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This supplementary material contains Appendices A and B. Appendix A illus-
trates the theoretical issue of consistent estimation related to Bajari, Benkard, and
Levin’s (2007) inequality approach, as well as providing some remedies for discrete
action games. Appendix B contains the proofs of Theorems 1 and 2 in the main pa-
per.

Appendix A: Consistent estimation with BBL’s methodology

This appendix illustrates a potential problem with the inequality approach of Bajari,
Benkard, and Levin’ (2007, hereafter BBL). We provide two examples in Section A.1, each
showing a scenario where the inequality restrictions imposed by the equilibrium are
satisfied by a unique element in the parameter space and the uniqueness can be lost
when a strict subclass of inequalities is considered. The first example has no condition-
ing variables so as to emphasize that the source of information loss here differs from
the instrumental variable model in Domínguez and Lobato (2004). The second example
corresponds to Design 2 of the simulation study in Section 5. In Section A.2, we provide
a class of inequalities that retains the identifying information of the (identified) param-
eters of some discrete action games. We conclude with a brief discussion in Section A.3.

A.1 Mathematical examples

Single agent problem Consider a simple optimization problem where an economic
agent maximizes the payoff function

uθ(a�ε) = −a2 + 2θaε�

Here a and ε denote the action and state variables, respectively, and θ belongs to Θ,
some positive subset of R. The model is generated from some distribution of εn that
is absolutely continuous with respect to the Lebesgue measure and has finite second
moment. Notice that the current setup satisfies conditions in Section 2.3 as a special
case of a single agent static decision problem (β= 0 and I = 1). Since the payoff function
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is concave, the optimal strategy follows from the first order condition

αθ(εn) = θεn a.s. for all θ ∈Θ�

It is clear that the distribution of αθ(εn) is identified. Let θ0 denote the true parameter
and suppose we observe a random sample {an}Nn=1, where an = αθ0(εn) for each n.

The inequality approach of BBL defines an estimator for θ0 that satisfies the system
of moment inequalities in the limit,

E
[
uθ

(
αθ0(εn)�εn

)] ≥E
[
uθ

(̃
α(εn)�εn

)]
for all α̃ ∈ A0� (SA1)

where A0 is some user-chosen class of functions (of alternative strategies). We first con-
sider a popular class of strategies based on additive perturbations and show that it can-
not be used to identify θ0. Formally, let S be some subset of R. Then define A0(S) =
{̃α(·;η) for η ∈ S : α̃(ε;η) = αθ0(ε)+η for all ε ∈ E }.1 It follows from some simple algebra
that, for any η,

E
[
uθ

(
αθ0(εn)�εn

)] −E
[
uθ

(̃
α(εn;η)�εn

)] = η2 + 2η(θ0 − θ)E[εn]�

When εn has mean zero, A0(S) has no identifying information for θ0 in the sense that,
for all θ ∈ Θ�

E
[
uθ

(
αθ0(εn)�εn

)] ≥E
[
uθ

(̃
α(εn)�εn

)]
for all α̃ ∈ A0(S)�

even if S = R. Therefore, A0(S) cannot be used to consistently estimate θ0.
However, the set of inequalities that considers all alternative strategies can actually

identify θ0. To see this, we begin by calculating the difference between the expected re-
turns from αθ0 and a generic alternative strategy α̃:

E
[
uθ

(
αθ0(εn)�εn

)] −E
[
uθ

(̃
α(εn)�εn

)] = −(θ− θ0)
2E

[
ε2
n

] +E
[(
θεn − α̃(εn)

)2]
�

If we consider an inequality based on multiplicative perturbation, say A1(S) = {̃α(·;η)
for η ∈ S : α̃(ε;η) = ηαθ0(ε) for all ε ∈ E }, then by choosing α̃ from A1(S), the difference
above simplifies to ((θ − ηθ0)

2 − (θ − θ0)
2)E[ε2

n]. It is easy to see that whenever θ �= θ0,
the inequality in (SA1) will be violated for some range of values of η sufficiently close
to 1: more precisely, if θ > θ0, then violation occurs for η ∈ (1� θ/θ0); otherwise take η ∈
(θ/θ0�1). Therefore, the class of multiplicative perturbations has sufficient identifying
power for θ0 in the sense that when S contains any open ball centered at 1, then

E
[
uθ

(
αθ0(εn)�εn

)] ≥E
[
uθ

(̃
α(εn)�εn

)]
for all α̃ ∈ A1(S) if and only if θ = θ0�

1In an application of the BBL methodology, the user puts a distribution on η that has support S. A ran-
dom sequence from this distribution is then drawn to construct the objective function; for instance, if S = R,
then η can be drawn from a normal distribution.
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Cournot game Consider the setup of Design 2 in Section 5. Here we give a slightly more
informal argument for why inequalities based on additive perturbation lose some iden-
tifying information on the data generating parameter while multiplicative perturbations
can preserve it.

