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The spectral density matrix fθ(ω) is a Hermitian matrix satisfying fθ(ω)∗ = fθ(ω). It
is in general not symmetric. The following correspondence is useful for understanding
and proving the identification results:

fθ(ω)←→ fθ(ω)
R with fθ(ω)

R =
[

Re(fθ(ω)) Im(fθ(ω))

− Im(fθ(ω)) Re(fθ(ω))

]
� (A.1)

where Re( ) and Im( ) denote the real and the imaginary parts of a complex matrix, that
is, if C =A+ Bi, then Re(C)=A and Im(C)= B. Because fθ(ω) is Hermitian, fθ(ω)R is
real and symmetric (see Lemma 3.7.1(v) in Brillinger (2001)). To simplify notation, let

R(ω;θ)= vec(fθ(ω)R)�

The following lemma is crucial for proving the subsequent results.

Lemma A.1. We have the identity(
∂vec(fθ(ω)′)

∂θ′

)′(
∂vec(fθ(ω))

∂θ′

)
= 1

2

(
∂R(ω;θ)
∂θ′

)′(
∂R(ω;θ)
∂θ′

)
� (A.2)

Proof. The (j�k)th element of the term on the left hand side is equal to(
∂vec(fθ(ω)′)

∂θj

)′(
∂vec(fθ(ω))

∂θk

)

= tr
{
∂fθ(ω)

∂θj

∂fθ(ω)

∂θk

}
= tr

{
Re

(
∂fθ(ω)

∂θj

∂fθ(ω)

∂θk

)}
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= 1
2

tr
{(
∂fθ(ω)

∂θj

∂fθ(ω)

∂θk

)R}
= 1

2
tr

{
∂(fθ(ω)

R)

∂θj

∂(fθ(ω)
R)

∂θk

}

= 1
2

(
∂vec(fθ(ω)R)

∂θj

)′{
∂vec(fθ(ω)R)

∂θk

}
�

where the first equality is because of the identity vec(A′)′ vec(B) = tr (AB) for generic
matrices A and B, the second is because fθ(ω) is Hermitian, thus this term is real val-
ued, the third equality is because of the definition (A.1), the fourth is because, for generic
complex matrices, if Z = XY , then ZR = XRYR (see Lemma 3.7.1(ii) in Brillinger
(2001)), and the fifth is because fθ(ω)R is real and symmetric. The last term in the dis-
play is simply the (j�k)th element of the right hand side term in (A.2). This completes
the proof. �

Proof of Theorem 1. Lemma A.1 implies that G(θ) defined by (9) is real, symmetric,
positive semidefinite, and equal to

1
2

∫ π

−π

(
∂R(ω;θ0)

∂θ′

)′(
∂R(ω;θ0)

∂θ′

)
dω�

This allows us to adopt the arguments in Theorem 1 in Rothenberg (1971) to prove the
result.

Suppose θ0 is not locally identified. Then there exists an infinite sequence of vectors
{θk}∞k=1 approaching θ0 such that, for each k,

R(ω;θ0)=R(ω;θk) for allω ∈ [−π�π]�
For an arbitrary ω ∈ [−π�π]� by the mean value theorem and the differentiability of
fθ(ω) in θ�

0 =Rj(ω;θk)−Rj(ω;θ0)= ∂Rj(ω; θ̃(j�ω))
∂θ′ (θk − θ0)�

where the subscript j denotes the jth element of the vector and θ̃(j�ω) lies between θk
and θ0 and in general depends on both ω and j. Let

dk = θk − θ0

‖θk − θ0‖ �

Then

∂Rj(ω; θ̃(j�ω))
∂θ′ dk = 0 for every k�

The sequence {dk} is an infinite sequence on the unit sphere and therefore there exists a
limit point d (note that d does not depend on j or ω). As θk → θ0, dk approaches d and
we have

lim
k→∞

∂Rj(ω; θ̃(j�ω))
∂θ′ dk = ∂Rj(ω;θ0)

∂θ′ d = 0�
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where the convergence result holds because fθ(ω) is continuously differentiable in θ

(Assumption 3). Because this holds for an arbitrary j, it holds for the full vectorR(ω;θ0)�

Therefore,

∂R(ω;θ0)

∂θ′ d = 0�

which implies

d′
(
∂R(ω;θ0)

∂θ′

)′(
∂R(ω;θ0)

∂θ′

)
d = 0�

Because the above result holds for an arbitrary ω ∈ [−π�π]� it also holds when integrat-
ing over [−π�π]� Thus

d′
{∫ π

−π

(
∂R(ω;θ0)

∂θ′

)′(
∂R(ω;θ0)

