: Poisson process for y

We now allow y; to follow a discrete-state Markov chain. For simplicity, consider a two-
state Markov chain with y € {y?, y¢}, where y” < y&, and Poisson rate n. This means
that the probability of switching from one income state to the other over a short
time interval At is approximately nAtz. The value function is now also a function of
y:. We maintain the value function’s dependence on ¢ since we use backward iteration
again.
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Suppose again that we know V' (¢ + At, W, 5, ¥). The At problem for a household that
currently has an income endowment y8 and wealth I, > 0 is given by

V(t, Wi, y8) = magi{u(c)At + epr’[nAtE,V(t + At, Wipas, yb)
>

+ (1= nADEV (1 + At, Wi ar, ¥¥) ]}
st. Wigar — Wi=(rW; + y8 — ¢) At + oAB,.
e

N —

=a(t,W;,y8)

We now derive the HJB, which will show us that the numerical approximation for this
case is practically the same as in the cases before.

Using a Taylor approximation for e ?2 ~ 1 — pAt and canceling terms in (At)?, we
find that

V (1, Wi, y8) = uco) At + nALEV (¢ + At, Wy ar, ¥°) = BV (8 4+ At Wiy, y¥)]
+ (1= pADEV (t + At, Wipar, ¥8),

where as before we neglect the max operator for now. We then expand V(¢ + At,
Wiiany) =V (t+ At, Wi, y) + a(t, Ws, y)AtViy (t + At, W;, y) and drop terms in (Ar)* to
find

V(t, W, y8) = u(co) At + nAt[V (¢ + At, W,,yb) —V(t+ A1, Wi, y8)]
+ (1 - PAt)EtV(t + Ala I/VH—A[’ yg)

Here, we recognize Bellman’s principle from the case with transitory income risk: when
crossing out the term in nA¢, we are back to Bellman’s principle for constant y. Thus,
the above expression gives us the recipe to adjust our algorithm from before (for o > 0)
to a persistent income process: we just have to introduce a new jump probability of
nAt to the point (¢ + At, W}, yp), which takes into account the risk of a change in y. We
then have to subtract nAt from m,,—recall that , is the probability of ending up at
(t+At, W, yg). The probabilities 7, and 7, for moving up or down in the W direction are
not affected. Notice that the above derivation shows that we do not have to be concerned
about interactions between y and W as Ar gets small, that is, we do not have to include
jumps to the point (¢ + At, W + AW, y,,) and the like, since they are of second order.

We now proceed to derive the continuous-time HJB. Rearranging the above, dividing
by At, and then letting At — 0, we find

pV (t, Wi, y8) = u(cr) + [V (t, Wi, Y°) =V (t, Wi, y8)]

[EIV(t + A1, Wigar, y8) =V (t, Wi, yg)]

i
+ lim A

At—0

We see that the last term is the same as in the previous derivation of the HJB shown by
(S.4). Thus, bringing back in the max operator, the HJB for the persistent income process
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is given by
_I/l(ta I/Vb yg)
=_pV(t, I/Vt’yg)—i_n[V(ts I/Vtayb)_V(ts VVhyg)] (S-ll)

2
+ma5<{u(6) + a(t, We, y8)Vaw (1, Wi, y8) + %wa(t, Wi, yg)}-
c=

Thus, computing the change of the value function along the time dimension, 1V}, follows
(5.10) but includes the additional term due to the possibility of transiting from income
state y€ to y?, which is taken into account through the difference in the respective value
functions, multiplied by the Poisson rate 7.

To solve the problem, we iterate backward on the two value functions, which again
shows us that the Markov-chain method has an interpretation as a finite-difference
method:

V(t - At? VI/Z—AZ; yg) ~ V(t7 VI/I‘) yg) - Vt(t, I/I/la yg)Ata
V(t - Ata I/Vt—At’ yb) ~ V(t> VVta yb) - I/t(t’ I/Vta yb)At'

S.1.8 Computing densities: The forward equation

In this section, we briefly explain how we compute the density of agents over the state
space, here for the case where y is constant. We then illustrate how the method re-
lates to the Kolmogorov forward equation that governs the evolution of densities in a
continuous-time setting with Brownian shocks.

S.1.8.1 Computing densities Suppose we know the distribution of a mass of house-
holds at time 0, given by a density function N (0, W). Furthermore, the optimal policies
computed above provide a law of motion for the households:

dW; = a(t, W;)dt + o dB,.