Consider player 1. For any given a2�x�ε1, u1�θ(a1� a2�x�ε1) is concave in a1 since
θ1 > 0. Taking the first derivative gives

∂

∂a1
u1�θ(a1� a2�x�ε1)= x− θ2ε1 − θ1x(2a1 + a2)�

Since a1 and a2 enter the first derivative linearly and separately, the expected (symmet-
ric) optimal action, which we denote by γθ, can be obtained by finding the zero to solve
the first order condition

γθ(xn)= arg zero
a∈A

E

[
∂

∂a1
u1�θ(a1� a2�xn�ε1n)|xn

]∣∣∣∣
a1=a2=a

�

Given that ε1n is a random variable with mean 0 and variance 1, it then follows that
γθ(xn) = 1

3θ1
. Therefore, for any x�ε1, player 1’s optimal choice, αθ(x�ε1), can be char-

acterized by the zero of ∂
∂a1

u1�θ(a1�γθ(x)�x�ε1) that is equal to 1
3θ1

− θ2ε1
2xθ1

. It is clear that
the distribution of αθ(x�εn) is identified.

Suppose the data are generated from a random sample of {a1n�a2n�x}Nn=1, where
ain = αθ0(xn�εin) for i = 1�2 and every n, for some θ0 = (θ01� θ02) ∈ R

+ × R
+. To study

whether additive perturbations can be used to construct objective functions that iden-
tify θ0, we consider u1�θ(a1 +η�γθ0(x)�x�ε1) for some η. Through some tedious algebra,
it can be shown that

u1�θ
(
a1 +η�γθ0(x)�x�ε1

)
= u1�θ

(
a1�γθ0(x)�x�ε1

) +η
(
x− θ1xγθ0(x)− θ2ε

) − θ1x
(
2a1η+η2)�

Comparing the expected returns from using the optimal strategy and a perturbed one
gives

E
[
u1�θ

(
αθ(s1n)�γθ0(xn)� s1n

)|xn = x
] −E

[
u1�θ

(
αθ0(s1n)+η�γθ0(xn)� s1n

)|xn = x
]

= −η
(
x− θ1xγθ0(x)

) + θ1x
(
2γθ0(x)η+η2)

= −ηx

(
1 − θ1

θ01

)
+ θ1xη

2�

Clearly, θ′ = (θ01� θ
′
2) satisfies the necessary condition implied by the equilibrium for all

values of θ′
2. Therefore, the objective functions constructed using additive perturbations

cannot identify θ02 in the limit. Next, we consider the multiplicative perturbation. For
the calculations, it is convenient to write the multiplicative factor as (1 +η). Then it can
be shown that

u1�θ
(
a1(1 +η)�γθ0(x)� s1

)
= u1�θ

(
a1�γθ0(x)� s1

) +ηa1
(
x− θ1xγθ0(x)− θ2ε

) − θ1x
(
2η+η2)a2

1�
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Taking conditional expectation and comparing the expected returns gives

E
[
u1�θ

(
αθ0(s1n)�γθ0(xn)� s1n

)|xn = x
]

−E
[
u1�θ

(
αθ0(s1n)+η�γθ0(xn)� s1n

)|xn = x
]

= − η

θ01

(
x

3
δ1 + θ02

2x
(δ1θ02 + δ2)

)
+ θ1xη

2
((

1
3θ01

)2

+
(

θ02

2θ01x

)2)
�

where δ1 = 1 − θ1
θ01

and δ2 = θ2 − θ02. For any δ1� δ2 �= 0, with a small enough |η|, the
squared (second) term above is of smaller order and the first term will be strictly neg-
ative for some state x with either η > 0 or η < 0. Therefore, we expect {̃α(·;η) for
η ∈ S : α̃(si;η) = ηαθ0(si) for all si ∈ Si} to be able to preserve the identifying informa-
tion of θ0 when S contains an open ball centered at 1.