∂θ′

)
dω

}
d = 0�

Applying Lemma A.1, because d 	= 0,G(θ0) is singular.
To show the converse, suppose thatG(θ) has constant rank ρ < q in a neighborhood

of θ0 denoted by δ(θ0). Then consider the characteristic vector c(θ) associated with one
of the zero roots ofG(θ). Because∫ π

−π

(
∂R(ω;θ)
∂θ′

)′(
∂R(ω;θ)
∂θ′

)
dω× c(θ)= 0�

we have ∫ π

−π

(
∂R(ω;θ)
∂θ′ c(θ)

)′(
∂R(ω;θ)
∂θ′ c(θ)

)
dω= 0�

Since the integrand is continuous in ω and always nonnegative, we must have(
∂R(ω;θ)
∂θ′ c(θ)

)′(
∂R(ω;θ)
∂θ′ c(θ)

)
= 0

for all ω ∈ [−π�π] and all θ ∈ δ(θ0). Furthermore, this implies

∂R(ω;θ)
∂θ′ c(θ)= 0 (A.3)

for all ω ∈ [−π�π] and all θ ∈ δ(θ0). Because G(θ) is continuous and has constant rank
in δ(θ0), the vector c(θ) is continuous in δ(θ0). Consider the curve χ defined by the
function θ(v) which solves, for 0 ≤ v≤ v̄, the differential equation

∂θ(v)

∂v
= c(θ)�

θ(0)= θ0�

Then

∂R(ω;θ(v))
∂v

= ∂R(ω;θ(v))
∂θ(v)′

∂θ(v)

∂v
= ∂R(ω;θ(v))

∂θ(v)′
c(θ)= 0
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for all ω ∈ [−π�π] and 0 ≤ v≤ v̄, where the last equality uses (A.3). Thus, R(ω;θ) is con-
stant on the curve χ. This implies that fθ(ω) is constant on the same curve and that θ0
is unidentifiable. This completes the proof. �

Proof of Corollary 1. The statement in the subsequent proof applies to all ω ∈
[−π�π]. Using the same argument as in the proof of Lemma A.1, I(θ0) can be rewrit-
ten as

I(θ0)= 1
2π

∫ π

−π

(
∂R(ω;θ0)

∂θ′

)′([
fθ0(ω)

R
]−1 ⊗ [

fθ0(ω)
R
]−1)∂R(ω;θ0)

∂θ′ dω� (A.4)

Because spectral density matrices are Hermitian and positive semidefinite, fθ0(ω)
R is

real, symmetric, and positive semidefinite (cf. Lemma 3.7.1(vii) in Brillinger (2001)). Fur-
thermore, because here fθ0(ω) has full rank, fθ0(ω)

R is in fact positive definite. Thus,
([fθ0(ω)

R]−1 ⊗[fθ0(ω)
R]−1) is positive definite (cf. Theorem 1 in Magnus and Neudecker

(1999, p. 28)).
We now prove G(θ0) and I(θ0) have the same null space. Since they are both q × q

matrices, the result then implies they have the same rank. First, suppose c ∈ R
q and

I(θ0)c = 0. Then c′I(θ0)c = 0 or, explicitly,∫ π

−π

(
∂R(ω;θ0)

∂θ′ c

)′([
fθ0(ω)

R
]−1 ⊗ [

fθ0(ω)
R
]−1)(∂R(ω;θ0)

∂θ′ c

)
dω= 0�

Because the integrand is continuous in ω and always nonnegative, we must have(
∂R(ω;θ0)

∂θ′ c

)′([
fθ0(ω)

R
]−1 ⊗ [

fθ0(ω)
R
]−1)(∂R(ω;θ0)

∂θ′ c

)
= 0�

Because ([fθ0(ω)
R]−1 ⊗ [fθ0(ω)

R]−1) is positive definite, this implies

∂R(ω;θ0)

∂θ′ c = 0�

Therefore,(
∂R(ω;θ0)

∂θ′

)′(
∂R(ω;θ0)

∂θ′ c

)
= 0

and, consequently, G(θ0)c = 0. Next suppose c ∈ R
q and G(θ0)c = 0. Applying the same

argument that leads to (A.3), we have(
∂R(ω;θ0)

∂θ′ c

)
= 0�

Then, trivially,(
∂R(ω;θ0)

∂θ′

)′([
fθ0(ω)

R
]−1 ⊗ [

fθ0(ω)
R
]−1)(∂R(ω;θ0)

∂θ′ c

)
= 0�

Upon integration, we have I(θ0)c = 0. �
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Proof of Theorem 2. Using Lemma A.1 again, Ḡ(θ̄) can be equivalently represented
as

