Supplement to "Frequentist inference in weakly identified dynamic stochastic general equilibrium models"

(Quantitative Economics, Vol. 4, No. 2, July 2013, 197–229)

PABLO GUERRON-QUINTANA Federal Reserve Bank of Philadelphia

ATSUSHI INOUE North Carolina State University

LUTZ KILIAN University of Michigan and CEPR

Appendix A: Proofs

PROOF OF PROPOSITION 1. The derivation of the posterior distribution follows from Proposition 12.2 in Hamilton (1994, p. 354). \Box

PROOF OF PROPOSITION 2. The proof below is straightforward but is included for completeness. By assumption (a), the constrained MLE $\tilde{\gamma}_T(\theta)$ satisfies the first-order conditions

$$\nabla \ell_T \big(\tilde{\gamma}_T(\theta_0) \big) + D_\gamma f \big(\tilde{\gamma}_T(\theta_0), \theta_0 \big)' \tilde{\lambda}_T(\theta_0) = 0_{\dim(\gamma) \times 1}, \tag{A.1}$$

$$f(\tilde{\gamma}_T(\theta_0), \theta_0) = 0_{r \times 1},\tag{A.2}$$

where $\tilde{\lambda}_T(\theta_0)$ is the $r \times 1$ vector of Lagrange multipliers. A Taylor series expansion of (A.1) and (A.2) around $(\gamma_{0,T}, 0_{r\times 1})$ yields

$$\begin{bmatrix} \nabla_{\gamma\gamma}\ell_T(\gamma_{0,T}) & D_{\gamma}f(\gamma_{0,T},\theta_0)' \\ D_{\gamma}f(\gamma_{0,T},\theta_0) & 0_{r\times r} \end{bmatrix} \begin{bmatrix} \tilde{\gamma}_T(\theta_0) - \gamma_{0,T} \\ \tilde{\lambda}_T(\theta_0) \end{bmatrix}$$

$$= \begin{bmatrix} \nabla\ell_T(\gamma_{0,T}) \\ 0_{r\times 1} \end{bmatrix} + o_p(T^{-1/2}),$$
(A.3)

where the $o_p(T^{-1/2})$ follows from assumption (b). Solving these equations for $\tilde{\gamma}_T(\theta_0) - \gamma_{0,T}$ produces

$$\tilde{\gamma}_{T}(\theta_{0}) - \gamma_{0,T} = -\left[\nabla_{\gamma\gamma}\ell_{T}(\gamma_{0,T})\right]^{-1} \nabla_{\gamma}\ell_{T}(\gamma_{0,T})$$
(A.4)

Copyright © 2013 Pablo Guerron-Quintana, Atsushi Inoue, and Lutz Kilian. Licensed under the Creative Commons Attribution-NonCommercial License 3.0. Available at http://www.qeconomics.org. DOI: 10.3982/QE306

Pablo Guerron-Quintana: pguerron@gmail.com AtsushiInoue: atsushi@ncsu.edu Lutz Kilian: lkilian@umich.edu

$$+ \left[\nabla_{\gamma\gamma} \ell_T(\gamma_{0,T}) \right]^{-1} R'_T \left\{ R_T \left[\nabla_{\gamma\gamma} \ell_T(\gamma_{0,T}) \right]^{-1} R'_T \right\}^{-1} \\ \times R_T \left[\nabla_{\gamma\gamma} \ell_T(\gamma_{0,T}) \right]^{-1} \nabla_{\gamma} \ell_T(\gamma_0) \\ + o_p \left(T^{-1/2} \right),$$

where $R_T = D_{\gamma} f(\gamma_{0,T}, \theta_0)$. Because $\hat{\gamma}_T - \gamma_{0,T} = -[\nabla_{\gamma\gamma} \ell_T(\gamma_{0,T})]^{-1} \nabla_{\gamma} \ell_T(\gamma_{0,T}) + o_p(T^{-1/2})$, under assumption (b), it follows from (A.4) that

$$\begin{split} \left[\nabla_{\gamma\gamma}\ell_{T}(\gamma_{0,T})\right]^{1/2} \left(\tilde{\gamma}_{T}(\theta_{0}) - \hat{\gamma}_{T}\right) \\ &= \left[\nabla_{\gamma\gamma}\ell_{T}(\gamma_{0,T})\right]^{-1/2} R' \left\{ R \left[\nabla_{\gamma\gamma}\ell_{T}(\gamma_{0,T})\right]^{-1} R' \right\}^{-1} \\ &\times R \left[\nabla_{\gamma\gamma}\ell_{T}(\gamma_{0,T})\right]^{-1} \nabla_{\gamma}\ell_{T}(\gamma_{0,T}) + o_{p}(1) \\ &= P_{T} z_{T} + o_{p}(1), \end{split}$$
(A.5)

where $P_T = [\nabla_{\gamma\gamma}\ell_T(\gamma_{0,T})]^{-1/2}R'_T \{R_T[\nabla_{\gamma\gamma}\ell_T(\gamma_{0,T})]^{-1}R'_T\}^{-1}R_T[\nabla_{\gamma\gamma}\ell_T(\gamma_{0,T})]^{-1/2}$ and $z_T = [\ell_T(\gamma_{0,T})]^{-1/2}\nabla_{\gamma}\ell_T(\gamma_{0,T})$. Because P_T is idempotent and has rank r, it follows from (A.5), a second-order Taylor series expansion of the LR test statistic around $\hat{\gamma}_T$, and assumptions (a), (b), and (c) that the asymptotic distribution of the LR test is the chi-squared distribution with r degrees of freedom.

PROOF OF THEOREM 1. It follows from assumption (a) in Proposition 2, assumptions (a), (b), and (c) of Theorem 1, the Taylor theorem, the first-order condition for the unconstrained MLE, and (A.5) that

$$\begin{split} I_{3,T} &\equiv \int_{B_{\delta_T}(\theta_0)} \pi(\theta) \exp\bigl(\ell_T\bigl(\tilde{\gamma}_T(\theta)\bigr) - \ell_T(\hat{\gamma}_T)\bigr) d\theta \\ &= \int_{B_{\delta_T}(\theta_0)} \pi(\theta) \exp\biggl(\frac{1}{2}\bigl(\tilde{\gamma}_T(\theta) - \hat{\gamma}_T\bigr)' \nabla_{\gamma\gamma}\ell_T\bigl(\tilde{\gamma}_T(\theta)\bigr)\bigl(\tilde{\gamma}_T(\theta) - \hat{\gamma}_T\bigr)\biggr) d\theta \quad (A.6) \\ &= \int_{B_{\delta_T}(\theta_0)} \pi(\theta) d\theta \exp\biggl(-\frac{1}{2}z_T'z_T\biggr) + o_p(1), \end{split}$$

where $\bar{\gamma}_T(\theta)$ is a point between $\tilde{\gamma}_T(\theta)$ and $\hat{\gamma}_T$.

Let

$$I_{4,T} = \int_{\Theta \setminus B_{\delta_T}(\theta_0)} \pi(\theta) \exp\left(\ell_T\left(\tilde{\gamma}_T(\theta)\right) - \ell_T(\hat{\gamma}_T)\right) d\theta, \tag{A.7}$$

where $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$. Since $\ell_T(\tilde{\gamma}_T(\theta)) \le \ell_T(\hat{\gamma}_T)$ by the definition of MLE, it follows from (A.7) that

$$I_{4,T} \le \int_{\Theta \setminus B_{\delta_T}(\theta_0)} \pi(\theta) \, d\theta. \tag{A.8}$$

Combining these results, the Bayes factor in favor of H_1 can be written as

Bayes factor(
$$\theta_0$$
) = $\frac{\int_{B_{\delta_T}(\theta_0)} \pi(\theta) d\theta}{\int_{\Theta \setminus B_{\delta_T}(\theta_0)} \pi(\theta) d\theta} \frac{I_{4,T}}{I_{3,T}} \le \exp\left(\frac{1}{2}z_T'z_T\right) + o_p(1),$ (A.9)

where the inequality follows from (A.8).