The goal is to find the density function N (¢, W) of households over the state space at
each point in time ¢ > 0 that results from the initial density and the law of motion.

To do this, we will just map forward the density on our grid using the transition prob-
abilities we derived before. So the method amounts to computing the density evolution
for a discrete-state Markov chain in discrete time, which may be represented by

rear = NPy, (S.12)

where P; is an k x k transition matrix and N; is a k x 1 vector (approximating the den-
sity) whose ith element is the probability of being in state i at time ¢. The matrix P, con-
tains three nonzero elements per column, which are given by the transition probabilities
(7u, ™, wq) for the respective (W, t) position and are in the three positions around the
diagonal.?

8There is an interesting connection to value-function iteration here. On the discretized state space,
value-function iteration may be expressed as V; = u(c;)At + P;V; A, in matrix form. So we see that the for-
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If we have time-invariant policy functions, then P; is time-invariant. We can then
find the stationary distribution by iterating on the above until N, x; >~ N; (according to
some convergence criterion).

S.1.8.2 The Kolmogorov forward equation We now state the Kolmogorov forward equa-
tion for our problem, which is the continuous-time analogon to the matrix operation in
(5.12). It is a partial differential equation that the density function N (¢, W) has to obey:

2

There are further terms in the Kolmogorov forward equation if volatility o is a function
of W, but these are zero in our example. We first develop some intuition for this equation
before showing the connection to the computational algorithm given by (S.12).

To do this, we first set o = 0. In this case, the forward equation can be written as

N(t,W)+a(t, W) Ny (t, W)= —aw (t, W)N(, W). (5.14)

To understand what this equation says, consider the so-called characteristic curve that
a single household follows in (¢, W) space. Parameterize the household’s level of wealth
by #:

t

W(t):W(O)—i—f a(s, W(s)) ds.
0

Now take the total derivative of the density function N with respect to time ¢, following
a household’s path

dN(, W (1) _
d¢ -

which is the left-hand side of the forward equation (S.14) in the case without Brownian
motion. So on the left-hand side of (S.14), we have the change in the density when fol-
lowing an agent on his optimal path. Equation (S.14) says that the growth in the density
along this “characteristic curve” depends on what the drift looks like in a neighborhood,
which we see on the right-hand side. For example, if ay = 0, then the density does not
change along the characteristic curve. But if ay > 0, the drift is increasing in wealth and
agents’ paths diverges along the characteristic curve, that is, the density thins out over
time.

Next, consider the case in which there is only Brownian motion but no drift. In this
case, the Kolmogorov forward equation is given by

Ni(t, W) +a(t, W (0))Nw (1, W (1)),

0.2
Nl(t7 W) = TNWW(L W)7

which also goes by the name heat equation, since it provides us with a description of how
heat spreads in a material. If the density function is convex, it will tend to increase over
time. In our model, if there are more agents both above and below the current I, then

ward operator is the transpose of the backward operator. This translates to the forward partial-differentiable
operator being the adjoint operator (a generalized transpose) of the backward partial-differential operator.
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purely random movements will tend to even out the density at this point. On the other
hand, if the density is linear, then Ny = 0 so that N, = 0 and the density is stationary.

S.1.8.3 Connection between the computational algorithm and the forward equation
We will now see how the continuous-time forward equation (S.13) is linked to the
approximating algorithm given by (S.12). Over a short time interval A¢, a household
can jump to the grid point (¢ + At, W) coming from three possible points on the grid
(t, W), (t, W + AW), (t, W — AW)) with Markov transition probabilities given by 7,
74, and m,, respectively:

NG+ A, W)y=m,;t, W + AW)N(t, W + AW) + m,,(t, W)N (t, W)
(S.15)
+ mu(t, W —AW)N(t, W — AW).

Note that the probabilities are written as a function of the grid point the economy is
coming from.

To see that (5.15) approximates the Kolmogorov forward equation (S.13), begin by
substituting

in (S.15), then add and subtract the terms 7, (¢, W + AW)N (t, W) and 7, (t, W — AW) x
N(t, W) on the right-hand side, and move N (¢, W) to the left-hand side to obtain

Nt +At, W) =N, W) = mq(t, W + AW)[N(t, W + AW) — N (1, W)]
+ (L, W —AW)[N(t, W — AW) = N(t, W)]
+ N, W)[mg(t, W+ AW) — m4(t, W)]
+ N (t, W[, (t, W — AW) — m, (¢, W)].

