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For symmetric auctions, there is a close relationship between distributions of or-
der statistics of bidders’ valuations and observable bids that is often used to esti-
mate or bound the valuation distribution, optimal reserve price, and other quanti-
ties of interest nonparametrically. However, we show that the functional mapping
from distributions of order statistics to their parent distribution is, in general, not
Lipschitz continuous and, therefore, introduces an irregularity into the estimation
problem. More specifically, we derive the optimal rate for nonparametric point es-
timation of, and bounds for, the private value distribution, which is typically sub-
stantially slower than the regular root-n rate. We propose trimming rules for the
nonparametric estimator that achieve that rate and derive the asymptotic distri-
bution for a regularized estimator. We then demonstrate that policy parameters
that depend on the valuation distribution, including optimal reserve price and
expected revenue, are irregularly identified when bidding data are incomplete.
We also give rates for nonparametric estimation of descending bid auctions and
strategic equivalents.

Keywords. Empirical auctions, order statistics, bounds, irregular identification,
uniform consistency.

JEL classification. C13, C14, D44.

The order statistics approach has been very fruitful for deriving nonparametric iden-
tification results and bounds for auction models.1 However, as we show in this paper,
the central step of “inverting out” the distribution of bidders’ valuations from the distri-
bution of an order statistic introduces an irregularity into the estimation problem. We
show that point estimation of, or construction of bounds for, the cumulative distribu-
tion function (c.d.f.) of valuations from order statistics is generally at a rate slower than
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root-n, and that uniformly valid inference requires trimming or some other form of reg-
ularization.

In the literature on empirical auctions, the problem of inverting a distribution of or-
der statistics arises in several settings. For one, we may not observe the complete bidding
data: there are many relevant cases in which, by design, only a subset of the bids are ob-
served, even to the auctioneer. Most importantly, in descending bid (Dutch) auctions,
only the winning bid is observed, whereas in the popular ascending “button” auction
format, the auction ends when the second-highest bidder drops out, so that the high-
est bid is not observed. Furthermore, in many cases and without regard to the auction
format, the researcher may only have access to a data set in which only the transaction
price and/or the winning bid is recorded.

On the other hand, the results of this paper are also relevant settings in which some
of the conditions of the benchmark model for the auction are relaxed and the ordered
set of bids does not represent order statistics for a distribution of valuations or bidding
strategies, but only are used to construct bounds. Haile and Tamer (2003) analyzed as-
cending bid formats, where the highest bid recorded for a particular bidder over the
course of a given auction need not necessarily correspond to the “idealized” bid de-
scribed by the theoretical model at hand. Their bounds are calculated by inverting the
distribution of each order statistic separately; see also Chernozhukov, Lee, and Rosen
(forthcoming) for a treatment of the statistical problem of constructing this type of
bounds in the regular case. Also, in a recent study, Aradillas-López, Gandhi, and Quint
(2013) proposed a test for correlated private values that is based on estimators for the
valuation distribution from transaction prices in auctions with different numbers of par-
ticipants, and Armstrong (2011) derived bounds on policy parameters for first-price auc-
tions that allow for unobserved heterogeneity.

As an example, consider the textbook version of a descending bid auction in which,
starting from a very high initial value, the auctioneer announces a decreasing sequence
of prices and awards the good to the first bidder to drop out of the auction at a transac-
tion price equal to the current quote. In this format, only the winning bidder reveals
information about her true valuation. Under the assumption of independent private
values, an identification argument based on the relationship between the distribution
of valuations and its order statistics leads to the intriguing conclusion that, in principle,
observations of the highest bid alone are sufficient to recover the full private value dis-
tribution, regardless of the size of the auction. However, when it comes to estimation,
our analysis shows that even very large samples will, in general, be quite uninformative
about the lower tail of the distribution of valuations. More specifically, we show that even
though the distribution of private values can be estimated nonparametrically at a root-n
rate at any given point, the rate for estimating the distribution function (with respect to
an appropriate functional norm) can be made arbitrarily slow by considering auctions
with larger numbers of bidders.

While in this particular and very stylized example, the difficulty stems from esti-
mating the lower tail of the private value distribution, we show, for example, that in
set-identified problems, intersection bounds on the upper tail of the distribution con-
structed from the complete bidding data suffer from the same problems. The differ-
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ence between pointwise and uniform convergence rates is not merely a theoretical con-
cern, but we show that even for point-identified settings, economically relevant (finite-
dimensional) policy parameters inherit irregular identification as functionals of the val-
uation distribution. More specifically, we analyze bounds on the rate of convergence for
linear functionals, expected revenue, and optimal reserve price. In particular, it is shown
that expected revenue and optimal reserve price are not estimable at a root-n rate in gen-
eral, but the fastest possible rate may be significantly slower, depending on the number
of bidders in the observed and the counterfactual auctions. In particular, trimming the
problematic parts of the support without regard to sample size will, in general, not lead
to consistent estimation of those functionals.

These difficulties are not restricted to estimators based on distributions of order
statistics, but we show that for the leading cases of independent private values (IPV)
second- and first-price auctions with incomplete bidding data, the derived rates can-
not be improved on by any other nonparametric estimator. More specifically, we derive
upper bounds on the convergence rates for point estimators and bounds for the private
value c.d.f. F0(v) under different functional norms, and for policy relevant functionals
of the distribution, such as projected expected revenue and optimal reserve price. In
particular, for the IPV case, these bounds on rates imply that without imposing shape
restrictions on the parent distribution, the slow rate of the estimator based on the order
statistics approach is, in fact, also the optimal rate of nonparametric estimation in the
sense of Stone (1980). However, in general, the best attainable rates are shown to depend
on the degree of smoothness of F0(v), the number of bidders in the auction, and which
particular bids are observed.

Much of the recent literature on nonparametric estimation of auctions has focused
on identification (for a relatively recent survey, see Athey and Haile (2007)), where Athey
and Haile (2002) and Komarova (2009) provided results on nonparametric identifica-
tion from incomplete bidding data, and Haile and Tamer (2003) proposed a method
of constructing nonparametric bounds on the distribution under weaker assumptions
on bidding behavior by inverting the distribution of each bid separately. Guerre, Per-
rigne, and Vuong (2000) derived rate-optimal nonparametric estimators for first-price
auctions when all bids are observed, a case for which the problem of inverting distribu-
tions of order statistics does not arise.

Also, in a parametric context, Laffont, Ossard, and Vuong (1995) proposed a simu-
lated nonlinear least-squares estimator that uses, for computational reasons, only mo-
ments of the winning bid in a first-price auction. While their model is fully parametric
and the resulting estimators converge at the root-n rate, our results suggest that identi-
fication using this approach may be fragile and estimators using the full set of bids may
be less sensitive to misspecification of the valuation distribution.2

2Nonparametric identification of features of a model also permits interpretation of parametric proce-
dures as a plausible statistical approximation rather than treating the parametric specification of the model
as prior knowledge, and nonparametric nonidentification results are helpful to shed light on which partic-
ular features of a parametric model used for estimation are substantive for identification, as already argued
by Roehrig (1988). However, this interpretation also implies that the properties of the corresponding non-
parametric estimator are indicative of the quality of this approximation. In this fashion, if nonparametric
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Even though this paper focuses on estimation of auctions, the statistical problem is a
prototype for other settings in which only the minimum, maximum, or other element of
an ordered sample of realizations of a vector of random variables is observed. Athey and
Haile (2002) and Komarova (2009) also pointed out the similarities between the problem
of estimating valuation distributions from observations of the highest bid and compet-
ing risks models in duration analysis, so that estimators for failure time models with
nonparametric baseline hazards under endogenous censoring should be expected to
share some of the statistical properties of the procedures analyzed in this paper.

There is a loose resemblance between our problem and the irregular identification
of finite-dimensional parameters considered by Khan and Tamer (2010). Classical ex-
amples covered by their analysis include Manski’s (1975) maximum score estimator (see
also Horowitz (1992)), Lewbel’s (2000) estimator for latent variable models with endo-
geneity, estimation of average treatment effects (see, for example, Imbens (2004) for
an overview), and estimation of the intercept in a semiparametric censored regression
model (Andrews and Schafgans (1998)). A common characteristic of these problems is
that in each case, an “identification at infinity” argument translates to a failure of a sup-
port condition with respect to all or some conditioning variables in any finite sample.
As we show, in estimation of auctions from incomplete bidding data, the failure of the
support condition arises endogenously from the economic model in that only data on
the “winning” (or other specifically ranked) unit are observed. This feature is also shared
by nonparametric competing risks and multinomial choice models with a large number
of goods; see, for example, Berry, Linton, and Pakes (2004). In contrast to the existing lit-
erature on irregular identification, the problem in this paper concerns estimation of an
infinite-dimensional parameter, where the irregularity affects different parts of the dis-
tribution to be estimated to different degrees. While regular subcases of this estimation
problem exist, rates of convergence are shown to depend on the norm for the corre-
sponding parameter space.

We now formally state the estimation problem analyzed in this paper. Section 2 de-
rives optimal convergence rates for nonparametric point estimators and bounds for the
valuation distribution for second-price formats under various sets of assumptions, and
Section 3 derives the asymptotic distribution of a regularized version of that estimator.
Section 4 shows how irregular estimation of the private value distribution affects rates
for nonparametric estimation of functionals, including expected revenue and optimal
reserve price, and Section 5 shows how to extend the main rate result to the case of first-
price auctions and related formats.

1. Description of the problem

In this paper, we consider estimation when we observe data from n independent auc-
tions in which one indivisible object is auctioned. Each auction i = 1� � � � � n has K bid-
ders and for each auction, the bidders’ valuations (V1� � � � � VK) are drawn from a joint
distribution FK ∈ FK with joint support VK ⊂ RK+ , where FK := FV1�����VK (v1� � � � � vK) and

estimation is possible only at a very slow rate of consistency, we should be very cautious in interpreting a
root-n consistent parametric estimator as an approximation to the more complex “true” model.
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FK denotes a subset of the set of c.d.f.s on VK (i.e., the set of upper semicontinuous,
nondecreasing functions from VK to the unit interval that attain the values 0 and 1 in
the closure of VK). We also let F0(v) := 1

K

∑K
k=1 FVk(v) denote the marginal distribution

of bidders’ valuations, where F0 ∈ F0 the set of c.d.f.s on V that are consistent with a joint
distribution FK ∈ FK .

For our results on consistency and asymptotic distribution of estimates of the valu-
ation distribution and/or bounds, we are not going to impose a particular relationship
between the distributions of bidders’ valuations and bids in the auction. While the eco-
nomic interpretation for each of the estimands discussed below—including distribu-
tions, bounds or functionals of a private value distribution—crucially depends on more
specific economic primitives of the auction, the large sample properties of the corre-
sponding estimators are derived for a common condition on the joint distribution of
observable bids.

Assumption 1.1 (Distributions of Valuations and Bids). Each auction features a single
good and K bidders, where the marginal distribution of bidders’ valuations is F0(v) and
the joint distribution for the ordered sample of the K bids (B1� � � � �BK) is given by

G1�����K(v1� � � � � vK)≡G1�����K(v1� � � � � vK;FK) := PFK(B1 ≤ v1� � � � �BK ≤ vK)�
with marginal distributions Gk(vk) for k = 1� � � � �K. The marginal probability density
function (p.d.f.) f0(v) of Vk is bounded away from zero in the interior of the support and
the first p derivatives of f0(v) are bounded.

Note that in our notation, the valuation Vk and the bid Bk do not necessarily cor-
respond to the same bidder, but for the latter, the index k denotes the rank of the bid,
whereas V1� � � � � VK denotes the unordered sample of valuations. Since there are no fur-
ther restrictions on the joint distribution of Vk across bidders, Assumption 1.1 allows for
common values, correlated private values, unobserved heterogeneity, and asymmetric
or risk-averse bidders. For our results on the upper bounds on rates of convergence and
optimal rates, we focus our attention mostly on estimation of the c.d.f. and function-
als of private value distributions using data from second-price auctions under the IPV
paradigm; the case of first-price and descending bid auctions is discussed in Section 5.

Assumption 1.2 (Second Price Auction). Each auction features a single good and K
risk-neutral bidders, where (i) participation is exogenous and (ii) the auction satisfies

symmetric independent private values (IPV), Vk
i�i�d�∼ F0(v) for some F0 ∈ F0, where (iii) any

distribution F ∈ F0 is absolutely continuous with respect to the Lebesgue measure with
density f (v), where the p.d.f. f0(v) of Vk is bounded away from zero in the interior of
the support, and the first p derivatives of f0(v) are bounded. (iv) The auction is sealed-bid
second-price or a strategically equivalent format, and participants play weakly dominant
strategy with bids Bk ≡ b∗(Vk)= Vk.

Note that Assumption 1.2 implies Assumption 1.1, where the joint distribution
FK(v1� � � � � vK)= F0(v1) · · ·F0(vK), and the distribution of bids G1�����K(v1� � � � � vK;FK) is
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given by the joint c.d.f. of theK order statistics for a sample ofK independent and iden-
tically distributed (i.i.d.) draws from F0 given in Appendix A. Except for the results on
upper bounds on the rates of convergence, we work with the weaker Assumption 1.1
rather than imposing the IPV model in Assumption 1.2. In particular, our results on con-
sistency and asymptotic distribution also apply to construction of bounds from order
statistics under the weaker set of conditions. However, we are going to impose through-
out this paper that bidders are symmetric, which is not essential for most of our qual-
itative insights, but a proper treatment would require substantially more notation and
case distinctions, and make the exposition harder to follow.3 We also do not explicitly
analyze the case of observable heterogeneity, but the arguments presented in this paper
are made conditional on observed auction-specific regressors and number of bidders.

To keep our results general, we allow the data set available to the econometrician to
be any r-dimensional subvector of the complete vector (Bi1� � � � �BiK) of bids.

Assumption 1.3 (Observable Bids). We observe the k1 < k2 < · · · < kr lowest bids Bi =
(Bik1�Bik2� � � � �Bikr ) for n i.i.d. auctions of a single good with K bidders. In particular,
B1� � � � �Bn are i.i.d. draws from the distributionGk1�����kr (·;FK).

For example, if Assumption 1.2 holds and we only record the transaction price
for each of the n auctions, the observed bids correspond to Bi = BiK−1 = ViK−1, the
second-highest valuation among potential buyers in the ith auction. Given the sample
B1� � � � �Bn, we denote the marginal distribution of the kth bid by

Ĝnk(v) := 1
n

n∑
i=1

1{Bik ≤ v}�

Convergence rates for estimators of the distribution with respect to the Lq norm
for 1 ≤ q <∞ and linear functionals turn out to depend on the behavior of the tails of
the parent distribution F0(·). To characterize that relationship, we assume that the p.d.f.
f0(·) is bounded from above by polynomial functions with exponents α1 and α2 in the
quantile τ for values of τ close to 0 or 1, respectively. More specifically, we make the
following assumption.

Assumption 1.4 (Tail Behavior). Let h(τ;F0) := f0(F
−1
0 (τ)), where f0 is the p.d.f. associ-

ated with F0. Then there exist constants α1, α2 such that for low quantiles τ, the behavior
of the p.d.f. of Vk is characterized by

lim sup
τ1→0

τ
−α1
1 h(τ1;F0) <∞

3Note that for the case of asymmetric bidders and observed bidder identities, all arguments made in this
paper also hold conditional on the identity of the winner, the second-highest bidder, and so forth in each
auction. In particular, if for all bidders l 
= k, the Radon–Nikodym derivative of the distribution of bidder k’s
valuation Vk with respect to that of bidder l’s valuation Vl is bounded from above and away from zero, the
optimal rate for estimating the distribution of Vk is the same as in the symmetric case.
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and in the upper tail of the distribution is characterized by

lim sup
τ2→1

(1 − τ2)
−α2h(1 − τ2;F0) <∞

for all F0 ∈ F0.