PROOF OF PROPOSITION 3a. Because the proof of (7) is analogous to that of Proposition 2, we only provide a sketch of the proof. By assumption (a) in Proposition 2, the constrained MLE $\tilde{\gamma}_T(\alpha_0)$ satisfies the first-order conditions

$$\nabla \ell_T \big(\tilde{\gamma}_T(\theta_0) \big) + D_\gamma f \big(\tilde{\gamma}_T(\alpha_0), \alpha_0, \tilde{\beta}(\alpha_0) \big)' \tilde{\lambda}_T(\alpha_0) = 0_{\dim(\gamma) \times 1}, \tag{A.10}$$

$$D_{\beta}f(\tilde{\gamma}_T(\alpha_0), \alpha_0, \beta_T(\alpha_0)) = 0_{k_2 \times 1}, \tag{A.11}$$

$$f\left(\tilde{\gamma}_T(\alpha_0), \alpha_0, \tilde{\beta}_T(\alpha_0)\right) = 0_{r \times 1},\tag{A.12}$$

where $\tilde{\lambda}_T(\alpha_0)$ is the $r \times 1$ vector of Lagrange multipliers. A Taylor series expansion of these first-order conditions about $[\gamma'_{0,T} \ \beta'_0 \ 0_{1\times r}]'$ yields

$$\begin{bmatrix} \nabla_{\gamma\gamma}\ell_{T}(\gamma_{0,T}) & 0_{\dim(\gamma)\times k_{2}} & D_{\gamma}f(\gamma_{0,T},\theta_{0})'\\ 0_{k_{2}\times\dim(\gamma)} & 0_{k_{2}\times k_{2}} & D_{\beta}f(\gamma_{0,T},\theta_{0})'\\ D_{\gamma}f(\gamma_{0,T},\theta_{0}) & D_{\beta}f(\gamma_{0,T},\theta_{0,T}) & 0_{r\times r} \end{bmatrix} \begin{bmatrix} \tilde{\gamma}_{T}(\alpha_{0}) - \gamma_{0,T}\\ \tilde{\beta}_{T}(\alpha_{0}) - \beta_{0}\\ \tilde{\lambda}_{T}(\alpha_{0}) \end{bmatrix}$$

$$= \begin{bmatrix} -\nabla\ell_{T}(\gamma_{0,T})\\ 0_{k_{2}\times 1}\\ 0_{r\times 1} \end{bmatrix} + o_{p}(T^{-1/2}).$$
(A.13)

After solving these equations and some further manipulations, we obtain

$$\begin{split} \tilde{\gamma}_{T}(\alpha_{0}) &- \hat{\gamma}_{T} \\ &= H_{T}^{-1} R' \big(R H_{T}^{-1} R' \big)^{-1} R H_{T}^{-1} \nabla \ell_{T}(\gamma_{0,T}) \\ &- H_{T}^{-1} R' \big(R H_{T}^{-1} R' \big)^{-1} R_{\beta} \big[R'_{\beta} \big(R H_{T}^{-1} R' \big)^{-1} R_{\beta} \big]^{-1} \\ &\times R'_{\beta} \big(R H_{T}^{-1} R' \big)^{-1} R H_{T}^{-1} \nabla_{\gamma} \ell_{T}(\gamma_{0,T}) + o_{p}(1), \end{split}$$
(A.14)

where $H_T = \nabla_{\gamma\gamma} \ell_T(\gamma_{0,T})$ and $R_\beta = D_\beta f_T(\gamma_{0,T}, \theta_0)$. Hence, we can write

$$LR_T(\alpha_0) = \left(\tilde{\gamma}_T(\alpha_0) - \hat{\gamma}_T\right)' \left[\nabla_{\gamma\gamma}\ell_T(\gamma_{0,T})\right] \left(\tilde{\gamma}_T(\alpha_0) - \hat{\gamma}_T\right) + o_p(1)$$

= $z'_T Q_T z_T + o_p(1),$ (A.15)

where Q_T is defined in (13). Because Q_T is idempotent and has rank $r - k_2$, we obtain the desired result.

PROOF OF PROPOSITION 3b. Note that (A.14) holds not only at $\alpha = \alpha_0$, but also in a neighborhood of α_0 specified by assumption (c) of Theorem 1. The proof of Proposition 3b is analogous to the proof of Theorem 1 except that (A.4) is replaced by (A.14).

PROOF OF THEOREM 2. First we prove (14). An application of the implicit function theorem to $f_T(\gamma, \alpha) = 0$ yields

$$\frac{\partial \gamma}{\partial \alpha'} = -\left[D_{\gamma}f_T(\gamma,\theta)\right]^{-1} D_{\alpha}f_T(\gamma,\theta)$$

$$= -T^{-1/2} \left[D_{\gamma}f_1(\gamma,\beta)\right]^{-1} D_{\alpha}f_2(\gamma,\theta) + o\left(T^{-1/2}\right),$$
(A.16)

$$\frac{\partial \gamma}{\partial \beta'} = -\left[D_{\gamma}f_T(\gamma,\theta)\right]^{-1} D_{\beta}f_T(\gamma,\theta). \tag{A.17}$$

Thus, the mean value theorem implies

$$\begin{split} \gamma_{1,T} - \gamma_{0,T} &= -T^{-1/2} \big[D_{\gamma} f_1(\bar{\gamma}_T, \bar{\beta}_T) \big]^{-1} D_{\beta} f_1(\bar{\gamma}_T, \bar{\beta}_T) c \\ &- T^{-1/2} \big[D_{\gamma} f_1(\bar{\gamma}_T, \beta_1) \big]^{-1} D_{\alpha} f_2(\bar{\gamma}_T, \bar{\alpha}) (\alpha_1 - \alpha_0) \\ &+ o \big(T^{-1/2} \big), \end{split}$$
(A.18)

where $[\bar{\gamma}'_T \ \bar{\theta}'_T]' = [\bar{\gamma}'_T \ \bar{\alpha}'_T \ \bar{\beta}'_T]'$ is a point between $[\gamma'_{1,T} \ \alpha'_1 \ \beta'_0 + T^{-1/2}c']'$ and $[\gamma'_{0,T} \ \alpha'_0 \ \beta'_0]'$. Because $\gamma_{1,T} - \gamma_{0,T} = O(T^{-1/2})$, and f_1 and f_2 are continuously differentiable, we can write (A.18) as

$$\begin{aligned} \gamma_{1,T} - \gamma_{0,T} &= -T^{-1/2} \big[D_{\gamma} f_1(\gamma_{1,T},\beta_0) \big]^{-1} D_{\beta} f_1(\gamma_{1,T},\beta_0) c \\ &- T^{-1/2} \big[D_{\gamma} f_1(\gamma_{1,T},\beta_0) \big]^{-1} D_{\alpha} f_2(\gamma_{1,T},\alpha_1,\beta_0) (\alpha_1 - \alpha_0) \\ &+ o \big(T^{-1/2} \big) \\ &= T^{-1/2} G(\alpha_0,\alpha_1,\beta_0) \big[c' \quad (\alpha_1 - \alpha_0)' \big]' + o \big(T^{-1/2} \big), \end{aligned}$$
(A.19)

where $G(\alpha_0, \alpha_1, \beta_1) = \lim_{T \to \infty} \{ [D_{\gamma} f_1(\gamma_{1,T}, \beta_0)]^{-1} [D_{\beta} f_1(\gamma_{1,T}, \beta_0) \ D_{\alpha} f_2(\gamma_{1,T}, \bar{\alpha}_T)] \}.$