We can already see that changes in the probabilities 7, and 7; along the W dimension
play an important role. Finally, to make the connection to the drift 4 and volatility o,
substitute in for 7, and 74 from (S.9), and divide through by At to obtain

N(t+At, W) —N(t, W)
e

Z_[N(t, W)_N(t’W_AW)]aJr(t,W—AW)
AW
N :N(t,W+AAvII/;—N(t, W)}a(t,WjLAW)
B :a+(t, w) _Z;t’W_AW)}N(t’ W)
N :a_(t,W-i—AAI/I;;—a_(t, W)}N(t’ W)

0'_2 [N(t, W +AW)+ N, W —AW) —2N(t, W)}
2 (AW)2 ’
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which is a numerical approximation to the Kolmogorov forward equation (S.13).°

Finally, recognizing that the right-hand side gives us a discretized expression for
N¢(t, W), we see that this gives us another, equivalent, way to compute the density a
At period in the future:

N(t+At, W)~ N(t,W) + N;(t, W)At.

S.2. ALTRUISM MODEL

In our Markov-perfect environment, computing a solution to a consumption-smoothing
problem when agents are imperfectly altruistic is very similar to the previous examples,
which we consider an important strength of our approach. The following discussion
shows how to adapt the numerical algorithm to the altruistic framework. The code can
be found in AltruismUncert_main.min the folder Altruism.

S.2.1 The At problem

To keep things simple, let us assume for now that there are no shocks to (y, y"). The
payoff-relevant state is then (¢, W, W’). The At problem, given a Markov strategy {c’, g’}
of the other player, is

V(e Wi, W) = max{u(e)Ar + au(c)Ar + e PAEV (t + At Wisar, W/oa,))

st. Wiar—Wi= (rWt +yi+g —c— g,)At—i— oAB;,

;a([,VVt,VVt/) (S 16)

L oae— W = (r W +y,+ g —c; — g))At + 0'AB,,

=a'(t,W;,W))

¢c>0, g>0, W >0, Wy, W/ given.

Suppose again that we have V(¢ + At, W, Wt’+At) and V' (t + At, Wiias, Wt;m)
given, that is, the values are known on the grid. It turns out that it is enough to put to-
gether jumps in the W direction for her and in the W’ direction for him.!° Specifically, a
household that is currently in state (¢, W, W’) can jump over a small time interval A¢ to

five possible points on the grid at ¢ + A¢ (time argument omitted),

(LW, W),  (WWHAW W), (W =AW, W),
(LW, W +AW), (W, W —AW),

9To obtain an expression on the right-hand side that is even closer to (S.13), in the second line, we can
approximate a® (t, W —AW)~a*(t, W) — af;,(t, WHAW and a= (t, W + AW) ~ a=(t, W) +ay, (¢, W)AW, and
then drop the lowest-order terms so that a*(-) and a~(-) are evaluated at (¢, W).

10This is because the two Brownian motions are uncorrelated. If this was not the case, then also jumps
to points such as (W + AW, W’ + AW) would have to be considered.
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and these occur with Markov transition probabilities w,,, m,, 74, ), and 77(’1, respec-
tively. Analogously to (S.8), these probabilities are used to approximate values off the
grid,

BV (1 + At, Wigar, W/, o)
=7V (W, W)+ mV (-, W+ AW, W)
+agV(, W =AW, W)+ V(, W, W +AW)
+ 7V (W, W —AW)
(5.17)
=V W, W)+m[V(,W+AWW)-V(,W,W)]
— [V, W, W)=V (., W =AW, W]
+a, [V W, W +AW)=V(, W, W]
— V(W W)=V (W, W —AW)],
where the time argument ¢ + At is omitted in the value functions on the right-hand side

for better readability.
Analogously to (S.9), the transition probabilities are given by

At 2

TV W+ AW) =, = p 0" = oo ("7 Fat( W, W/)AW>,
_ At o2 _ ,
IN; 2
7T(W/, W, + AW) = ’771/4 = p/ + (1)/+ = W(% + aH—(t, W, W/)AW)7
At 2
m(W W AW) == p o = o ("7 +d (6, W, W/)AW),

Tm=1—my — g — 7, — 7,

where as before p = $?At/(AW)? and analogously p’ = }o'?At/(AW)2. Note that again
we have 7,, =1 — p — p’ in the case when drifts are zero for both agents.