A.2 Perturbations for discrete action games

We first consider a binary action game that satisfy Assumptions M1, M2, M3, and D′ in
Section 2, where D′ is the parameterized version of D that replaces ui everywhere with
ui�θ. To keep the calculation of the expected returns tractable, we only use the class of
alternative strategies where players only deviate from the equilibrium action in the first
stage; BBL (see p. 1348) also suggested this among other ways to construct inequalities.
In particular, we can, therefore, adopt the framework of the pseudo-model constructed
in Section 3.1. Suppose the data {(ain�a−in� xn�x

′
n)}Nn=1 are generated from a pure strat-

egy Markov equilibrium when θ = θ0. In the limit, the pseudo-objective function (see
equation (8)) is

Λi�θ(ai�x�εi) = E
[
ui�θ(ai�a−in� xn�εi)|xn = x

] +βigi�θ(ai�x)

= vi�θ(ai�x)+ εi(ai)�

where vi�θ(ai�x) = E[πi�θ(ai�a−in� xn)|xn = x] + βigi�θ(ai�x); Pesendorfer and Schmidt-
Dengler (2008) called vi�θ the continuation value net of the payoff shocks. Since we
only focus on identification, vi�θ is taken as known; conditions for consistent estima-
tion of vi�θ and other details can be found in Aguirregabiria and Mira (2007) and Pe-
sendorfer and Schmidt-Dengler (2008). It is also convenient to define the differences be-
tween the choice-specific continuation values and private values. Let �Λi�θ(ai� a

′
i� si) =

Λi�θ(ai� si) − Λi�θ(a
′
i� si), and also let �vi�θ(x) = vi�θ(1�x) − vi�θ(0�x) and ωin = εin(0) −

εin(1). Note that under Assumption D(iii), ωin is absolutely continuous with respect to
the Lebesgue measure with support on R. The pseudo-best response is characterized by
a cutoff rule,

αi�θ(sin) = 1
[
�vi�θ(xn) > ωin

]
a.s. for all θ ∈Θ and i = 1� � � � � I�

Then �vi�θ0(x) is identified from Q−1
ωi

(Pi(1|x)), where Pi(1|x) denotes the underlying
equilibrium choice probability of choosing action 1 and Q−1

ωi
is the inverse of the dis-

tribution function of ωin.
We assume that θ0 is identified (see Definition 3 in Section 4.1) and we claim that

a class of alternative strategies that consists of perturbing the cutoff values has suffi-
cient identifying power for θ0. More formally, let AU

i (S) = {̃αi(·;η) for η ∈ S : α̃i(si;η) =
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1[�vi�θ0(x)+η>ωi] for all si ∈ Si}. Then AU
i (S) has sufficient identifying power for θ0 in

the sense that

E
[
Λi�θ

(
αi�θ0(sin)� sin

)|xn = x
] ≥E

[
Λi�θ

(̃
αi(sin)� sin

)|xn = x
]

(SA2)
for all i� x and α̃i ∈ AU

i (S) if and only if θ = θ0�

for some appropriate S. To see this, we first show that whenever θ �= θ0, we can find some
i� si, and η such that �Λi�θ(αi�θ0(si)� α̃i(si;η)� si) < 0.

Since θ0 is identified, for any θ �= θ0, there exists some i� x and ξ �= 0 such that
�vi�θ(x) = �vi�θ0(x)+ ξ. Suppose ξ > 0. Then any η ∈ (0� ξ) implies

�Λi�θ

(
αi�θ0(si)� α̃i(si;η)� si

)
=

{
−(

�vi�θ(x)−ωi

)
< 0� for ωi ∈

(
�vi�θ0(x)��vi�θ0(x)+η

)
�

0� otherwise�

By an analogous argument, when ξ < 0, choosing any η ∈ (ξ�0) implies that
�Λi�θ(αi�θ0(si)� α̃i(si;η)� si) takes strictly negative values for all ωi ∈ (�vi�θ0(x) + η�

�vi�θ0(x)) and is 0 otherwise. Since ωin has a continuous distribution on R,
E[�Λi�θ(αi�θ0(sin)� α̃i(sin;η)� sin)|xn = x]< 0 for all η on either (−ξ�0) or (0� ξ) with small
enough ξ > 0. Therefore, the class of perturbations at the cutoff value has sufficient iden-
tifying power for θ0 if S contains any open ball that is centered at 0.