Using (A.19) and arguments analogous to those in the proof of Theorem 1, we can show $\hat{\gamma}_T - \gamma_{1,T} = -[\nabla_{\gamma\gamma}\ell_T(\gamma_{1,T})]^{-1}\nabla_{\gamma}\ell_T(\gamma_{1,T}) + o_p(T^{-1/2})$ and

$$\begin{split} \tilde{\gamma}_{T}(\theta_{0}) &- \gamma_{0,T} \\ &= - \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} \nabla_{\gamma} \ell_{T}(\gamma_{0,T}) \\ &+ \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} R'_{T} \left\{ R_{T} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} R'_{T} \right\}^{-1} \\ &\times R_{T} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} \nabla_{\gamma} \ell_{T}(\gamma_{0,T}) \\ &+ o_{p} \left(T^{-1/2} \right) \end{split}$$
(A.20)
$$&= \left\{ - \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} \\ &+ \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} R'_{T} \left\{ R_{T} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} R'_{T} \right\}^{-1} R_{T} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1} \right\} \\ &\times \left\{ \nabla_{\gamma} \ell_{T}(\gamma_{1,T}) + T^{-1/2} \nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) G(\alpha_{0}, \alpha_{1}, \beta_{0}) \left[c' \quad (\alpha_{1} - \alpha_{0})' \right]' \right\} \\ &+ o_{p} \left(T^{-1/2} \right). \end{split}$$

Let $R = \lim_{T\to\infty} R_T$, $d(\alpha, \alpha_1, \beta_0, c) = V_{\gamma}^{-1/2} G(\alpha, \alpha_1, \beta_0) [c' (\alpha_1 - \alpha)']'$, and $P = V_{\gamma}^{1/2} \times R'(RV_{\gamma}R')^{-1}RV_{\gamma}^{1/2}$, where the dependence of *P*, *R*, and V_{γ} on α_1 and β_0 is omitted for notational simplicity. It follows from (A.19), (A.20), the twice continuous differentiability of $\ell_T(\cdot)$, and assumption (a) in Theorem 2 that

$$\begin{split} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{1,T}) \right]^{1/2} (\tilde{\gamma}_{T}(\theta_{0}) - \hat{\gamma}_{T}) \\ &= \left\{ \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{1,T}) \right]^{-1/2} R'_{T} \left\{ R_{T} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{1,T}) \right]^{-1} R'_{T} \right\}^{-1} \\ &\times R_{T} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{1,T}) \right]^{-1/2} \right\} \\ &\times \left\{ T^{-1/2} \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{1,T}) \right]^{1/2} G(\alpha_{0}, \alpha_{1}, \beta_{0}) \left[c' \quad (\alpha_{1} - \alpha_{0})' \right]' \\ &+ \left[\nabla_{\gamma\gamma} \ell_{T}(\gamma_{0,T}) \right]^{-1/2} \nabla_{\gamma} \ell_{T}(\gamma_{1,T}) \right\} + o_{p}(1) \\ &= P \left[d(\alpha_{0}, \alpha_{1}, \beta_{0}, c) + z_{T} \right] + o_{p}(1). \end{split}$$
(A.21)

Because *P* is idempotent and has rank *r*, (A.1) and a second-order Taylor series expansion of the LR test statistic around $\hat{\gamma}_T$ yield (14).

Next we prove (15). Define

$$I_{j,T} = T^{k_2/2} \int_{\Theta_{j,T}} \pi(\theta) \exp\left(\ell_T \left(\tilde{\gamma}_T(\theta)\right) - \ell_T(\hat{\gamma}_T)\right) d\theta$$
(A.22)

for j = 5, 6, 7, where $G_T(\gamma_{1,T}, \theta_{1,T}) = -[D_{\gamma}f_T(\gamma_{1,T}, \theta_{1,T})]^{-1}D_{\theta}(\gamma_{1,T}, \theta_{1,T})$,

$$\begin{split} &\Theta_{5,T} = \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| < \delta_{T,j} \text{ for } j = 1, \dots, k \right\}, \\ &\Theta_{6,T} = \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| \ge \delta_{T,j}, \beta = \beta_0 + \bar{c}T^{-1/2} \text{ for some } \bar{c} \in \bar{C}_T \right\}, \\ &\Theta_{7,T} = \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| \ge \delta_{T,j}, \neg \exists \bar{c} \in \bar{C}_T \text{ such that } \beta = \beta_0 + \bar{c}_T T^{-1/2} \right\}, \end{split}$$

 $\bar{C}_T = \{\bar{c} \in \Re^{k_2} : -c_{\min}T^{\eta} \le c \le c_{\max}T^{\eta}\}, c_{\max} > 0, c_{\min} > 0, \text{ and } \eta \in (0, 1/2). \text{ Define}$

$$\begin{split} \bar{\Theta}_{5,T} &= \left\{ \begin{bmatrix} \alpha' & c' \end{bmatrix} \in \mathcal{A} \times \mathfrak{N}^{k_2} : \\ & |\alpha_j - \alpha_{0,j}| < \delta_{T,j} \text{ for } j = 1, \dots, k_1, |c_j| < \delta_{T,j+k_1} T^{1/2} \text{ for } j = 1, \dots, k_2 \right\}, \\ \bar{\Theta}_{6,T} &= \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| \ge \delta_{T,j}, \beta = \beta_0 + \bar{c} T^{-1/2} \text{ for some } \bar{c} \in \bar{C}_T \right\}, \\ \bar{\Theta}_{7,T} &= \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| \ge \delta_{T,j}, \neg \exists \bar{c} \in \bar{C}_T \text{ such that } \beta = \beta_0 + \bar{c}_T T^{-1/2} \right\}. \end{split}$$

It follows that $I_{5,T}$ equals

$$T^{k_{2}/2} \int_{\Theta_{5,T}} \pi(\theta) \exp\left(\frac{1}{2} (\tilde{\gamma}_{T}(\theta) - \hat{\gamma}_{T})' \nabla_{\gamma\gamma} \ell_{T}(\bar{\gamma}_{T}) (\tilde{\gamma}_{T}(\theta) - \hat{\gamma}_{T})\right) d\theta$$

=
$$\int_{\bar{\Theta}_{5,T}} \pi([\alpha', \beta'_{0} + c'T^{-1/2}]')$$

$$\times \exp\left\{\frac{1}{2} [\tilde{\gamma}_{T}([\alpha' \quad c'T^{-1/2}]') - \hat{\gamma}_{T}]'\right\}$$

$$\times \nabla_{\gamma\gamma} \ell_{T}(\bar{\gamma}_{T}) [\tilde{\gamma}_{T}([\alpha' \ c'T^{-1/2}]') - \hat{\gamma}_{T}] \bigg\} d[\alpha' \ c']' + o_{p}(1) = \int_{\bar{\Theta}_{5,T}} \pi([\alpha' \ \beta'_{0}]') \times \exp\left(-\frac{1}{2}(d(\alpha, \alpha_{1}, \beta_{0}, \bar{c}_{T}(\beta)) + z_{T})' \times P'P(d(\alpha, \alpha_{1}, \beta_{0}, \bar{c}_{T}(\beta)) + z_{T})\right) d[\alpha' \ c'] + o_{p}(T^{-k_{2}/2}) + o_{p}(1) = \int_{\bar{\Theta}_{5,T}} \pi([\alpha' \ c']') d[\alpha' \ c']' \times \exp\left\{-\frac{1}{2}[d(\alpha_{0}, \alpha_{1}, \beta_{0}, 0) + z_{T}]'P[d(\alpha_{0}, \alpha_{1}, \beta_{0}, 0) + z_{T}]\right\} + o_{p}(1),$$
 (A.23)

where the first expression follows from assumption (a) in Proposition 2 and Taylor's theorem, the first equality follows from a change of variables, the second equality follows from (A.21) and assumptions (a) and (b) in Proposition 2, $\bar{\gamma}_T$ is a point between $\hat{\gamma}_T$ and $\tilde{\gamma}_T(\theta)$, $\check{\gamma}_T$ is a point between $\tilde{\gamma}_T(\theta)$ and $\tilde{\gamma}_T(\theta_{1,T})$, and $\check{\theta}_T$ is a point between θ and $\theta_{1,T}$.