Substitute the p’s and the w’s into (S.17). As in (S.10), terms related to p and p’ arise
from the stochastic parts of the laws of motion and correspond to second-order differ-
ence quotients in W and W', that is,

plV(EW+AW W)+ V(W =AW, W) =2V (-, W, W')]
+p' V(W W +AW)+V (W, W —AW) =2V (-, W, W],
but are not subject to control by the decision maker. Terms related to the w’s,
otV W+AW W)=V (W W) -0 [V, W, W)=V (,W—AW, W]
+ [V (W, W+ AW) =V (-, W, W]
-V, W, W)=V, W, W —-AW)],



Supplementary Material Altruistically motivated transfers under uncertainty 17

are first-order forward and backward difference quotients in W and W’ that arise from
the drifts a(¢, W, W’) and a'(¢t, W, W’), and are subject to the control variables (c, g) by
the decision maker.

Now proceed as before. Substitute the p’s and ’s into the At problem in (S.16), ig-
nore the max operator for now, and approximate e~ ~ 1 — pAt to obtain

At
~ —pV 4+ u(c) + au(c’)

_[V(t + AL W W -V (e, W, W’)}

(S.18)
+at V] —a [V ]+adt[VT]-d V7]
2 2
T yt-1e Tyt
+ 2 [V ] + 2 [V ]’

where the arguments of the functions on the right-hand side have been suppressed. The
following abbreviations are used: [V *] stands for the first-order forward difference quo-
tient in W; [V '] stands for the first-order forward difference quotient in W’, analogously
[V~1and [V~']; [V *~] and [V ] stand for the second-order centered difference quo-
tients in W and W', respectively. We again see that this is a discrete approximation of the
HJB for the game.

Shocks to y can be added in a way entirely analogous to the single-agent case de-
scribed in Section S.1.7.

S.2.2 Optimal consumption and transfers

Group the terms in which the control variables ¢ and g enter into the function
H(c,@)=u(e)+at[VT]—a [V ]+ad* VY] -ad~ V]

As pointed out in the paper, the other agent’s contemporaneous decisions do not influ-
ence an agent’s choice over At. So the optimal value for consumption c¢* can be deter-
mined exactly as in the single-agent case (see Section S.1.5 of this computational ap-
pendix) only by looking at the agent’s marginal value of saving, which is encoded in V"
and IV ~. This makes the algorithm simple and fast.

As for transfers, these are set to zero whenever the recipient has nonzero wealth
(here W’ > 0) according to our guess for equilibrium. When the other player is broke,
we compute optimal transfers according to the procedure laid out in Section 3.3 and
Appendix A.2 in the paper.

S.2.3 Computational issues

We find that reflecting agents back into the grid at the top levels of wealth makes the
algorithm more stable than extrapolating the value function (this choice can be made
by choosing the variable Extrap in our code). When reflecting on the top boundary,
we have to make sure that agents are very unlikely (under the ergodic distribution) to
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reach the regions in the state space where the influence of the boundary on consump-
tion policies is apparent. This can always be ensured by choosing a large-enough grid
for w.

We experimented with nonlinear grids, which require slight modifications in the
trinomial-grid method. However, it turned out that the algorithm was less stable than
with a linear grid. We also tried the Howard improvement algorithm, but again stabil-
ity was an issue. The same was true for leaving out policy updating and using the same
policy rules for more than one Az: There were slight gains in speed, but stability was lost.

Finally, we found that centered differencing worked better than upwind differencing.
The results of the two algorithms were essentially the same, but centered differentiating
led to faster convergence.

S.3. EXTENDING THE ALGORITHM

We will now demonstrate how to adapt our framework to overlapping-generations and
finite-horizon settings, and how to introduce endogenous risk-taking as well as other
choice variables.

S.3.1 Overlapping generations

Our baseline model can be used as a building block for an overlapping-generations
economy. Here, the two altruistically linked agents are a parent household and a child
household; together they form a family. We will designate her to be the parent house-
hold (plain variables) and him to be the child household (variables with primes).

An especially simple way to handle the demography is as follows. The parent house-
hold faces a mortality hazard given by a Poisson rate 8. The child household becomes
a parent household upon the death of the current parent household and a new child
household is born (which we will refer to as the grandchild), resulting in a new family.!!

When the parent household dies, the remaining wealth is bequeathed to the child
household. The grandchild’s first income realization is a random variable that is allowed
to depend on the old child household’s current income. This is a simple way to allow for
labor-market skill to be inheritable, that is, a household is more likely to enter the econ-
omy with a high income realization when its parent household is a high-income earner.
We denote by 7;; the probability that the grandchild household obtains the initial in-
come realization yj’., given that the child household has the current income realization y.

