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APPENDIX A: PROOF OF PROPOSITION 1

PROOF OF PART (a). (a.1) Proof that the bounds on E[y(t)] in Equations (4), (5), and (6)
hold.

For u < s, E[ylz = s] = E[y(s)|z = s] > E[y(u)|z = s] by the MTR assumption;
Ely(u)|z=s]> E[y(u)|z = u] = E[y|z = u] by the MTS assumption. Hence,

Elylz=s]= E[y(w)|z=s]| = E[ylz=ul. (S.1)

Because yj(7) is concave-MTR in 7 € T for all j € J, E[y(7)|z = 5] is concave-MTR
inT.

Compare E[y(t)|z = s] with the value of the function that describes the straight line
joining the points (s, E[y|z = s]) and (u, E[y|z = u]), evaluated at ¢.

Because Equation (S.1) holds and E[y(7)|z = s] is concave-MTRin 7, foru <t <,

s—1 r—u
Ely(t)|z= —F = —F = S.2
[y()lz S]zs_u Wz =ul+ — Elylz=sl, (S.2)
andforu <s<t,
s—1 r—u
E[y(t)|lz=s5] < ——Elylz=u]l+ ——E[ylz=5s]. (S.3)
s—u S—u

Because Equation (S.2) holds for any « that is not greater than ¢ when ¢ is smaller than s,
thenfort <s,

s—1

t_
E[y(1)|z=s]> max E[y|z=u]+—uE[y|z=s]. (S.4)
{ulu<t} s —u Ss—u
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Similarly, because Equation (S.3) holds for any « that is smaller than s when s is not
greater than ¢, then for ¢ > s,

s —

t t—

E[y(H)|z=s] < min Elylz=u] + —uE[y|z=s]. (S.5)
{ulu<s} s — u Ss—Uu

The MTS assumption implies that for all s < s, E[y(¢)|z = §'] < E[y(t)|z = s]. Further-

more, for all 7 < s’ < s, Equation (S.4) can be applied to the lower bound on E[y(t)|z = §']:

fort <s' <s,

s —t t—u ,
E[y()|z=5]= max < Elylz=ul+ 5— —E[ylz=5], (S.6)

Therefore, for ¢ < s,

/

t r—u
E t = > E = E =
[y( Iz S] - {(u,s’)?b}gis’fs} s’ —u ylz=ul+ s —u [ylz S] 57
=LB(s, t).
Similarly, for ¢ > s, by the MTS assumption and Equation (S.5),
s —t t—u
E t = < E = E = /
[y( Iz S] - {(u,S’)Islfns}ISlt/\MS’} s'—u iz =ul+ s —u [y|z S] (S.8)

= UB(s, t).

Applying Equations (S.7) and (S.8) to the law of iterated expectations yields the second
terms of the upper and lower bounds, respectively, on E[y(¢)] in Equation (4).

Manski (1997) and Manski and Pepper (2000) showed that under either the concave-
MTR or the MTS-MTR assumptions, for s < ¢,

E[y(t)lz=s]= Elylz=5], (S.9)
and for s > 1,
E[y(t)lz=s] < Ely|lz=s]. (S.10)

Applying Equations (S.9) and (S5.10) to the law of iterated expectations yields the first
terms of the lower and upper bounds, respectively, on E[y(¢)] in Equation (4).

These results thus yield the bounds on E[y(¢)] in Equation (4).

(a.2) Proof that the bounds on E[y(t)] in Equations (4), (5), and (6) are sharp.

To show that the bounds on E[y(#)] in Equation (4) are sharp, it suffices to demon-
strate (i) that there exists a set of functions of y;(7) for 7 € T that satisfy the concave-MTR
and MTS assumptions and that attain the lower bound, and (ii) that there also exists a
set of functions of y;(7) for 7 € T that satisfy the concave-MTR and MTS assumptions
and that attain the upper bound.

(a.2.1) Proof of the existence of the functions y;(t) for T € T that satisfy the concave-
MTR and MTS assumptions and that attain the lower bound.
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The proof is organized in the following seven steps: Step 1 specifies the functions
Ely(r)|z=s] for 7 € T. Step 2 proves that these functions satisfy the concave-MTR as-
sumption. Step 3 proves that these functions satisfy the MTS assumption. Steps 4 and 5
prove that these functions are equal to E[y|z = s] when 7 = s. Step 6 proves that these
functions attain the lower bound in Equation (4). Step 7 concludes.

Step 1. Define the following three functions: For k =s,75, tand [/ = s, ¢,

/

* /% —1
= E =
(u*(k,1),s™(k, 1)) arg{(uys/)‘lil;xq/fk} o [ylz = u]
o (S.11)
+ o uE[y|z =s'],
k) - .
LB(7, k,t) = Sk ) —w (k. t)E[ylz_ u*(k, )]
e (5.12)
T—u
2 E — /%
sk, 1) — u(k, 1) [ylz=s"Ck. 0],
LE(t, 1, 1) = {glllilll}min{LB(T,?, 0, Elylz =31}, (S.13)
55>
For s > ¢, let the function E[y(7)|z = s] be
LE(r, s, 1). (S.14)
For s < t, let the function E[y(7)|z = s] be
min{E[y|z = s], LF(r, 1, 1)}. (S.15)

Notice that for k > ¢, the function LB(¢, &, ¢) in Equation (S.12) where 7 = ¢ weakly in-
creases in k. This is because in Equation (S.11), the object is maximized over the set
{(u, s")|lu <t <s <k)suchthattheset {(u,s)|u<t<s <ky}includes the set {(u, s')|u <
t < s’ <k} for k; > k, and given u; the maximal value over the former set is therefore
not smaller than that over the latter set. The function LB(¢, k, t) is the maximal value
in Equation (S.11). Notice also that LF(r, [, t) weakly increases in /. This is because in
Equation (S.13), the object is minimized over the set {5[5 > [} such that the set {55 > I}
includes the set {5[s > [} for I; < I,; the minimal value over the former set is therefore
not greater than that over the latter set.

Step 2. The functions (S.14) and (S.15) satisfy the concave-MTR assumption, because
their graphs are the boundaries of the convex hulls (i.e., the intersection of the subgraph
of the weakly increasing linear functions in ) and because they weakly increase in 7.

Step 3. The functions (S.14) and (S.15) satisfy the MTS assumption, since LF(7, s, )
and E[y|z = s] weakly increase in s.

Step 4. We now prove that when s > ¢, LF(s, s, ¢) in Equation (S.14) is equal to E[y|
z=y].

First, for t < s <5, by Equations (S.11) and (S.12) where k =5 and 7 = ¢,

- s—t t—u*(s,t)
LB(t,s,t) > ——F =u*(s,t _—
(1,5,1) > [Vlz=u*G, )]+s—u*('§,t)

s —u*(3, 1) Elylz=s]. (S.16)
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The left hand side of Equation (S.16) is the value of the line traversing (u*(5, t), E[y|z =
u*(s, 0] and (s™ (5, t), E[y|z = s'*(5, t)]), evaluated at ¢, whereas the right hand side
of Equation (S.16) is the value of the line traversing (u*(5, t), E[y|z = u*(5, t)]) and
(s, E[y|z = s]), evaluated at . Notice that u*(5,¢) <t < s™*(5,t) <5 and ¢t < s <7. There-
fore, E[y|z = 5] is less than or equal to the value of the line traversing (u*(5, t), E[y|z =
u*(s, )] and (s™*(, 1), E[y|z = s*(5, t)]), evaluated at s, that is equal to the value
LB(s, 7, t), thatis, for t <s <7,

LB(s,5, t) > E[y|z = s]. (8.17)
Second, for s > s, because of the MTS-MTR assumption,
Elylz=5]= E[y|lz=3s]. (S.18)

(Hereafter, we refer to this result as the monotonicity of E[y|z] in z.)

Hence, for s > ¢, Equation (S.13) where 7 = s and / = 5, and Equations (S.17) and
(5.18) imply that LE(s, s, t) = E[y|z = s]. That is, when s > ¢ and 7 = s, the function (S.14)
isequal to E[y|z = s].

Step 5. We now prove that when s < ¢ and 7 = s, the functions (S.15) is equal to
Elylz =s].

First, for s < ¢ <5, by Equations (S.11) and (S.12) where k =5 and 7 = ¢,

S*(E, ) —t

-5
Ely|z =s]+
§s*(5,t) —s [ylz=sl

~ t
LB(¢,5s,t) > _—
s*(s,t) — s

E[ylz=5*@, 1)]. (S.19)
The left hand side of Equation (S.19) is the value of the line traversing (u*(5, ¢), E[y|z =
u*(s, t)]) and (s*(5, t), E[y|z = 5™ (5, 1)]), evaluated at ¢, whereas the right hand side of
Equation (S.19) is the value of the line traversing (s, E[y|z = s]) and (s™*(5, t), E[y|z =
(5, 1)]), evaluated at t. Notice that u*(s,¢) <t < s*(5,¢) <5 and s < ¢. Therefore,
E[y|z = s] is less than or equal to the value of the line traversing (u*(s, ¢), E[y|z =
u*(s,0]) and (s™(, 1), E[y|z = s*(5, 1)]), evaluated at s, that is equal to the value
LB(s, s, t), that is, LB(s, s, t) > E[y|z = s].