Note that the arguments used to derive (A.21) are valid not only for a particular value of α_0 and c, but for all α and c. The compactness of α , the continuous differentiability of f_T , and the continuity of $\nabla_{\gamma\gamma}\ell_T$ imply that (A.20) holds uniformly in $\alpha \in A$, which in turn implies that (A.21) holds uniformly in $\alpha \in A$. Thus, $I_{6,T}$ equals

$$T^{k_2/2} \int_{\Theta_{6,T}} \pi(\theta) \exp\left(\frac{1}{2} \left(\tilde{\gamma}_T(\theta) - \hat{\gamma}_T\right)' \nabla_{\gamma\gamma} \ell_T(\bar{\gamma}_T) \left(\tilde{\gamma}_T(\theta) - \hat{\gamma}_T\right)\right) d\theta$$

$$= \int_{\bar{\Theta}_{6,T}} \pi(\left[\alpha', \beta_0' + c'T^{-1/2}\right]')$$

$$\times \exp\left\{\frac{1}{2} \left[\tilde{\gamma}_T(\left[\alpha' \quad c'T^{-1/2}\right]') - \hat{\gamma}_T\right]'$$

$$\times \nabla_{\gamma\gamma} \ell_T(\bar{\gamma}_T) \left[\tilde{\gamma}_T(\left[\alpha' \quad c'T^{-1/2}\right]') - \hat{\gamma}_T\right]\right\} d\left[\alpha' \quad c'\right]'$$

$$+ o_p(1)$$

$$= \int_{\bar{\Theta}_{6,T}} \pi(\left[\alpha', \beta_0'\right]')$$

$$\times \exp\left\{-\frac{1}{2} \left[d(\alpha, \alpha_1, \beta_0, c) + z_T\right]' P\left[d(\alpha, \alpha_1, \beta_0, c) + z_T\right]\right\} d\alpha + o_p(1)$$

$$= \int_{|\alpha_{j}-\alpha_{1,j}| \ge \delta_{j,T}} \pi([\alpha', \beta_{0}']')$$

$$\times \exp\left\{\frac{1}{2}z'_{T} \left[P - PV_{\gamma}^{-1/2}G(\alpha, \alpha_{1}, \beta_{0})(G(\alpha, \alpha_{1}, \beta_{0})'V_{\gamma}^{-1/2} + PV_{\gamma}^{-1/2}G(\alpha, \alpha_{1}, \beta_{0}))^{-1}G(\alpha, \alpha_{1}, \beta_{0})'V_{\gamma}^{-1/2}P\right] z_{T} \right\} d\alpha$$

$$+ o_{p}(1)$$

$$= \int_{\mathcal{A} \times \tilde{C}_{T}} \pi([\alpha', \beta_{0}']')$$

$$\times \exp\left\{\frac{1}{2}z'_{T} \left[P - PV_{\gamma}^{-1/2}G(\alpha, \alpha_{1}, \beta_{0})(G(\alpha, \alpha_{1}, \beta_{0})'V_{\gamma}^{-1/2} + PV_{\gamma}^{-1/2}G(\alpha, \alpha_{1}, \beta_{0}))^{-1}G(\alpha, \alpha_{1}, \beta_{0})'V_{\gamma}^{-1/2}P\right] z_{T} \right\} d\alpha$$

$$+ o_{p}(1).$$
(A.24)

Moreover,

$$I_{7,T} = T^{k_2/2} \int_{\Theta_{7,T}} \pi(\theta) \exp\left(\ell_T \left(\tilde{\gamma}_T(\theta)\right) - \ell_T(\hat{\gamma}_T)\right) d\theta = o_p(1), \tag{A.25}$$

where the last equality follows from assumption (c) in Theorem 2.

Because $\int_{\bar{\Theta}_{5,T}} \pi([\alpha', \beta'_0 + T^{-1/2}c']') d[\alpha' c']' = \int_{\Theta_{5,T}} \pi([\alpha', \beta']') d[\alpha', \beta']'$, it follows from (A.23), (A.24), and (A.25) that the Bayes factor in favor of H_1 can be written as

$$T^{k_{2}/2} \text{ Bayes factor}(\theta_{0})$$

$$= T^{k_{2}/2} \frac{\int_{B_{\delta_{T}}(\theta_{0})} \pi(\theta) d\theta}{\int_{\Theta \setminus B_{\delta_{T}}(\theta_{0})} \pi(\theta) d\theta} \frac{I_{6,T} + I_{7,T}}{I_{5,T}}$$

$$= \int_{\mathcal{A} \times \bar{C}_{T}} \pi(\alpha, \beta_{0})$$

$$\times \exp\left(-\frac{1}{2} (d(\alpha, \alpha_{1}, \beta_{0}, c) + Pz_{T})' + (A.26) +$$

which completes the proof of (14).

8 Guerron-Quintana, Inoue, and Kilian

Supplementary Material

PROOF OF PROPOSITION 4. Define

$$I_{j,T} = \int_{\Theta_{j,T}} \pi(\theta) \exp\left(\ell_T \left(\tilde{\gamma}_T(\theta)\right) - \ell_T(\hat{\gamma}_T)\right) d\theta$$
(A.27)

for j = 8, 9, 10, where

$$\Theta_{8,T} = \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| < \delta_{T,j} \text{ for } j = 1, \dots, k \right\},$$

$$\Theta_{9,T} = \left\{ \theta \in \Theta : |\theta_j - \theta_{0,j}| \ge \delta_{T,j} \right\},$$

$$\Theta_{10,T} = \Theta \setminus (\Theta_{8,T} \cup \Theta_{9,T}).$$

Because $\hat{\gamma}_T$ is the MLE, we have

$$I_{8,T} = \int_{A_{8,T}} \pi(\theta) \exp(\ell_T(\tilde{\gamma}_T(\theta)) - \ell_T(\hat{\gamma}_T)) d\theta = o_p(1),$$

$$I_{9,T} \equiv \int_{B_{\delta_T}(\theta_0)} \pi(\theta) \exp(\ell_T(\tilde{\gamma}_T(\theta)) - \ell_T(\hat{\gamma}_T)) d\theta$$

$$= \int_{B_{\delta_T}(\theta_0)} \pi(\theta) \exp\left(\frac{1}{2}(\tilde{\gamma}_T(\theta) - \hat{\gamma}_T)' \nabla_{\gamma\gamma}\ell_T(\tilde{\gamma}_T(\theta))(\tilde{\gamma}_T(\theta) - \hat{\gamma}_T)\right) d\theta$$

$$= \int_{B_{\delta_T}(\theta_0)} \pi(\theta) d\theta \exp\left(-\frac{1}{2}z'_T z_T\right) + o_p(1).$$

(A.28)

Thus, $P(H_0|X) = I_{8,T}/(I_{9,T} + I_{10,T})$ decays exponentially and faster than $\pi(H_0)$. Therefore, the Bayes factor diverges to positive infinity.

Appendix B: Deriving the degrees of freedom for the LR and BF test statistics

Deriving the degrees of freedom for DGP 1

DGP 1 in the Monte Carlo experiment has a state-space representation

$$x_{t+1} = Ax_t + Bu_t, \tag{B.1}$$

$$y_t = Cx_t, \tag{B.2}$$

where x_t is a 3 × 1 vector of state variables, y_t is a 2 × 1 vector of observed variables, $u_t \sim N(0_{2\times 1}, I_2)$, *A*, *B*, and *C* are 3 × 3, 3 × 2, and 2 × 3 matrices such that

$$A = \begin{bmatrix} \times & \times & \times \\ 0 & \times & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ \times & 0 \\ 0 & \times \end{bmatrix}, \qquad C = \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \end{bmatrix},$$

where \times denotes an element that is not identical to zero.