For example, if the p.d.f. of V is bounded from above and away from zero at the lower
boundary of its support, the first part of Assumption 1.4 holds with α1 = 0, whereas if V
follows a log-normal distribution, then the statement holds for any α1 >

9
5 .

Under Assumption 1.2, the observed bids are order statistics of samples of indepen-
dent draws from the parent distribution F . For a given parent distribution F ∈ F0, denote
the joint c.d.f. of the (k1� � � � �kr)th order statistics by

G(b;F) :=Gk1�����kr (bk1� � � � � bkr ;F) := PF(Bk1 ≤ bk1� � � � �Bkr ≤ bkr )�
For example, the c.d.f. for the kth order statistic can be expressed as

Gk(bk;F) :=
K∑
m=k

F(bk)
m
[
1 − F(bk)

]K−m

= K!
(k− 1)!(K − k)!

∫ F(bk)

0
sk−1(1 − s)K−k dt�

whereas a pair of order statistics B(k1;K), B(k2;K) has the joint c.d.f.

Gk1�k2

(
(bk1� bk2);F

)
(1.1)

=N(k1�k2;K)
∫ F1

0

∫ F2

0
s
k1−1
1 (s2 − s1)k2−k1−1(1 − s2)K−k2 ds2 ds1�

where for a tuple of integers 0 < k1 < · · · < kr ≤ K, we denote N(k1� � � � �kr;K) =
K!

k1!(k2−k1−1)!···(K−kr)! and Fs := F(bks); see, for example, David and Nagaraja (2003). We

give an expression for the general case in the Appendix.

Example 1.1. To frame thoughts, suppose that we observe the winning bid BiK in a
sealed-bid independent values second-price auction, which is the highest order statistic
for K i.i.d. draws from the population distribution of valuations F0(v). In this case, the
c.d.f. of the observed bid is given by GK(v�F) = [F(v)]K and the maximum-likelihood
estimator for the parent distribution is given by

F̂n(v)= K
√
ĜnK(v)=:φ−1

K

(
ĜnK(v)

)
�

where ĜnK(v) := 1
n

∑n
i=1 1{BiK ≤ v} is the empirical c.d.f. of BiK .

In this case, there is a closed form for the nonparametric maximum-likelihood esti-
mator that is also guaranteed to be nondecreasing in v. Furthermore, from elementary
arguments, F̂n(v) is pointwise consistent at a root-n rate and asymptotically efficient
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at every v ∈ V . However, it turns out that for the problem of inverting distributions of
order statistics, pointwise asymptotic arguments can be very misleading when we are
interested in estimating the distribution as a function or finite-dimensional parame-
ters of the distribution nonparametrically. We consider convergence rates for estimat-
ing the c.d.f. and bounds implied by the different order statistics with respect to func-
tional norms instead. In particular, the asymptotic squared bias of the nonparametric
maximum-likelihood (ML) estimator of the c.d.f. from incomplete bidding data will typ-
ically be of the same order of magnitude as its variance, so that the question of asymp-
totic efficiency cannot be posed in a meaningful way.

In the case of Example 1.1, the problem arises because the mapping φ−1
K (τ) = K

√
τ

is not Lipschitz continuous in τ ∈ [0�1] for any K > 0, which slows down the rates of
convergence for F̂n(v) as a function.4

More generally, for any k= 1� � � � �K, we define the mapping

φk(τ) := K!
(k− 1)!(K − k)!

∫ τ

0
sk−1(1 − s)K−k ds� (1.2)

which is strictly increasing by inspection. From the facts about order statistics given in
Appendix A, the marginal c.d.f. of the kth order statistic in a sample of K i.i.d. observa-
tions from a distribution F can be written as

Gk(v;F) := PF(Bik ≤ v)
(1.3)

= K!
(k− 1)!(K − k)!

∫ F(v)

0
sk−1(1 − s)K−k ds =φk

(
F(v)

)
�

In the following discussion, we, therefore, consider the inverse of this mapping:

ψk(τ) :=φ−1
k (τ) for any τ ∈ [0�1]� (1.4)

Under the symmetric IPV paradigm given in Assumption 1.2, the empirical c.d.f. of the k
highest bid estimates the c.d.f. of the kth order statistic Gk(v;F) in (1.3), so that by
the usual invariance properties of maximum likelihood, the nonparametric maximum-
likelihood estimator (MLE) for the c.d.f. of valuations can be obtained by applying the
inverse of the mapping φk(·) to the empirical distribution of the kth bid:

F̂n(v)=φ−1
k

(
Ĝnk(v)

) =:ψk(Ĝnk)� (1.5)

However, note that Assumption 1.1 does not state that the marginal distributions
of bids Gk(v) coincide with Gk(v;F), but recent results on identification and inference

4Since the quantile transformation linking the distribution of observed bid to the parent distribution
is a continuous function on the compact set [0�1], it is also uniformly continuous by the Heine–Cantor
theorem, so that the mapping is also continuous with respect to the sup-norm. In this sense, the inverse
problem of recovering the parent distribution from the joint distribution of observable bids is not ill-posed.
However, to derive a uniformly valid distributional approximation to the estimator, it will be necessary to
regularize this inverse, because the local linearization of the problem turns out to be ill-posed even though
the original problem is not.
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under departures from the benchmark model in Assumption 1.2 derive bounds based
on ψk(Gk(v)).5

1.1 Aggregates and bounds

Depending on the interpretation of the function ψk(Gk(v)), the researcher is often in-
terested in combining information from several bids: under the IPV paradigm in As-
sumption 1.2, we will show that to achieve the optimal rate of convergence for estimat-
ing the private value distribution, it is, in general, necessary to use the information on
all observable bids, for example, by averaging trimmed versions of estimates obtained
from the marginal distributions of the k1� � � � �kr bids. For bounds and hypothesis tests
in settings that relax the standard IPV assumptions, the literature has been considering
intersection bounds of the form

F0(v) ∈ [
max

{
ψl1

(
Gl1(v+Δ))� � � � �ψls(Gls(v+Δ))}�

min
{
ψm1

(
Gm1(v)

)
� � � � �ψmt

(
Gmt (v)

)}]
for all v ∈ V , where {l1� � � � � ls�m1� � � � �mt} ⊂ {k1� � � � �kr} and Δ≥ 0 is a minimal bid incre-
ment or other friction.

In addition to estimators of the private values distribution and its functionals in the
point-identified case, we also consider estimation of bounds on the c.d.f. of valuations
and other functions that aggregate the information from all observable bids under the
weaker conditions in Assumption 1.1. In its most general form, we write the estimand as

H0(v) :=H∗(ψk1

(
Gk1(v)

)
� � � � �ψkr

(
Gkr (v)

))
�

Examples for aggregation functionsH∗(·) include weighted averages

H∗(F1(v)� � � � �Fr(v)
) :=w1F1(v)+ · · · +wrFr(v)�

r∑
q=1

wr = 1�

intersection bounds

H∗(F1(v)� � � � �Fr(v)
) := max

{
F1(v)� � � � �Fr(v)

}
�

and Haile and Tamer’s (2003) smoothed bounds

H∗(F1(v)� � � � �Fr(v)
) :=

r∑
q=1

Fq(v)
exp{λFq(v)}
r∑

p=1

exp{λFp(v)}

for some large value λ > 0. Our results in Section 2 show that if the IPV framework
in Assumption 1.2 is assumed to hold, estimators using trimming can achieve a rate

5For example, Haile and Tamer (2003) allowed for jump-bidding in ascending auctions, and Aradillas-
López, Gandhi, and Quint (2013) considered unobserved heterogeneity.
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convergence corresponding to that of the “best” component in ψk1(Gk1)� � � � �ψkr (Gkr ),
whereas without the IPV assumption, the optimal rate depends on the least precise com-
ponent.

2. Estimation of the c.d.f. and optimal rates

In this section, we give bounds on the rate of convergence of the nonparametric esti-
mator for the parent distribution F0(v). Due to the nature of the problem, convergence
rates will depend on the norm on the function space F0. More specifically, we consider
convergence with respect to the L∞ or sup-norm ‖h‖∞ := supv∈V |h(v)| for any h ∈ F0,
and theLq norm with respect to Lebesgue measure is defined as ‖h‖q := (∫ |h(v)|q dv)1/q
for 1 ≤ q <∞.

Following Stone (1980), we say that rn is an upper bound to the rate of convergence
of F̂n under the norm ‖ · ‖ if

lim inf
n

sup
FK∈FK

PFK
(‖F̂n − F‖> cr−1

n

)
> 0 (2.1)

for any sequence of estimators {F̂n}n≥0 and

lim
c→0

lim inf
n

sup
FK∈FK

PFK
(‖F̂n − F‖> cr−1

n

) = 1� (2.2)

These bounds are not specific to any given estimator F̂n in the problem. We establish
these bounds on the rate of convergence by constructing a worst-case scenario in terms
of a true distribution F0 ∈ F0 and a local perturbation that cannot be distinguished
with certainty by any statistical procedure. In principle, this “hardest” estimation prob-
lem may be different for different estimators and/or different measures of distance, but
it turns out that for our purposes, the form of the perturbations that determine the
sharpest bound on the rate is the same for all problems we consider.

Also, rn is called an achievable rate of convergence if we can construct a sequence {F̂n}
of estimators that satisfy

lim
c→∞ lim sup

n
sup

FK∈FK

PF
(‖F̂n − F‖> cr−1

n

) = 0� (2.3)

If a rate rn is both achievable and an upper bound to the rate of convergence, we say that
it is the optimal rate of convergence for all nonparametric estimators of F0 ∈ F0.

The statement in (2.3) can be read as a requirement that the estimator normalized by
r−1
n is concentrated on a compact set with respect to the relevant norm for large samples

or, equivalently, that the rescaled distance between the estimator and the estimand is
asymptotically tight.

The notion of optimality for the rate of convergence is of course very weak and in
many cases, we will be able to construct several distinct and equally reasonable estima-
tors, all of which achieve the optimal rate. However, our main motivation for establish-
ing rate optimality is to demonstrate that the upper bound cannot be improved on and,
therefore, constitutes a useful measure for the difficulty of the nonparametric estima-
tion problem at hand.
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2.1 Consistent estimation of the valuation distribution

For clarity of the exposition, we focus on the case in which only the kth lowest bid out
of K is observed. We argue later on in this section that this is without loss of generality
for a discussion of the achievable rate of convergence for nonparametric estimators of
the valuation distribution. In particular, we will show that the upper bound on the rate
in Theorem 2.3 can be achieved by an estimator that combines the inverted empirical
marginal c.d.f.s of the observed bids in a straightforward manner.

By the invariance principle, the nonparametric maximum-likelihood estimator for
the c.d.f. of valuations can be obtained by applying the inverse of the mapping φk(·) to
the empirical distribution of the kth bid,

F̂n(v)=φ−1
k

(
Ĝnk(v)

) =:ψk(Ĝnk)� (2.4)

where ψk(τ) := φ−1
k (τ) for τ ∈ [0�1]. To illustrate the main idea behind the slow rates of

convergence, we first look at the setting in Example 1.1.

Example 2.1 (Example 1.1, Continued). For the problem of estimating the parent dis-
tribution from the highest order statistic, the nonparametric maximum-likelihood esti-
mator is

F̂n(v)= K
√
ĜnK(v)

for the empirical c.d.f. of the highest bid, ĜnK . To see why this estimator can be consis-
tent at best at a rate n−1/K with respect to the sup-norm, consider the estimate around
the lowest observation in a given sample, B̃n := min{B1K� � � � �BnK}. The size of the jump
in the empirical c.d.f. ĜnK at B̃n is 1

n , which translates into a jump in the estimate by
F̂n(B̃

+
n ) − F̂n(B̃

−
n ) = ( 1

n)
1/K . However, if the true c.d.f. F0(v) is continuous, the limits at

B̃n from the right and from the left coincide so that we can use the triangle inequality to
bound

sup
v∈V

∣∣F̂n(v)− F0(v)
∣∣ ≥ max

{∣∣F̂n(B̃+
n

)− F0
(
B̃+
n

)∣∣� ∣∣F̂n(B̃−
n

)− F0
(
B̃−
n

)∣∣} ≥ 1
2

(
1
n

)1/K

for any realization of the sample. Theorems 2.3 and 2.1 below imply that this is, in fact,
also the optimal uniform rate if we impose no further smoothness restrictions on the
derivatives of F(v).

Alternatively, consider the pointwise asymptotic mean-squared error (MSE) of this
estimator, which is given by

AsyMSE(τ) := E

[
n

K2

(
ĜnK

(
F−1

0 (τ)
)−GK

(
F−1

0 (τ);F0
))2(

GK
(
F−1

0 (τ);F0
))2/K−2

]

= (1 − τK)τ2−K

K2

using the delta rule. We show in Section 3 that this approximation to the MSE is not
uniform in τ and, furthermore, we can see that for any K > 2, the pointwise MSE along
a sequence of quantiles τn → 0, 1

n AsyMSE(τn) converges to zero only if τnn1/K → ∞.
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As this example illustrates, the difficulty consists in that the inverse mapping from
the distribution of observable bids to the parent distribution may not be Lipschitz con-
tinuous in some cases, but may have divergent slope in the tails of the distribution. The
problem is mitigated by the fact that the variance of the empirical distribution decreases
linearly as we move out into the tails, but persists unless we observe bids that are close
to the lowest and highest order statistics in a sufficiently large number of auctions.

As discussed earlier, the nonparametric MLE for observations on a single observed
bid Bik involves the inverse mapping ψk(·), which is not Lipschitz continuous since its
first derivative ψ′

k(τ) = 1
φ′
k(ψk(τ))

= 1
N(k�K)ψk(τ)

1−k(1 − ψk(τ))
k−K , which behaves like

τ1/k−1 for τ close to zero and behaves like (1 − τ)1/(K−k+1)−1 for τ close to 1, which di-
verge to infinity if k> 1 orK − k> 2, respectively.

We now give a general uniform consistency result for nonlinear transformations of
the empirical c.d.f. with finitely many singularities of this form, which we then apply to
the problem of estimating the c.d.f. of valuations from data on a particular bid in n i.i.d.
auctions.

Condition 2.1. Let ψ ∈ C 2([0�1]) be bounded and suppose that (i) there are only
finitely many points τ∗

1 < τ
∗
2 < · · ·< τ∗

S ∈ [0�1] such thatψ′(τ) diverges in a neighborhood
of those points and (ii) there exist finite constants As > 0 and δ1� � � � � δS such that for all
s = 1� � � � � S, limτ→τ∗

s
|ψ(τ)−ψ(τ∗

s )

|τ−τ∗
s |δs | =As . Also assume that ψ′(τ) is monotone and does not

switch sign on any interval of the form (τ∗
i−1� τ

∗
i ) for two adjacent singular points.

Note that by standard arguments, this condition also implies that for δs 
= 0, the first
derivative of ψ(·) satisfies

lim
τ→τ∗

s

∣∣∣∣ψ′(τ)−ψ′(τ∗
s )

|τ− τ∗
s |δs−1

∣∣∣∣ =As

for the same constants as in the statement of Condition 2.1.

Theorem 2.1. Suppose that Condition 2.1 holds and let δ := min{δ1� � � � � δS�
1
2 }. Then

the rate rn = nδ is achievable for an estimator of the function ψ(G0(v))with respect to the
sup-norm.

See Appendix B for a proof. We can now use this result to establish a uniform rate of
consistency for the estimator in (2.4).

Proposition 2.1. Suppose Assumptions 1.2 and 1.3 hold with r = 1 and k1 = k. Then
the estimator F̂n in (2.4) achieves the rate rn = nλ with λ = min{ 1

k�
1

K−k+1 �
1
2 } under the

sup-norm.