Second, for s < ¢t <7, Equation (S.18) holds. Thus, for s < ¢, LE(s, t,¢) > E[y|z = s].
Therefore, when s < ¢ and 7 = s, the function (S.15) is equal to E[y|z = s].

Step 6. We now prove that the functions (S.14) and (S.15) attain the lower bound
in Equation (4). The proof is organized in the following five substeps: Substeps 6.1-6.3
prove that the function (S.14) is equal to LB(s, t) when s > ¢ and 7 = ¢. Substep 6.4 proves
that the function (S.15) is equal to E[y|z = s] when s < ¢t and 7 = ¢. Substep 6.5 uses the
previous substeps and the law of iterated expectations to prove that the functions (S.14)
and (S.15) attain the lower bound in Equation (4).

Substep 6.1. Since the function LB(z, k, t) weakly increases in k, for’s > s,

LB(t, s, t) <LB(t,5, t). (S.20)

Substep 6.2. When k =75 in Equation (S.11), u*(5, ¢t) <t < s*(5, t) <75. Therefore, the
MTS-MTR assumption implies that E[y|z =75] > E[y|z = s*(5, t)] and E[y|z = s*(5, )] >
Ely|z =u*(s, t)]. Hence, for s > ¢,

LB(1,5, 1) < E[ylz =3]. (S.21)
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Substep 6.3. By Equation (S.13) where 7 = ¢ and / = 5, and by Equations (S.20) and
(S.21), it follows that for s > ¢,

LF(t,s,t) = LB(t, s, 1) = LB(s, 1). (S.22)

The last equality holds because of Equations (5), (S.11), and (S.12). Hence, when s > ¢
and 7 = ¢, the function (S.14) is equal to LB(s, ) in Equation (5).

Substep 6.4. We now prove that the function (S.15) is equal to E[y|z = s] when s < ¢
and 7 = t. The proof is constructed along lines that are similar to the proofs of Substeps
6.1-6.3. For 5 > ¢, because (i) Equations (S.11) and (S.12) hold, (ii) LB(¢, k, t) weakly in-
creases in k for k > ¢, and (iii) s*(¢, t) = ¢, it follows that

LB(¢,5s,t) > LB(¢, t, t) = E[y|z =t]. (8.23)
Furthermore, fors > ¢,

Elylz=5]> E[ylz=1]. (5.24)
By Equation (S.13) where 7 = ¢t and [ = ¢, and by Equations (S.23) and (S.24),

LF(t,t,1) = E[y|z = 1]. (S.25)
Fors <t,

Elylz=s] < Elylz=1]. (8.26)

Hence, by Equations (S.25) and (S.26), when s < ¢ and 7 = ¢, the function (S.15) is equal
to E[y|z =s].

Substep 6.5. When the function E[y(7)|z = s] is (S.14) for s > ¢ and (S.15) for s < ¢, by
Substeps 6.3 and 6.4, together with the law of iterated expectations,

E[y(]=) Elylz=sIP(z=s)+ »_LB(s, )P(z=5). (S.27)

§<t s>t

The quantity (S.27) is the lower bound in Equation (4). Therefore, these functions attain
the lower bound in Equation (4).

Step 7. By combining Steps 1-6, we conclude that the functions (S.14) and (S.15) sat-
isfy the concave-MTR and MTS assumptions and attain the lower bound in Equation (4).
Hence, there exists a set of functions of y;(7) for 7 € T that satisfy the concave-MTR and
MTS assumptions and that attain the lower bound in Equation (4).

For s > t, LB(s, ¢) is the sharp lower bound on E[y(¢)|z = s], and for s < ¢, E[y|z = s]
is the sharp lower bound on E[y(¢)|z = s]. Hence, the sharp joint lower bound on
{E[y(t)|z = s],s € T} is obtained by setting each of the quantities E[y(?)|z = s], s € T,
at LB(s, t) for s > ¢ and at E[y|z = s] for s < ¢. Therefore, the lower bound in Equation (4)
is the sharp lower bound on E[y(¢)].

(a.2.2) Proof of the existence of the functions y;(t) for T € T that satisfy the concave-
MTR and MTS assumptions and that attain the upper bound.
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The proof is organized in the following eight steps: Step 1 specifies functions
Ely(7)|z =s] for € T. Step 2 proves that these functions satisfy the concave-MTR as-
sumption. Step 3 proves that these functions satisfy the MTS assumption. Steps 4 and 5
prove that these functions are equal to E[y|z = s] when 7 = 5. Steps 6, 7, and 8 prove that
these functions attain the upper bound in Equation (4).

Step 1. For s < ¢, let the function E[y(7)|z =s] for 7 € T be

[ ~
UF(7,s,t) = min{ _min —:E[y|z =5+ :T; UB, t), E[y|z = t]}. (5.28)

(Sls<s<t} t —§

For s > t, let the function E[y(7)|z =s] for r € T be
Ely|z =3s]. (5.29)

Notice that the functions (6), (S.28), and (S.29) weakly increase in s, and UB(s, #) weakly
increases in s, because in Equation (6) the object is minimized over the set {(n1, n2)|s <
n2 <t A M1 < M2} such that the set {(n1, 72)|s1 < M2 <t A 1 < M2} includes the set
{(m1, m2)|s2 < M2 <t Amy < mp} for 51 < s and given 7¢; the minimal value over the for-
mer set is therefore not greater than that over the latter set. Similarly, UF(r, s, ) in Equa-
tion (S.28) weakly increases in s. The function (S.29) weakly increases in s because of the
monotonicity of E[y|z] in z.

Step 2. The function UF(r,s, t) in Equation (S.28) satisfies the concave-MTR as-
sumption, since by definition its graph is the boundary of the convex hull. The function
E[y|z =s] in Equation (S.29) satisfies the concave-MTR assumption.

Step 3. The functions (S.28) and (S.29) satisfy the MTS assumption, since these func-
tions weakly increase in s.

Step 4. We now prove that when s < ¢ and 7 = s, the function (S.28) (i.e., UF(s, s, 1)) is
equal to E[y|z =s].

First, by Equation (6), for s <5 < ¢,

- s—1t t—
UBG, 1) < > Elylz=s] + = E[y|z =7]. (S.30)
S—S Ss— S

The right hand side of Equation (S.30) is the value of the line traversing (s, E[y|z = s])
and (5, E[y|z =75]), evaluated at ¢. Therefore, E[y|z = 5] is less than or equal to the value
of the line traversing (5, E[y|z =5]) and (¢, UB(S, t)), evaluated at s, that is, for s <5 < ¢,

- .
Elylz=s] < ~—=Ely|z =51+ ~—< UBG. ). (5.31)

Second, when s =7, the right hand side of Equation (S.31) is equal to E[y|z = s]. Third,
when s < ¢, E[y|z = s] < E[y|z = t] because of the monotonicity of E[y|z] in z. Thus, when
s <t, UF(s, s, t) is equal to E[y|z = s].

Step 5. The function (S.29) is E[y|z = s] when s > f and 7 = 5.

Step 6. We now prove that when s < ¢ and 7 = ¢, the function (S.28) (i.e., UF(, s, t)) is
equal to UB(s, ¢), and that when s > ¢ and 7 = ¢, the function (S.29) is equal to E[y|z = s].
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When s < ¢, UF(t,s,t) = min(mings<s<;) UB(, 1), E[y|z = t]). Because UB(s, )
weakly increases in s, ming|s<5<;) UB(S, t) = UB(s, t), and UB(s, t) < UB(t, t) = E[y|z = ¢]
for s < t. Thus, when s < ¢, UF(¢, s, t) = UB(s, t).

When s > ¢ and 7 = ¢, the function (S.29) is equal to E[y|z = s] by its definition.

Step 7. In the case where the function E[y(7)|z = s] is UF(r, s, t) in Equation (S.28)
for s < t and E[y|z = s] in Equation (S.29) for s > ¢, it follows from Step 6 and the law of
iterated expectations, and from the fact that UB(s, t) = E[y|z = s] for s = ¢, that

E[y()]=) Elylz=sIP(z=5)+ Y _UB(s,)P(z=5). (S.32)

s>t s<t

The quantity (S.32) is the upper bound in Equation (4). Therefore, these functions attain
the upper bound in Equation (4).

Step 8. By combining Steps 1-7, we conclude that the function E[y(7)|z = s] repre-
sented by Equations (S.28) and (S.29) satisfies the concave-MTR and MTS assumptions
and attains the upper bound in Equation (4). Hence, there exists a set of functions of
yj(7) for 7 € T that satisfy the concave-MTR and MTS assumptions and that attain the
upper bound in Equation (4).

For s < t, UB(s, t) is the sharp upper bound on E[y(¢)|z = s], and for s > ¢, E[y|
z = s] is the sharp upper bound on E[y(?)|z = s]. Hence, the sharp joint upper bound
on {E[y(t)|z = 5], s € T} is obtained by setting each of the quantities E[y(¢)|z=s],s€ T,
at UB(s, t) for s < t and at E[y|z = s] for s > t. Therefore, the upper bound in Equation (4)
is the sharp upper bound on E[y(#)].