The parent household’s HJB is given by

pv = E[v(, ) — v, ]+ Eu( F) —v( )]+ 8(av® —v)
2
+oau(c)+ (rw' +y —g =)oy + %(wszw + W V)
+ maéc{u(c) +(rw+y+g —c)vw}+ maéi{g[vw/ — vpl},
c> 8z

U Combining the OLG framework here with the time- or age-dependent finite-horizon case in the next
subsection, one can model demography more realistically, as is done in Barczyk and Kredler (2013).
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where v¢ is the expected value for the child household when the parent dies and they
become a parent themselves, which will be discussed in more detail later. This HJB is
the same as the one presented in the main paper (see Equation (8)) except that the ad-
ditional term &(av® — v) enters. In the child household’s HJB, this term shows up as
5(v® — v'). This is because the child household becomes a parent household upon the
death of its parent household. The reason this term also shows up in the parent house-
hold’s HJB is due to altruism. When « = 0, this term equals —év so that the child house-
hold’s welfare is disregarded; when « = 1, the parent household fully internalizes the
continuation value of the child household.

As mentioned before, v°¢ is the expected value of the child household to become a
parent household. The child household has to form an expectation about the initial in-
come realization of the grandchild household, and it has to take into account bequest
from the dying parents. Given that the child has income realization y;, this expected
value is given by

ve(W’ yi) = Z 7T,'jU(W, wb(yj/)a Yi» y]/)’
J

where W = w + w/, that is, the new parent’s wealth is the sum of its own savings w’ and
the bequest w'. We assume that the grandchild enters the economy with an initial wealth
that is a function of its initial income realization, which we denote by w,( y]’.).

Computing the equilibrium is similar to the computation of our baseline model. The
only difference is that the terms in é are fed in to account for the risk of death/aging; to
do this, we have to compute v° at each iteration. A good initial guess is given by comput-
ing the value functions of a “final” pair of overlapping generations. These are the ones
obtained from computing our baseline model with an increased discount rate due to the
probability of death.

One specific problem we need to deal with is to obtain the continuation value for
very large bequests. When such bequests are made, we often have to obtain v for levels
of wealth that lie far outside the grid. An excellent method to extrapolate the function is
by exploiting homogeneity. For families with large levels of wealth, we can safely neglect
the income dimension, and thus assume that value functions and policies are homoge-
neous in wealth. Consumption and transfer policies are roughly linear in wealth for rich
families, which translates into value functions being of form W1~ in total family wealth
(for details, see the homogeneous-altruism setting in Barczyk and Kredler (2014)). The
old household’s value function is then given by

v(w,w',y,y) = HPYWI=Y,  where P = % andW=w+uw'.
The function ¥ can be calculated from the outermost grid points!'? from
(P)=v(w,w,y, y’)Wy_l.

12That is, the grid points where either the parent or the child household (or both) hold the maximal
wealth W on the grid.
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This gives us 9(P) on a finite grid; intermediate values can be approximated by linear
interpolation. The P that realizes upon death of the parent household is given by

B w4+ w
T wp(y) +w+w’

where y” is the grandchild’s first income realization.
Barczyk (2012) implements this OLG setting with a constant death/aging hazard to
study the response of consumption to a deficit-financed tax cut.

S.3.2 Finite horizon

We will now show how to compute our baseline model for the case where the hori-
zon is finite, that is, ¢ € [0, T']; the code for this example can be found in Altruis-
mUncert_FinHorizon.min the folder Altruism.

When the horizon is finite, value functions depend on time. Her HJB is

—v; = —pv + u(c*) + au(c™) 4+ wvy + W'y + E[v(, §) —v(, y)]
2
+ £[o(, ) = ()] + S (@ v o),

where we avoid the max operators by writing the optimal consumption rules and where
we restrict attention to states where no player is broke so that transfers are zero. A tricky
feature of computing a finite-horizon equilibrium here (as in many other continuous-
time models) is how to proceed close to T'. In our model, as in any consumption-savings
model, consumption rates go to infinity when ¢ — 7. This makes it hard to compute
value functions. To deal with this problem, we make an assumption on what happens
during the last Az stage of the game. We assume that agents’ income is no longer subject
torisk and that agents together consume the resources left to them at a constant rate. So
we have

cr—aldt+ At =wropr+ Wy, + YroadA+ Yy, AL

=Wr_a

When one agent owns all resources, we assume that she obtains her preferred allocation
over At. So she consumes a fraction 4; = 1/(1 + «!/?) of Wy_a, when she owns all re-
sources, and she obtains what is left from his preferred fraction, A4g = o'/ /(1 4 o/1/7)
of Wr_a,, when he owns everything. In all situations in between, we linearly inter-
polate between these two extreme allocations using the fraction Pp_a;, = (wp_as +
yr_a/At)/ Wr_a, she owns out of total resources:

cr—ar = [(1 = Pr_a)) Ao + Pr—as A1 |[Wr_ns,
rony=[A = Pr_a)(1 — Ag) + Pr_a (1 — A) [ Wr_a;.