When evaluated at 10,000 random draws of the structural parameter vector $\theta \in \Theta$, [C' A'C'] has rank 2 and $[B AB A^2B]$ has rank 3 for each of the 10,000 draws. Thus,

while the state-space representation above is reachable, it is not observable and hence is not minimal. The rank condition for observability implies that the minimal representation has only two state variables. Inspection reveals that the third state variable is an i.i.d. process, which can be absorbed into another state variable by allowing some elements of *B* to be nonzero. Thus, the resulting minimal state-space representation can be written as

$$x_{t+1}^* = A^* x_t^* + B^* u_t, \tag{B.3}$$

$$y_t = C^* x_t^*, \tag{B.4}$$

where x_t^* is a 2 × 1 vector of state variables, and A^* , B^* , and C^* are 2 × 2 matrices such that

$$A^* = \begin{bmatrix} \times & \times \\ 0 & \times \end{bmatrix}, \qquad B^* = \begin{bmatrix} \times & \times \\ 0 & \times \end{bmatrix}, \qquad C = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}.$$

For the (2, 1) elements of TA^*T^{-1} and TB^* to be zero like the corresponding elements in A^* and B^* , the (2, 1) element of T must be zero. Because there are 10 free elements in A^* , B^* , and C^* , and there are 3 free elements in T, we conclude that the number of degrees of freedom is 7.

In fact, y_t has a bivariate VAR(1) representation. Because the matrix A has three distinct eigenvalues including zero, it can be written as

$$A = V\Lambda V^{-1},$$

where

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and *V* is the matrix whose first, second, and third columns are eigenvectors associated with λ_1 , λ_2 , and 0, respectively. Then

$$y_t = C(I - AL)^{-1}Bu_t$$

= $CBu_t + CABu_{t-1} + CA^2Bu_{t-2} + \cdots$
= $\sum_{j=0}^{\infty} CA^jBu_{t-j}$
= $\sum_{j=0}^{\infty} CVA^jV^{-1}Bu_{t-j}$
= $\sum_{j=0}^{\infty} M_1\bar{A}M_2u_{t-j}$,

where M_1 is the left 2 × 2 submatrix of CV, M_2 is the upper 2 × 2 submatrix of $V^{-1}B$, and $\bar{\Lambda}$ is the 2 × 2 diagonal matrix whose diagonal elements are given by λ_1 and λ_2 . This moving average representation has an autoregressive representation

$$M_1^{-1}y_t = \bar{\Lambda}M_1^{-1}y_{t-1} + M_2u_t$$

or

$$y_t = \Phi y_{t-1} + \Sigma^{1/2} u_t,$$

where $\Phi = M_1 \overline{\Lambda} M_1^{-1}$ and $\Sigma = M_1 M_2 M_2' M_1'$.

Deriving the degrees of freedom for DGP 2

DGP 2 has four state variables and three structural shocks, with *A*, *B*, and *C* being of dimension 4×4 , 4×3 , and 3×4 , respectively. The rank conditions for observability and reachability are both satisfied at any one of 10,000 randomly sampled values of the vector θ . Thus we treat the original state-space representation as minimal. Because *A* and *B* take the forms

$$A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & 0 & 0 \\ 0 & 0 & \times & 0 \\ 0 & 0 & 0 & \times \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \times & 0 & 0 \\ 0 & 0 & \times & 0 \\ 0 & 0 & 0 & \times \end{bmatrix}$$

and possible similarity transformation matrices must take the form

$$T = \begin{bmatrix} t_{11} & 0 & 0 & 0 \\ 0 & t_{22} & 0 & 0 \\ 0 & 0 & t_{33} & 0 \\ 0 & 0 & 0 & t_{44} \end{bmatrix},$$

where $t_{ii} \neq 0$ for i = 1, 2, 3, 4, this leaves us with 18 degrees of freedom in pinning down the 22 reduced-form parameters in the *A*, *B*, and *C* matrices.

Unlike DGP 1, DGP 2 has a VARMA(2, 1) reduced-form representation, which can be written as

$$\begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix} = \begin{bmatrix} a_{11} & a'_{12} \\ 0_{3\times 1} & \Lambda \end{bmatrix} \begin{bmatrix} x_{1t-1} \\ x_{2t-1} \end{bmatrix} + \begin{bmatrix} 0_{1\times 3} \\ B_2 \end{bmatrix} \begin{bmatrix} 0 \\ \varepsilon_t \end{bmatrix},$$
(B.5)

$$y_t = \begin{bmatrix} c_1 & C_2 \end{bmatrix} \begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix}, \tag{B.6}$$

where x_{1t} and a_{11} are scalars; x_{2t} , a_{12} , $\varepsilon_t = [\varepsilon_t^{mk} \ \varepsilon_t^z \ \varepsilon_t^\xi]'$, c_1 , and $y_t = [\pi_t \ x_t \ R_t]'$ are 3×1 ; Λ is the 3×3 diagonal matrix that consists of ρ_{mk} , ρ_z , and ρ_ξ ; B_2 is the 3×3 diagonal matrix that consists of σ^{mk} , σ^z , and σ^ξ ; and C_2 is 3×3 . Because $x_{2t} = (I_3 - \Lambda L)^{-1}B_2\varepsilon_t$ and $x_{1t} = (1 - a_{11}L)^{-1}a'_{12}x_{2t-1} = (1 - a_{11}L)^{-1}a'_{12}(I_3 - \Lambda L)^{-1}B_2L\varepsilon_t$, y_t can be expressed as

$$y_t = c_1(1 - a_{11}L)^{-1}a'_{12}(I_3 - \Lambda L)^{-1}B_2L\varepsilon_t + C_2(I_3 - \Lambda L)^{-1}B_2\varepsilon_t.$$

After some manipulations, y_t can be expressed as the VARMA(2, 1) model

$$(1 - a_{11}L)(I_3 - \Phi L)y_t = (I_3 - \Theta L)\Sigma^{1/2}\varepsilon_t,$$
(B.7)

with $D = C_2^{-1}(a_{11}C_2 - c_1a'_{12})$, $\Phi = C_2(\Lambda - D)\Lambda(\Lambda - D)^{-1}C_2^{-1}$, $\Theta = C_2(\Lambda - D)D(\Lambda - D)^{-1}C_2^{-1}$, and $\Sigma^{1/2} = C_2B_2$. It turns out that there is a root cancellation. To see this, note that y_t can be also written as

$$(1 - a_{11}L)(I_3 - \Lambda L)(\Lambda - D)^{-1}C_2^{-1}y_t = P(I_3 - JL)P^{-1}(\Lambda - D)^{-1}B_2\varepsilon_t,$$
(B.8)

where PJP^{-1} is the Jordan decomposition of D and

$$J = \begin{bmatrix} a_{11} & 1 & 0 \\ 0 & a_{11} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Thus, the system can also be written as

$$(1 - a_{11}) \left(I_3 - \left(P^{-1} \Lambda P \right) L \right) y_t^* = (I_3 - JL) \varepsilon_t^*, \tag{B.9}$$

where $y_t^* = P^{-1}(\Lambda - D)^{-1}C_2^{-1}y_t$ and $\varepsilon_t^* = P^{-1}(\Lambda - D)^{-1}B_2\varepsilon_t$. The root cancellation in the second equation is not a problem for our testing procedure as long as we base inference on the minimal state-space representation (B.5) and (B.6) rather than the unrestricted VARMA(2, 1) model (B.7).

Deriving the degrees of freedom for the medium-scale DSGE model used as the empirical example

Let $\times_{p \times q}$ denote a $p \times q$ matrix whose elements are not identical to zero. The mediumscale model used in the empirical application has a state-space representation with

$$A = \begin{bmatrix} \times_{7\times8} & & \times_{7\times5} & \\ & 1 & 0 & 0 & 0 & 0 \\ & & & 0 & 0 & 0 & 0 \\ 0_{6\times8} & 0 & 0 & \times & 0 & 0 \\ & & 0 & 0 & 0 & \times & 0 \\ 0 & 0 & 0 & 0 & 0 & \times \\ \end{bmatrix},$$
$$B = \begin{bmatrix} 0_{8\times5} & & \\ 0_{8\times5$$

and an intercept term for each of the five measurement equations. An evaluation of the two rank conditions at 10,000 randomly chosen structural parameter values indicates

that this representation with 13 state variables is not minimal and that the minimal representation has only 11 state variables. Inspection reveals that the 13th state variable can be absorbed into the first 8 state variables by allowing nonzero elements in the *B* matrix because it is i.i.d. and is independent of the other state variables. Thus, the minimal representation can be written as a state-space model with

 $C^* = \times_{5 \times 11}$, and the five intercept terms in the measurement equations. This leaves us with 140 reduced-form parameters. For TA^*T^{-1} and B^* to have zeros in the same location as A^* and B^* , respectively, the upper-right 6×5 and the lower-left 5×6 submatrices of T must be zero, and the lower-right 5×5 submatrix must be diagonal, so there remain 41 free parameters in T, reducing the effective number of identified reduced-form parameters to 99.