PROOF OF PART (b). A proof similar to that of part (a) can now apply to obtain the result
of part (b). Note that when we add the assumptions that 7 = [0, §] for some é € (0, co],
Y =10, oo], and P(z = 0) = 0 to the assumptions of part (a), then in addition to Equations
(S.2) and (S.3), we obtain the following inequalities: For ¢t < s, E[y(¢)|z = s] > E[yt/s|
z =ys], and for s < ¢, E[y(t)|z = s] < E[yt/s|z = s]. Therefore, Equations (S.2) and (S.3)
hold when we define E[y|z = 0] = 0 whenever P(z =0) =0.

PROOF OF PART (c). We now prove that our bounds in Equation (4) are narrower than or
equal to both Manski’s (1997) bounds, as represented in Equation (2), and Manski and
Pepper’s (2000) bounds, as represented in Equation (3).

The first terms of the lower bounds in Equations (2), (3), and (4) are the same, and
the first terms of the upper bounds in these equations are also the same. Therefore, we
now compare the second terms of the bounds in these equations.

(i) Comparison with the bounds in Manski (1997) (Equation (2)).

For part (a), in which T is an ordered set and Y is a closed subset of the extended
real line, Manski (1997) showed that the sharp bounds on E[y(¢#)] under the concave-
MTR assumption are the same as those under the MTR assumption, which are shown in
Equation (1).

Because LB(s, t) > yp and UB(s, t) < y;, the second term of the lower bound in Equa-
tion (4) is greater than or equal to that in Equation (1), and the second term of the upper
bound in Equation (4) is less than or equal to that in Equation (1).

Therefore, our bounds in Equation (4) are narrower than or equal to Manski’s (1997)
bound as shown in Equation (1).
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In part (b), T is an ordered set, T' = [0, §] for some 6 € (0, 0o], and Y = [0, co]. Because
Equations (5) and (6) hold, and because E[y|z = 0] > 0, it follows that for s > ¢,

ngnzfilmﬂz=m+fEmz=ﬂzEFﬂz:q, (S.33)
S S S
and for s < ¢,
s—1 t y
U&gﬂf———EMz=m+—EUu=ﬂ§E-4P=s. (S.34)
S S S

Taking Equations (S.33) and (S.34) together with the law of iterated expectations im-
plies that the second term of the lower bound in Equation (4) is greater than or equal to
that in Equation (2) and that the second term of the upper bound in Equation (4) is less
than or equal to that in Equation (2). Therefore, our bounds in Equation (4) are narrower
than or equal to Manski’s (1997) bounds, as shown in Equation (2).

(ii) Comparison with the bounds in Manski and Pepper (2000) (Equation (3)).

In either part (a), in which T is an ordered set and Y is a closed subset of the extended
real line, or part (b), in which T is an ordered set, T = [0, 6] for some 6 € (0, o] and
Y = [0, oo], the sharp bounds on E[y(#)] using only the MTR and MTS assumptions of
Manski and Pepper (2000) are Equation (3).

By Equations (5) and (6), we obtain the following inequalities: for s > ¢,

—t t—t
LBGs, 1) > 2" "Elylz = t] + — E[ylz = o] = Ely|z = 1; (S.35)
m—t n -t
fors < t,
t—t t—m
UB(s, 1) < Elylz=m]+ Elylz=t]=Ely|z=1t]. (5.36)
I—m I—m

Taking Equations (S.35) and (S.36) together with the law of iterated expectations implies
that the second term of the lower bound in Equation (4) is greater than or equal to that
in Equation (3) and that the second term of the upper bound in Equation (4) is less than
or equal to that in Equation (3). Therefore, our bounds in Equation (4) are narrower than
or equal to Manski and Pepper’s (2000) bounds, as shown in Equation (3). O

APPENDIX B: PROOF OF PROPOSITION 2

ProOF OF PART (a). The lower bound on E[y(%;)] — E[y(#)] in Equation (8) holds be-
cause y;(7) is monotone. It is sharp because the hypothesis {y;(¢1) = yj(©2) = y;,j € J}
satisfies the concave-MTR and MTS assumptions (because E[y|z = s] increases in s).

To obtain the sharp upper bound on E[y(%;)] — E[y(#1)], let us first obtain the sharp
upper bound on E[y(%)|z = s] — E[y(t1)|z = s].

For (s,t1, ) € T3, to obtain the sharp upper bound on E[y(5)|z = s] — E[y(t;)]
z =s], hold E[y(%,)|z = 5] fixed and minimize E[y(#;)|z = s] subject to three conditions:
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(a) that the function E[y(7)|z = s] for 7 € T traverses the three points (#,, E[y(t;)|z = s]),
(41, Ely(t1)|z = s]), and (s, E[y|z = s]); (b) that this function satisfies the concave-MTR
assumption; and (c) that this function satisfies the MTS assumption. This procedure
yields the maximum of E[y(%)|z = s]— E[y(#1)|z = s] as a function of E[y(#;)|z = s]. Then
maximize this expression over E[y(%)|z = s].

To implement this strategy, we use the following eight-step process: In Steps 1 and 2,
we set E[y(%;)|z = s] at the sharp upper bound on E[y(t;)|z = s]. In Steps 3, 4, and 5,
given E[y(%,)|z = s], which is equal to the sharp upper bound, we minimize E[y(#;)|z = s]
subject to the preceding conditions (a), (b), and (c). Thus, Steps 1-5 determine the value
Ely(t;)|z =s] — E[y(t1)|z = s]. In Step 6, we show that this value is greater than or equal
to other values E[y(%,)|z = s] — E[y(t1)|z = s] such that E[y(7)|z = s] satisfies conditions
(@), (b), and (c). In Step 7, by combining Steps 1-6, we show the sharp upper bound on
Ely(t;)|z = s] — E[y(t1)|z = s]. In Step 8, we conclude that the sharp upper bound on
Ely(;)] — E[y(t1)] is the upper bound in Equation (8).

Step 1. Equations (S.8) and (S.10) in the proof of part (a) of Proposition 1 imply

E[y()lz=5] <UB(s,f) forz=s<n (S.37)
and
E[y(h)lz=s] <Elylz=s] forn<s=z. (S.38)

This proof implies that these upper bounds are sharp.

Step 2. Set E[y(t;)|z = s] at UB(s, £,) in case (i), in which z =5 < £, and at E[y|z = s]
in case (ii), in which #, < s = z. Then find the minimal value of E[y(#)|z = s] subject to
conditions (a), (b), and (c). Steps 3 and 4 obtain these minimal values.

Step 3. Define the following functions: for s < ¢,

— t_
: sUB(s,t)+t—TE[y|z:s], ifs<7t<t,
- -
ATy(7,5,0) = LB(s, 7), ifr<s<t, (5.39)
UB(s, 1), ifr>1,
and fort <s,
nm -7 T—Mm
i )lrgagkn B Elylz=m1]+ — m(m2),
ATy(r,s,0)={ ===z il 2 (S.40)
ifr <1,

Ely|lz=s], ifr>t¢,

where w(n) = E[y|z =s]if ny =t and E[y|z=n,]if np < t.

Step 4. The claim of this step is as follows. In case (i), in which z = s < 1,, given
E[y(ty)|z = s] = UB(s, 1p), then AT (¢, s, t) is the minimal value of E[y(¢{)|z = s], sub-
ject to conditions (a), (b), and (c). We prove this claim using four substeps.

Substep 4.1. Proof that AT (7, s, t;) satisfies condition (a). Equation (S.39) implies
that AT (%, s, t) = UB(s, ©) and AT (s, s, &) = E[y|z = s]. Therefore, AT (7, s, t) tra-
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verses the three points (#, UB(s, 1)), (t1, AT1(11, s, 1)), and (s, E[y|z = 5]), thereby satis-
fying condition (a).

Substep 4.2. Proof that AT (7, s, t;) satisfies condition (b). We divide case (i), in which
zZ =S5 < b, into three subcases: (i.1A), in which s < 7 < £;; (.2A), in which 7 < s < fp; (i.3A),
in which #, < 7. We then prove this claim for each of these three subcases.

In subcase (i.1A), in which s < 7 < f;, Equation (6) implies that

. s—t th—
UB(s,) < min 2 Elylz=m]+ = mE[yIZ=s].
{mlm<s<n}s—mn s—m
Therefore,
UB(s, ) — E = E =s5]—E =
0< (s, ) [ylz=s] <  min [ylz=s] [ylz=ml
H—s {m1Im1<s=t2} S—m
m-—-rT T—1M2
=— max Elylz=ml+ Elylz =n2]
{niImsT=s—1<m=s<0} N2 — N1 n2—MN

=E[Y|Z=S] _AT1(S_ 1asa t2)'

Therefore, the slope of AT(r,s, 1) for s < 7 < £, is not greater than the slope of
AT(7,s, ) fors —1 <7 <s. Thus, AT (7, 5, 1) is concave-MTR fors — 1 < 7 < 1.

In subcase (i.2A), in which 7 < s < #;, by Equation (S.39) and the monotonicity of
Ely|z]in z, AT (7, s, tp) is a weakly increasing function in  that describes the upper en-
velope of points (u, E[y|z = u]) for all u < s (i.e., a function in 7 that describes the upper
boundary of the convex hull for a set formed by these points). Therefore, AT (7, s, ;) isa
concave function.