Although we do not provide any formal details, due to nontrivial additional nota-
tional complexity, an analogous idea can be used for multinomial action games. Sup-
pose Ki = K for all i. Then the optimality condition for the (K + 1) choice problem can
be characterized, for each player and state, by K inequality constraints that partition
R
K—the support of the normalized private values. The role of a cutoff value is then re-

placed by a locus point in R
K , which is uniquely identified by the inversion result of

Hotz and Miller (1993) subject to the choice of a normalization action. Then analogous
alternative strategies can be constructed by additively perturbing the locus point using
a K-dimensional variable whose support includes a ball in R

K that contains the origin.
The intuition used in the unordered binary action game can also be applied to the

class of discrete monotone action games. Specifically, we now assume M1, M2, M3, S1′,
S2, and S3′, and let the data {(ain�a−in� xn)}Nn=1 be generated from a pure strategy Markov
equilibrium when θ = θ0. Recall that αi�θ(x� ·) is a nondecreasing function on Ei (by the
arguments of Lemmas 1 and 2). For notational simplicity, suppose that Ai = {0�1} for
all i. Then the pseudo-best response is uniquely characterized by a cutoff rule

αi�θ(sin)= 1
[

Ci�θ(xn) ≥ εin
]

a.s. for all θ ∈Θ and i = 1� � � � � I�

for some Ci�θ such that εi ≤ Ci�θ(x) ≤ ε̄i for all i, x, θ. In particular, when Pr[αi�θ(sin) =
1|xn = x] = 0, set Ci�θ(x) = εi, and when Pr[αi�θ(sin) = 1|xn = x] = 1, set Ci�θ(x) = ε̄i. As
seen previously, Ci�θ0(x) is identified by Q−1

i
(Pi(1|x)), where Q−1

i
denotes the inverse of

the distribution function of εin. If θ0 is identified, then the class of alternative strategies
AO
i = {̃αi(·;η) for η ∈ S : α̃i(si;η) = 1[Ci�θ0(x) + η > εi] for all si ∈ Si} has sufficient iden-

tifying power for θ0 in the sense described in equation (SA2). When there are more than
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two actions, suppose Ki =K for all i, then the data generating best response is generally
characterized by K − 1 boundary points on Ei for each player and state. These boundary
points can be identified from Fi and Qi. Since Ei ⊆ R, a simple way to apply the same
technique used in binary action games above is to choose the set of alternative strate-
gies that perturb only one of the boundary points at a time and leave all other boundary
points the same as those identified by the data.

A.3 A discussion

The inequality moment restrictions imposed by the equilibrium condition considered
in BBL is indexed by a class of functions of alternative strategies. Our examples in Sec-
tion A.1 illustrate a general point that some alternative strategies may have no identify-
ing information for a subset of the parameter of interest (or the entire parameter space
in some cases). In contrast to the examples in Domínguez and Lobato (2004), objective
functions constructed from certain classes of alternative strategies not only lack global
identification (i.e. do not have a unique optimum), they cannot even distinguish be-
tween different parameters locally. We only provide an example when the inequality ap-
proach suggested by BBL can fail for a point-identified model (most known applications
of their methodology proceed under this assumption). Although BBL also suggested a
set estimator for partially identified models, it is intuitively clear that their set estima-
tion approach is exposed to the same criticism as above, in which case some classes of
inequalities may only be able to identify a strict superset of the identified set.

We consider dynamic games in Section A.2. We focus on alternative strategies where
each player only deviates in the first stage since it provides a more tractable starting
point to study identification. It enables us to show that when the parameter is identi-
fied in binary action games, inequalities generated from additively perturbing the cutoff
values preserve the identifying information. We also explain how such technique can
be applied to multinomial choice games as well as discrete action games where play-
ers play monotone strategies. However, it is clearly impractical to extend the suggested
perturbation method for discrete action games to a continuous action game.