Proof. By Assumption 1.2, we have that for the distribution of the observable bid Bik,
ψk(Gk(v;F)) = F(v) for any v ∈ V . From the previous discussion, it is straightforward
to verify that Condition 2.1 holds for the mapping ψk(·) with τ∗

1 = 0, τ∗
2 = 1, δ1 = 1

k , and
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δ2 = 1
K−k+1 , where A1 = 1

N(k�K)1/k
and A2 = 1

N(k�K)1/(K−k+1) . Hence we can apply Theo-

rem 2.1 with δ = min{ 1
k�

1
K−k+1 }, so that the estimator in (2.4) is uniformly consistent

with rate rn = nδ, which is at the same time the upper bound on the rate of convergence
established in Theorem 2.3 for the special case of a single observable bid for each auc-
tion. �

Note that the consistency results in this section so far were only about the case of a
single observed bid per auction. However, as the next subsection shows, it is straightfor-
ward to extend the argument and establish achievability of the bound on the rate estab-
lished in Theorem 2.3 below by considering a procedure that combines the estimators
obtained from inverting the marginal distribution of each bid separately.

2.2 Aggregation of estimators

We now extend the statement from Proposition 2.1 to averages and other aggregates of
trimmed estimates of the form described in Assumption 2.1. Denote the empirical c.d.f.
of the k highest bid with Ĝnk, and assume that for all k= k1� � � � �kr , the mapping ψk(·)
satisfies Condition 2.1 with exponents δks for s = 0� � � � � S for a common grid of singular
points τ∗

0� � � � � τ
∗
S . For trimming sequences bnks → 0, define Dnk(v) := 1{|Ĝnk(v)− τ∗

s | ≥
bnks for all s = 0� � � � � S}. We will give conditions on the trimming sequences bnks below;
in particular, the optimal rates depend on whether the standard IPV framework is as-
sumed to hold or not.

We now consider estimators of the form

Ĥn(v) :=H(
ψk1

(
Ĝnk1(v)

)
� � � � �ψkr

(
Ĝnkr (v)

)
�Dnk1(v)� � � � �Dnkr (v)

)
�

where Dnk(v) is an indicator variable that equals zero if v falls into the trimming range
for the kth component ψk(Ĝnk(v)). We also assume that H(·� ·) and H∗(·) satisfy the
following conditions.

Assumption 2.1. (i) The aggregation functionH(Fk1� � � � �Fkr �Dk1� � � � �Dkr ) is Lipschitz
continuous with Lipschitz constantMH <∞ in Fk ifDk = 1 for all k= k1� � � � �kr , (ii) sat-
isfies H(F1� � � � �Fk�1� � � � �1) = H∗(F1� � � � �Fk), (iii) H∗(F� � � � �F) ≡ H̃(F) for all F and
some function H̃(·), and (iv) is constant in ψk in a neighborhood of radius r > 0 around
ψ−1(τ∗

s ) for all s = 1� � � � � S ifDk = 0.

Assumption 2.1 allows for trimmed maxima, minima, weighted averages, and Haile
and Tamer’s (2003) smoothed bounds on the trimmed estimates, where, for the average,

H(Fk1� � � � �Fkr �Dk1� � � � �Dkr )

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r

r∑
q=1

ψkq
(
τ∗
sq

)
if
∣∣ψ−1
kq
(Fkq)− τ∗

sq

∣∣< bnkq for all q= 1� � � � � r�

∑
k=k1�����kr

DkFk∑
k=k1�����kr

Dk
otherwise�
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and the maximum

H(Fk1� � � � �Fkr �Dk1� � � � �Dkr )

:= max
{
Dk1Fk1 + (1 −Dk1)ψk1

(
τ∗
s1

)
� � � � �DkrFkr + (1 −Dkr )ψkr

(
τ∗
sr

)}
�

where τ∗
sk

= arg min{|ψ−1
k (Fk)− τ| :τ ∈ {τ∗

1� � � � � τ
∗
S}}.

For the achievable rate of the aggregate estimator and the optimal trimming strategy,
we have to distinguish two cases in the following theorem.

Theorem 2.2. Let Bi1� � � � �BiK , i = 1� � � � � n, be a sample of i.i.d. observations with
marginal distributionsG1(v1)� � � � �GK(v1). Suppose that Assumption 2.1 holds, and that
the mappings ψk : [0�1] → [0�1] satisfy Condition 2.1 with constants δks , s = 0� � � � � S and
k= k1� � � � �kr . Then Ĥn(v) is consistent for H0(v) under the sup-norm with rate rn = nλ,
where the following statements hold:

(a) λ = maxk=k1�����kr min{δk1� � � � � δkS�
1
2 } if ψk(Gk(v)) = F0(v) for k = k1� � � � �kr for

some function F0(v), and the trimming sequences bnksn−δks/δ̄s → bks ∈ (0�∞), where
δ̄s := max{δk1s� � � � � δkrs}.

(b) λ = mink=k1�����kr min{δk1� � � � � δkS�
1
2 } if ψk(Gk(v)) 
= ψk′(Gk′(v)) for some k, k′,

and the trimming sequences bnksn−1 → bks ∈ [0�∞). In particular, this rate is attainable
without trimming.

In terms of applications, we can think of case (a) as having a correct model for the
marginal distributions of the different bids and then combining the estimates of a com-
mon implied c.d.f. in a way that achieves the optimal rate. The second case includes
the scenarios of interest for bounds applications in which different bids imply different
bounds on the marginal distribution of valuations.

The conditions on the trimming rates have to be different between cases (a) and (b)
for the following reason: in part (a), the individual estimates are “substitutes” for each
other and we can simply ignore the estimates with large “local” variance, whereas in the
setting of (b) the sharpest bound at a given value of v may be determined by the least
precisely estimated component ψk(Ĝnk(v)). However, note that since the rate for Ĥn
in part (b) is determined by this worst case, trimming sequences that satisfy bnksn−1 →
bks > 0 will yield a strict improvement over no trimming in all other cases.

Noting that under IPV for sealed-bid second price auctions, Assumption 1.2, the im-
plied private value distributionsψk1(Gk1(v))� � � � �ψkr (Gkr (v)) from the different observ-
able bids all coincide, we can directly apply the two cases (a) and (b) in Theorem 2.2 to
derive implications for estimation of auctions both with and without the IPV assump-
tions.

Corollary 2.1. Suppose Assumptions 1.3 and 2.1 hold for an auction model, and let S =
1 and τ0 = 0, τ1 = 1. Then Ĥn(v) is consistent forH0(v) at the rate nλ, where the following
statements hold:
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(a) λ = min{ 1
k1
� 1
K−kr+1 �

1
2 } if, in addition, Assumption 1.2 (i.e., the canonical IPV

paradigm) holds, and the trimming sequences satisfy bnk0n
−k1/k → bk0 <∞ for the lower

tail and bnk1n
−(K−kr+1)/(K−k+1) → bk1 <∞ for the upper tail of the empirical distribution

Ĝkn.

(b) λ= min{ 1
kr
� 1
K−k1+1 �

1
2 } if, in addition, Assumption 1.1 holds, and the trimming se-

quences satisfy bnk0n
−kr/k → bk0 < ∞ for the lower tail and bnk1n

−(K−k1+1)/(K−k+1) →
bk1 <∞ for the upper tail of the empirical distribution Ĝkn.

Note that the roles between k1 and kr have switched between cases (a) and (b): since
in part (a), the estimands ψk(Gk) are the same for all k= k1� � � � �kr by assumption, with
appropriate trimming rates, they are driven by the most informative bid at every value
v, whereas for bounds, for example, a maximum or minimum may be attained at any
of the components alone, so that the overall rate of convergence is driven by the least
precisely estimable component at every given point. For example, the bounds estimated
by Haile and Tamer (2003, Figure 10), are based on all bids for auctions of sizes up to
K = 8. While the resulting estimated bounds on the private value distribution are clearly
informative, assuming that auctions of all sizes increase at the same rate with n, the
optimal rate of convergence with respect to the sharp bounds implied by Theorems 2.2
and 2.4 is, in fact, as slow as rn = n−1/8. To put the result in perspective, note that this
is the same rate as for nonparametric estimation of a 12-dimensional density under the
default assumption of bounded second partial derivatives. It should also be noted that
the rate is equally slow if we restrict our attention only to either tail of the distribution,
since the sharp bound on the upper tail may be determined by one of the lower bids.

2.3 Upper bounds on the rate for estimating F0(v)

The slow rates of consistency in Proposition 2.1 are, in fact, not an artifact of the order
statistics approach, but we now show that without additional smoothness assumption
on the distribution of valuations, no nonparametric estimator can possibly achieve a
faster rate. To give an intuition for this result, consider again the problem of estimation
if only the winning bid is observed.

Example 2.2. Consider again the setting from Example 1.1, where only the highest
of K bids is observed in n i.i.d. auctions. To estimate F0(v) at or below the τ quantile,
our sample has to contain a sufficient number of observations of valuations less than
vτ := F−1

0 (τ) to be able to distinguish the true distribution F0 from any alternative F̃ that
coincides with F0 for all values of v ≥ vτ . Without smoothness restrictions, one possible
alternative F̃ in this class puts an atom of mass τ on vτ and sets F̃(v) = 0 for all v < vτ ,
so that supv∈V |F̃(v)− F0(v)| ≥ τ. However, for the highest bid for the ith observed auc-
tion, we have that BiK ≤ vτ with probability equal toGK(vτ)= τK , which vanishes much
faster than the size of the perturbation as we let τ shrink to 0. For example, forK = 6 and
τ = 0�25, we can see from a simple back of the envelope calculation that with probabil-
ity 78�4%, a sample of n = 1000 i.i.d. auctions does not contain one single observation
BiK ≤ v0�25 and is, therefore, completely uninformative about F0 for values v≤ v0�25.
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This simple calculation illustrates that what constitutes the “tails” of a distribution
for practical purposes depends crucially on the implied convergence rate. For the mag-
nitudes considered in this previous example, the irregularity implied by the functional
mapping ψk(·) affects estimation even at the third or fourth deciles of the parent distri-
bution.

With n i.i.d. IPV second-price auction for which we observe a vector (Bik1� � � � �Bikr )

of r different bids, we can establish the following upper bound on the rate of conver-
gence.

Theorem 2.3. Let F̂n be an estimator for F and let p be the number of bounded deriva-
tives of f as defined in Assumption 1.2. Then under Assumptions 1.2–1.4, rn = nλ is an
upper bound on the rate of convergence satisfying (2.1) and (2.2), where the following
equalities hold:

(a) λ= min{ p+1
k1+p�

p+1
K−kr+1+p�

1
2 } for the sup-norm.

(b) λ= min{q(p+1)−α1+1
q(k1+p) � q(p+1)−α2+1

q(K−kr+1+p) �
1
2 } for the Lq(μ) norm.

(c) λ= 1
2 under the norm ‖ · ‖q for any q≥ 1 including q= ∞, if we restrict the function

to a compact subsetA⊂ int V .

In particular, if p = 0, the convergence rate in part (a) of Theorem 2.2 is optimal in the
sense of Stone (1980).

It is important to notice that this bound depends crucially on the number K of bid-
ders in the auction and on which particular bids are observed. In particular, for the set-
ting of Example 1.1, for p = 0, the upper bound on the uniform rate of convergence
implied by Theorem 2.3 is rn = n1/K , which is the same as the result of our informal
discussion of the problem before. However, the discussion in Example 2.1 also demon-
strates that for p ≥ 1, the unrestricted nonparametric MLE does not achieve the upper
bound on the rate in part (a) of this theorem.

Note that the shape of the tails of the parent distribution—parameterized by α1, α2—
affects the rate only under the Lq norm, but not under the sup-norm. This should not
come as a surprise since the sup-norm on a function space is invariant to one-to-one
transformations of the domain—in particular the integral transformation v �→ F0(v)—
whereas the Lq norm is not. In particular, for q large, the difference between the expres-
sions for the respective exponents λ in parts (a) and (b) of the statement becomes small.

Part (c) of Theorem 2.3 essentially states that the problem of irregularity is restricted
to the tails of the distribution. In particular, if the observed bids (e.g., winning bid
or transaction price) are from the upper tail of the distribution, the difficulty consists
mainly in estimating the c.d.f. for the lower tail, whereas many policy parameters such
as expected revenue or optimal reserve price are more sensitive to properties of its up-
per tail. However, we show in Section 4 that it is wrong to conclude from this that those
functionals of the private value distribution were unaffected by the irregularity in gen-
eral, and we derive (generally slower than parametric) bounds on the respective rates of
convergence for several scalar policy parameters.
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The considerations behind the result in this theorem extend to the case of asym-
metric bidders, but a clean formulation of the corresponding results and proofs would
require additional notation and a different exposition, and we therefore leave this to fu-
ture research.

The previous result on rates for estimation of the c.d.f. can be modified to cover con-
struction of bounds on the private value distribution and other ways to aggregate the
information from several bids when the IPV assumption fails. However, since the argu-
ments leading to bounds of this type do not assume one single marginal valuation dis-
tribution F0(v), we have to be careful how we adjust the likelihood-based argument for
the upper bounds on rates in Theorem 2.3. We summarize the conditions on the bounds
and the joint distribution of bids and valuations in the following condition.

Condition 2.2. Suppose we observe the k1 < · · · < kr lowest bids and let G(bk1� � � � �

bkr ) be the joint distribution of those observed bids. Furthermore, there exist u�v in the
interior of V such that for all u≤ u and all v≥ v, there exists a joint distribution of observ-
able bids G(bk1� � � � � bkr ;FK) and a marginal valuation distribution F0(v) with density
f0(v) such that the first p derivatives of f0(v) are bounded and the following conditions
hold:

(i) Gkr (u;FK)≤ κF0(u)
kr andGk1(v;FK)≥ (1 − F0(v))

k1 for some constant κ > 0.

(ii) Gk(v;FK) is nondecreasing in F0 for each k = k1� � � � �kr , and ψkr (Gkr (u;FK +
εh))−ψkr (Gkr (u;FK))≥ κεh(u) and ψk1(Gk1(v;FK + εh))−ψk1(Gk1(v;FK))≥ κεh(v)
for |ε| small enough and any function h(v) with |h(v)| ≤ 1 such that FK + εh ∈ FK .

(iii) H∗(·) is nondecreasing in each of its component, and the one-sided deriva-
tives of H∗(ψk1(Gk1(u;FK))� � � � �ψkr (Gkr (u;FK))) with respect to the rth component
and of H∗(ψk1(Gk1(v;FK))� � � � �ψkr (Gkr (v;FK))) with respect to the first component
exist and are bounded from below by bH > 0 in a neighborhood of Gk1(v;FK)), and
ψkr (Gkr (u;FK)).

In particular, this class of distributions also satisfies Assumptions 1.1 and 1.3, so that
in the casep= 0, Corollary 2.1 establishes achievability of the upper bound stated below.
Loosely speaking, parts (i)–(iii) imply that the class of models for which we construct
the bounds includes a case for which the joint distribution of bids behaves similarly to
a joint distribution of order statistics, and part (iv) requires that the sharp bounds are
attained by the least precisely estimable component of the intersection bound for some
submodel satisfying (i)–(iii).

Theorem 2.4. Suppose Condition 2.2 holds. Then rn = nλ is an upper bound on the rate
of convergence for estimatingH0(v) :=H∗(ψk1(Gk1(v))� � � � �ψkr (Gkr (v))) with respect to

the sup-norm, where λ= min{ p+1
kr+p�

p+1
K−k1+1+p�

1
2 }. In particular, if p= 0, the convergence

rate in part (b) of Theorem 2.2 is optimal.

This result applies to the bounds derived in Haile and Tamer (2003) and Aradillas-
López, Gandhi, and Quint (2013) if the relevant class of distributions of bids and val-
uations includes parametric models of jump bidding, endogenous entry of bidders, or
unobserved heterogeneity, respectively, that satisfy Condition 2.2.
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3. Asymptotic distribution

As argued before, the linearized version of inverting the distribution of an order statistic
is always ill-posed for K > 1, even though the original problem is not. Since Gaussian
approximations to distributions of estimators rely on such a linear approximation, we
have to regularize the functional mappingψk(·) between the empirical c.d.f. of the order
statistic and the parent distribution defined in (1.4) so as to control its curvature as we
approach the singular points of the mapping.