In subcase (i.3A), in which #, < 7, because 0 < {UB(s, ;) — E[y|z = s]}/(t, — 5), then
AT (1, s, 1) is concave-MTR.

Therefore, in case (i), where z = s < 1, AT (7, 5, 1) is concave-MTRin 7 € T.

Substep 4.3. The proof that AT, (7, s, t,) satisfies condition (c). We divide case (i), in
which z = s < £, into three subcases: (i.1B), in which 7 < s’ <s < p; (i.2B), in which ' <
T<hand s <s < tp; (i.3B), in which s’ < s < £, < 7. We then prove this claim for each of
these three subcases.

In subcase (i.1B), in which 7 < §' < s < f;, by the proof of part (a) in Appendix A,
LB(s', 1) < LB(s, t;). Thus, by Equation (S.39) and the monotonicity of E[y|z] in z,

AT(7, 5, o) < ATy(7, 5, 1p). (S.41)

In subcase (i.2B), in which s’ <7 < , and s’ < s < fp, by Equation (S.41), AT (s', s, ;) <
AT (s, s, 1) and by the proof of part (a) in Appendix A, UB(s/, ;) < UB(s, £;). Thus, be-
tween s’ and #,, the function that describes the segment linking point (s', AT{(s', s, t3))
and point (;, UB(s, 1)) is not smaller than the function that describes the segment link-
ing point (s, AT (s, s', 1)) (= (5, E[y|z = 5'])) and point (#,, UB(s/, 2)). Thus, because
Equation (S.39) holds and because AT (7, s, t;) is concave-MTR in 7, it follows that Equa-
tion (S.41) holdsfor s’ <t < fp and s’ <s < f;.

In subcase (i.3B), in which s’ < s < #, < 7, by Equation (S.39), Equation (S.41) holds.

Because Equation (S.41) holds for 7 € T, then AT (7, s, t) is MTS.
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Substep 4.4. The claim of this substep is that given E[y(%)|z = s] = UB(s, tp),
AT (t1, s, p) is less than or equal to the value E[y(#;)|z = s] for any function E[y(7)|z = s]
that satisfies the conditions (a), (b), and (c) identified previously. We divide case (i), in
which z = s < ,, into two subcases: (i.1C), in which z =5 < 4 < 1, and (i.2C), in which
t1 < z =s < tp. We then prove this claim for each of these two subcases.

In subcase (i.1C), in which s < #; < 1,, if the concave-MTR function E[y(7)|z = 5] tra-
verses points (¢, UB(s, 1)) and (s, E[y|z = 5]), thenfor #; € [s, 1), the value E[y(#1)|z = s]
is not less than the value AT (7, s, t;) because the function AT (r, s, ;) for 7 € [s, ;) in
Equation (S.39) describes the segment that links points (¢, UB(s, £;)) and (s, E[y|z = s]).

In subcase (i.2C), in which #; < s < 1, the function E[y(7)|z = 5] for 7 < s, which
satisfies conditions (a), (b), and (c), describes the upper boundary of a convex set that
contains the points (u, E[y|z = u]) for all u < s. In subcase (i.2A) of Substep 4.2, we prove
that AT (#, s, ») is a weakly increasing function in # that describes the upper boundary
of the convex hull for a set formed by points (u, E[y|z = u]) for all u < 5. The convex hull
for a set formed by these points is the smallest convex set that contains these points.
Therefore, the claim of this substep is true.

Combining Substeps 4.1-4.4, we conclude that in case (i), in which z =5 < 1, given
E[y(t;)|z =s] = UB(s, 1), then AT (71, s, 1) is the minimal value of E[y(¢1)|z = 5], subject
to conditions (a), (b), and (c).

Step 5. The claim of this step is the following. In case (ii), in which z =s > 1,, given
Ely(t)|z =s] = E[y|z = s], then AT, (t, s, t;) is the minimal value of E[y(#;)|z = s], sub-
ject to conditions (a), (b), and (c), as specified earlier. Similar to our proof of case (i) in
Step 4, we prove this claim using six substeps.

Substep 5.1. By Equation (S.40), AT,(7,s, ) traverses points (f, E[y|z = s]),
(t1, ATy (11, s, 1)), and (s, E[y|z = s]), and therefore satisfies condition (a).

Substep 5.2. The function AT, (7, s, ;) satisfies condition (b).

Substep 5.3. The function AT, (, s, ) satisfies condition (c).

Substep 5.4. For s’ < t, < s, AT (7, 5/, t;) and AT, (7, s, tp) satisfy condition (c).

The proofs of Substeps 5.2, 5.3, and 5.4 can be constructed along lines that are sim-
ilar to the proof in Substeps 4.2 and 4.3 of Step 4 that shows that AT (7, s, t;) satisfies
conditions (b) and (c). (For the proof of Substep 5.4, we use the fact that for s’ < 5, <,
UB(s', 1) < UB(#p, 1) = Ely|z = 1] < E[y|z = s] to show that AT (7, s, t) < AT»(7, s, t2).)

Substep 5.5. The claim of this substep is that given E[y(#;)|z = s] = E[y|z = s], it fol-
lows that AT,(#, s, 12) is less than or equal to the value of E[y(#1)|z = s] for any func-
tion E[y(7)|z = s] that satisfies conditions (a), (b), and (c). The function E[y(7)|z = s]
for 7 < t;, which satisfies conditions (a), (b), and (c), describes the upper boundary
of a convex set that contains points (u, E[y|z = u]) for all u < t, and (%, E[y|z = s]).
Equation (S.40) implies that AT,(#, s, t) is a function in #; that describes the upper
boundary of the convex hull for a set formed by points (u, E[y|z = u]) for all u < #, and
(ty, E[y|z = s]). Therefore, the claim of this substep is true.

Substep 5.6. Combining Substeps 5.1-5.5, we conclude that given E[y(%)|z = s] =
Ely|z =], then AT, (#, s, ;) is the minimal value of E[y(#)|z = s], subject to conditions
(a), (b), and (c).

Step 6. In Steps 1-5, we have shown that when s < 1, and E[y(12)|z = s] = UB(s, tp),
the maximum of E[y(%)|z = s] — E[y(#1)|z = s] subject to conditions (a), (b), and (c)
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is UB(s, t) — AT;(¢1, s, t»). Furthermore, when s > t, and E[y(%)|z = 5] = E[y|z = s],
the maximum of E[y(%)|z = s] — E[y(#1)|z = s] subject to these conditions is E[y|
z = 5] — AT,(t4, s, ;). In Step 6, we show that these maxima are greater than or equal
to the maxima of E[y(%)|z = s] — E[y(t1)|z = s] such that E[y(#,)|z = s] is different from
UB(s, 1) for s < 1, or different from E[y|z = s] for s > 1,, and such that E[y(7)|z = 5] sat-
isfies conditions (a), (b), and (c).

In case (i), in which z = 5 < fp, suppose that we set E[y(#;)|z = s] at a value that is
smaller than UB(s, t,). Let this value be VB(s, t;), where VB(s, t;) < UB(s, t;). (Note that
UB(s, 1) is the sharp upper bound on E[y(#,)|z = s] in case (i) in Equation (S5.37).)

Given E[y(5)|z = s] = VB(s, t;), we now minimize E[y(f;)|z = s] such that E[y(7)]
z = s] satisfies conditions (a), (b), and (c). The process for obtaining the minimal value
of E[y(t1)|z = s] is similar to that in Step 4.

In subcase (i.1C), in which z =5 < #; < 1, given E[y(%)|z = s] = VB(s, t;), the min-
imal value of E[y(¢;)|z = s] such that E[y(7)|z = s] satisfies conditions (a), (b), and (c)
is the value of the function that describes the segment that links points (%, VB(s, #;))
and (s, E[y|z = s]), evaluated at t;. The function AT (r,s, ) for 7 € [s, ;) describes
the segment that links points (;, UB(s, t;)) and (s, E[y|z = s]). Therefore, the maxi-
mum of VB(s, r,) — E[y(#1)|z = s] subject to conditions (a), (b), and (c) is smaller than
UB(s, t) — AT (11, s, t2).

In subcase (i.2C), in which | < z = s < 1, given E[y(%)|z = s] = VB(s, ;), the min-
imal value of E[y(¢;)|z = s] such that E[y(7)|z = s] satisfies conditions (a), (b), and (c)
is AT¢(t1, s, t). Therefore, the value VB(s, t;) — AT1(#, s, ) is smaller than the value
UB(s, b)) — AT (1, s, ).

Thus, for case (i), in which z = s < #;, UB(s, ;) — AT1(#1, s, 1) is greater than or equal
to avalue E[y(5)|z = s] — E[y(t1)|z = 5] for a function E[y(7)|z = s] that satisfies condi-
tions (a), (b), and (c).

In case (ii), in which z = s > 1, suppose that we set E[y(f;)|z = s] at a value that is
less than E[y|z = s]. Let this value be WB(s, t,), where WB(s, ;) < E[y|z = s]. (Note that
Ely|z = s] is the sharp upper bound on E[y(#;)|z = s] in case (ii) in Equation (S.38).)
A process similar to that in Step 5 can now be applied to obtain the minimal value of
Ely(#1)|z = s] subject to conditions (a), (b), and (c), given E[y(t;)|z = s] = WB(s, t,).