Ḡ(θ̄)= 1
2

∫ π

−π

(
∂R(ω;θ)
∂θ̄′

)′(
∂R(ω;θ)
∂θ̄′

)
dω+

(
∂μ(θ̄)

∂θ̄′

)′
∂μ(θ̄)

∂θ̄′

with both terms on the right hand side being real, symmetric, and positive semidefinite.
Let

R̄(ω; θ̄)=
[
R(ω;θ)

1√
π
μ(θ̄)

]
�

Then

Ḡ(θ̄)= 1
2

∫ π

−π

(
∂R̄(ω; θ̄)
∂θ̄′

)′(
∂R̄(ω; θ̄)
∂θ̄′

)
dω�

Using this representation, the proof proceeds in the same way as in Theorem 1, with θ
replaced by θ̄ and R(ω;θ) replaced by R̄(ω; θ̄). The detail is omitted. �

Proof of Corollary 3. We only prove the first result, as the second can be proven
analogously using the formulation in the proof of Theorem 2.

Suppose the subvector θs0 is not locally identified. Write θ= (θs′� θr′)′. There exists an
infinite sequence of vectors {θk}∞k=1 approaching θ0 such that

R(ω;θ0)=R(ω;θk) for allω ∈ [−π�π] and each k�

By the definition of partial identification, {θsk} can be chosen such that ‖θsk − θs0‖/‖θk −
θ0‖> ε, with ε being some arbitrarily small positive number. The values of θrk can either
change or stay fixed in this sequence; no restriction is imposed on them besides those
in the preceding display. As in the proof of Theorem 1, in the limit, we have

∂R(ω;θ0)

∂θ′ d = 0�

with ds 	= 0 (where ds comprises the elements in d that correspond to θs)� Therefore, on
one hand,

G(θ0)d = 0;
on the other hand, because ds 	= 0 and by definition ∂θs0/∂θ

′ = [Idim(θs)�0dim(θr)], we have

∂θs0
∂θ′ d = ds 	= 0�

which implies

Ga(θ0)d 	= 0�

Thus, we have identified a vector that falls into the orthogonal column space of G(θ0)

but not of Ga(θ0)� Because the former orthogonal space always includes the latter as a
subspace, this result impliesGa(θ0) has a higher column rank thanG(θ0).
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To show the converse, suppose thatG(θ) andGa(θ) have constant ranks in a neigh-
borhood of θ0 denoted by δ(θ0). Because the rank of G(θ) is lower than that of Ga(θ)�
there exists a vector c(θ) such that

G(θ)c(θ)= 0 but Ga(θ)c(θ) 	= 0�

which implies for all ω ∈ [−π�π] and all θ ∈ δ(θ0) (cf. arguments leading to (A.3)),

∂R(ω;θ)
∂θ′ c(θ)= 0�

but [
∂R(ω;θ)/∂θ′

∂θs/∂θ′

]
c(θ)=

[
0

cs(θ)

]
	= 0�

where cs(θ) denotes the elements in c(θ) that correspond to θs. Because G(θ) is con-
tinuous and has constant rank in δ(θ0), the vector c(θ) is continuous in δ(θ0). As in
Theorem 1, consider the curve χ defined by the function θ(v)which solves, for 0≤ v≤ v̄,
the differential equation

∂θ(v)

∂v
= c(θ)� θ(0)= θ0�

On one hand, because cs(θ) 	= 0 and cs(θ) is continuous in θ� points on this curve corre-
spond to different θs� On the other hand,

∂R(ω;θ(v))
∂v

= ∂R(ω;θ(v))
∂θ(v)′

∂θ(v)

∂v
= ∂R(ω;θ(v))

∂θ(v)′
c(θ)= 0

for all ω ∈ [−π�π] and 0 ≤ v ≤ v̄� implying fθ(ω) is constant on the same curve. There-
fore, θs0 is not locally identifiable. �

Proof of Corollary 5. The proof is essentially the same as in Rothenberg (1971, The-
orem 2) and is included for the sake of completeness. Suppose Ψ(θ) has rank s for all θ
in a neighborhood of θ0. Then, by the implicit function theorem, there exists a partition
of θ into θ1 ∈ R

s and θ2 ∈ R
q−s such that

θ1 = q(θ2)

for all solutions of ψ(θ) = 0 in a neighborhood of θ0 with θ2
0 being an interior point of

that neighborhood. Consequently, the spectral density can be rewritten as

fθ(ω)= fq(θ2)�θ2(ω)�

which involves only q− s parameters. Let

Q(θ2)= ∂q(θ2)