Example 3.1 (Example 1.1, Continued). From Donsker’s theorem, the empirical c.d.f.

for the highest bid,
√
n(ĜnK(v) −GK(v))

d→ N(0�G(v)(1 −G(v))) uniformly in v. The
quantile transformation ψK(τ) := K

√
τ is strictly monotone and uniformly continuous in

τ ∈ [0�1], but the corresponding functional mapping ψK(G) is not Hadamard differen-
tiable. From the delta rule,

√
n
(
F̂n(v)− F0(v)

) d→N
(
0�G(v)

(
1 −G(v))∣∣ψ′

K

(
G(v)

)∣∣2)
pointwise in v ∈ V . However, this convergence is generally not uniform in v, the point-
wise approximation becomes worse as we approach the lower bound of the support, and
ψ′
K(G(v)) diverges. The fact that the variance of ĜnK(v) decreases linearly in G(v)→ 0

mitigates, but does not resolve, this problem as long as K ≥ 3.

To address this difficulty, notice that in the proof of the functional delta method (see,
e.g., Theorem 20.8 in van der Vaart (1998)), the requirement of Hadamard differentia-
bility can be weakened to approximability by a sequence of functions that satisfy the
following condition.

Condition 3.1. (i) There is an estimator Ĝn forG0 such that rn(Ĝn −G0)=OP(1), and
(ii) for the sequence of maps ψ̃n between normed spaces (B�‖ · ‖B) and (Γ�‖ · ‖Γ ), there
exist continuous linear maps ψ̃′

n :B → Γ such that for every fixed h,

lim
n→∞

∥∥rn(ψ̃n(G0 + r−1
n hn

)− ψ̃n(G0)
)− ψ̃′

n(h)
∥∥
Γ

→ 0

for all hn → h such that the map ψn(G0 + r−1
n hn) is defined.

In other words, if we find an appropriate way to smooth the mapping ψk(·) depend-
ing on sample size, we can control the error in the linear approximation. We can then
replace Hadamard differentiability of ψ(·) in the original proof with the weaker require-
ment from Condition 3.1 to obtain the same conclusion, which is stated in the following
lemma.

Lemma 3.1. Suppose Condition 3.1 holds for a sequence of mappings ψ̃n. Then for every
v ∈ [v� v],

rn
(
ψ̃n(Ĝn)− ψ̃n(G0)

)
� G

uniformly in v ∈ [v� v], where G is a Brownian bridge.
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We are now going to propose a regularization of the estimation problem that leads
to an asymptotically Gaussian estimator F̂n of F0. For the case of one observed bid cor-
responding to the kth order statistic, the nonparametric MLE is given by ψk(Ĝk�n(v)),
where Ĝk�n is the empirical c.d.f. of the kth lowest bid, and for every k = 1� � � � �K,
ψk(τ) := φ−1

k (τ) is a strictly monotonic continuous one-to-one mapping ψk : [0�1] →
[0�1] from the unit interval onto itself, which can be obtained from inverting (1.2). For
any number of bidders greater than two, this mapping is uniformly continuous, but not
Lipschitz continuous on [0�1]. Therefore,ψk(τ) is, in particular, not Hadamard differen-
tiable, so the functional delta rule does not apply to ψk(·) itself.

However, it will be possible to approximate the mapping with a regularized transfor-
mation ψ̃k(τ;an), where an is a sequence of tuning parameters and where the regular-
ized mapping satisfies supτ∈[0�1] |ψ̃′

k(τ�ank)| ≤ ank. More specifically, we define

τ∗
1k(a) := min

{
τ ∈ [0�1] :ψ′

k(τ)≤ a}
and

τ∗
2k(a) := min

{
τ ∈ [0�1] :ψ′

k(1 − τ)≤ a}
for any a≥ 1, and propose the modification

ψ̃k(τ�a) :=

⎧⎪⎨⎪⎩
aτ if τ ≤ τ∗

1k(a)�

1 − aτ if τ ≥ 1 − τ∗
2k(a)�

aτ+wk(τ�a)
(
ψk(τ)− aτ) otherwise�

(3.1)

where for every a, wk(τ�a) is twice continuously differentiable in τ, wk(τ∗
jk(a)�a) =

w′
k(τ

∗
jk(a)�a) = 0 for j = 1�2, 0 ≤ w′(τ�a) ≤ a

φ(τ)−a , and wk(
1
2 � a) = 1. This specifica-

tion ensures that ψ̃k(G�a) applied to any c.d.f. again yields a valid c.d.f. Furthermore,
ψ̃k(τ�an) is differentiable for any a and is Lipschitz with constant a.

For a given choice of ank, we can now define the estimator from inverting the empir-
ical c.d.f. of the k highest bid by

F̂nk(v) := ψ̃k
(
Ĝnk(v)�ank

)
(3.2)

for any k = k1� � � � �kr . As with the estimator with trimming introduced in the previous
section, we can aggregate these r different estimators into

F̂n(v) := 1
r

r∑
s=1

F̂nks (v)�

Compared to the estimator with trimming, this smoothed estimator has the advantage
that there are no discontinuous jumps at the boundaries of the trimming intervals; fur-
thermore, it can be seen easily that this estimator is guaranteed to be nondecreasing.

It is crucial to notice that this regularization, including the choice of the tuning pa-
rameter ank, only depends on properties of the mapping ψk(·), which are known, but
not on any features of the data-generating process. In particular when conditioning on
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a vector of observed covariatesXi, the choice for ank should not be made dependent on
the value ofXi.

To characterize the distribution of the joint estimator, define

Ŝn(v) :=
r∑

s�t=1

{[
ψ′
ks

(
Ĝnks (v)

)
ψ′
kt

(
Ĝnkt (v)

)]−1

× 1
n

n∑
i=1

(
1{Biks ≤ v} − Ĝnks (v)

)(
1{Bikt ≤ v} − Ĝnkt (v)

)}
�

We can now give rates for the bound ank of the slope that ensure a uniform Gaussian
approximation to the distribution of the (regularized) estimators F̂nk and F̂n.

Theorem 3.1. Suppose Assumptions 1.1 and 1.3 hold, and that for the regularized esti-

mator in (3.2), ank satisfies lim supn ankn
−λ = 0 for all k= k1� � � � �kr , where λ= (k∗−1)2

2k∗(2k∗−1)
and k∗ := max{k�K − k+ 1}. Then the estimator F̂nk(τ) satisfies

√
n
(∣∣ψ′

k

∣∣)−1(
F̂nk − ψ̃k(Gk)

)
� GF0�

a Gaussian process with covariance kernelH(v1� v2)=GK(v1;F0)(1−GK(v2;F0)) for v1 ≤
v2. Furthermore, the estimator F̂n can be expressed as

√
nŜn(v)

−1/2(F̂nk(v)− ψ̃k
(
Gk(v)

)) d→N(0�1)

uniformly in v ∈ V .

Note in particular that the rate on ank implies that the “pasting points” implicitly de-
fined in (3.1), τ∗

1k(ank) and τ∗
2k(ank), converge to zero at a rate that is slower than needed

to achieve the optimal rate of convergence for the estimator derived in Section 2. In par-
ticular, the regularization bias in the trimmed regions of the support is of a larger order
than the sampling variation of the estimator. Also, the rate on ank is slower for small val-
ues ofk, which is a consequence of the relative rates at which the slope and the curvature
of ψk(·) diverge as we approach the critical points of the mapping.

In a given sample, the choice ank has to trade off the regularization bias (for ank too
small) and the error in the distributional approximation by a Gaussian process (from ank
diverging too fast). As for most other regularization problems in econometrics, the suf-
ficient condition on the asymptotic rate for the regularization parameter ank obviously
does not imply a particular value for a finite sample, but a prescription has to balance the
effects of trimming the support against improved coverage. The resolution of this trade-
off will, in general, vary a lot across different applications, and we leave the construction
of specific criteria for choosing the regularization parameter for future research.

The results in Theorem 3.1 can also be used directly to approximate the distribution
of linear functionals of the valuation distribution F0(v), which will be discussed in more
detail in the next section. However, a distribution theory for bounds on the private value
distributions also has to take into account that the mapping H∗(·) is not differentiable;
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a theory for intersection bounds based on regular estimators for individual bounds has
been developed by Chernozhukov, Lee, and Rosen (forthcoming), but we leave the prob-
lem of incorporating trimmed or smoothed versions of irregular estimators into that
framework for future research.

4. Functionals of the valuation distribution

In empirical research on auctions, the distribution of valuations is often only of derived
interest, but the researcher may want to use an estimator for F0 to approximate other
characteristics of the auction that can be characterized as functionals of the underlying
distribution. In this section, we give bounds on the rate of convergence for estimators
of general linear functionals of F0 as well as expected revenue and the optimal reserve
price for an auction of arbitrary size K̃.

4.1 Linear functionals

Consider linear functionals of the valuation distribution

T(F) :=
∫ ∞

0
w(v)F(dv)

for a weighting function w(v). We also define the weighting function in terms of quan-
tiles of the valuation distribution,

ω(τ;F0) :=w(F−1
0 (τ)

)
�

Assumption 4.1. (i) There are τ ∈ [0�1] and τ ∈ [0�1] such that ω(τ;F) does not change
sign on [0� τ] or [τ�1]. (ii) Furthermore, there exist constants β1 and β2 such that for all
F ∈ F0, the behavior of ω(τ;F) is described by

lim
τ→0

τ−β1ω′(τ;F) <∞ and lim
τ→1

(1 − τ)−β2ω′(τ;F) <∞�

We can also state this condition in terms of primitive assumptions on the p.d.f.: by

the chain rule, ω′(τ;F)= d
dτw(F

−1(τ))= w′(F−1(τ))
h(τ;F) , so that β1 depends implicitly on the

tail behavior of h(τ;F) given in Assumption 1.4.

Example 4.1 (Allocative Efficiency). As a measure of the change in social surplus from
the auction relative to assigning the object to a bidder at random, consider the expected
difference between the auction winner’s valuation of the object and that of the average
bidder,

�W (F) := E[BiK] − EF [V ] =
∫ ∞

0
vdGK(v)−

∫ ∞

0
vdF(v)�

If we observe the winning bid BiK for a number of IPV sealed-bid second-price auctions
of size K, the first part of that difference can be estimated by the sample mean of ob-
served bids, whereas the second part is a linear functional T(F0) of the private value dis-
tribution with weighting functionw(v)= v. Hence, if F0 satisfies Assumption 1.4 with tail
parameters α1 and α2, then T(F) satisfies Assumption 4.1 with β1 = −α1 and β2 = −α2.
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Given the condition on the weighting function in Assumption 4.1, we can now give
the following bound on the rate for linear functionals.

Proposition 4.1. Suppose Assumptions 1.2, 1.3, and 4.1 hold. Then

rn = nmin{1/2�(2+p+β1)/(k1+p)�(2+p+β2)/(K−kr+1+p)}

is an upper bound to the rate of convergence for estimating the linear functional

T(F)=
∫ ∞

0
w(v)F(dv)=

∫ 1

0
F−1(s)ω(s;F)ds�

It should be noted that this result is closely related to the bound on the rate for es-
timating F0 with respect to the L2 norm, which is essentially the relevant metric for a
function space if we are interested in linear functionals. The role of the tail condition for
the weighting functionw(v) in Assumption 4.1 is completely parallel to that on Assump-
tion 1.4 for estimating the private value distribution in Theorem 2.3.

Example 4.2. Consider again the problem in Example 4.1, where we observe the trans-
action price of n i.i.d. second-price auctions with K bidders and we are interested in
estimating the expectation of Vk, w(v) ≡ v. Hence, ω′(τ;F) = 1

h(τ;F) . If, in addition, we
assume that the support of Vk is bounded and the p.d.f. f0(v) is bounded away from zero,
β1 = β2 = 0. Then by Proposition 4.1, a nonparametric estimator for the expectation of
Vk can at best achieve the rate rn = n2/(K−1) for anyK > 5.

On the other hand, if we observe all K bids for each auctions, for example, as in the
framework of Guerre, Perrigne, and Vuong (2000), we can estimate the expected valua-
tion directly as the sample average of all bids across all auctions and, as expected, the
bound for this scenario corresponds to a root-n rate.

4.2 Expected revenue

Next we are going to perform the following thought experiment: suppose we observe the
k highest bid from n repeated sealed-bid second-price auctions ofK bidders with inde-
pendent private values, and based on these data, we want to predict expected revenue,
that is, the expectation of the second highest bid, for an auction of the same format with
K̃ bidders. Clearly if K̃ =K and k=K− 1, that is, we observe the second-highest bid for
the observed auctions, then the sample average of observed bids is a root-n consistent
estimator for expected revenue, even in the absence of any structural assumptions on
the problem.

In all other cases, from our assumptions on the format of the auction and its equi-
librium, the distribution of the transaction price is that of the (K̃− 1)st order statistic in
a sample of K̃ i.i.d. draws, and we can, for example, use an estimator of the parent c.d.f.
to approximate that distribution. Note that in contrast to the previous case, this type of
extrapolation also relies crucially on our structural model, both for the observed and the
counterfactual auction.

The following result gives the bound on the rate for nonparametric estimation of the
expectation of the k highest out of K̃ bids based on observations of the k1� � � � �kr highest
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bids out ofK bidders:

Proposition 4.2. Suppose Assumptions 1.2–1.4 hold. Then

rn = nmin{1/2�(k(1+p)+1−α1)/(k1+p)�((K̃−k)(1+p)+1−α2)/(K−kr+1+p)}

is an upper bound to the rate of convergence for estimating the expectation of the k highest
bid in a second-price auction of K̃ i.i.d. bidders.

It is interesting to note that in the case k1 = kr = k, this bound does not rule out
the possibility that expected revenue can be estimated at a root-n rate unless K̃ is sub-
stantially smaller—less than half as large, to be precise—than K, even though from the
previous proofs, these bounds appear to be sharp. However, it is important to point out
that this result does not imply root-n estimability for expected revenue, even if K̃ > K−1

2 .
In particular, a “naive” plug-in estimator of expected revenue using an untrimmed es-
timator for the parent distribution is likely not going to achieve that rate, though this
remains to be shown formally.

4.3 Optimal reserve price

Suppose we observe the transaction price for n i.i.d. second-price IPV auctions with
K risk-neutral bidders and we are interested in estimating the seller’s optimal reserve
price p∗ to maximize the seller’s surplus. By a standard result from auction theory (see,
e.g., Riley and Samuelson (1981)), the seller’s expected profit can be written as

π(p;F)= v0F
K(p)+K

∫ ∞

p

(
vf (v)− (

1 − F(v)))FK−1(v)dv�

where v0 is the seller’s valuation of the object.
Clearly p∗ > v0 for any distribution F ∈ F0, so that if v0 > v, then perturbations of

the lower tail of the distribution do not affect the optimal reserve price. By Theorem 2.3,
the estimator F̂n proposed in Section 2 converges to F0 at the root-n rate uniformly in
v ∈ [v0� v], and since π(p;F) is Lipschitz in F(p), π(p; F̂n) is also root-n consistent for
π(p;F0) uniformly in v ∈ [v0� v].