As a result, given E[y(#;)|z = s] = WB(s, ), the minimal value of E[y(#;)|z = s]
such that E[y(7)|z = s] satisfies conditions (a), (b), and (c) is the value of the function
that describes the upper boundary of a convex hull for a set formed by points (u, E[y|
z = u]), where u < t, and E[y|z = u] < WB(s, 1), evaluated at ;. Therefore, the maxi-
mum of WB(s, t,) — E[y(t1)|z = s] subject to conditions (a), (b), and (c) is smaller than
Elylz=s] — ATy(#4, s, i).

Thus, in case (ii), in which z = s > 5, E[y|z = s] — AT, (%1, s, 1) is greater than or equal
to a value E[y(t)|z = s] — E[y(t1)|z = s] for a function E[y(7)|z = s] that satisfies condi-
tions (a), (b), and (c).

Step 7. By combining Steps 1-6, we draw the following conclusions. For case (i), in
whichz=s<t and | < 1,

0 <E[y(tr)|z=s]— E[y(t1)|z =s] <UB(s, ) — ATy (11, 5, 12). (S.42)
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For case (ii), in which 4 < , <s =z,
0 <E[y(tr)|z=s]— E[y(t1)|z =s] < Elylz =] — AT»(t1, 5, 1). (S.43)

These bounds are sharp.

Step 8. By Step 7, the sharp joint upper bound on {E[y(#)|z = s] — E[y(t1)|z = s],
s € T} is obtained by setting each of the quantities E[y(#;)|z =s] — E[y(t1)|z=s],s € T, at
its upper bound in Equation (S.42) for s < £, and at its upper bound in Equation (S.43) for
s > t;. Therefore, by the law of iterated expectations, we conclude that the sharp upper
bound on E[y(%;)] — E[y(#1)] is the upper bound in Equation (8).

PROOF OF PART (b). A proof similar to that of part (a) can now be applied to obtain the
result of part (b). Specifically, when we add the assumptions that 7" = [0, 8] for some
8 € (0,00], Y =[0, 00], and P(z = 0) =0 to the assumptions of part (a), then in addition
to Equations (S.42) and (S.43), we obtain the following inequalities: for z = s < #, and
<,

E[y(t)|z=s] - E[y(t)|z =]

(S.44)
h—1h .
Ely|z=s] , ifz=s<t; <b,
= 5 ¢
UB(s, ) — max —1E[y|z:n2], ift <z=s5<1t,
{nalti<ma=<s<t} M2
andfor#; <t <s,
t

E[y()lz=s]—E[y(t)lz=s] <Elylz=s1— max  —u(na). (S.45)

{mlti<na<t<s} My

Therefore, when we define E[y|z = 0] = 0 whenever P(z = 0) = 0 in Equations (9)
and (10), Equations (S.42) and (S.43) hold.

PROOF OF PART (c). We now prove that in either part (a), in which T is an ordered set
and Y is a closed subset of the extended real line, or part (b), in which T is an ordered set,
T =0, 8] for some & € (0, 00], and Y = [0, oo], our bounds in Equation (8) are narrower
than or equal to the bounds in Manski (1997) and Manski and Pepper (2000).

(i) Comparison with the bounds in Manski (1997).

For part (a), in which T is an ordered set and Y is a closed subset of the extended real
line, Manski (1997) showed that the sharp bounds on the average treatment effects ob-
tained by using only the concave-MTR assumption are the same as the bounds obtained
using only the MTR assumption. That is, they are

0 < E[y(t2)] — E[y(11)]

<Y {n—Elylz=sl}Pz=9)+ > (1 —y)P(z=5) (S.46)
s<tq H<s<ty
+ Y {EbIz=3s1-n}P(z=9),
s>t

where [y, y1]is the range of Y.
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Note that for s < ¢, UB(s, t,) —AT(#1, 5, &) < y1 —E[y|z=s];forty <s < t,, UB(s, ©) —
ATi(t1, s, ) <y — yp; and for s > 1y, E[y|z = s] — AT, (#1, s, t) < E[y|z = s] — )y. By using
these inequalities and the law of iterated expectations, the upper bound in Equation (8)
is less than or equal to the upper bound in Equation (S.46).

In part (b), in which T is an ordered set, T = [0, ] for some & € (0,00], and Y =
[0, o], the sharp bounds on the average treatment effects obtained by using only the
concave-MTR assumption of Manski (1997) are

0 < E[y(r))] — E[y(11)]

< ZE[%‘Z:S}(Q—Q)P(Z:S) (5.47)

s<itpy

+ Z{E[y|z =s]— E[%tl‘z =s:| }P(z:s).

REd5)

The upper bound in Equation (S.47) minus the upper bound in Equation (8) (in
which E[y|z = 0] = 0 whenever P(z = 0) = 0) is equal to the quantity

Z{E[%tz‘z = si| —UB(s, ) + AT (#, s, 1) — E[%tl‘z = s] }P(z =ys)
s<tby

(5.48)
+ Z{ATz(tl, S, ) — E[%tl‘z = s] }P(z =3).

s>

For s < t1, Elyty/s|z = s] — UB(s, ) + AT((#1, s, 1) — Elyt1/s|z = s] = {E[ytr/s|
z =51 —UB(s, n)}(t; — 11)/(t; — s) > 0 because of Equation (S.34). For #; < s < 1, be-
cause Equation (9) holds and E[y|z =0] > 0, AT (#, s, t) > (s — t1)/sE[y|z = 0]+ t1 /sE[y|
z = 5] > E[yt1/s|z = s]. Therefore, E[yt,/s|z = s] — UB(s, t) + AT1(t1, s, 1) — E[yt1/s|
z =s] > 0. For s > t,, because Equation (10) holds and E[y|z = 0] > 0, AT,(#y, s, t;) >
(r — 1)/ LE[y|z=01+ 11/ HE[y|z = s] = E[yt;/ 2]z = 5].

Therefore, by the law of iterated expectations, Equation (S.48) is nonnegative. Thus,
the upper bound in Equation (8) is less than or equal to the upper bound in Equa-
tion (5.47).

(ii) Comparison with the bounds in Manski and Pepper (2000).

In either part (a), where T is an ordered set and Y is a closed subset of the extended
real line, or part (b), where T is an ordered set, T = [0, 6] for some 6 € (0,00], and Y =
[0, oo], the sharp bounds on the average treatment effects using only the MTR and MTS
assumptions of Manski and Pepper (2000) are

0 < E[y()] - E[y(t)]
<Y {Elylz=n] - Elylz=s]}P(z=5)

s<h

+ Y {Elylz=nl-Elylz=11}P(z=5)

<s<ty

+Y {Elylz=s]— Elylz=1]}P(z =5).

L)

(5.49)
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We now compare the upper bounds in Equations (8) and (S.49). The upper bound
in Equation (S.49) minus the upper bound in Equation (8) is equal to Equation (11).
We obtain four results: (a) Equation (6) implies that the first term of Equation (11) is
nonnegative (because of E[y|z =0] > 0). (b) For s < m; < , and 71 < m2, {(n2 — L)E[y|
z=ml+ (o — n)E[ylz = n21}/(n2 — m1) > E[ylz = 2] > E[y|z = 5] (because of the
monotonicity of E[y|z] in z). Thus, by Equation (6), UB(s, t;) > E[y|z = s]. Therefore, by
Equation (9), the second term of Equation (11) is nonnegative. (c) Equation (9) implies
that the third term of Equation (11) is nonnegative. (d) Equation (10) implies that the
fourth term of Equation (11) is nonnegative. By combining results (a)-(d), we conclude
that Equation (11) is nonnegative.

Therefore, the upper bound in Equation (8) is less than or equal to the upper bound
in Equation (S.49). 0

APPENDIX C: THE BOUNDS OBTAINED USING A COMBINATION OF THE IV orR MIV
ASSUMPTIONS WITH THE CONCAVE-MTR AND MTS ASSUMPTIONS

Let T be ordered and let Y be a closed subset of the extended real line. Assume that y;(-),
j € J, satisfies the concave-MTR and MTS assumptions. Furthermore, let the variable
k € K be the instrumental variable.

We then define the functions
—t
LB(s, t, k) = max LE[ﬂz:m,K:k]
{(n1,m2)Im<t<ma<s} N2 — M1

I—m
+ —E[Y|Z= 12, sz]a

n2—mM
. ny—1
UB(s, t, k) = min ——Ey|lz=mn1,k =k]
{(m,m)Issm=tAni<m2} M2 — M1
t_
+ — " Elylz =y, k=K,
m =N
LBIV(t, k) = ZE[y|z =s,k=k|P(z=slk=k)+ ZLB(S, t,k)P(z=s|k=k),
s<t s>t

UBIV(1, k) =Y E[ylz=s,k=k|P(z=slk=k)+ Y _UB(s, 1, k)P(z =s|k = k).

s>t s<t
Fors < 1,
Hh—s h—1 .
UB(s, , k) + Elylz=s,k=k], ifs<t; <t,
AT (1,8, 0, k)=1 th—s (5, 22, k) Hh—s [y| 1 1 2
LB(S7 tlak)y lftl <S<t2
Fort <s,
—t
ATZ(t]as’ tZ’ k)= max LE[))'Z:??]:K:]C]

{(m,m)Im=ti<ma=n} M2 — M

Hh—m
+ ———npv(n2),
2 —mM
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where uv(n2) = Elylz=s, k = k]if n2 =t and E[y|z = n2, k = k] if n2 < 15.