Appendix C: Additional tables

	ϕ_{π}	ϕ_x	α	θ	ρ_z	ρ_r	σ_z	σ_r
	() 0	1						
	(a) Small-S	cale New K	eynesian M	lodel With	lwo Observ	ables: LR		
	0.040	0.044	I =	96	0.040	0.054	0.040	0.000
LR	0.962	0.964	0.962	0.970	0.948	0.951	0.942	0.939
			T = 1	188				
LR	0.972	0.972	0.973	0.976	0.964	0.968	0.953	0.960
(b) Sm	hall-Scale N	ew Kevnesi	an Model V	Vith Two O	hservables	Uniform P	riors	
	iun ocuient	ew neynesi	T =	96	ober vubies.	011110111111	11010	
Median ± 1.645 SD	0.965	0.960	0.834	1.000	0.797	0.900	0.649	0.629
Mean \pm 1.645SD	0.981	0.957	0.906	1.000	0.796	0.889	0.622	0.563
Mode \pm 1.645SD	0.920	0.968	0.823	0.772	0.879	0.886	0.893	0.917
Percentile	0.994	0.952	0.975	1.000	0.795	0.881	0.548	0.416
BF	1.000	1.000	1.000	1.000	0.997	0.999	0.994	0.990
			T = 1	188				
Median \pm 1.645SD	0.986	0.989	0.927	1.000	0.795	0.906	0.728	0.735
Mean \pm 1.645SD	0.994	0.992	0.965	1.000	0.789	0.905	0.694	0.681
Mode \pm 1.645SD	0.963	0.981	0.878	0.795	0.876	0.893	0.922	0.947
Percentile	0.997	0.989	0.987	1.000	0.789	0.903	0.628	0.581
BF	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.998

TABLE C.1. Effective coverage rates of nominal 90% confidence intervals.

			522 0111					
	ϕ_π	ϕ_x	α	θ	$ ho_z$	$ ho_r$	σ_z	σ_r
(c) Smal	ll-Scale Nev	w Keynesia	n Model Wi	th Two Obs	servables: I	nformative	Priors	
			T =	96				
Median ± 1.645 SD	1.000	0.972	0.997	1.000	0.896	0.902	0.895	0.909
$Mean \pm 1.645 SD$	1.000	0.987	0.996	1.000	0.900	0.905	0.916	0.921
Mode \pm 1.645SD	1.000	0.799	0.946	1.000	0.750	0.883	0.636	0.708
Percentile	1.000	0.997	0.996	1.000	0.902	0.910	0.939	0.944
BF	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000
			T = 2	188				
Median ± 1.645 SD	1.000	0.944	1.000	1.000	0.906	0.932	0.906	0.907
Mean \pm 1.645SD	1.000	0.966	1.000	1.000	0.905	0.934	0.914	0.935
Mode \pm 1.645SD	1.000	0.773	0.983	1.000	0.758	0.913	0.669	0.711
Percentile	1.000	0.985	1.000	1.000	0.906	0.938	0.932	0.952
BF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(d) Smal	ll-Scale Nev	w Keynesia	n Model Wi	th Two Obs	servables: A	symmetric	Priors	
			T =	96				
Median ± 1.645 SD	0.966	0.953	0.103	0.400	0.796	0.886	0.636	0.619
$Mean \pm 1.645 SD$	0.978	0.956	0.109	0.713	0.804	0.884	0.592	0.542
Mode \pm 1.645SD	0.931	0.972	0.521	0.504	0.868	0.888	0.874	0.919
Percentile	0.996	0.950	0.118	0.185	0.803	0.883	0.519	0.384
BF interval	1.000	1.000	0.968	1.000	0.999	0.999	0.994	0.981
			T = 2	188				
Median ± 1.645 SD	0.989	0.992	0.163	0.342	0.789	0.909	0.704	0.756
Mean \pm 1.645SD	0.994	0.991	0.170	0.646	0.787	0.907	0.677	0.696
Mode \pm 1.645SD	0.958	0.984	0.550	0.500	0.869	0.892	0.899	0.949
Percentile	1.000	0.986	0.176	0.145	0.784	0.908	0.599	0.566
BF	1.000	1.000	0.978	1.000	1.000	1.000	0.995	0.994
Mode ± 1.645SD Percentile BF	0.958 1.000 1.000	0.984 0.986 1.000	0.550 0.176 0.978	$0.500 \\ 0.145 \\ 1.000$	0.869 0.784 1.000	0.892 0.908 1.000	0.899 0.599 0.995	0.94 0.56 0.99

TABLE C.1. Continued.

TABLE C.2. Median lengths of nominal 90% confidence intervals.

	ϕ_π	ϕ_x	α	θ	$ ho_z$	$ ho_r$	σ_z	σ_r
(a)	Small-Scal	e New Key	nesian Mo	del With Tw	o Observal	bles: LR		
			T = 90	5				
LR	1.57	2.38	0.25	5.24	0.40	0.25	0.24	0.31
			T = 18	8				
LR	1.55	2.38	0.25	5.80	0.40	0.25	0.22	0.30
(b) Small	-Scale New	Keynesian	n Model Wi	th Two Obs	ervables: U	Jniform Pri	ors	
		2	T = 90	5				
Median/mean/mode	3.34	0.77	0.22	12.80	0.08	0.17	0.49	0.39
Percentile	3.34	0.76	0.21	12.27	0.08	0.17	0.49	0.39
BF	3.99	1.48	0.32	13.99	0.18	0.33	0.76	0.79
			T = 18	8				
Median/mean/mode	2.83	0.52	0.21	12.81	0.06	0.12	0.34	0.26
Percentile	2.77	0.50	0.20	12.27	0.06	0.12	0.34	0.26
BF	3.99	1.27	0.30	13.98	0.14	0.26	0.74	0.69

	ϕ_{π}	ϕ_x	α	θ	$ ho_z$	$ ho_r$	σ_z	σ_r
(c) Small-S	cale New K	eynesian M	Model With	n Two Obser	vables: Inf	ormative P	riors	
		•	T = 96	5				
Median/mean/mode	0.76	0.22	0.12	6.41	0.07	0.15	0.21	0.14
Percentile	0.76	0.21	0.12	6.44	0.07	0.15	0.21	0.14
BF	1.45	0.34	0.25	12.5	0.12	0.29	0.38	0.18
			T = 18	8				
Median/mean/mode	0.75	0.21	0.12	6.39	0.05	0.11	0.18	0.12
Percentile	0.76	0.20	0.12	6.41	0.05	0.11	0.18	0.12
BF	1.34	0.29	0.22	12.3	0.09	0.20	0.32	0.19
(d) Small-S	cale New K	evnesian N	Model With	Two Obser	vables: Asy	mmetric F	riors	
		2	T = 96	5				
Median/mean/mode	3.42	0.81	0.14	8.96	0.08	0.17	0.49	0.41
Percentile	3.37	0.79	0.14	8.51	0.08	0.17	0.50	0.41
BF	3.99	1.54	0.24	9.49	0.19	0.35	0.78	0.79
			T = 18	8				
Median/mean/mode	2.80	0.53	0.13	8.95	0.06	0.12	0.35	0.26
Percentile	2.75	0.51	0.13	8.51	0.06	0.12	0.35	0.26
BF	3.99	1.22	0.23	9.50	0.15	0.28	0.73	0.70

TABLE C.3. Effective coverage rates of nominal 90% confidence sets.

		T = 96	T = 188
Small-	Scale New Keynesian Model	With Three Obs	ervables
LR set		0.856	0.868
BF set	Uniform prior	0.943	0.911
BF set	Informative prior	0.828	0.787
BF set	Asymmetric prior	0.896	0.870

TABLE C.4. Effective coverage rates of nominal 90% confidence intervals.