We can now inspect the first-order conditions for a maximum of π(p�F),

0 = d

dp
π(p;F)=K(v0 −p)FK−1(p)f (p)K

(
1 − F(p))FK−1(p)

⇔ p= v0 + 1 − F(p)
f (p)

�

so that the optimal reserve price does not depend on the number of bidders in the
“counterfactual” auction. It is now easy to verify that if v0 ≤ v and for the class F0, there
is no common upper bound on the density f (v) in the lower tail of the support of V , for
any τ ∈ [0�1], we can find a distribution F̃ ∈ F0 such that p̃∗ := arg maxp π(p; F̃) is at or
below the τ-quantile of that distribution, p̃∗ ≤ F̃−1(τ).
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Given that distribution F̃ , we can perturb the distribution below the τ quantile
such that the corresponding optimal reserve price changes by at least 1

4τ
p+1. Now note

that by Lemma C.1 in Appendix C, for a sample of n i.i.d. auctions of K bidders, the
smallest quantile at which we can reliably detect such a perturbation is of the order
τ1n := τn−min{1/2�1/(K−2+p)} for some constant τ > 0. Combining these two observations,
we can obtain an upper bound on the rate of convergence for estimating the optimal
reserve price, where it is also immediate that the rate cannot be faster than root-n and
the possibility of perturbations on the upper tail does not impose further restrictions on
the rate.

Proposition 4.3. Suppose Assumptions 1.2 and 1.3 hold withp= 0, and that the seller’s
valuation is v0 ≤ v. Then without further restrictions on F0, rn = nmin{1/2�1/k1} is an upper
bound on the rate of convergence for any nonparametric estimator of the optimal reserve
price p∗ for an auction of K̃ bidders from transaction price data from n i.i.d. auctions
withK bidders. However, if v0 > v, then p∗ can be estimated at a rate rn = n1/2.

Note that the bound on the rate for the optimal reserve price implied by this proposi-
tion is always slower than the parametric rate ifK > 3. Also, it is clear from the argument,
that shape restrictions on the distributions in F0 can mitigate this problem, for example,
if there is a (common) upper bound for the p.d.f. of v. Using the same argument, it is also
possible to show that a risk-neutral participant in a first-price auction who has access to
incomplete bidding data from past second-price auctions can estimate her equilibrium
bid only at that same rate.

In one of their examples, Haile and Tamer (2003) imposed concavity on the seller’s
surplus as a function of the reserve price to show how to derive bounds on p∗. It is inter-
esting to note that this is one special case for which the parametric rate is, in fact, attain-
able for the optimal reserve price: if π(p�F) is concave in p for all F ∈ F0, and we have
an estimator for ̂πn(p;F) such that ̂πn(p;F) is concave with probability 1 at all n and is
root-n consistent for π(p;F) at every p ∈ V . By a slight modification of Theorem 10.8 in
Rockafellar (1972), pointwise convergence of a concave function at rate n1/2 implies uni-
form convergence at the n1/2 rate, so that by Theorem 3.4.1 in van der Vaart and Wellner
(1996), p̂∗ := arg minp∈V ̂πn(p;F) converges to p∗ at the root-n rate. However, note that

this argument does not work for estimators that do not impose concavity on ̂πn(p;F) in
a given sample; furthermore, it is generally difficult to justify such a restriction in terms
of economic primitives for the auction problem.

5. First-price and descending bid auctions

So far, all our results have been about the conceptually more straightforward case of
second-price auctions. However, one class of settings for which the problem of incom-
plete bidding data is most salient are descending bid auctions. In this format, an auc-
tioneer announces a descending sequence of prices, and the object is won by the first
bidder who is willing to accept the current price. In particular, the remaining K − 1 po-
tential buyers do not reveal their types, so that if bidding strategies are strictly mono-
tone, only the bid that corresponds to the highest valuation is known to the econome-
trician.
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Under the IPV assumption and if bidders are risk-neutral, this format is strategically
equivalent to a sealed-bid first-price auction. In this last section, we show how some of
our insights for the second-price format apply to first-price and strategically equivalent
formats.

It is known from standard results in auction theory that given the valuation distribu-
tion F , the bidding strategy b(v;F) in a symmetric Bayesian Nash equilibrium is charac-
terized by the differential equation

b(v;F) := v− 1
K − 1

F(v)b′(v;F)
f (v)

� (5.1)

That is, strategic bidders do not bid their actual valuations, but shade their bids by a fac-
tor that depends on the number of competing potential buyers and the private values
distribution. More specifically, for risk-neutral bidders, it is optimal to bid the expecta-
tion of the next-highest bid conditional on winning the object. There is, in general, no
closed-form expression for the optimal bid, and the shading factor depends on the un-
known private value distribution. However, we show below that there is an easy two-step
approach to obtain “pseudo-true” valuations, even when bidding data are incomplete.

We now replace the model for the second-price sealed-bid auction from Assump-
tion 1.2 with a new assumption.

Assumption 5.1 (First-Price Auction). Assumption 1.2(i)–(iii) holds and (iv′) the auc-
tion is sealed-bid first-price or any other format that is strategically equivalent under the
remaining assumptions, and participants play the symmetric Bayesian Nash equilibrium
with bidding functions that satisfy (5.1).

Now denote g(b;F) := f (b−1(b;F))
b′(b;F) , the marginal distribution of bids with the corre-

sponding c.d.f.G(b;F)= F(b−1(b;F)), so that we can rewrite (5.1) as

b−1(b;F)= b+ 1
K − 1

G(b;F)
g(b;F) �

We can now use this characterization of the inverse bidding function and the un-
derlying valuation distribution to derive an upper bound on the convergence rate for
nonparametric estimators as defined in (2.1) and (2.2).

Proposition 5.1. Let F̂n be an estimator for F0. Then under Assumptions 1.3, 1.4,
and 5.1, rn = nλ is an upper bound on the rate of convergence under the sup-norm, where

λ= min
{

p

2p+ 1
�

1 +p
k1 +p�

p

K − kr + 1 +p
}
�

This rate result is not sharp and we conjecture that it can be strengthened slightly
to r∗n = min{( n

logn)
p/(2p+1)� n(1+p)/(k1+p)�np/(K−kr+1+p)} using standard arguments on

global convergence rates of nonparametric estimators; see Stone (1983). Note that if the
convergence rate is determined in the tails of the distribution, this bound on the con-
vergence rate is exactly the same as for second-price auctions, and the nonparametric
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adjustment for the shading factor to account for strategic behavior only affects the over-
all bound on the rate if the tails can otherwise be estimated with reasonable precision.

While establishing formally that the rate r∗n is, in fact, achievable is beyond the scope
of this paper, in the case in which only the highest bid is observed, it is possible to adapt
the nonparametric plug-in approach from Guerre, Perrigne, and Vuong (2000) and ob-
tain a distribution of estimated quasivaluations b−1(BiK;F) of the highest bidders. We
now give a brief explanation of how such a procedure can be designed.

Using the formulae for p.d.f.s and c.d.f.s of order statistics, one can verify that the

ratio of the c.d.f. and the p.d.f. of the highest order statistic of bids equals
GKK(v;F)
gKK(v;F)

=
F(v)b′(v;F)

f (v) for all v ∈ V . Hence, it is possible to express the inverse bidding function di-

rectly in terms of the p.d.f. gK(·;F) and the c.d.f.GKK(·;F) of the observed bid:

b−1(bk;F)= bk + 1
K − 1

G(bk;F)
g(bk;F) = bk + 1

K − 1
GKK(bk;F)
gKK(bk;F)

� (5.2)

We can, therefore, estimate the sample distribution of the Kth order statistic of valua-
tions across the n auctions by plugging nonparametric estimators for the density and
the c.d.f. of the (observed) highest bids into this expression in a first step, and estimate
the marginal c.d.f. of valuations F(v) in a second step by inverting the distribution of the
estimated quasivaluations.

6. Discussion

This paper establishes optimal rates for nonparametric estimation of the valuation dis-
tribution from incomplete bidding data in sealed-bid second-price auctions and strate-
gic equivalents. If the econometrician only observes the highest bid or the transaction
price, these rates may be very slow, even for auctions of a moderate size. These results
suggest that a lot may be gained from combining different bids or data from auctions of
different sizes. Also, the rates for bounds on the distribution are in many cases substan-
tially slower than for estimating the distribution function in the point-identified case.

There are several cases in which the irregularity in estimating the tails of the distribu-
tion does not affect convergence rates for policy parameters: if the functional of interest
only depends on the value of the distribution function at a point (e.g., the probability
that the valuation of a random bidder exceeds the reserve price) or puts sufficiently low
weight on the problematic tails (e.g., for projecting expected revenue for an auction with
a sufficiently large number of bidders as in Proposition 4.2), root-n consistency may be
preserved. But as a cautionary note, the calculations in Example 2.2 suggest that even
in these cases, the irregularity may still lead to poor finite-sample performance of the
resulting estimator.

The performance of nonparametric estimators could be enhanced significantly by
imposing shape restrictions or a parametric structure for very low and/or high quan-
tiles, depending on which bids are observed. Constraints of this type can generally be
imposed by smoothing the empirical c.d.f. or two-step procedures (see, e.g., Aït-Sahalia
and Duarte (2003) or Mammen and Thomas-Agnan (1999)), which can be solved at a
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computational cost that is of the same order as that for the unconstrained problem.
However, strategies for variance and bias reduction in this setting have to be different
from the well known trade-offs in estimating probability densities in that smoothing
only has to be local and depends on ordinal properties of the sample. However, deriving
practical smoothing procedures that impose these shape restrictions and establishing
their convergence rates is not straightforward and will be left for future research. But we
conjecture that the bounds on the rate under smoothness restrictions p ≥ 1 derived in
Section 2 may, in fact, be sharp.

Finally, it should be noted that the difficulties in inverting distributions of order
statistics to obtain the parent distribution also appear to apply to inference for other
auction formats. A particularly relevant case is that of descending auctions in which, by
construction, only the highest bidder reveals her type. Optimal rates for estimating first-
price auctions when all bids are observed have been derived by Guerre, Perrigne, and
Vuong (2000), but the behavior of nonparametric estimators with incomplete bidding
data remains an open question.

Appendix A: Joint distribution of order statistics

The joint p.d.f. of the (k1� � � � �kr)th order statistics is given by6

gk1�����kr (v;F)
=N(k1� � � � �kr;K)

[
F(vk1)

]k1−1
f (vk1)

[
F(vk2)− F(vk1)

]k2−k1−1
f (vk2) · · ·

× [
1 − F(vkr )

]K−kr f (vkr )�

where N(k1� � � � �kr;K)= K!
(k1−1)!(k2−k1−1)!···(K−kr)! , vk1 ≤ vk2 ≤ · · · ≤ vkr . We can then ob-

tain the joint c.d.f. by integrating the joint p.d.f. from the lower bound of the support,
(v� � � � � v) to (vk1� � � � � vkr ),

Gk1�����kr (v;F)
=N(k1� � � � �kr;K)

×
∫ vk1

v

∫ vk2

v
· · ·

∫ vkr

v

{ [
F(u1)

]k1−1
f (u1)

[
F(u2)− F(u1)

]k2−k1−1
f (u2) · · ·

(A.1)

× [
1 − F(ur)

]K−kr f (ur)
}
du

= (k1� � � � �kr;K)
∫

Ir (v)
s
k1−1
1 (s2 − s1)k2−k1−1 · · ·

× (1 − sr)K−kr dsr · · · ds1�

where Ir(v) := [0�F(vk1)] × [0�F(vk2)] × · · · × [0�F(vkr )] ⊂ [0�1]r and the second expres-
sion follows from the change of variables formula.

6See, for example, David and Nagaraja (2003, p. 12).
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Appendix B: Proof of consistency results

Proof of Theorem 2.1. The main problem we have to deal with in this proof is that
the nonlinear transformation ψk(·) of the empirical c.d.f. is not asymptotically linear
uniformly in v ∈ V . We will, therefore, show uniform convergence separately in two data-
dependent regions Cn and V/Vn(η), and show that the probability that the union of those
two regions covers all of V converges to 1 as n grows. In the following, we write Ĝn(v)=
Ĝnk(v) since k is taken to be fixed. We also use the notation � for “smaller than up to a
universal constant.”

Fix η> 0 and let

Vn(η) := {
v ∈ V :

∣∣G0(v)− τ∗
s

∣∣ ≤ ηn−1 for all s = 1� � � � � S
}
�

Also define the data-dependent subset of as

Cn := {
v ∈ V :

∣∣Ĝn(v)− τ∗
s

∣∣ ≤ n−1 for all s = 1� � � � � S
}
�

For a given choice of η> 1, we define the event

An(η) :=
{

sup
v∈Vn(η)

|G0(v)− τ∗
s |

|Ĝn(v)− τ∗
s |

≤ η for all s = 1� � � � � S
}
�

Note that An(η)= {Vn(η)⊂ Cn}.
Also denote the event

Bn(c) :=
{

sup
v∈Cn

∣∣ψ(Ĝn(v))−ψ(G0(v)
)∣∣> cr−1

n

}
�

We will now establish that (i) the limiting probability of An(η) can be made arbitrarily
close to 1 by choosing η sufficiently large and that (ii) the probability of Bn(c) can be
arbitrarily small for c large enough.

To show that limη→∞ limn→0 P(An(η))= 1, consider the class Fs of functions

Fsn(η) :=
{

1{v ∈ (−∞� v]}
|G0(v)− τ∗

s |
∣∣∣v ∈ Vn(η)

}
�

with the envelope function Fns(v;η)= 1{v∈Vn(η)}
|G0(v)−τ∗

s | .
We can bound the norm of the envelope function by

∥∥Fns(η)∥∥2
P�2 =

∫ max{0�τ∗
s−ηn−1}

0

1
(t − τ∗

s )
2 dt +

∫ 1

min{1�τ∗
s+ηn−1}

1
(t − τ∗

s )
2 dt

(B.1)

= 2
ηn−1 − min

{
1
τ∗
s

�
1

ηn−1

}
− min

{
1

1 − τ∗
s

�
1

ηn−1

}
≤ 2
ηn−1 �

Using standard notation from empirical process theory (see, e.g., van der Vaart and
Wellner (1996)), for a given value of ε > 0, we define the bracketing numberN[](ε�F�‖·‖)
of a class of functions F as the smallest number of brackets [l�u] := {f : l(v) ≤ f (v) ≤
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u(v) for all v ∈ V} with ‖u− l‖< εwith respect to a norm ‖ · ‖ needed to cover F . Also let
the entropy integral be

J[]
(
δ�F�‖ · ‖) :=

∫ δ

0

√
1 + logN[]

(
ε‖F‖�F�‖ · ‖)dε

for any δ > 0.
For the class Fns , we can construct ε brackets of the form [l�u] with l(v) :=

1{v≤vU }
minv∈{vL�vU } |G0(v)−τ∗

s | and u(v) := 1{v≤vL}
minv∈{vL�vU } |G0(v)−τ∗

s | , where vL < vU satisfies |ψ′(vL)|2 ×
(G0(vU) − G0(vL)) < ε2. We first show that for fixed ε, the bracketing number
N[](ε‖Fsn‖P�2�Fsn�‖ · ‖P�2) is uniformly bounded in n, where ‖f‖P�2 := (

∫
f 2 dP)1/2 de-

notes the L2(P) norm of f .
For notational simplicity, consider only the case s = 1 with τ∗

1 = 0. Then the lowest
ε‖Fsn‖ bracket can be chosen as described above with vL1 =G−1

0 (ηn−1) and some vU1 ≥
εG0(vL1)‖F1n‖P�2 = εn1/2−1/2 = ε. Hence, the upper bound for the next-higher bracket
does not decrease in n. Hence, we can bound the bracketing number by N[](ε‖Fsn‖P�2�
Fsn�‖ · ‖P�2)≤ 1 + 1

ε , so that

J[]
(
1�Fsn�L2(P)

) =
∫ 1

0

√
1 + logN[]

(
ε‖Fsn‖P�2�Fsn�‖ · ‖P�2

)
dε

≤
∫ 1

0

√
1 + log(2)− log(ε)dε <∞�

where the finite upper bound does not depend on s = 1� � � � � S or n= 1�2� � � � .
Since by Assumption 1.3, B1� � � � �Bn are i.i.d., we can use Theorem 2.14.2 in van der

Vaart and Wellner (1996) to bound

E∗ sup
v∈Vn(η)

∣∣∣∣Ĝn(v)−G0(v)

G0(v)− τ∗
s

∣∣∣∣ � n−1/2J[]
(
1�Fsn�L2(P)

)‖Fsn‖P�2� (B.2)

where E∗X denotes the outer expectation ofX .
Since J[](1�Fsn�L2(P)) is finite, for any η > 1, we can use Markov’s inequality to

bound

P
(

AC
n (η)

)
= 1 − P

(
sup

v∈Vn(η)

|G0(v)− τ∗
s |

|Ĝn(v)− τ∗
s |

≤ η for all s = 1� � � � � S
)

≤
S∑
s=1

P

(
inf

v∈Vn(η)
|Ĝn(v)−G0(v)+G0(v)− τ∗

s |
|G0(v)− τ∗

s |
≤ 1
η

)

≤
S∑
s=1

{
P

(
inf

v∈Vn(η)
|Ĝn(v)−G0(v)|

|G0(v)− τ∗
s |

≤ 1
η

− 1
)

(B.3)

+ P
(
sign

(
Ĝn(v)− τ∗

s

) 
= sign
(
G0(v)− τ∗

s

)
for some v ∈ Vn(η)

)}
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≤ 2
S∑
s=1

P

(
inf

v∈Vn(η)
|Ĝn(v)−G0(v)|

|G0(v)− τ∗
s |

≤ −η− 1
η

)

� 2SJ[](1�Fsn�L2(P))

(η− 1)
�

where the last step uses Markov’s inequality together with (B.2) and (B.1). This bound
on the probability can be made arbitrarily small by choosing a sufficiently large value of
η> 1.