ATIV(1y, 1, k) = > [UBCs, 1y, k) — ATy (11, 5, 12, k) |[P(z = 5|k = k)

s<ty

+ Z{E[ylz =s,k=k]| — AT (1, s, 1, k) } P(z = 5|k = k).

s>

1. We now make the IV assumption as E[y(t)|z = s, k = k1] = E[y(¢)|z = s, k = k] for
eachte T,eachse T,andall (k;, ky) € K2.

Then, under the assumptions of concave-MTR, MTS, and IV, we obtain three results:

1.1. The sharp bounds on E[y(?)] are

maxLBIV(z, k) < E[y(t)] < min UBIV(¢, k). (S.50)
keK keK

1.2. The sharp bounds on E[y(%;)] — E[y(t1)] are
0= E[y(1)] - E[y()] = min ATIV(#1, 1, k). (8.51)
€

1.3. Furthermore, (i) let T' = [0, 8] for some & € (0, oo], (ii) let Y = [0, o], and (iii) let
Ely|z =0, k = k] = 0 whenever P(z = 0) = 0. Then Equations (S.50) and (S.51) hold.
These bounds are sharp.

2. We now make the MIV assumption as E[y(t)|z =5, k = k1] < E[y(t)|z = 5, k = k7]
foreacht e T, each s € T, and all (ky, k») € K% such that k; < k».

Then, under the assumptions of concave-MTR, MTS, and MIV, we obtain three re-
sults:

2.1. The sharp bounds on E[y(t)] are

Y P(k=k)maxLBIV(z, k1) < E[y(t)] < ) P(k = k) min UBIV(t, k3). (S.52)
keK ki=k keK kazk

2.2. The bounds on E[y(%)] — E[y(t1)] are

maX[O, %P(K =k) Igll%axk LBIV(ty, kq) — %P(K =k) i?;‘i UBIV(t, kz)}

<E[y()] = E[y(t)]
(S.53)
< min[z P(k =k)ATIV(14, 1, k),
keK

> P(k=k) min UBIV(ty, k) — Y P(x= k) max LBIV(z, kl)].
ky>k ki<k
keK keK
2.3. Furthermore, (i) let T = [0, 8] for some 6 € (0, oo], (ii) let Y = [0, o], and (iii) let
Ely|z =0, k = k] = 0 whenever P(z =0) = 0. Then Equations (S.52) and (S.53) hold. The
bounds represented by Equation (S.52) are sharp.
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APPENDIX D: PROOF OF PROPOSITION 3

First, Appendix A shows that in Proposition 1, even in the case that the assumption that
yj(t) is concave-MTR is replaced with the assumption that the conditional mean of y;(#)
is concave-MTR (i.e., E[y(t)|z] is concave-MTR in ), the sharp bounds on E[y(¢)] that
are represented by Equations (4), (5), and (6) hold.

Second, Equation (13) is equivalent to the condition that the indicator function
1(y(¢) > r) satisfies the MTS assumption. Equations (14) and (15), taken together, are
equivalent to the condition that E[1(y(z) > r)|z] satisfies the concave-MTR assumption.

Therefore, by Proposition 1, we obtain Equations (4), (5), and (6), where the function
y(t) is replaced with the function 1(y(¢) > r). Thus, we obtain the inequality

ZP(y >rlz=s5)P(z=s)+ Z LBT(s,t)P(z =)

s<t s>t

(S.54)
<P(y(t)>r) < ZP(y >rlz=5)P(z=5s)+ ZUBT(s, HP(z=ys),
s>t s<t
where
—t
LBT(s, t) ={( )I‘nax }LP(y> rlz=m1)
NLM) M =t<na=<s} 1N72 — N1
1,M2 7]1 2 (S.55)
- M
P(y>rlz=m2),
mn—-—m
. ny—1
UBT(s, t) = min ——P(y>rlz=m1)
{(m,m)Issm=<tAni<m} M2 — M
f—n (S.56)
+ LP(y > rlz=m).
2 —"M1

Appendix A implies that LBT(s, ) is the lower bound on P(y(t) > r|z = s) for s > ¢,
whereas UBT(s, ¢) is the upper bound on P(y(¢) > r|z=s) for s < ¢.

It follows from Equations (13) and (14) that for n; < 1, 0 < P(y > rlz=m1) =
P(y(m) >rlz=m1) < P(y(m2) >rlz=m1) S P(y(m2) >rlz=m) =P(y>rlz=m) < 1.

Therefore, in Equation (S.55), because (12 — t)/(m2 — m1) >0, (¢t — n1)/(n2 — m1) >
0,and (2 —t)/(m2 — 1) + (t — m1)/(n2 — m1) = 1, then 0 < LBT(s, t) < 1. However, in
Equation (S.56), because (n2 — #)/(n2 — m1) <0, (t = n1)/(n2 — n1) > 0, and (n2 — 1)/
(m—m1)+ & —n1)/(n2—m1) =1,then 0 < UBT(s, t), but it is possible that UBT (s, ¢) > 1.
To obtain the sharp upper bound on P(y(¢) > r|z = 5) for s < ¢, we impose the additional
restriction

UBT(s, t) <1. (S.57)
By Equations (S.54) and (S.57), we obtain the sharp bounds on P(y(¢) > r) as

Y P(y>rlz=s)P(z=5)+ Y LBI(s,/)P(z=5)
s<t s>t

(S.58)
<P(y(t)>r) < ZP(y >rlz=5)P(z=s) + Zmin{l, UBT(s, 1)} P(z = 5).

s>t s<t
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Furthermore, by Equations (17), (18), (S.55), and (S.56), we obtain
1 — LBT(s, ) = LBP(s, 1), (S.59)
1 —min{1, UBT(s, £)} = max{0, 1 — UBT(s, 1)} = UBP(s, 1). (S.60)

By Equations (S.58), (S.59), and (S.60), we obtain the sharp bounds on the distribution
of outcomes Fy ) (r) as

Y Fy(riz=s5)P(z=s)+ Y UBP(s, 1)P(z=5)

s>t s<t
- (S.61)
<Fy(r) <) _Fy(rlz=)P(z=s)+ » LBP(s,)P(z=>5).
s<t s>t
Therefore, Equations (16), (17), and (18) hold and these bounds are sharp. O

APPENDIX E: FINITE-SAMPLE BIAS CORRECTION
E.1 The KP method

Kreider and Pepper (2007) and Manski and Pepper (2009) proposed a bias-corrected es-
timator by using a bootstrap distribution. We now use the subsampling distribution to
adjust the bias.! Specifically, let 7, be the analog estimate of the bound and let E*(7,, ;)
be the mean of the estimates using the subsampling distribution; then the subsampling
bias-corrected estimator is (1 + /b/n)T, — /b/nE*(T, ;), where n and b are the sizes
of the sample and the subsample, respectively (see Politis, Romano, and Wolf (1999)).
In the estimation, the size of the subsample is 20 percent of the sample. The estimation
results are not sensitive to the choice of subsample size.

E.2 The HT method

Haile and Tamer (2003) proposed a bias adjustment that replaces the minimum (the
maximum) with a smooth weighted average that is greater (less) than the minimum (the
maximum) in a finite sample and that converges to the minimum (the maximum) as the
sample size goes to infinity. We apply their method to Equations (5), (6), (9), and (10) to
provide the bias-corrected estimates of the bounds on E[y(¢)] in Equation (4) and the
bounds on E[y(#;)] — E[y(#)] in Equation (8).

Following Haile and Tamer (2003), we use the smooth weighted average

M
exp(x

)\(xl"“:xM;pn):me[jwp(—mpn) 5 (862)

=1

" Z exp(Xmpn)
m=1

where x,, e Rform=1,..., M, p, € R, and n is the sample size. Then min(xq, ..., xpr) <
AMX1,...,Xpm5pn) < max(xy,...,xpy). Furthermore, limp, . oo A(X1,...,XM5pn) =

1Chernozhukov, Hong, and Tamer (2007), Andrews and Guggenberger (2009, 2010), and Romano and
Shaikh (2010) indicated that subsampling procedures provide uniformly asymptotically valid inference for
parameters on the boundary of the parameter space.
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min(xq,...,xy) and lim,, ;o0 A(X1,..., XM pr) = max(xy,..., xy). Therefore, Equa-
tion (S.62) approximates min(xy, ..., xy) by letting the smoothing parameter p, de-
crease to minus infinity as sample size n goes to infinity, whereas it approximates
max(x1, ..., X)) by letting p, increase to plus infinity as » goes to infinity. This approxi-
mation effectively adjusts both the downward bias of our upper bounds and the upward
bias of our lower bounds. We approximate the minima in Equations (6) and (9) by Equa-
tion (S.62), where p, = —./n. Similarly, we approximate the maxima in Equations (5), (9),
and (10) by Equation (S.62), where p,, = /n.