∂θ2′ and G̃(θ)= [Q(θ2)′ I ]G(θ)
[
Q(θ2)

I

]
�

Then, by Theorem 1, θ0 is identified if and only if G̃(θ0) has full rank.
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Suppose there exists a vector d ∈ R
q−s such that

G̃(θ0)d = 0� (A.5)

Then the structure ofG(θ) (cf. Lemma A.1) implies that (A.5) holds if and only if

G(θ0)

[
Q(θ2

0)

I

]
d = 0�

Let

c =
[
Q(θ2

0)

I

]
d�

Then we have (a) c 	= 0 if and only d 	= 0� and (b)[
G(θ0)

Ψ(θ0)

]
c = 0

if and only if (A.5) holds, where Ψ(θ0)c = 0 always holds because θ0 satisfies the con-
straint ψ(θ) = 0� Thus, the preceding matrix has full rank if and only if θ0 is identified
under the constraints. This completes the proof. �

Proof of Corollary 6. Without loss of generality, assume nY = 1. Otherwise, the
proof can be carried out by analyzing R(ω;θ). The map θ −→ fθ is infinite dimensional.
The proof therefore involves two steps. The first is to reduce it to a finite dimensional
problem. The second is to apply a constant rank theorem (a generalization of the im-
plicit function theorem).

Consider a positive integer N and a partition of the interval [−π�π] by ωj = (2πj/
2N)−π� with j = 0�1� � � � �2N� Then the map

θ −→ (fθ(ω0)� � � � � fθ(ω2N )) (A.6)

is finite dimensional. To simplify notation, let fθ�N = (fθ(ω0)� � � � � fθ(ω2N ))
′. Conven-

tionally, the rank of the above map is defined as the rank of the Jacobian matrix ∂fθ�N/∂θ′,
which is of dimension (2N + 1)× q with rank no greater than q− 1 at θ0, because if the
rank equals q� then θ0 becomes locally identified, contradicting the assumption in the
corollary. Note that, for a givenN , its rank can be strictly less than q− 1.

We now show that there exists a finiteN such that ∂fθ�N/∂θ′ has rank q− 1 at θ0. Sup-
pose such an N does not exist. Then the rank of ∂fθ�N/∂θ′ is at most q− 2 for arbitrarily
largeN . This implies that the rank of

GN(θ0)= 2π
2N + 1

2N∑
j=0

(
∂fθ0(ωj)

∂θ′

)′(∂fθ0(ωj)

∂θ′

)

is at most q− 2 for arbitrarily large N� because vectors orthogonal to ∂fθ�N/∂θ′ are also
orthogonal toGN(θ) by construction. Let λN�j (j = 1� � � � � q) be the eigenvalues ofGN(θ0)

sorted in an increasing order. Then, for any finiteN ,

λN�1 = λN�2 = 0�
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On the other hand, becauseGN(θ0)→G(θ0)� so do its eigenvalues. Thus, for any ε > 0�
there exists a finite N such that |λ2 − λN�2| < ε, where λ2 is the second smallest eigen-
value ofG(θ0). Choosing ε= λ2/2 leads to

|λN�2|> λ2/2�

Since rank(G(θ0))= q− 1 by assumption, λ2 is strictly positive. Thus, we reach a contra-
diction. Because the convergence ofGN(θ)→G(θ) is uniform in an open neighborhood
of θ0� say δ(θ0), the above analysis also implies there exists anN such that ∂fθ�N/∂θ′ has
constant rank q− 1 in that neighborhood.

Use such an N and consider again the map θ −→ fθ�N� which is finite dimensional,
is continuously differentiable, and has constant rank q− 1 in δ(θ0). Define the level set{

θ ∈ δ(θ0) : fθ�N = fθ0�N

}
�

Then the rank theorem (Krantz and Parks (2002, Theorem 3.5.1 and the discussion on
p. 56)) implies that the level set constitutes a smooth, parameterized one dimensional
manifold. Thus, there exists a unique level curve passing through θ0 satisfying fθ�N =
fθ0�N �

Therefore, we have established the result for a particular finite N . Further increas-
ingN leads to finer partitions of [−π�π]. This cannot decrease the rank of the map (A.6)
and therefore cannot increase the number of level curves passing through θ0. Thus, in
the limit, there is at most one level curve passing through θ0. The existence of such a
curve for the infinite dimensional case has already been shown in the main text, given
by (10). This completes the proof. �

Proof of Lemma 1. Applying Lemma A.3.3 (1) in Hosoya and Taniguchi (1982), for a
given θ ∈Θ, we have

plim
T→∞

1
T

T−1∑
j=1

tr{W (ωj)f−1
θ (ωj)IT (ωj)} = 1

2π

∫ π

−π
tr

{
W (ω)f−1

θ (ω)fθ0(ω)
}
dw�

To prove stochastic equicontinuity, consider for any θ1� θ2 ∈Θ,

1
T

T−1∑
j=1

tr
{
W (ωj)

(
f−1
θ1
(ωj)− f−1

θ2
(ωj)

)
IT (ωj)

}
�

Apply a first order Taylor expansion

1
T

T−1∑
j=1

tr
{
W (ωj)

(
f−1
θ1
(ωj)− f−1

θ2
(ωj)

)
IT (ωj)

}

= 1
T

T−1∑
j=1

∂ tr{W (ωj)f−1
θ̃
(ωj)IT (ωj)}

∂θ′ (θ1 − θ2)

(A.7)
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= − 1
T

T−1∑
j=1

W (ωj)vec(IT (ωj)
′)′{f−1

θ̃
(ωj)

′ ⊗ f−1
θ̃
(ωj)}

× ∂vec(fθ̃(ωj))

∂θ′ (θ1 − θ2)�

where θ̃ lies between θ1 and θ2. The norm of (A.7) is bounded by

1
T

T−1∑
j=1

‖vec(IT (ωj)
′)‖

∥∥∥∥{f−1
θ̃
(ωj)

′ ⊗ f−1
θ̃
(ωj)}∂vec(fθ̃(ωj))

∂θ′

∥∥∥∥‖θ1 − θ2‖�

The quantity∥∥∥∥(f−1
θ̃
(ωj)

′ ⊗ f−1
θ̃
(ωj))

∂vec(fθ̃(ωj))

∂θ′

∥∥∥∥
is uniformly bounded by Assumption 5(ii). The term T−1 ∑T−1

j=1 ‖vec(IT (ωj)′)‖ only de-

pends on θ0 and isOp(1) because the diagonal elements of T−1 ∑T−1
j=1 IT (ωj) are positive

and satisfy a law of large numbers (Hosoya and Taniguchi (1982, Lemma A.3.3 (1))), and
the norm of the off-diagonal elements can be bounded by the diagonal elements using
the Cauchy–Schwarz inequality. Therefore, the term (A.7) can be made uniformly small
by choosing a small ‖θ1 − θ2‖. Meanwhile,

1
T

T−1∑
j=1

W (ωj) log det fθ(ωj)→ 1
2π

∫ π

−π
W (ω) log det fθ(ω)dw

uniformly in θ ∈Θ. Thus, the first result holds.
For the second result, we first show that θ0 maximizes L∞(θ). Apply the same argu-

ment as in Hosoya and Taniguchi (1982, p. 149). For every ω ∈ [−π�π],

W (ω)
[
log det fθ(ω)+ tr{f−1

θ (ω)fθ0(ω)}
]

=W (ω) log det fθ0(ω)+W (ω)[tr{f−1
θ (ω)fθ0(ω)} − log det{f−1

θ (ω)fθ0(ω)}
]

=W (ω) log det fθ0(ω)+W (ω)
[
nY∑
j=1

λj(ω)− logλj(ω)− 1

]
+W (ω)nY �

where λj(ω) is the jth eigenvalue of f−1
θ (ω)fθ0(ω)� Because λj(ω)− logλj(ω)−1 ≥ 0 and

the equality holds if and only if λj(ω)= 1, j = 1� � � � � nY , this implies

L∞(θ)≤ − 1
2π

∫ π

−π
W (ω)

(
log det fθ0(ω)+ nY

)
dω�

which holds with equality if and only if λj(ω)= 1 for allω ∈ [−π�π] (j = 1� � � � � nY ). How-
ever, λj(ω)= 1 (j = 1� � � � � nY ) implies fθ0(ω)= fθ(ω) because the latter are positive def-
inite Hermitian matrices. Hence, θ0 is a global maximizer.
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The above result implies that any other parameter vector, say θ1, is a maximizer if
and only if fθ1(ω) = fθ0(ω) for all ω ∈ [−π�π]. Now suppose the parameters are locally
identified. Then there are no parameter values close to θ0 satisfying this equality. Thus,
θ0 is the locally unique maximizer. To see the converse, suppose θ0 is the locally unique
maximizer. Then there cannot be any parameter close to θ0 satisfying fθ0(ω)= fθ(ω) for
all ω� Thus, by definition, we have local identification. The argument to establish the
result for the global identification proceeds in the same way.