	ϕ_π	ϕ_x	α	θ	$ ho_z$	$ ho_r$	$ ho_{mk}$	$ ho_m$	σ_z	σ_r	σ_{mk}
	(;	a) Small-	Scale Ne	w Keynes	sian Mod	el With T	Three Ob	servables	s: LR		
				-	T = 96	5					
LR interval	0.968	0.968	0.960	0.993	0.942	0.991	0.975	0.955	0.943	0.984	0.936
					T = 18	8					
LR interval	0.971	0.973	0.967	0.993	0.960	0.991	0.973	0.969	0.944	0.982	0.951

	ϕ_{π}	ϕ_x	α	θ	$ ho_z$	$ ho_r$	$ ho_{mk}$	$ ho_m$	σ_z	σ_r	σ_{mk}
(b) Sn	nall-Scal	le New K	eynesia	n Model	With Tł	ree Obs	ervable	s: Unifoi	m Prior	s	
				Т	= 96						
Median ± 1.645 SD	0.900	0.907	0.852	1.000	0.846	0.781	0.859	0.829	0.735	0.920	0.878
Mean \pm 1.645SD	0.902	0.889	0.874	1.000	0.848	0.794	0.874	0.848	0.737	0.902	0.854
Mode \pm 1.645SD	0.952	0.950	0.765	0.809	0.809	0.891	0.837	0.874	0.824	0.941	0.896
Percentile	0.787	0.802	0.891	1.000	0.846	0.828	0.874	0.870	0.733	0.819	0.752
BF interval	0.998	0.996	1.000	1.000	1.000	0.998	1.000	1.000	0.998	1.000	1.000
				T	= 188						
Median ± 1.645 SD	0.921	0.920	0.875	1.000	0.872	0.846	0.863	0.861	0.806	0.904	0.878
Mean \pm 1.645SD	0.926	0.915	0.900	1.000	0.878	0.850	0.865	0.869	0.817	0.894	0.876
Mode \pm 1.645SD	0.930	0.937	0.787	0.791	0.811	0.891	0.837	0.874	0.841	0.928	0.889
Percentile	0.837	0.815	0.928	1.000	0.870	0.854	0.872	0.883	0.813	0.833	0.826
BF interval	0.998	0.998	1.000	1.000	1.000	1.000	1.000	0.998	1.000	1.000	1.000
(c) Sma	ll-Scale	New Ke	vnesian	Model V	Vith Thr	ee Obsei	rvables:	Informa	tive Pric	ors	
			,	Т	= 96						
Median ± 1.645 SD	0.956	0.948	0.722	1.000	0.830	0.933	0.891	0.909	0.837	0.896	0.893
Mean \pm 1.645SD	0.961	0.952	0.765	1.000	0.841	0.933	0.896	0.915	0.850	0.902	0.898
Mode \pm 1.645SD	0.870	0.902	0.556	1.000	0.670	0.885	0.857	0.859	0.630	0.863	0.765
Percentile	0.969	0.956	0.820	1.000	0.857	0.930	0.894	0.909	0.867	0.898	0.911
BF interval	1.000	1.000	1.000	1.000	0.998	1.000	0.998	1.000	0.998	1.000	1.000
				T	= 188						
Median ± 1.645 SD	0.928	0.956	0.772	1.000	0.856	0.909	0.878	0.900	0.830	0.913	0.865
Mean \pm 1.645SD	0.939	0.959	0.793	1.000	0.859	0.907	0.878	0.898	0.839	0.920	0.878
Mode \pm 1.645SD	0.844	0.896	0.678	1.000	0.813	0.867	0.841	0.848	0.728	0.854	0.800
Percentile	0.948	0.950	0.820	1.000	0.863	0.913	0.881	0.904	0.850	0.928	0.891
BF interval	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.998	0.994	1.000	0.996
(d) Sma	ll-Scale	New Key	vnesian	Model V	Vith Thr	ee Obsei	rvables:	Asymme	etric Prio	ors	
(1)			,	Т	= 96			j			
Median ± 1.645 SD	0.883	0.889	0.737	0.254	0.837	0.794	0.894	0.820	0.724	0.915	0.837
Mean \pm 1.645SD	0.874	0.883	0.752	0.367	0.857	0.813	0.893	0.837	0.733	0.894	0.819
Mode \pm 1.645SD	0.952	0.939	0.746	0.459	0.785	0.883	0.846	0.865	0.781	0.954	0.856
Percentile	0.752	0.781	0.774	0.126	0.867	0.844	0.891	0.865	0.711	0.837	0.733
BF interval	0.996	0.998	1.000	1.000	1.000	0.996	1.000	1.000	0.996	0.998	0.998
				T	= 188						
Median ± 1.645 SD	0.944	0.933	0.746	0.196	0.870	0.870	0.893	0.859	0.768	0.913	0.857
Mean \pm 1.645SD	0.926	0.920	0.752	0.287	0.867	0.872	0.891	0.863	0.770	0.902	0.835
Mode \pm 1.645SD	0.963	0.954	0.785	0.474	0.853	0.935	0.874	0.885	0.826	0.926	0.878
Percentile	0.815	0.824	0.776	0.078	0.872	0.869	0.896	0.861	0.778	0.839	0.763
BF interval	0.998	1.000	0.998	1.000	1.000	1.000	1.000	0.998	1.000	1.000	1.000

TABLE C.4. Continued.

	ϕ_{π}	ϕ_x	α	θ	ρ_z	ρ_r	ρ_{mk}	ρ_m	σ_z	σ_r	σ_{mk}
(a)) Small-	Scale Ne	ew Keyr	iesian M	odel Wi	th Three	e Observ	vables: I	LR		
				T =	- 96						
LR	1.606	2.388	0.311	2.773	0.400	0.256	0.407	0.169	0.202	0.306	0.360
				T =	188						
LR	1.521	2.380	0.286	2.698	0.401	0.256	0.403	0.086	0.201	0.302	0.361
(b) Smal	l-Scale I	New Key	mesian	Model V	Vith Thr	ee Obse	rvables	Unifor	m Priors	3	
Median/mean/mode	0 130	0.036	0.001	<i>I</i> = 5 710	0.028	0.031	0.032	0.080	0.060	0.021	0.030
Percentile	0.139	0.030	0.091	5.612	0.028	0.031	0.032	0.030	0.000	0.021	0.039
BF	2.316	0.569	0.582	13.99	0.020	0.031	0.032	0.486	0.366	0.181	0.334
				T =	188						
Median/mean/mode	0.121	0.033	0.104	5.531	0.030	0.029	0.027	0.064	0.043	0.017	0.031
Percentile	0.114	0.032	0.103	5.361	0.029	0.028	0.027	0.066	0.043	0.017	0.031
BF	1.207	0.323	0.475	13.98	0.163	0.159	0.205	0.360	0.250	0.103	0.213
(c) Small-S	Scale Ne	ew Keyn	esian M	Iodel Wi	th Three	e Observ	ables: I	nforma	tive Prio	rs	
				T =	- 96						
Median/mean/mode	0.158	0.044	0.067	2.959	0.032	0.033	0.026	0.080	0.053	0.020	0.026
Percentile	0.153	0.042	0.061	2.916	0.032	0.033	0.024	0.081	0.053	0.020	0.026
BF	1.046	0.280	0.408	12.96	0.178	0.184	0.253	0.433	0.295	0.115	0.223
				T =	188						
Median/mean/mode	0.130	0.035	0.072	2.907	0.026	0.026	0.032	0.063	0.043	0.016	0.028
Percentile	0.125	0.033	0.067	2.908	0.025	0.026	0.032	0.063	0.042	0.016	0.028
BF	0.894	0.240	0.389	12.86	0.149	0.145	0.210	0.316	0.228	0.086	0.184
(d) Small-S	Scale Ne	ew Keyn	esian M	lodel Wi	th Three	e Observ	vables: A	symme	tric Pric	ors	
				T =	= 96						
Median/mean/mode	0.146	0.046	0.072	4.078	0.031	0.036	0.028	0.070	0.055	0.025	0.038
Percentile	0.136	0.043	0.069	3.926	0.030	0.036	0.026	0.070	0.052	0.024	0.037
BF	2.254	0.545	0.450	9.495	0.214	0.211	0.267	0.493	0.321	0.175	0.332
				T =	188						
Median/mean/mode	0.148	0.033	0.062	3.991	0.026	0.026	0.033	0.068	0.046	0.016	0.030
Percentile	0.145	0.032	0.060	3.876	0.026	0.026	0.033	0.067	0.049	0.017	0.029
BF	1.287	0.322	0.373	9.495	0.156	0.165	0.211	0.352	0.248	0.108	0.224

TABLE C.5. Median lengths of nominal 90% confidence intervals.