Next, we bound the probability of Bn(c). First note that since ψ(τ) is differentiable,
at every v ∈ V , a mean-value expansion gives

ψ
(
Ĝn(v)

)−ψ(G0(v)
) =ψ′(Gn(v))(Ĝn(v)−G0(v)

)
� (B.4)

where Gn(v) is an intermediate value between Ĝn(v) and G0(v). In this approximation,
the term ψ′(Gn(v)) is not guaranteed to be bounded, butGn(v) may be arbitrarily close
to τ∗

s for some s = 1� � � � � S with positive probability.
However, by monotonicity of ψ′(τ) between the critical points τ∗

s , s = 1� � � � � S, we
can bound∣∣ψ′(Gn(v))∣∣ ≤ max

{∣∣ψ′(Ĝn(v))∣∣� ∣∣ψ′(G0(v)
)∣∣} ≤ ∣∣ψ′(η−1G0(v)

)∣∣ (B.5)

for all values v ∈ Cn.
Now define the class of functions

Hn := {
ψ′(G0(t)

)
1{v≤ t}|t ∈ Cn

}
�

with envelope functionHn(v) := |ψ′(G0(v))|.
Noting that for any exponent δs > 0 in Condition 2.1, |ψ′(τ)| is dominated by 1

τ−τ∗
s

for values of τ close to τ∗, we can use the same reasoning as before to establish that the
bracketing integral J[](1�Hn�L2(P)) is bounded. To bound the norm of the correspond-
ing envelope functions, let δs < 1 without loss of generality. Then for n sufficiently large,
by Condition 2.1, we can bound∫ (τ∗

s+τ∗
s+1)/2

τ∗
s+n−1

∣∣ψ′(t)
∣∣2 dt ≤ 2As

∫ (τ∗
s+τ∗

s+1)/2

τ∗
s+n−1

∣∣t − τ∗
s

∣∣2δs−2
dt ≤ 2Asn1−2δs �

We can now use (B.4), (B.5), and Theorem 2.14.2 in van der Vaart and Wellner (1996)
to bound

E∗[sup
v∈Cn

∣∣ψ(Ĝn(v))−ψ(G0(v)
)∣∣] ≤ E∗ sup

v∈Cn

∣∣ψ′(G0(v)
)∣∣∣∣Ĝn(v)−G0(v)

∣∣
≤ n−1/2J[]

(
1�Hn�L2(P)

)‖Hn‖P�2 (B.6)

≤ 2AsJ[]
(
1�Fsn�L2(P)

)
n−δs

for all s = 1� � � � � S and n large enough.
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Hence, denoting the complement of the event An(η) by AC
n (η), we can use Markov’s

inequality together with the law of total probability and (B.3) to obtain

P

(
sup

v∈Vn(η)

∣∣ψ(Ĝn(v))−ψ(G0(v)
)∣∣> crn)

≤ P
(

Bn(c)
)+ P

(
AC
n (η)

)

≤ max
s=1�����S

{
2AsJ[](1�Hsn�L2(P))

c

}
+

2
S∑
s=1

J[](1�Fsn�L2(P))

(η− 1)
�

which can be made arbitrarily small by choosing η and c large enough.
Furthermore, from Condition 2.1, it follows that

sup
v∈V \Vn(η)

min
τ∈{τ∗

1 �����τ
∗
S}
∣∣τ−G0(v)

∣∣ ≤ (ηn)−δ� (B.7)

Since by Condition 2.1, ψ(τ) is monotone on the intervals [τ∗
s − ηn−1� τ∗

s ] and [τ∗
s � τ

∗
s +

ηn−1] for every η, by (B.7) and (B.7), there exists c(η) <∞ such that conditional on the
event An(η)∩ BCn (c),

sup
v∈V \Vn(η)

∣∣ψ(Ĝn(v))−ψ(G0(v)
)∣∣< 2cn−δ

with probability approaching 1, which completes the proof. �

Proof of Proposition 2.1. By Assumption 1.1, the distribution of the observable
bid Bik is given by Gk(v). From the previous discussion, it is straightforward to ver-
ify that Condition 2.1 holds for the mapping ψk(·) with τ∗

1 = 0, τ∗
2 = 1, δ1 = 1

k , and
δ2 = 1

K−k+1 , where A1 = 1
N(k�K)1/k

and A2 = 1
N(k�K)1/(K−k+1) . Hence, we can apply The-

orem 2.1 with δ = min{ 1
k�

1
K−k+1 }, so that the estimator in (2.4) is uniformly consistent

with rate rn = nδ. �

Proof of Theorem 2.2. Suppose n is large enough that bnks < r for all s = 1� � � � � S and
k= k1� � � � �kr , and fix η> 0. For each k= k1� � � � �kr , we can define the sets

Vnk(η) := {
v ∈ V :

∣∣Gk(v)− τ∗
s

∣∣ ≤ ηbnks for all s = 1� � � � � S
}

and the trimmed support of the estimate from the kth bid

Cnk := {
v ∈ V :

∣∣Ĝnk(v)− τ∗
s

∣∣ ≥ bnks for all s = 1� � � � � S
}
�

and denote the event that Vnk(η)⊂ Cnk by

Ank(η) :=
{

sup
v∈Vnk(η)

|Gk(v)− τ∗
s |

|Ĝnk(v)− τ∗
s |

≤ η for all s = 1� � � � � S
}
�

Also let rnk = nmin{δk1�����δkS} for every k= k1� � � � �kr and denote the event

Bnk(c) :=
{

sup
v∈Cnk

∣∣ψ(Ĝnk(v))−ψ(Gk(v))∣∣> cr−1
nk

}
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in an analogous fashion as in the proof of Theorem 2.1.
We prove the result by bounding the sup of the estimation error separately on the

sets Cnk(η) and V/Vnk, and then establishing that the union of the two sets equals V
with probability approaching 1. More specifically, we need to show that the probabili-
ties (i) P(Bnk(c)) and (ii) P((V/Vnk(η)) ∩ Cnk(η) = ∅) can be made arbitrarily small by
choosing η large enough, and that (iii) the approximation error from trimming the esti-
mate on the set V/Vnk(η) is bounded by crn.

For part (i) of this argument, note that on Cnk, |ψ′
k(Ĝnk(v))| ≤ bδksnks almost surely for

all k and s, so that similar to the argument for the previous result, we can find the upper
bound

P
(

Bnk(c)
) ≤

2 max
s=1�����S

{AsJ[](1�Fsn�L2(P)))bnks}
cn

�

where Fns and the bracketing integral J[](·) are the same as in the proof of Theorem 2.1.
Note that by assumption, limn−1bnks <∞, so that the expression on the right-hand side
is bounded by a constant that does not depend on n and can be made arbitrarily small
by choosing c large enough.

For (ii), note that

1 − P
(

Vnk(η)⊂ Cnk(η)
) ≤

∑
k=k1�����kr

P
(

Ank(η)
) ≤

2
S∑
s=1

J[](1�Fsn�L2(P))

η− 1
�

where the second inequality follows from the same arguments used to bound the prob-
ability for the event An(η) in the proof of Theorem 2.1.

Since the set k1� � � � �kr is finite, we can use the bounds from inverting the dis-
tribution of each order statistic to bound the sup of the aggregate with trimming,
supv∈V |F̂n(v)− F0(v)|, so that

P

(
sup
v∈V

∣∣F̂n(v)− F0(v)
∣∣> crn)

≤ P

(⋃
k

Bnk(c)
)

+ P

(⋃
k

AC
nk(η)

)
(B.8)

≤
∑
k

P
(

Bnk(c)
)+

∑
k

P
(

Ank(η)
)

≤
∑
k

{2 max
s=1�����S

{AsJ[](1�Fsn�L2(P)))bnks}
cn

+
2

S∑
s=1

J[](1�Fsn�L2(P))

η− 1

}
�

By the same argument as in the proof of the main theorem, each of the summands in
this bound can be made arbitrarily small by choosing η and c large enough.

It remains to be shown that we can bound the error from trimming the estimates
outside the set Vnk(η) on the estimator Ĥn: For part (a) of Theorem 2.2, we have rn =
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max{rnk1� � � � � rnkr }, so that by our assumptions on the functionH(·),

sup
v∈V

∣∣H(
ψk1

(
Gk1(v)

)
� � � � �ψkr

(
Gkr (v)

)
�1v∈Vnk1 (η)

� � � � �1v∈Vnkr (η)
)

− h(F0(v)
)∣∣ (B.9)

≤ min
k=k1�����kr

sup
v∈V/Vnk(η)

min
s=1�����S

∣∣H̃(
ψk

(
τ∗
s

))− H̃(
F0(v)

)∣∣ ≤MHη
δ∗
r−1
n �

For part (b), r̃n = max{rnk1� � � � � rnkr } and we choose any τ∗
nsq
(v) in {τ∗

1� � � � � τ
∗
S} that

satisfies |Gkq(v) − τ∗
nsq
(v)| ≤ ηbnks. Note that such a value exists for any v ∈ V/Vnkq(η)

from the definition of Vnk(η). Then we have

sup
v∈V

∣∣H(
ψk1

(
Gk1(v)

)
� � � � �ψkr

(
Gkr (v)

)
�1v∈Vnk1

(η)� � � � �1v∈Vnkr (η)
)

−H∗(ψk1

(
Gk1(v)

)
� � � � �ψkr

(
Gkr (v)

))∣∣
≤ max
q=1�����r

sup
v∈V/Vnkq (η)

∣∣H∗(ψk1

(
Gk1(v)

)
� � � � �ψkq

(
τ∗
nsq(v)

)
� � � � �ψkr

(
Gkr (v)

))
(B.10)

−H∗(ψk1

(
Gk1(v)

)
� � � � �ψkr

(
Gkr (v)

))∣∣
≤MHη

δ∗
r−1
n �

Hence the convergence rates in parts (a) and (b) of the theorem follow from (B.9),
and (B.10), respectively, together with the bound in (B.8). �

Appendix C: Proofs for upper bounds on the rate of convergence

We use the notation � for “smaller than up to a universal constant.” Choose some τ0 ∈
(0�1) and let αn = an−1/2 for some positive a <min{τ0�1 − τ0}, and let τ1n = τ0n

−1/(k1+p)
and τ2n = τ0n

−1/(K−kr+p) be sequences of numbers between 0 and 1 that converge to
zero.

Let ξ(t) be a nonnegative function with support [0� 1
2 ] with

∫ 1/2
0 ξ(v)dv= 1

2 , such that
for some positive constant B <∞, supt∈R

ξ(t) < B, and the first p derivatives of ξ(·) are
bounded in absolute value by B uniformly in t. To obtain an upper bound to the rate of
convergence, we consider a sequence of distributions F0n with corresponding p.d.f.s f0n

and perturbations of the true p.d.f. that are of the form

fjn(v) := f0n(v)
[
1 + ξjn(v)

]
(C.1)

for j = 1�2�3, where we define

ξ1n(v) := τ
p
1n

(
ξ

(
τ−1

1n F
−1
0n

(
τ1n

2
− F0n(v)

))
−β1nξ

(
τ−1

1n F
−1
0n

(
F0n(v)− τ1n

2

)))
� (C.2)
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ξ2n(v) := τ
p
2n

(
ξ

(
τ−1

2n F
−1
0n

(
F0n(v)− 1 + τ2n

2

))
−β2nξ

(
τ−1

2n F
−1
0n

(
1 − τ2n

2
− F0n(v)

)))
�

ξ3n(v;α) := α
(
ξ
(
F0n(v)− τ0

)−β3nξ
(
τ0 − F0n(v)

))
�

and the sequencesβjn are chosen in a way such that
∫
ξjn(v)f0n(v)dv= 0. Note that from

the choice of B, it follows that 1
B ≤ βjn ≤ B for all n, so that fjn(v)= f0n(v)[1 + ξjn(v)] is

indeed a proper density. Also, the normalization by τpjn ensures that the firstp derivatives
of fjn(v) are uniformly bounded.

Consider a nonnegative mapping � : F0 × F0 → R+, the nonnegative real numbers
such that �(F�F) = 0 for any F ∈ F0. For most purposes of this paper, �(F�G) can be
take to be a semimetric on the space F0, but we are not going to require the mapping to
be symmetric in its arguments, which is important when we analyze the rate of conver-
gence of functionals of the valuation distribution.7

Lemma C.1. Consider perturbations F1n and F2n of the sequence of c.d.f.s F0n(v) that
are of the form as in (C.1). Suppose that for constants γ1�γ2�γ3 > 0, �(F1n�F0n) � τ

γ1
n ,

�(F2n�F0n) � τ
γ2
n , and �(F3n�F0n) � α

γ3
n for all τ0 ∈ (0�1) and δ < τ0. Then under As-

sumptions 1.2 and 1.3,

lim sup
n

P
(
�(F̂n�F0n) > cn

−min{γ3/2�γ1/(k1+p)�γ2/(K−kr+p)})> 0

and

lim
c→0

lim sup
n

P
(
�(F̂n�F0n) > cn

−min{γ3/2�γ1/(k1+p)�γ2/(K−kr+p)}) = 1�

Proof. Without loss of generality, suppose the sequence F0n ≡ F0(v) is constant at one
fixed element F0 ∈ F0. Consider local alternatives of the form fn(v) = f1n(v) as defined
in (C.1). The c.d.f. F1n(v) that corresponds to f1n(v) is given by

F1n(v) :=
∫ v

0
f0(s)

(
1 + ξ1n(s)

)
ds�

which is equal to F0(v) for all v > F−1
0 (τ1n).

To construct the likelihood ratio, note that

f1n(v)

f0(v)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + τp1nξ

(
τ−1

1n F
−1
0

(
τ1n

2
− F0(v)

))
if 0 ≤ F0(v) <

τ1n

2
�

1 −β1nτ
p
1nξ

(
τ−1

1n F
−1
0

(
F0(v)− τ1n

2

))
if
τ1n

2
≤ F0(v) < τ1n�

1 otherwise�

7A semimetric on a spaceX �(x�y) is a map � :X×X → [0�∞) such that for any x� y� z ∈X , (i) �(x� y)=
�(y�x) and (ii) �(x�z)≤ �(x� y)+�(y� z).
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Also note that for any pair of valuations vkt > vks ,

1 −Bτp1n ≤ F1n(vkt )− F1n(vks )

F0(vkt )− F0(vks )
≤ 1 +Bτp1n� (C.3)

To avoid an additional case distinction, we define k0 := 0, kr+1 :=K + 1, Bi0 := inf V ,
and Bir+1 := sup V . Note that this is without loss of generality even if the support of V is
not bounded, since the likelihood ratio only depends on the realizations of V through
the c.d.f. F0(v), where F0(Bi0)= 0 and F0(Bir+1)= 1.