Using these consumption levels and for some given Az, we compute the value functions
as vr_a; = [u(er—a) +au(cy_,)IAt and v, = [u(c_,,) + @'ulcr_a)1At.



Supplementary Material Altruistically motivated transfers under uncertainty 21

Other assumptions for the final At period are possible. We found that it is crucial,
however, that value functions are strictly increasing in the agent’s own asset share (i.e.,
v must be increasing in Py_y,,). Specifically, one very natural assumption for the final A¢
period leads to problems: if we let the agents play a static altruism game at 7' — At (i.e.,
agents give transfers at 7 — Ar and then consume what they have left), numerical in-
stability arises: consumption functions become locally decreasing in agents’ own assets.
The problems is that the value functions at 7 — At have strong convexities at the points
where transfers start to flow.

Given value functions at 7T — At, we can backward iterate on the HJBs as in the base-
line case, only this time we keep the results on the way. It is very important to make
adjustments to the time increments of the algorithm so as to fulfill the stability condi-
tions. Since consumption rates are very high close to T — A¢, the time increment required
to keep the Markov chain’s transition probabilities positive is very small.

Computationally, we find that, as expected, policies and value functions smoothly
converge to their time-invariant counterparts. Transfer motives in the problematic re-
gion (between the overconsumption region and the SS region) are lowest close to 7" and
then rise as we go back in time. So the equilibrium is even more stable in the finite-
horizon than in the infinite-horizon case. This is in the sense that equilibrium exists for
a larger range of o when fixing a («, ¢/, y) combination.

For an application that uses this finite-horizon setting (in combination with OLG),
see Barczyk and Kredler (2013), who study the macroeconomic effects of long-term-care
policy.

S.3.3 Endogenous risk-taking

It is straightforward to adapt the Markov-chain method to the case with a risky asset: we
determine the optimal risk-taking decision z* = I (vy,, > 0) from the finite approxima-
tion of the second derivative and then set the variance of the chain to z*2k2¢2/2. The
rest is as before.

To implement this in the code AltruismUncert_main.m, the risk parameters have
to be set to SigmaNorm=0 and SigmaRisky= o. It turns out that the following adjust-
ments make the code more stable.

First, instead of using the discontinuous indicator function I (-) directly, we approxi-
mate it by a logistic smoother. This makes the law of motion continuous in the state. We
take i(x) =1/(1 + e~ **) and apply it to our measure of risk-lovingness: the first deriva-
tive of the optimal consumption function ¢* with respect to the player’s own assets, that
is, we set z* = h(c}). Note that ¢} is a sign-preserving transformation of v, but unlike
vy, itis roughly of the same magnitude across the grid, which makes it better suited for
our purposes. For the smoothing coefficient «, we choose values around 10. The risk-
taking decision is coded in the function A1truismRiskTaking.m.

Second, we only allow the poorer agent to take risks in the algorithm—this is what
happens in equilibrium in the end. If we allow both agents to take risk along the way to
convergence, it can happen that agents engage in local “risk-taking battles” that desta-
bilize the algorithm.
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S.3.4 Adding more choice variables

Adding more choice variables should generally not present large difficulties in our set-
ting. The example with the portfolio decision in the previous subsection is one example.
We present here the Bellman equation for a setting where she makes a continuous labor-
supply decision. The wage rate is fixed at z. We assume that his income is still exogenous.
The HJB is then

v=max{u(c,]) + (rw+zl — vy} + -+,

c,l

where we omit the rest of the terms because they are the same as before. The first-order
condition for labor is

ui(c, )+ zvy, =0.

If utility is separable in consumption and labor, the computation of labor supply is
especially simple. Even in the nonseparable case, the adaptation of the Markov-chain
method is straightforward: once the optimal (c, /) pair is found for the At stage game,
value-function updating works the same as before.
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