		Poster	ior		Porcontilo	рг
	Means	Medians	Modes	SD	Intervals	Intervals
		(a) Medium-Sca	le New Keynesi	an Model Wi	th Agnostic Priors	
			Rigidity Pa	arameters		
ζ_p	0.692	0.693	0.695	0.047	[0.611, 0.767]	[0.512, 0.833]
ζ_w	0.222	0.217	0.164	0.073	[0.113, 0.350]	[0.035, 0.504]
		Other H	Endogenous Pro	opagation Pa	rameters	
ν_l	1.776	1.703	1.388	0.568	[0.983, 2.807]	[0.385, 4.862]
ψ_1	2.382	2.375	2.353	0.247	[1.993, 2.813]	[1.555, 3.314]
ψ_2	0.075	0.074	0.074	0.024	[0.038, 0.117]	[0.011, 0.190]
ρ_r	0.723	0.724	0.715	0.036	[0.660, 0.780]	[0.573, 0.828]
ıp	0.105	0.077	0.014	0.096	[0.008, 0.293]	[0.000, 0.673]
ι_w	0.274	0.264	0.281	0.120	[0.097, 0.484]	[0.000, 0.746]
<i>S''</i>	9.106	8.920	8.986	2.016	[6.193, 12.705]	[3.512, 19.591]
h	0.753	0.756	0.762	0.054	[0.662, 0.837]	[0.530, 0.911]
$a^{\prime\prime}$	0.241	0.223	0.168	0.111	[0.094, 0.448]	[0.024, 0.750]
		Exc	ogenous Propag	gation Param	eters	
ρ_z	0.229	0.216	0.185	0.120	[0.056, 0.445]	[0.001, 0.709]
$ ho_{\phi}$	0.957	0.960	0.964	0.019	[0.921, 0.984]	[0.869, 0.998]
$ ho_{\lambda_f}$	0.940	0.950	0.960	0.038	[0.861, 0.982]	[0.712, 0.998]
ρ_g	0.915	0.915	0.918	0.026	[0.870, 0.956]	[0.795, 0.995]
	(b) Medium-Scale	New Keynesia	n Model With	Low-Rigidity Priors	
			Rigidity Pa	arameters	0	
ζ_p	0.659	0.661	0.695	0.045	[0.581, 0.729]	[0.470, 0.796]
ζ_w	0.266	0.264	0.269	0.057	[0.177, 0.364]	[0.080, 0.515]
		Other H	Endogenous Pro	opagation Pa	rameters	
ν_l	1.848	1.771	1.389	0.593	[1.014, 2.917]	[0.330, 5.810]
ψ_1	2.416	2.411	2.241	0.248	[2.019, 2.835]	[1.611, 3.622]
ψ_2	0.074	0.072	0.064	0.023	[0.038, 0.116]	[0.012, 0.183]
ρ_r	0.724	0.726	0.714	0.037	[0.660, 0.780]	[0.548, 0.837]
l _p	0.152	0.127	0.029	0.116	[0.015, 0.379]	[0.000, 0.742]
i_w	0.271	0.263	0.277	0.113	[0.103, 0.472]	[0.000, 0.812]
<i>S''</i>	8.939	8.769	8.480	2.003	[5.950, 12.501]	[3.086, 19.161]
h	0.741	0.742	0.773	0.055	[0.648, 0.827]	[0.532, 0.927]
<i>a</i> ′′	0.243	0.227	0.125	0.103	[0.103, 0.436]	[0.032, 0.809]
		Exc	ogenous Propag	gation Param	eters	
ρ_z	0.218	0.208	0.204	0.117	[0.042, 0.426]	[0.000, 0.697]
$ ho_{\phi}$	0.956	0.958	0.954	0.018	[0.924, 0.982]	[0.864, 0.999]
ρ_{λ_f}	0.950	0.955	0.970	0.027	[0.898, 0.984]	[0.775, 1.000]
$ ho_{g}$	0.911	0.912	0.925	0.027	[0.866, 0.954]	[0.790, 0.995]

 TABLE C.6.
 90% confidence intervals.

		Poster	ior		Percentile	BF
	Means	Medians	Modes	SD	Intervals	Intervals
	(c) Medium-Scale	New Keynesian	Model With	High-Rigidity Priors	
			Rigidity Pa	arameters		
ζ_p	0.772	0.770	0.786	0.058	[0.676, 0.855]	[0.626, 0.887]
ζ_w	0.446	0.428	0.391	0.114	[0.286, 0.647]	[0.239, 0.714]
		Other H	Endogenous Pro	opagation Par	ameters	
ν_l	1.507	1.508	1.078	0.614	[0.579, 2.408]	[0.305, 3.431]
ψ_1	2.319	2.325	2.302	0.273	[1.829, 2.790]	[1.568, 2.928]
ψ_2	0.055	0.054	0.056	0.021	[0.018, 0.090]	[0.009, 0.112]
ρ_r	0.746	0.751	0.716	0.039	[0.666, 0.794]	[0.625, 0.805]
ι_p	0.089	0.063	0.015	0.083	[0.008, 0.266]	[0.003, 0.440]
ι_w	0.189	0.185	0.239	0.092	[0.036, 0.345]	[0.004, 0.481]
<i>S''</i>	10.195	9.862	9.065	2.285	[6.612, 14.516]	[5.712, 15.943]
h	0.798	0.811	0.825	0.053	[0.692, 0.865]	[0.620, 0.907]
<i>a</i> ″	0.208	0.174	0.160	0.118	[0.074, 0.411]	[0.047, 0.669]
		Exe	ogenous Propag	gation Parame	eters	
ρ_z	0.247	0.241	0.236	0.128	[0.049, 0.463]	[0.004, 0.602]
$ ho_{\phi}$	0.905	0.921	0.940	0.052	[0.799, 0.968]	[0.710, 0.974]
ρ_{λ_f}	0.863	0.902	0.867	0.100	[0.646, 0.970]	[0.633, 0.996]
$ ho_g$	0.926	0.926	0.903	0.028	[0.875, 0.969]	[0.847, 0.994]
		(d) Medium	-Scale New Key	nesian Model	l: LR Intervals	
			Rigidity Pa	arameters		
ζ_p			[0.543, 0.854]		
ζw			[0.017, 0.470]		
		Other I	Endogenous Pro	opagation Par	ameters	
ν_l			[0.233, 6.108]		
ψ_1			[1.665, 4.049]		
ψ_2			[0.002, 0.173]		
ρ_r			[0.646, 0.852]		
ι_p			[0.000, 0.259]		
ι_w			[0.001, 0.542]		
<i>S''</i>			[7.527, 25.23]		
h			[0.417, 0.998]		
<i>a</i> ″			[0.020, 0.938]		
		Exc	ogenous Propag	gation Parame	eters	
ρ_z			[0.002, 0.771]		
$ ho_{\phi}$			[0.892, 0.996]		
$ ho_{\lambda_f}$			[0.815, 0.996]		
$ ho_g$			[0.856, 0.999]		

TABLE C.6. Continued.

Reference

Hamilton, J. D. (1994), Time Series Analysis. Princeton University Press, Princeton, NJ.

Submitted September, 2012. Final version accepted October, 2012.