The third result follows directly from the uniform weak law of large numbers. �

Proof of Theorem 3. We only prove the second result, which includes the first as a
special case. The first order condition (FOC) gives

2πT−1/2
T−1∑
j=0

W (ωj)
∂vec(f̂

θ̄T
(ωj)

′)′

∂θ̄

{
f−1̂̄θT (ωj)′ ⊗ f−1̂̄θT (ωj)

}
vec

(
IT (ωj)− f̂

θ̄T
(ωj)

)

+ 2T−1/2
T∑
t=1

∂μ(̂θ̄T )
′

∂θ̄
f−1̂̄θT (0)(Yt−μ(̂θ̄T ))= 0�

Note that the first summation starts at j = 0 and IT (0)= Î
θ̄T �T

(0). The above FOC implies

2πT−1/2
T−1∑
j=0

W (ωj)
∂vec(fθ0(ωj)

′)′

∂θ̄

(
f−1
θ0
(ωj)

′ ⊗ f−1
θ0
(ωj)

)
× vec

(
IT (ωj)− f̂

θ̄T
(ωj)

)
+ 2T−1/2

T∑
t=1

∂μ(θ̄0)
′

∂θ̄
f−1
θ0
(0)(Yt−μ(̂θ̄T ))= op(1)�

which holds because ̂̄θT →p θ̄0, fθ0(ωj) and μ(θ̄0) are continuously differentiable, and
f−1
θ0
(ωj) have bounded eigenvalues. Apply a first order Taylor expansion around θ̄0. Then

the left hand side of the preceding display is equal to

2πT−1/2
T−1∑
j=0

W (ωj)
∂vec(fθ0(ωj)

′)′

∂θ̄

(
f−1
θ0
(ωj)

′ ⊗ f−1
θ0
(ωj)

)
× vec

(
IT (ωj)− fθ0(ωj)

)
(I)

+ 2T−1/2
T∑
t=1

∂μ(θ̄0)
′

∂θ̄
f−1
θ0
(0)(Yt−μ(θ̄0)) (II)

− 2πT−1
T−1∑
j=0

W (ωj)
∂vec(fθ0(ωj)

′)′

∂θ̄

(
f−1
θ0
(ωj)

′ ⊗ f−1
θ0
(ωj)

)
(A.8)

× ∂vec(fθ0(ωj))

∂θ̄′ T 1/2(̂θ̄− θ̄0) (III)
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− 2
∂μ(θ̄0)

′

∂θ̄
f−1
θ0
(0)
∂μ(θ̄0)

∂θ̄′ T 1/2(̂θ̄− θ̄0) (IV)

+ op(1)�

First consider term (III). The quantity in front of T 1/2(̂θ̄− θ̄0) converges to∫ π

−π
W (ω)

∂vec(fθ0(ω)
′)′

∂θ̄

(
f−1
θ0
(ω)′ ⊗ f−1

θ0
(ω)

)∂vec(fθ0(ω))

∂θ̄′ dω�

whose (h�k)th element is given by∫ π

−π
tr

{
W (ω)fθ0(ω)

∂f−1
θ0
(ω)

∂θ̄h
fθ0(ω)

∂f−1
θ0
(ω)

∂θ̄k

}
dω�

Therefore, the above expansion implies (cf. Theorem 3 for the definition of M̄)

T 1/2(̂θ̄− θ̄0)= M̄−1 ∗ (I)+ M̄−1 ∗ (II)+ op(1)�
Term (I) satisfies a central limit theorem (CLT), whose covariance matrix has the (h�k)th
element given by (see Theorem 3.1 and Proposition 3.1 in Hosoya and Taniguchi (1982);
in particular, their formula for Ujl)

4π
∫ π

−π
W (ω) tr

{
fθ0(ω)

∂f−1
θ0
(ω)

∂θ̄h
fθ0(ω)

∂f−1
θ0
(ω)

∂θ̄k

}
dω

+
nε∑

a�b�c�d=1

κabcd

[
1

2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0
(ω)

∂θ̄h
H(ω)dω

]
ab

×
[

1
2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0
(ω)

∂θ̄k
H(ω)dω

]
cd

�

Term (II) also satisfies a CLT, with covariance matrix given by

8π
∂μ(θ̄0)

′

∂θ̄
f−1
θ0
(0)
∂μ(θ̄0)

∂θ̄′ �

To complete the proof, we only need to verify the covariance matrix between (I) and (II).
Let

A=Cov((I)� (II))

and consider its (h�k)th element

Ahk = 4πCov

{
tr

(
1√
T

T−1∑
j=0

W (ωj)
∂f−1
θ0
(ωj)

∂θ̄h

(
IT (ωj)− fθ0(ω)