Now by Assumptions 1.2 and 1.3, the likelihood ratio for an observation Bi :=
(Bik1� � � � �Bikr ) is given by the Radon–Nikodym derivative

L1n(Bik1� � � � �Bikr ) = dG(Bik1� � � � �Bikr ;F1n)

dG(Bik1� � � � �Bikr ;F0)

=
(
F1n(Bik1)

F0(Bik1)

)k1−1(F1n(Bik2)− F1n(Bik1)

F0(Bik2)− F0(Bik1)

)k2−k1−1

· · ·

×
(

1 − F1n(Bikr )

1 − F0(Bikr )

)K−kr r∏
s=1

f1n(Biks )

f0(Biks )

=
r∏
s=0

(
F1n(Biks+1)− F1n(Biks )

F0(Biks+1)− F0(Biks )

)ks+1−ks−1 r∏
s=1

f1n(Biks )

f0(Biks )
�

Since by Assumption 1.3, the observations B1� � � � �Bn are i.i.d. across auctions, we can
write the likelihood ratio of the sample between the models f0 and f1n as

L1n :=
n∏
i=1

L1n(Bik1� � � � �Bikr )�

Also define random variables χis1 := 1{F0(Biks ) <
τ1n
2 } and χis2 := 1{ τ1n

2 ≤ F0(Biks ) < τn}
for s = 1� � � � � r, and set χi01 := χi11 and χi02 = χir+11 = χir+12 = 0. Taking logs, we obtain

l1n(Bik1� � � � �Bikr ) := log
(
L1n(Bik1� � � � �Bikr )

)
=

r∑
s=1

{
χis1 log

(
1 + τp1nξ

(
τ−1

1n F
−1
0

(
τ1n

2
− F0(v)

)))

+ χis2 log
(

1 −β1nτ
p
1nξ

(
τ−1

1n F
−1
0

(
F0(v)− τ1n

2

)))}

+
r∑
s=0

(ks+1 − ks − 1)(χis1 +χis2) log
(
F1n(vkt )− F1n(vks )

F0(vkt )− F0(vks )

)

=
r∑
s=1

{
χis1τ

p
1nξ

(
τ−1

1n F
−1
0

(
τ1n

2
− F0(v)

))

−χis2β1nτ
p
1nξ

(
τ−1

1n F
−1
0

(
F0(v)− τ1n

2

))}
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+
r∑
s=0

(ks+1 − ks − 1)(χis1 +χis2) log
(
F1n(vkt )− F1n(vks )

F0(vkt )− F0(vks )

)
+ oP

(
τ
p
1nmax{1�β1n}

)
from a Taylor expansion of the log around 1.

From (C.3), we can see that if χis1 = χis2 = 0 for all s = 1� � � � � r, then l1n(Bik1� � � � �

Bikr )= 0, so that the ith observation only contributes to the likelihood ratio if Bi1 < τ1n.

Also by inspection, we can bound | log(
F1n(vkt )−F1n(vks )

F0(vkt )−F0(vks )
)| ≤ Bτp1n for vkt > vks and any τn ∈

[0�1]. Hence, for any realization of (Bik1� � � � �Bikr ), |l1n(Bik1� � � � �Bikr )| ≤ (K + 1)Bτp1n.

Since the log likelihood depends on the realization of (Bik1� � � � �Bikr ) only through

the marginal quantile of each component, it follows from a change of variables under

the integral that its expectation is given by

EF0

∣∣∣∣∣
n∑
i=1

l1n(Bik1� � � � �Bikr )

∣∣∣∣∣
=

∫
(V r )n

∣∣∣∣∣
n∑
i=1

l1n(Bik1� � � � �Bikr )

∣∣∣∣∣
n⊗
i=1

dG(Bik1� � � � �Bikr ;F0)

(C.4)

≤ n(K + 1)Bτp1nEF0

[
r∑
s=0

(χis1 +χis2)(ks+1 − ks)
]

≤ 2n(K + 1)Bτp1n

r∑
s=1

ksτ
ks
1n�

where the first inequality follows from the triangle inequality and the last inequality uses

that (χis1 +χis2) is nonincreasing in s with probability 1. Hence, if lim supn τ1nn
1/(k1+p) <

∞, we have

lim sup
n

EF0

∣∣log(L1n)
∣∣ = lim sup

n
EF0

∣∣∣∣∣
n∑
i=1

l1n(Bik1� � � � �Bikr )

∣∣∣∣∣<C (C.5)

for a positive constant C <∞. Similarly, for a perturbation of the type fn(v)= f2n(v), we

need lim supn τ2nn
1/(K−kr+p) <∞ for (C.5) to hold.

Using (C.5), we can now adapt the argument from Stone (1980) to show that the rate

implied by the sequences τ1n and τ2n is indeed an upper bound on the rate of conver-

gence for a nonparametric estimator of F0(v). For completeness of the exposition, we

now restate his argument: suppose the rate τn was not an upper bound on the rate of

convergence. Then for j = 1�2, there would be a statistical procedure to decide between

fjn(v) and f0(v) such that the lim sup of the probability of a statistical error is equal to

zero.



Quantitative Economics 4 (2013) Large sample properties for estimators 365

In particular, if we put prior probability 1
2 on each fjn and f0, respectively, the poste-

rior probability of fjn is

π
(
f = fjn|{B1� � � � �Bn}

) = Ljn
1 + Ljn

�

Given the constant in (C.5), choose ε = (1 + exp(C/2))−1 > 0. Then by (C.5) and the
Markov inequality,

P
(
ε < π

(
f = fjn|{B1� � � � �Bn}

)
< 1 − ε)

= P

(
ε <

Ljn
1 + Ljn

< 1 − ε
)

= P

(
1

1 + exp(C/2)
<

Ljn
1 + Ljn

<
exp(C/2)

1 + exp(C/2)

)
(C.6)

= P
(
exp(−C/2) < Ljn < exp(C/2)

)
= P

(| log Ljn|<C/2
) ≥ 1 − E| log Ljn|

C
�

Hence, taking limits yields

lim inf
n

PF0

(
ε < π

(
f = fn|{B1� � � � �Bn}

)
< 1 − ε) ≥ 1 − lim sup

n

E| log Ljn|
C

>
1
2
�

so that the error probability of any decision rule between F1n and F0 has to be at least ε4 .
Now consider the following decision rule δ between F1n and F0 based on the can-

didate estimator F̂n: we set δn(F̂n) := F0 if �(F̂n�F0) <
1
2�(F1n�F0) and set δn(F̂n) = F1n

otherwise. Suppose also that lim supn τ1nn
1/(k1+p) <∞. Then by the previous argument,

this decision rule must have error probability ε
4 or greater, so that

P
(
�(F̂n�F0) > cn

−γ1/(k1+p))
≥ 1

2
PF0

(
1
2
�(F̂n�F0) > cn

−γ1/(k1+p)
)

+ 1
2

PF1n

(
1
2
�(F̂n�F0) > cn

−γ1/(k1+p)
)
(C.7)

≥ 1
2

PF0

(
1
2
�(F̂n�F0) > cτ

γ1
1n

)
+ 1

2
PF1n

(
1
2
�(F̂n�F0) > cτ

γ1
1n

)
≥ 1

2
PF0

(
δn(F̂n)= F1n

)+ 1
2

PF1n

(
δn(F̂n)= F0

)
>
ε

4
�

Applying the same argument to the perturbation

F2n(v) :=
∫ v

0
f0(s)

(
1 + ξ2n(s)

)
ds�

we also obtain

lim inf
n

PF0

(
�(F̂n�F0) > cn

−γ2/(K−kr+p))> ε

4
� (C.8)
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Finally, consider a perturbation of F0(v) in the interior of V that is of the form

F3n(v;α) :=
∫ v

0
f0(s)

(
1 + ξ3n(s;α)

)
ds�

By a mean-value expansion around α= 0, under F0 the log likelihood satisfies

n∑
i=1

l3n(Bik1� � � � �Bikr ;α)

= logL3n(Bik1� � � � �Bikr ;α) (C.9)

= 0 + α
n∑
i=1

{
∂

∂α
logL3n(Bik1� � � � �Bikr ;0)+ α2

2
∂2

∂α2 logL3n(Bik1� � � � �Bikr ; ᾱ)
}
�

where ᾱ ∈ [0�α].
Now choose a sequence αn such that lim supn

√
nαn <∞. Note that the correspond-

ing statistical experiment L3n(Bik1� � � � �Bikr ;α) := log
dG(Bik1 �����Bikr ;F3n(·;α))
dG(Bik1 �����Bikr ;F0n)

is differen-

tiable in quadratic mean with respect to α. Moreover, it can be verified that the score
identity with respect to α holds at α= 0 for every n= 1�2� � � � , so that

lim sup
n

EF0

∣∣∣∣∣
n∑
i=1

l3n(Bik1� � � � �Bikr ;αn)
∣∣∣∣∣ ≤ lim sup

n

(√
nαn

∣∣O(1)∣∣+ nα2
n

∣∣O(1)∣∣)<∞

and by the same line of reasoning as for the first case, so that

lim inf
n

PF0

(
�(F̂n�F0) > cn

−γ3/2
)
>
ε

4
� (C.10)

Taken together, (C.7), (C.8), and (C.10) establish the first assertion of the lemma.
For the second part of Lemma C.1, consider a decision problem in which we put 1

M

prior probability on each of the distributions

Fnm�M(v)= F0(v)+ m

M − 1
(
F1n(v)− F0(v)

)
for someM > 1 andm= 0� � � � �M − 1. Again following the reasoning in Stone (1980) and
adapting the arguments leading to (C.4) and (C.6), we can show that the overall error
probability of any procedure δnM : F0 → {Fn0�M� � � � �FnM�M} of classifying F into the M
points based on F̂n is at least 1 − 2

M can be bounded from below by

lim inf
n

PF0

(
�(F̂n�F0) > cn

−γ1/(k1+p)) ≥ lim inf
n

PF0

(
δnM(F̂n) 
= F0

)
> 1 − 2

M
�

Since for anyM > 1, we can pick c > 0 small enough such that for large n, �(Fn1�M�F0) >

cn−γ1/(k1+p), we can make the probability on the right-hand side of this inequality arbi-
trarily close to 1 as we take the limit c → 0. Applying the same argument to the pertur-
bations F2n and F3n, we establish the second claim. �

Proof of Theorem 2.3. Without loss of generality, consider the case K − kr ≤ k1.
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For part (a), note that by Assumption 1.4 for the local alternatives defined in (C.1),

supv∈V |F1n(v) − F0(v)| ≥ τ
p+1
1n infv∈V F0(v)

2 , supv∈V |F2n(v) − F0(v)| ≥ τ
p+1
2n infv∈V F0(v)

B , and
supv∈V |F3n(v)−F0(v)| = αnδ, so that for �(F�G) := supv∈V |F(v)−G(v)|, γ1 = γ2 = p+1,
so that by Lemma C.1, (2.1) and (2.2) hold with rn = cnmin{1/2�(p+1)/(k1+p)�(p+1)/(K−kr+p)}.

Next we establish part (b). From the definition of ψ(·) and the lower bound on
the density f0(v) from Assumption 1.4, there exist η1�η2 ∈ (0� 1

2) and κ > 0 such that∫ F−1
0 (τ̃)

inf V ψjn(v)f0(v)dv > κτ̃
1+p for all τ̃ ∈ [η1τ1n�η2τ1n]. Hence, we have by a change of

variables,

(∥∥F1n(v)− F0(v)
∥∥
q

)q =
∫ ∞

−∞
(
F1n(v)− F0(v)

)q
μ(dv)

=
∫ τ1n

0

(
F1n

(
F−1

0 (s)
)− s)qh(s;F0)

−1 ds

≥
∫ η2τ1n

η1τ1n

κqsq(1+p)h(s;F0)
−1 ds

� τ
q(1+p)−α1+1
1n

for small values of τ1n using the rates imposed in Assumption 1.4. Hence,∥∥F1n(v)− F0(v)
∥∥
q

� τ(q−α1+1)/q
1n � n−(q(1+p)−α1+1)/(q(k1+p))�

We can apply an analogous argument to the perturbations F2n and F3n so that by
Lemma C.1, conditions (2.1) and (2.2) hold with

rn = cnmin{1/2�(q(1+p)−α1+1)/(q(k1+p))�(q(1+p)−α2+1)/(q(K−kr+1+p))}�

Part (c) follows immediately from part (b), noticing that by restricting the function to
any compact subset A of the interior of V , there exists a finite n (depending on A) such
that the perturbations F1n and F2n coincide with F0 on A and, therefore, do not impose
any restrictions on the rate of convergence. �

Proof of Theorem 2.4. To establish this result, we show how to extend the arguments
in the proof of Lemma C.1 to a problem of estimating bounds rather than a single distri-
bution function.

We first show that n(p+1)/(kr+p) is an upper bound on the rate of convergence. Con-
sider a sequence τ1n such that limn τ1nn

−1/(kr+p) = τ1 ∈ (0�1), the interior of the unit in-
terval. By the assumptions of the theorem, for every n, there exists a distribution f0n(v)

such that Condition 2.2(i)–(iii) hold at v≡ v1n := F−1
0n (τ1n).

We now consider a perturbation of the density by ξ1n(v) defined in (C.2). For the
perturbed model f1n(v)= f0n(v)[1+ξ1n(v)], the log-likelihood ratio between the implied

distributions of order statistics log(
dG(Bik1 �����Bikr ;F1n)

dG(Bik1 �����Bikr ;F0n)
) is bounded in absolute value by

Bτ
p
1n for n large enough and a finite universal constant B by Condition 2.2(i) and (ii), and

the same arguments as in the proof of Lemma C.1.
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Next notice that the proof of Lemma C.1 only requires the polynomial condition on
the behavior of the marginal distributionsGk1(v;F0n) andGkr (v;F0n) assumed under (i)
in the statement of the Condition 2.2(i).

Along the sequence F0n, the estimand of interest is given by

H0n(v)=H∗(ψk1

(
Gk1(v;F0n)

)
� � � � �ψkr

(
Gkr (v;F0n)

))
�

Let the pseudometric be

�(F1n�F0n) := sup
v∈V

∣∣H∗(ψk1

(
Gk1(v;F1n)

)
� � � � �ψkr

(
Gkr (v;F1n)

))
−H∗(ψk1

(
Gk1(v;F0n)

)
� � � � �ψkr

(
Gkr (v;F0n)

))∣∣�
Since F1n(v) = F0n(v) + ∫ v

0 ξ1n(t)dt, the lower bound on the one-sided derivatives of
H∗(·) together with Condition 2.2(ii) imply that we have

�(F1n�F0n) ≥ ∣∣H∗(ψk1

(
Gk1(v1n;F1n)

)
� � � � �ψkr

(
Gkr (v1n;F1n)

))
−H∗(ψk1

(
Gk1(v1n;F0n)

)
� � � � �ψkr

(
Gkr (v1n;F0n)

))∣∣
≥ 1

2
bHτ

p+1
1n �

Now using the same argument as in the proof of Lemma C.1, it follows that rn :=
n(p+1)/(kr+p) is an upper bound for the rate of convergence for any nonparametric esti-
mator Ĥn.

To establish that n(p+1)/(K−k1+1+p) is an upper bound on the rate of convergence,
we consider a sequence τ2n such that limn τ1nn

−1/(K−k1+p) = τ2 ∈ (0�1) and a sequence
of distributions f0n(v) satisfying Condition 2.2(i)–(iii) at v ≡ v2n := F−1

0n (1 − τ2n). For the
perturbed model f2n(v)= f0n(v)[1 + ξ2n(v)], where ξ1n(v) is defined in (C.2), we can use
the same steps as before to show that the expectation of the absolute value of the log-
likelihood ratio is bounded from above by a finite constant that does not depend on n
and that �(F2n�F0n)≥ 1

2bHτ
p+1
2n .