We use the subsampling distribution of the bias-corrected estimates to provide con-
fidence intervals. The size of the subsample is 20 percent of the sample. The estimation
results are not sensitive to the choice of subsample size.

E.3 The CLR method

Chernozhukov, Lee, and Rosen (2013) proposed median unbiased estimators and confi-
dence intervals of the bounds by adding to the estimated bounding functions appropri-
ate critical values multiplied by their pointwise standard errors. They used asymptotic
theory to provide formal justification of their estimators.

We use the method of Chernozhukov, Lee, and Rosen (referred to as the CLR method
here) (2013) to estimate the bounds on E[y(#)] in Equations (4), (5), and (6), and to es-
timate the bounds on E[y(#,;)] — E[y(#)] in Equations (8), (9), and (10). In Section E.3.1
below we illustrate an algorithm required for median unbiased estimators and confi-
dence intervals of the bounds on E[y(#)], and in Section E.3.2, we illustrate an algorithm
for the bounds on E[y(t;)] — E[y(#)].

E.3.1 Implementation algorithm for the mean treatment response, E[y(t)] In Sec-
tion E.3.1.1, we obtain the alternative representation of the bounds on E[y(¢)] that are
obtained in Equations (4), (5), and (6), and to which the CLR method can be applied.
In Section E.3.1.2, we describe a procedure to obtain a median unbiased estimator and
confidence intervals for these bounds.

E.3.1.1 Alternative representation of the bounds on E[y(t)] The quantities (s, t) € T2
are given. For (n1(s, 1), n2(s, 1)) € T2, we define the sets Hig(s, t) := {(11(s, 1), 72(s, 1))|
(s, 1) <t <ma(s, 1) < s} and Hyg(s, 1) := {(1(s, 1), n2(s, ))|s < ma(s, 1) <t AMi(s, 1) <
n2(s, 1)}

Then Equations (4), (5), and (6) are equivalent to

Y Elylz=sIP(z=5)

s<t

ma(s, 1) —t
E[ylz=m(s,t
+SZ>;{772(S, t) — (s, t) [Ylz=m1(s,0)]

max (
(n1(s,0),m2(s,))€HLB(s,1)

r— nl(s’ t)
n2(8,8) —M1(s, 1)
<E[y(1)] (S.63)

Ehv=nﬂ&0”P@=w>
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< min <ZE[y|z=s]P(z=s)

T (mi(s,1),m2(s,1))€HyB(S, ) =1

na(s, t) — ¢
+ E _ .
SZ;{WZ(& 1) —mni(s, t) [Y|Z ni(s )]

t—m1(s,1)
n2(8, 1) — M1(s, 1)

E[ylz=ma(s, f)]}P(Z = s)).

We apply the CLR method to the bounds on E[y(¢)] obtained in Equation (S.63).

E.3.1.2 Algorithm for the estimators of the bounds on E[y(t)] obtained in Equation (S.63)
Step 1. Set y, =1 — 0.1/logn, where n is sample size. Simulate R x n times independent
draws from N (0, 1), denoted by {&;,:i=1,...,n,r=1,..., R}, where R is the number of
simulation repetitions (R = 10,000).

Step 2. Compute the local constant/linear kernel estimator E, [yi|zi] using the quartic
kernel and the rule-of-thumb bandwidth presented in Fan and Gijbels (1996). Define U i
as the regression residual.

Step 3. For each (n(s, t), n2(s, t))s<; € Hus :=[[,., Hug(s, t), compute the estima-
tors

MU, (n1(s, ), ma(s, 1)) = Y Enlylz=s1P(z =)

s>t

m(s, 1) —t =~
Eu[ylz= ot
i Z{ n2(s, 1) — N1(s, 1) [ylz=m1(s,0)]

s<t

t— 771(5, t)
nZ(Sa t) - 711(5, t)

K(s — Zi>

~ h

~MU X D\ — . n 7

Bomts.0.mas,en Ui Z) =Y Us NS
s>t

En[ylz =ma(s, t)]}P(z =),

P(z=y)

(7)1(5, t) - Zl)
. [ meD =t 5 B
s<t

1205, 0 =S, 1) on (115, 2))
n2(s, 1) — Z;

r—mi(s,1) ﬁ,K( hn )
M) =m0 ' oinfa(na(s, )

j|P(z=s),

where f,,(n) is the kernel density estimator of the density of  and #4,, is a bandwidth.

1< 2

MU 2_ MU 7.
Enl @15, mas.m ] = 1 2_[&my5,0,mat,00 (Ui Z0)] (5.64)
i=1
Enl&y) P
sV (m1(s, 1), ma(s, 1)) =\/ U LI (S.65)
n
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For each (11(s, 1), m2(s, 1))s<r € Hypand r =1, ..., R, compute the estimators

1 n
MU . MU
Gn(& (i 5.0 ma(5.0)° 7) = NGt Z Eir8 (5,00, m(s,0) (Ui 20D, (5.66)

G @ (s,0,m05,0)° N
\/E Blms,0,mat5.00

Step 4. Compute kp, 15 (Yn) = vn-quantile of {maXy, (s,1),a(s,0),reHus ¥n (105, 1),
n2(s,8);r),r=1,...,R} and

(5.67)

MU(n1(s, ), ma(s, )7

Hyus = {(m(s, 1), m2(s,1)),_, € Hu|

MUn(m(S 0, m2(s, 1)) < [MUn(m(S, 1), ma(s, 1))

(m1(s,0), "72(5 1))v<t€HUB

+ K,y (Y)Y (15, 0), a5, )]
o+ 2, (Y)SH (m1(5. 0, ma(5, ) .

Step 5. Compute k,, 5 . (p) = p-quantile of {max, (; /) 1. (s.0)); - efnus MU (1 (s, 1),
n2(s,0);r),r=1,..., R}. Set

—— ) . _—
MU = min MU s, 1), s, t
n(P) (m(s,l),nz(s,t))s<z€HUB[ n(m( ) m2t ))
(5.68)

+ ko s (PISH (1G5, 1), (s, D)].

Step 6. For each (n1(s, 1), m2(s, 1))s=r € Hip =[]
tors

¢ HiB(s, ), compute the estima-

ML, (n1(s, 1), n2(s, ) = > _ Enlylz=sIP(z=>5)

s<t

" Z{ MO DZL B [ylz = m1(s, 0]

§>1 ”’72(3; t) - ”’)1(Sa t)

r— 7]1(5, t)
”’72(& t) - ”’)1(& t)

k(=%
SZ; \/(_fn(s>

Eu[ylz=ma(s, 0] }P(z =),

~ML
8(ni (5.0, ma(s.0) (Uis Zi) P(z=5)

NS, 1) — Z;
K{———
ms, ) —t = ( hy, )
+ U; —
;[”flz(& D=8 Jhyfu(ni(s, 1))
n2(s, 1) — Z;
f=ms0) ﬁAK( fin >]P(z—s)
208, 1) =M1, 1) ' Tnfa(ma(s, 1)) e




22 Okumura and Usui Supplementary Material

Furthermore, by replacing Zg‘%\f’?(s,t), ms.ny(Uis Zi) in Equations (S.64) and (8.65) with
%%(s,t)m(s,t))(Ui,Z,'), compute the estimators En[gﬁ\f}hs’nm(&n)]Z and sML(nq(s, 1),
M2(s, 1)).

For each (ni(s,?), n2(s,1))s=: € Hip and r = 1,..., R, compute the estimators
Gr@M o sy ) and Y (1 (s, 1), ma(s, 0); r) by replacing g13% ;) (. )(Ui, Zi) in
Equations (S.66) and (S.67) with jg\?fﬁ(s,t),m(s’t))(Ui, Zi).

Step 7. Compute Kyt (vn) = yn-quantile of {maxXy,(s,e),m(s.0)sercHis YA (M1 (s, 1),
n2(s,t);r),r=1,...,R},and

~

Hy s = {(m1(s, 1), m2(s, 1)), € Hip|
s>t

ML, (11(s, 1), n2(s, 1)) > max ML, (11(s, 1), n2(s, 1)
n("] K ) (771(S,t)mz(S,t))s>z€HLB[ n(”) K )

— ke, s (Y)sy (01 (s, ), ma(s, ) ]

- 2kn,HLB(')’n)S,1>/IL(”fll(Sa t)7 7]2(57 t))}

Step 8. Compute k,, 7., (p) = p-quantile of (max, « , n.(s,0, el Un (10,0,
(s, 1);r),r=1,...,R}. Set
~—0 —
ML, (p) = max ML, (11(s, 1), ma(s, 1)
P (m(s,t),nz<s,z))s>teHLB[ (o (s 1)

(S.69)
- kn,ﬁ,,,LB(p)SEdL(m(s, 0, m(s, D)].

Step 9. The median unbiased estimates of the lower and upper bounds on E[y(#)] in
Equation (S.63) are 1\7[12(0.5) and 1\7[?]2(0.5 ), respectively. The (1 — «) confidence interval
of E[y(1)] is [ML.(a/2), MU (1 — a/2)].