))
�

(
1√
T

∂μ(θ̄0)
′

∂θ̄k
f−1
θ0
(0)

T∑
t=1

(Yt −μ(θ̄0))

)}
�
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Define

φh(ωj)= ∂f−1
θ0
(ωj)

∂θ̄h
and ψk(0)= ∂μ(θ̄0)

′

∂θ̄k
f−1
θ0
(0)�

Then

Ahk = 4πCov

{
tr

(
1√
T

T−1∑
j=0

W (ωj)φ
h(ωj)

(
IT (ωj)− fθ0(ω)

))
�

(
1√
T
ψk(0)

T∑
t=1

(Yt −μ(θ̄0))

)}

= 4πCov

{
1√
T

T−1∑
j=0

W (ωj)

nY∑
a�b=1

φhab(ωj)
(
ITba(ωj)− fθ0ba(ω)

)
�

1√
T

nY∑
c=1

ψkc (0)
T∑
t=1

(Ytc −μc(θ̄0))

}

= 4π
nY∑

a�b�c=1

Cov

{
1√
T

T−1∑
j=0

W (ωj)φ
h
ab(ωj)

(
ITba(ωj)− fθ0ba(ω)

)
�

1√
T
ψkc (0)

T∑
t=1

(Ytc −μc(θ̄0))

}
�

where ITba(ωj) is the (b�a)th element of IT (ωj) and other quantities are defined anal-

ogously. Consider the two terms inside the curly brackets separately. Applying the same

argument as in Theorem 10.8.5 in Brockwell and Davis (1991), we have

1√
T

T−1∑
j=0

W (ωj)φ
h
a�b(ωj)

(
ITba(ωj)− fθ0ba(ω)

)

= 1√
T

T−1∑
j=0

nε∑
f�g=1

W (ωj)φ
h
ab(ωj)Hbf (ωj)(I

ε
Tfg(ωj)−EIεTfg(ωj))

×H∗
ga(ωj)+ op(1)�

where and IεTfg(ωj) denote the (f�g)th element of the periodogram of εt . Applying The-

orem 10.3.1 in Brockwell and Davis (1991), we have

1√
T
ψkc (0)

T∑
t=1

(Ytc −μc(θ̄0))= 1√
T

nε∑
l=1

T∑
t=1

ψkc (0)Hcl(0)εtl + op(1)�
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whereH(0)= ∑∞
j=0 hj(θ0) (cf. (3)). Therefore, their covariance is equal to

1
T

T∑
t=1

T−1∑
j=0

nε∑
f�g�l=1

W (ωj)φ
h
ab(ωj)Hbf (ωj)H

∗
ga(ωj)ψ

k
c (0)Hcl(0)

×E{
(IεTfg(ωj)−EIεTfg(ωj))εtl

} + op(1)

= 1
T

T∑
t=1

nε∑
f�g�l=1

W (ωj)φ
h
ab(ωj)Hbf (ωj)H

∗
ga(ωj)ψ

k
c (0)Hcl(0)ξfgl + op(1)

= 1
2π

nε∑
f�g�l=1

{∫ π

−π
W (ω)H∗(ω)gaφhab(ω)Hbf (ωj)dω

}
× ξfgl × {ψkc (0)Hcl(0)} + op(1)�

Some algebra shows that

Ahk = 2
nε∑

f�g�l=1

[∫ π

−π
W (ω)H(ω)∗

∂f−1
θ0
(ω)

∂θ̄h
H(ω)dω

]
gf

× ξgf l ×
[
∂μ(θ̄0)

′

∂θ̄k
f−1
θ0
(0)H(0)

]
l

� �

Proof of Corollary 7. We prove the second result. Because the argument is very sim-
ilar to Theorem 3 and Taniguchi (1979, Theorem 2), we only provide an outline. The es-
timate ̂̄θ solves

∂L̄T (̂θ̄)

∂θ̄
= 0 (A.9)

and the pseudo-true value θ̄m0 satisfies

∂L̄m∞(θ̄m0 )
∂θ̄

= 0� (A.10)

Consider a Taylor expansion of (A.9) around θ̄m0 ,

∂L̄T (θ̄
m
0 )

∂θ̄
+ ∂2L̄T (̃θ̄)

∂θ̄ ∂θ̄′ (̂θ̄− θ̄m0 )= 0�

where ˜̄θ lies between ̂̄θ and θ̄m0 . Rearrange terms and apply (A.10):

T 1/2(̂θ̄− θ̄m0 )=
[
−2π
T

∂2L̄T (̃θ̄)