As in the main result in Theorem 2.3, the bound by the regular rate n1/2 follows from
smooth perturbations of F0n in the interior of the support. �

Appendix D: Proof of Theorem 3.1

Fix a value of k. We are now going to establish that for the estimator F̂nk, the conditions
of Lemma 3.1 hold. Define ψk(τ) := φ−1

k (τ). Then ψ′
k(τ) = 1

φ′
k(φ

−1
k (τ))

and as shown in

the proof of Theorem 2.1, ψ′′
k(τ) = φ′′

k(φ
−1
k (τ))

[φ′
k(φ

−1
k (τ))]3 . Also recall that ψk(τ) behaves like τ1/k

for small values of τ and is approximated by τ1/(K−k+1) for values of τ sufficiently close
to 1.

In particular, ψ′
k(τ) = O(τ1/k−1) for τ → 0 and ψ′

k(1 − τ) = O((1 − τ)1/(K−k)−1) so

that for a given choice of αnk, τ1nk := τ∗
1k(αn)= O(α

−k/(k−1)
nk )= O(n−(k−1)/(2(2k−1))) and

1 − τ2nk := τ∗
2k(αn)=O(α−(K−k+1)/(K−k)

n )=O(n−(K−k)/(2(2(K−k)+1))).
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If K = 1, then ψ′′
1(τ)= 0, in which case the approximation in Theorem 3.1 is trivially

true without any need for regularization; therefore, we only consider the case k≥ 2 in the

remainder of this argument. Since
ψ′′
k(τ)

|ψ′
k(τ)|

diverges for k ≥ 2 as τ → 0 and for K − k ≥ 2

as τ → 1, we can bound the supremum supτ∈[τ1�1/2] | ψ
′′
k(τ)

|ψ′
k(τ)|

| of the ratio by a multiple

2
τ

1/k−2
1

τ
1/k−1
1

= τ−1
1 for τ1 sufficiently small. A similar argument applies to the upper tail of the

distribution.
In the following discussion, we can, without loss of generality, restrict our attention

to the case in which Vk is uniformly distributed, that is, F0(τ) = τ for every τ ∈ [0�1].
Note that by assumption, limn→∞ rn

τjn
= c <∞, potentially zero, for j = 1�2. Then along a

sequence hn → h of functions hn : [0�1] → R converging to h(τ) with respect to the sup-
norm, where supτ∈[0�1] |h(τ)| := ‖h‖∞ <∞ and τ + r−1

n hn(τ) is a proper c.d.f. for n large
enough, we have, by a mean-value expansion in h(τ),

Rn(hn) := sup
τ∈[0�1]

∣∣rn(∣∣ψ̃′
k(τ)

∣∣)−1(
ψ̃k

(
τ+ r−1

n hn(τ)
)− ψ̃k(τ)− r−1

n ψ′(τ)hn(τ)
)∣∣

= sup
τ∈[0�1]

∣∣rn(∣∣ψ̃′
k(τ)

∣∣)−1
ψ̃′′
k

(
τ+ r−1

n h̄n(τ)
)
r−1
n hn(τ)

∣∣
= sup

τ∈[r−1
n hn(0)�1+r−1

n hn(1)]

∣∣(∣∣ψ̃′
k

(
τ− r−1

n h̄n(τ)
)∣∣)−1

ψ̃′′
k(τ)h

(
τ− r−1

n h̄n(τ)
)∣∣

for n large enough, where h̄n(τ) takes a value between zero and hn(τ) for every value
of τ.

Noting that for τ < τ1nk, ψ̃′′
k(τ)= 0, and given our previous discussion of the tail be-

havior of the derivatives of ψ̃k(τ), we can now bound

Rn(hn) ≤ sup
τ∈[τ1n�1/2]

∣∣∣∣(τ− r−1
n h̄n(τ))

1−1/k

τ2−1/k
h
(
τ− r−1

n h̄n(τ)
)∣∣∣∣

+ sup
τ∈[1/2�τ2n]

∣∣∣∣(1 − τ− r−1
n h̄n(τ))

1−1/(K−k+1)

(1 − τ)2−1/(K−k+1)
h
(
τ− r−1

n h̄n(τ)
)∣∣∣∣

≤ sup
τ∈[τ1n�1/2]

∣∣∣∣(τ+ r−1
n |h̄n(τ)|)1−1/k

τ2−1/k

∣∣∣∣∣∣h(τ− r−1
n h̄n(τ)

)∣∣
+ sup
τ∈[1/2�τ2n]

∣∣∣∣(1 − τ+ r−1
n |h̄n(τ)|)1−1/(K−k+1)

(1 − τ)2−1/(K−k+1)

∣∣∣∣∣∣h(τ− r−1
n h̄n(τ)

)∣∣
≤ 2

(
r

1−1/k
n τ

1/k−2
1nk + r1−1/(K−k+1)

n (1 − τ2nk)
1/(K−k+1)−2)

× sup
τ∈[0�1]

∣∣hn(τ)∣∣(2K−1)/K

for n large enough, since by assumption, supτ∈[0�1] |hn(τ)| ≤ 2 supτ∈[0�1] |h(τ)| + 1 < ∞,
say. Here, rn = n−1/2, so that by our assumptions on τ1nk and τ2nk, this expression goes
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to zero for any limiting function h(τ) that satisfies supτ∈[0�1] |h(τ)| < ∞. The same ar-
gument applies to linear combinations of estimators for different values of k, so that
the regularization scheme in Theorem 3.1 satisfies Condition 3.1. Hence, it follows from
Lemma 3.1 that the proposed normalized estimator satisfies the uniform approximation
posited in Theorem 3.1. �

Appendix E: Rates for functionals of the distribution of valuations

Proof of Proposition 4.1. Using integration by parts, we can rewrite the functional
T(F) at F as

T(F)=
∫ ∞

0
w(v)F(dv)= [

w(v)F(v)
]∞

0 −
∫ ∞

0
w′(v)F(v)dv�

Since by Assumption 4.1, limτ→0ω(τ;F) is bounded uniformly in F and, furthermore,
limτ→1ω(τ;F)= 0 for all F , the first term is equal to zero.

From the definition of ψ(·) and the lower bound on the density f0(v) from Assump-

tion 1.4, there exist η1�η2 ∈ (0� 1
2) and κ > 0 such that

∫ F−1
0 (τ̃)

inf V ψjn(v)f0(v)dv > κτ̃
1+p for

all τ̃ ∈ [η1τ1n�η2τ1n]. Also by construction of the perturbation, F1n(v)≥ F0(v) for all v, so
that by Assumption 4.1, the integrand does not change sign on the interval [0� τ1n] for n
large enough. Hence,

∣∣T(F1n)− T(F0)
∣∣ =

∣∣∣∣∫ F−1
0 (τ1n)

inf V
w′(v)

(
F1n(v)− F0(v)

)
dv

∣∣∣∣
=

∣∣∣∣∫ τ1n

0
ω′(s;F0)

(
F1n

(
F−1

0 (s)
)− s)ds∣∣∣∣

≥
∣∣∣∣∫ η2τ1n

η1τ1n

ω′(s;F0)κs
1+p ds

∣∣∣∣
� τ

2+p+β1
1n

for n sufficiently large. Similarly, |T(F2n)− T(F0)| � τ
2+p+β2
2n and |T(F3n)− T(F0)| � αn,

so that by Lemma C.1, conditions (2.1) and (2.2) hold with

rn = nmin{1/2�(2+p+β1)/(k1+p)�(2+p+β2)/(K−kr+1+p)}� �

Proof of Proposition 4.2. Note that since, by assumption, V > 0 with probability 1,
then

EF [Vk:K̃] =
∫ ∞

0

[
1 −GK̃k (v;F)

]
dv�

By the same argument as in the proof of Proposition 4.1, we can find η1�η2 ∈ (0� 1
2) and

κ > 0 such that
∫ F−1

0 (τ̃)

inf V ψjn(v)f0(v)dv > κτ̃
1+p for all τ̃ ∈ [η1τ1n�η2τ1n]. Since F1n(v) −
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F0(v)= 0 for all v≥ F−1
0 (τ1n), we can write

EF0[Vk:K̃] − EF1n [Vk:K̃]

=
∫ F−1

0 (τn)

0

[
GK̃k (v;Fn)−GK̃k (v;F0)

]
dv

= K̃!
k!(K̃ − k)!

×
∫ F−1

0 (τn)

0

[
F1n(v)

k
(
1 − F1n(v)

)K̃−k − F0(v)
k
(
1 − F0(v)

)K̃−k]
dv

= K̃!
k!(K̃ − k)!
×

∫ τ1n

0

[(
F1n

(
F−1

0 (s)
))k(1 − F1n

(
F−1

0 (s)
))K̃−k − sk(1 − s)K̃−k]h(s;F0)

−1 ds

≥ K̃!
k!(K̃ − k)!
×

∫ η2τ1n

η1τ1n

[(
s+ κs1+p)k(1 − s− κs1+p)K̃−k − sk(1 − s)K̃−k]h(s;F0)

−1 ds

�
∫ η2τ1n

η1τ1n

sk(1+p)h(s;F0)
−1 ds

� τk(1+p)+1−α1
1n

for n sufficiently large, since the integrand is always nonnegative. Similarly,∣∣EF2n[Vk:K̃] − EF0[Vk:K̃]∣∣ � τ(K̃−k)(1+p)+1−α2
2n

and ∣∣EF3n[Vk:K̃] − EF0[Vk:K̃]∣∣ � αn

so that the conclusion follows from Lemma C.1. �

Proof of Proposition 5.1. In a first step we apply a modification of Lemma C.1 to the
distribution G0(v) of a random bid BK̂ , where the index K̂ is drawn at random from a
uniform distribution over {1�2� � � � �K}, the set of all bidders.

Let ηn := ηn−1/(2p+1), and let τ0 and ψ(·) be as defined in Appendix B. In an analo-
gous fashion as before, we define the perturbations of the distribution of a random bid
gjn(v) := g0(v)[1 +ψjn(v)] for j = 1�2�3, where

ψ1n(v) := τ
p
1n

(
β1nψ

(
G−1

0

[
τ−1

1n

(
τ1n

2
−G0(v)

)])
−ψ

(
G−1

0

[
τ−1

1n

(
G0(v)− τ1n

2

)]))
�
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ψ2n(v) := τ
p
2n

(
β2nψ

(
G−1

0

[
τ−1

2n

(
G0(v)− 1 + τ2n

2

)])
−ψ

(
G−1

0

[
τ−1

2n

(
1 − τ2n

2
−G0(v)

)]))
�

ψ3n(v) := η
p
n

{
ψ
(
G−1

0

[
η−1
n

(
τ0 −G0(v)

)])−β3nψ
(
G−1

0

[
η−1
n

(
τ0 −G0(v)

)])}
�

where for all j, the sequence βjn is bounded between 1
B and B, and is chosen in a way

such that gjn(v) is a density. Also let Gjn(v) be the corresponding cumulative distribu-
tion functions.

Following the same arguments as in the proof of Lemma C.1, the expectation of the
absolute value of the log-likelihood ratio for the sequence of deviations G3n is of the
order nη2p+1

n and, therefore, is bounded as n→ ∞ so that the error probability of any
classification procedure to distinguish betweenG0 andG3n is bounded away from zero.
For the deviations G1n and G2n, the argument is identical to the original version of the
lemma. Hence, if �(G0�G3n)≥ ηγ3

n , the conclusion of Lemma C.1 can be modified to

lim sup
n

P
(
�(Ĝn�G0) > cn

−min{γ3/(2p+1)�γ1/(k1+p)�γ2(K−kr+p)})> 0

and

lim
c→0

lim sup
n

P
(
�(Ĝn�G0) > cn

−min{γ3/(2p+1)�γ1/(k1+p)�γ2(K−kr+p)}) = 1�

Therefore, it suffices to show that �(G1�G2) := supv∈V |F(v;G1)− F(v;G2)| satisfies the
conditions of this modification of Lemma C.1 with γ1 = p+ 1, γ2 = p, and γ3 = p:

Fix b ∈ V and let τ := G0(b). Since the bidding functions are strictly monotone in
valuations, F(b−1(b;F)) = τ, that is, the ordering of quantiles is preserved. For pertur-
bation Fjn, note that using (5.2) and a mean-value expansion, we can write the valuation
implied by bid b=G−1

0 (τ) as

b−1(b;F1n) = b+ 1
K − 1

G1n(b)

g1n(b)

= b+ 1
K − 1

G0(b)+
∫ b

inf V
ψjn(s)g0(s)ds

g0(b)[1 +ψjn(b)]
(E.1)

= b+ 1
K − 1

G0(b)

g0(b)

+ 1
K − 1

{∫ b

inf V
ψjn(s)g0(s)ds

g0(b)
− G0(b)

ḡn(b)2
ψjn(b)

}
�

where ḡn(b) is an intermediate value between g0(b) and gjn(b). Also, from the bounds on
the density function f (v) in Assumption 1.4, the bidding function b(v;F) and its inverse
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are Lipschitz continuous for F0 and Fjn. Using the expansion (E.1), we can write

Fjn
(
b−1(b;Fjn)

)− F0
(
b−1(b;F0)

)
= F0

(
b−1(b;F0)+ [

b−1(b;Fjn)− b−1(b;F0)
])

− F0
(
b−1(b;F0)

)+ Fjn
(
b−1(b;Fjn)

)− F0
(
b−1(b;Fjn)

)
(E.2)

=
∫ b−1(b;Fjn)

0
ψjn(s)g0(s)ds

+ f0(vn)

K − 1

(∫ b

inf V
ψjn(s)g0(s)ds

g0(b)
− G0(b)

ḡn(b)2
ψjn(b)

)
�

Now consider the perturbation F1n and note that for any value τ ≥ τ1n
2 , all three terms

in the approximation error in (E.2) are nonnegative, so that

sup
b∈V

∣∣F1n
(
b−1(b;F1n)

)− F0
(
b−1(b;F0)

)∣∣
≥ sup
τ∈[τ1n/2�τ1n]

{∣∣∣∣∫ b−1(G−1
0 (τ);F1n)

0
ψ1n(s)g0(s)ds

∣∣∣∣

+
inf
v∈V

f0(v)f0

K − 1

(∣∣∣∣∣
∫ G−1

0 (τ)

inf V
ψ1n(s)g0(s)ds

g0(b)

∣∣∣∣∣+
∣∣∣∣∣τψ1n(G

−1
0 (τ))

sup
v∈V

g0(v)
2

∣∣∣∣∣
)}

� τ1+p
1n + τ1+p

1n + τ1+p
1n

so that γ1 = p+ 1. For the local alternatives F2n, the argument is analogous, except that

the third term of the approximation | τψ2n(G
−1
0 (τ))

supv∈V g0(v)2
| is of the order of τp2n for τ ∈ [1 − τ2n�1 −

τ2n
2 ], which gives us γ2 = p.

Similarly, we have for the perturbation F3n that

sup
v∈V

∣∣F3n(v)− F0(v)
∣∣

≥ sup
τ∈[τ0�τ0+η−1

n ]

{∣∣∣∣∫ b−1(G−1
0 (τ);F3n)

0
ψ3n(s)g0(s)ds

∣∣∣∣

+
inf
v∈V

f0(v)

K − 1

(∣∣∣∣∣
∫ G−1

0 (τ)

inf V
ψ3n(s)g0(s)ds

g0(b)

∣∣∣∣∣+
∣∣∣∣∣G0(G

−1
0 (τ))ψ3n(G

−1
0 (τ))

sup
v∈V

g0(v)
2

∣∣∣∣∣
)}

� η1+p
n +η1+p

n +ηpn
so that γ3 = p, which establishes the claim. �
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