Finally, all of our analytical arguments above only apply to the limiting case where
equilibrium and alternative strategies are perfectly known and there are no simulation
errors. As the Monte Carlo study in Section 5 shows, it is always possible to obtain an es-
timate in finite samples, even when the objective function cannot identify the parameter
of interest in the limit. Our main message is the choice of alternative strategies, which
can be viewed as tuning parameters, is very important since it affects not only efficiency,
but also consistency. It remains an interesting issue to find some sufficiency theory for
choosing inequalities in a continuous action game.

Appendix B: Proofs of theorems

Since the first stage estimators are defined implicitly in our objective function M̂N(θ),
it suffices to show that Assumptions A1 and A2 imply some familiar conditions from
large sample theorems for parametric estimators. For Theorem 1, we make use of a
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well known consistency result for extremum estimators; for instance, see Theorem 2.1
of Newey and McFadden (1994). For Theorem 2, we show that A1 and A2 are sufficient
for the conditions of Theorem 7.1 of Newey and McFadden (1994), who provided a high
level condition for the asymptotic normality of an extremum estimator that maximizes
a nonsmooth objective function.

Proof of Theorem 1. Under A1(i), Θ is compact. Assumption A1(ii)–(iv) ensure that
M(θ) has a well separated minimum at θ0. Next, we show that the sample objective func-
tion converges uniformly in probability to its limit. By the triangle inequality,

∣∣M̂N(θ)−M(θ)
∣∣ ≤ 4

∑
i∈I

∑
x∈X

∫
Ai

∣∣F̃i�θ(ai|x)− F̂i�θ(ai|x)
∣∣μi�x(dai)

+ 4
∑
i∈I

∑
x∈X

∫
Ai

∣∣F̂i�θ(ai|x)− Fi�θ(ai|x)
∣∣μi�x(dai)

+ 4
∑
i∈I

∑
x∈X

∫
Ai

∣∣F̂i(ai|x)− Fi(ai|x)
∣∣μi�x(dai)

asymptotically since distribution functions are bounded above by 1 and F̃i�θ� F̂i�θ are
uniformly consistent under A1(v)–(vii). Under A1(iv), the measures are finite, hence
supθ∈Θ |M̂N(θ) − M(θ)| = op(1) by A1(v)–(vii). Consistency then follows by a standard
argument. �

Proof of Theorem 2. Conditions (i)–(iii) of Newey and McFadden (1994, Theorem 7.1)
are trivially satisfied by the definition of our estimator and condition A2(i) and (ii). It re-
mains to show that there exists a sequence CN that has an asymptotic normal distribu-
tion at the root-N rate, which satisfies the (stochastic differentiability) condition

sup
‖θ−θ0‖<δN

∣∣∣∣ DN(θ)

1 + √
N‖θ− θ0‖

∣∣∣∣ = op(1)

for any positive sequence δN = o(1), where

DN(θ) = √
N

M̂N(θ)− M̂N(θ0)− (M(θ)−M(θ0))− (θ− θ0)

CN

‖θ− θ0‖ �

We show that

M̂N(θ)− M̂N(θ0)− (
M̂(θ)− M̂(θ0)

) − (θ− θ0)

CN

(SA3)

= op

(
‖θ− θ0‖2 + ‖θ− θ0‖√

N
+ 1

N

)
holds uniformly for ‖θ−θ0‖ ≤ δN . The additional op(N−1) term added in (SA3) does not
affect Newey and McFadden’s results as it is the rate that our estimator (approximately)
minimizes the objective function, which coincides with condition (i) of their theorem.
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For θ in a neighborhood of θ0, we write M̂N(θ)− M̂N(θ0)− (M(θ)−M(θ0)) as a sum,
E1(θ)+E2(θ), where

E1(θ) =MN(θ)−MN(θ0)− (
M(θ)−M(θ0)

)
�

E2(θ) = M̂N(θ)− M̂N(θ0)− (
MN(θ)−MN(θ0)

)
�

Under A2(ii), MN and M are twice continuously differentiable in a neighborhood of θ0.
By Taylor’s theorem,

E1(θ) = (θ− θ0)

 ∂

∂θ
MN(θ0)+ 1

2
(θ− θ0)


 ∂2

∂θ∂θ

(
MN(θ)−M

(
θ

′))
(θ− θ0)

for some mean value functions θ, θ
′

that depend on (i� ai�x). Note that ∂
∂θM(θ) vanishes

when θ = θ0 under A1(ii). For ∂
∂θMN(θ0), we have

∂

∂θ
MN(θ0)