E.3.2 Implementation algorithm for the average treatment effect, E[y(t;)] — E[y(t1)]
In Section E.3.2.1, we obtain the alternative representation of the upper bound on
Ely(%)] — E[y(#1)] that is obtained in Equations (8), (9), and (10), and to which the CLR
method can be applied. In Section E.3.2.2, we describe a procedure to obtain a median
unbiased estimator and confidence intervals of this bound.

E.3.2.1 Alternative representation of the bounds on E[y(t)] — E[y(t;)] We define the
following sets: (i) The quantities (¢, t;) are given, where (¢, %) € T? and t; < t,. For
s < ty, Hyg(s, ) == {(n10(s, 22), 120(s, 12)) € T?|s < ma0(s, ) < ta A M10(s, 12) < M20(s, 12)}
and Hxri(s, 1) == {(n11(s, 1), m21(s, 1)) € T?|mui(s, 1) < 1 < mai(s, 1) < s < B}. For
s > 1, Hyro(t, 1) := {(n12(t1, ), m2(t1, 1)) € T nia(t1, ) < 1 < Moty ) < 1 < sb.
(ii) For (s,11,h) € T3, where 4 < tp, Hay = ns<tz Huyg(s, ) x l_[t1<s<t2 Har1(s, 1) x
[1,<s Har2(t1, 1) and (s, 11, 1) = (1o(s, 2), m20(s, 12), M1 (s, 1), n21(s, 1), ni2(t1, ),
nn(t, n)).
Then Equations (8), (9), and (10) are equivalent to

0 < E[y(t2)] — E[y(11)]

Z h—t { n20(s, ) — b
tr —s | n20(s, ) — No(s, &)

< min
n(s,t1,6)€HAy

E[ylz=m10(s, )]

S<I1
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t — n10(s, &)
n20(8, £2) — M10(S, 1)

E[ylz=m20(s, )] — Ely|lz = S]}P(Z =)

( n20(8, ) — b
+
n20(8, &) — N10(S, 2)

r<s<ty

E[ylz=m10(s, )]

ty — Mo(s, &)
n20(8, &) — M10(S, £2)
_ { m21(s, 1) —
12108, 1) — M11(8, 1)

E[ylz=m20(s, )] (S.70)

E[ylz=m11(s,11)]

t1 — (s, t)
2108, 1) — M11(8, 1)

nu(t, ) —h
+ E[y|Z=S]_{ E|ylz=mn12(t1, 1)
PZ,Z< n22(t, ) — n12(t, ©2) b 1 ]

Elylz=n2(s, t1)]}>P(2 =)

t1 — m2(t1, ) "
n22(t, &) — M2(t1, B2)

(ﬂzz(ﬁ,lz))})P(Z:S),

where w(n2(t, 1)) = E[y|z =s]if 9o (t1, ) = b and E[y|z = 22 (4, )] if 9aa (11, 1) < .

E.3.2.2 Algorithm for the estimators of the bounds on E[y(t;)] — E[y(t1)] obtained in
Equation (5.70) Steps 1 and 2. Perform Steps 1 and 2 as described in Section E.3.1.2.

Step 3. For each (119 (s, &), 120(s, £)) € Hyg(s, i), where s < 1, compute the estima-
tors

ATT1(n10(s, 22), m20(5, 12))

_h- tl{ M20(s, ) —

En[YIZ= n10(s, 1)]

=5 | m20(s, ) — n0(s, i) $.71)
t — Mo(s, &) PN '
En|ylz=m20/(s, 1)
n20(8, £2) — M10(S, &) n[y K ]
— Eulylz= S]},
TT1
(7110(3,12)’7120(3,!2))(Ui’ Zi)
(mo(S, h) — Zi)
_h-t M0 —h 5 hn
t—s | mo(s, ) —nio(s, ) ' Vhnfu(n10(s, 1))
(5.72)

(7)20(8, h) — Zi)
1 —10(s, 1) O hn
2008, ) = M10(8, 2) ' FinFa(m20(s, 1))

ﬁK(shfi)}_

T S a(s)



24 Okumura and Usui Supplementary Material

For each (m10(s, 2), m20(s, &2)) € Hug(s, &2), where #; < s < 1, and each (n11(s, 11),
n21(8, t1)) € Har1(s, t1), where #; < s < t,, compute the estimators

ATT(n10(8, 22), m20(85 £2), M11(S, 1), M21(S, 11))
_ { M20(s, ) — 1
Mm20(8, £2) — M10(s, 12)
= Mi0(s, )
M20(S, £2) — M10(S, 2)
3 { m21(s, 1) — 11
M21(8, t1) — 11 (s, t1)
1 —mu(s, t)
M21(s, 11) — 11 (s, 1)

TT2 5
(7110(3',tz),7)20(5,12),7711(S,t1),n21(5,t1))(Ul’ Zi)

K(mo(S, ) — Zi)
_ { n20(8, ) — 1 0 hy,

n20(8, 12) — M10(s, 1) i \/Eﬁ(mo(s, ))

En[YIZ =10(s, 1) ]

En[YIZ = n20(S, tz)]} (8.73)

En[YIZ= n11(s, 1) ]

En[)’lz= n21(s, f1)]},

<7720(S, ) — Zi)
h=moh) 5 hn
12008, ) — M0(8, 1) S Tnfa(020(s, 12))
<7111(S, i) — Zi)
B { mi(s, 1) — 4 O hn
m21(8, 1) = 01108, 1) ' Tn fu(M11(5, 11))

(8.74)

<7721(S,t1)—Zi)
n—mnu(s, n) O Iy
2108, t1) — M11(8, 1) ZJEfn(Tm(S,H)) .

For each (n12(t1, 1), maa(t1, 1)) € Hat2(t1, 1), where s > t;, compute the estimators

ATT3(n12(11, ), m2(t1, 1))

nn(h, ) —h

Exylz =i, 1) (S.75)
n2(ti, ) — ni2(t1, &) n[ylz=m2(t1, )]

=Eulylz=s]— {

t—m2(ty, B)
n22(t, ) — N2k, &)

TT3 ,[2))(Ui7 Zl)

(m12(t1,82),m22(H

a(nn(t, n)) },

K(S;Zi) s K(”’IIZ(tlyhtZ)_Zi)
i n _{ ) -t 5 n

7 VInfa(s) Mt ) — 2t ) Vi fa(mia(ty, 1))
t—mi2(t, i)
n22(t1, ) — M2t 1)

(5.76)

au(ma(y, tz))},
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where w(n2(t1, 1)) = En[zlz =s]if npn(n, n) =1 and Eulylz = n22(41, 12)] if noa(t, ) <
t, and By (n2(h, 1)) = UK (52) /(Vhafa(9)) i m2(11, 1) = 1 and UK (12102221

(Vhnfu(ma(t, 1)) if 9o (t1, ) < B.
For each n(s, t1, 1) € Hay, compute the estimators

AU, (n(s, 11, 1))
=Y ATTi(n10(s, ), m20(s, 2)) P(z = 5)
s<t
(S8.77)
+ Y ATTa(mio(s, 2), m20(s, £2), M1 (s, 11), 21 (s, 1)) P(z = 9)
H<s<by
+ ZATT3(7)12(H, n), ma(t, B))P(z=3s),
s>t
U
Bents.t1.) Uiz Z0)
N\ SATTI 7 _
- Zg(mo(s,tz),nzo(s,tz))(U” Zi)P(z=ys)
s<n
o (5.78)
+ Z (7110(5,’2),7120(5,’2%7711(S,f1),7721(8=t1))(Ui’ Zi)P(z=ys)
H<s<ty
TT3 . . —
+ Z (mz(th)mzz(th))(U" ZpP(z=5).
s>t

Furthermore, by replacing /g\?fr[]llj(s,t), .oy (Uis Zi) in Equations (S.64) and (S.65) with

U . ) . . . U 2
?é\n(s’tl,tz))(Ul,Z,) in Equation (S.78), compute the estimators En[ﬁn(s,tl,tz))] and

s (n(s, 11, 12)).

For each n(s, t1, ) € Hyy and r =1, ..., R, compute the estimators Gn@{\,}{s’w)); r)
and AV (n(s, t1, 1); r) by replacing %ﬂs,”m(w))(w, Z;) in Equations (S.66) and (S.67)
with ?é%{s,tl ) (Uis Zi) in Equation (S.78).

Step 4. Compute kg, () = yYn-quantile of {max, s, ,)eHay ¢r’,}U(11(s, H,h)r),r=
1,...,R}and

~

Hy,au = {n(s, 11, ) € Hayl

AU,(n(s,t1,) < min _ [AU,(n(s, 11, 1))

n(s,t1,1)€Hay

+ kn,HAU('Yn)SSU(n(ss I1, t2))]

o+ 2k iy (V)i (s, 1, 12)) |-

Step 5. Computek,, 7 . (p) = p-quantile of {max, . g " (s, 11, 0);7), 7=
1,..., R}. Set

AUy(p)=_ min_ [AU(n(s, 11, 1)) + K, g, oo (PISEV (0G5, 11, 12)) ]

n(s,t1,1)€HAU
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Step 6. The median unbiased estimate of the upper bound on E[y(#)] — E[y(#;)] in
Equation (S.70) is A/fJS(O.S). The one-sided (1 — «/2) confidence interval of the upper
bound on E[y(t;)] — E[y(#1)] is @2(1 —a/2).
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