∂θ̄ ∂θ̄′

]−1(
2πT−1/2 ∂L̄T (θ̄

m
0 )

∂θ̄
− 2πT 1/2 ∂L̄

m∞(θ̄m0 )
∂θ̄

)
�

Furthermore,

−2π
T

∂2L̄T (̃θ̄)

∂θ̄ ∂θ̄′ →
∫ π

−π
W (ω)

[
∂2

∂θ̄ ∂θ̄′ log det
(
fθm0 (ω)

) + ∂2

∂θ̄ ∂θ̄′ tr
{
f−1
θm0
(ω)f0(ω)

}]
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+ 2
∂μ(θ̄m0 )

′

∂θ̄
f−1
θm0
(0)
∂μ(θ̄m0 )

∂θ̄′

because ˜̄θ→p θ̄m0 and because of the continuity of the integrand. Also,

2πT−1/2 ∂L̄T (θ̄
m
0 )

∂θ̄
− 2πT 1/2 ∂L̄

m∞(θ̄m0 )
∂θ̄

= −2πT−1/2
T−1∑
j=1

W (ωj)
∂

∂θ̄
tr

{
f−1
θ̄m0
(ωj)(IT (ωj)− f0(ω))

}

+ 2T−1/2
T∑
t=1

∂μ(θ̄m0 )
′

∂θ̄
f−1
θm0
(0)(Yt−μ0)+ op(1)

= (M1)+ (M2)+ op(1)�

Terms (M1) and (M2) satisfy a central limit theorem and can be analyzed in the same way
as terms (I) and (II) in (A.8). The limiting covariance matrix can be verified accordingly.
The detail is omitted. �

Proof of Theorem 4. It suffices to verify that Assumptions 1–4 in Chernozhukov and
Hong (2003) hold under our set of conditions. Relabel these assumptions as CH1–CH4.
CH1 and CH2 are trivial. CH3 is implied by Lemma 1(i), (ii), and (iv). To verify CH4,
applying a second order Taylor expansion of LT (θ) around θ0 (cf. CH4(i)):

LT (θ)−LT (θ0)= (θ− θ0)
′ ∂LT (θ0)

∂θ
+ 1

2
(θ− θ0)

′ ∂2LT (θ0)

∂θ∂θ′ (θ− θ0)+RT (θ)

with

RT (θ)= (θ− θ0)
′
{
∂2LT (θ̃T )

∂θ∂θ′ − ∂2LT (θ0)

∂θ∂θ′

}
(θ− θ0)�

where θ̃T lies between θ and θ0. Now

T−1/2 ∂LT (θ0)

∂θ
→d N(0� V )�

Therefore, CH4(ii) is satisfied (V corresponds to �n in CH4). For CH4(iii), note that V is
nonrandom and positive definite, and that

−T−1 ∂
2LT (θ0)

∂θ∂θ′

= T−1
T−1∑
j=1

W (ωj)

(
∂vec(fθ0(ωj)

′)
∂θ′

)′{
f−1
θ0
(ωj)

′ ⊗ f−1
θ0
(ωj)

}
×

(
∂vec(fθ0(ωj))

∂θ′

)
(A.11)
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= 1
2π

∫ π

−π
W (ωj)

(
∂vec(fθ0(ω)

′)
∂θ′

)′{
f−1
θ0
(ω)′ ⊗ f−1

θ0
(ω)

}
×

(
∂vec(fθ0(ω))

∂θ′

)
dω+ o(1)�

where the leading term on the right hand side is nonrandom and positive definite be-
cause f−1

θ0
(ω), and∫ π

−π
W (ωj)

(
∂vec(fθ0(ω)

′)
∂θ′

)′(∂vec(fθ0(ω))

∂θ′

)
dω

are positive definite by Assumption 5 and local identification. It is O(1) because the in-
tegrand is bounded; see Assumption 5. Therefore, CH4(iii) is satisfied. CH4(iv.a) holds
because

|RT (θ)| ≤ ‖T 1/2(θ− θ0)‖2
∥∥∥∥T−1 ∂

2LT (θ̃T )

∂θ∂θ′ − T−1 ∂
2LT (θ0)

∂θ∂θ′

∥∥∥∥�
where the second term can be made arbitrarily small by choosing ‖θ−θ0‖ small because
of (A.11) and the boundedness and continuity of ∂vec(fθ(ω))/∂θ′ and f−1

θ (ω) in θ (As-
sumptions 3 and 5(ii)). CH4(iv.b) holds because of the preceding argument and the fact
that ‖T 1/2(θ− θ0)‖2 =O(1).

The proof for ̂̄θT involves the same argument and is therefore omitted. �
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