= 2
∑
i∈I

∑
x∈X

∫
Ai

∂

∂θ
F̂i�θ0(ai|x)

(
F̂i�θ0(ai|x)− F̂i(ai|x)

)
μi�x(dai)

= 2
∑
i∈I

∑
x∈X

∫
Ai

∂

∂θ
Fi�θ0(ai|x)

(
F̂i�θ0(ai|x)− F̂i(ai|x)

)
μi�x(dai)+ op

(
1√
N

)
�

where the second equality follows from the finiteness of {μi�x}i∈I�x∈X and A2(ii), (iv),
and (ix). Importantly, by A2(ix) and the continuous mapping theorem,

√
N ∂

∂θMN(θ0) ⇒
N(0� V), where V is defined in (17). For the Hessians of MN and M ,

∂2

∂θ∂θ
MN(θ)=
∑
i∈I

∑
x∈X

∫
Ai

∂2

∂θ∂θ
 F̂i�θ(ai|x)
(
F̂i�θ(ai|x)− F̂i(ai|x)

)
μi�x(dai)

+
∑
i∈I

∑
x∈X

∫
Ai

∂

∂θ
F̂i�θ(ai|x) ∂

∂θ
 F̂i�θ(ai|x)μi�x(dai)�

∂2

∂θ∂θ
M(θ)=
∑
i∈I

∑
x∈X

∫
Ai

∂2

∂θ∂θ
Fi�θ(ai|x)
(
Fi�θ(ai|x)− Fi(ai|x)

)
μi�x(dai)

+
∑
i∈I

∑
x∈X

∫
Ai

∂

∂θ
Fi�θ(ai|x) ∂

∂θ
Fi�θ(ai|x)μi�x(dai)�

By repeated applications of the triangle inequality, and making use of A2(ii), (iv), and

(v), it is straightforward to show that | ∂2

∂θl ∂θl′
(MN(θ) − M(θ

′
))| = op(1) for all (l� l′) as

‖θ− θ0‖ → 0. Therefore, we have

E1(θ) = (θ− θ0)

 ∂

∂θ
MN(θ0)+ op

(‖θ− θ0‖2)�
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Let ξ(θ)= M̂N(θ)−MN(θ), so that E2(θ)= ξ(θ)−ξ(θ0). From the definitions of M̂N and
MN ,

ξ(θ) =
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i�θ(ai|x)

)
× (

F̃i�θ(ai|x)+ F̂i�θ(ai|x)− 2F̂i(ai|x)
)
μi�x(dai)�

By repeatedly adding nulls, we can write

ξ(θ)= ξ1(θ)+ ξ2(θ)+ ξ3(θ)+ ξ4(θ)� where

ξ1(θ) =
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i�θ(ai|x)

)2
μi�x(dai)�

ξ2(θ) = 2
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i�θ(ai|x)

)(
F̂i�θ(ai|x)− F̂i�θ0(ai|x)

)
μi�x(dai)�

ξ3(θ) = 2
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i�θ(ai|x)

)(
F̂i�θ0(ai|x)− Fi�θ0(ai|x)

)
μi�x(dai)�

ξ4(θ) = −2
∑
i∈I

∑
x∈X

∫
Ai

(
F̃i�θ(ai|x)− F̂i�θ(ai|x)

)(
F̂i(ai|x)− Fi(ai|x)

)
μi�x(dai)�

In sum, ξ(θ) is op(N
−1/2‖θ − θ0‖ + N−1) since ξ1(θ) is op(N

−1) by A2(vi); ξ2(θ) is
op(N

−1/2‖θ − θ0‖), using a mean value expansion in θ and then applying A2(ii), (iv),
and (vi); ξ3(θ) is op(N−1) by A2(iv) and (vii); ξ4(θ) is op(N−1) by A2(vi) and (viii). There-
fore, E2(θ) = op(N

−1/2‖θ − θ0‖ + N−1). Thus, condition (SA3) is satisfied uniformly for

‖θ − θ0‖ ≤ δN with CN = ∂
∂θMN(θ0). Since ∂2

∂θ∂θM(θ0) equals W (defined in equation
(18)), the desired limiting distribution of θ̂ follows from applying Theorem 7.1 of Newey
and McFadden (1994). �
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