
TECHNICAL APPENDIX I
SOURCES OF MACROECONOMIC FLUCTUATIONS: A

REGIME-SWITCHING DSGE APPROACH
(NOT INTENDED FOR PUBLICATION)

ZHENG LIU, DANIEL F. WAGGONER, AND TAO ZHA

In this appendix, we derive the optimizing decisions, describe the stationary equilib-

rium, and derive the log-linearized equilibrium conditions in the paper entitled “Sources

of Macroeconomic Fluctuations: A Regime-Switching DSGE Approach” by Liu, Wag-

goner, and Zha.

I. The optimizing decisions

I.1. Households’ optimizing decisions. Each household chooses consumption, in-

vestment, new capital stock, capacity utilization, and next-period bond to solve the

following utility maximizing problem:

Max{Ct,It,Kt,ut,Bt+1} E

∞
∑

t=0

βtAt

{

log(Ct − bCt−1)−
ψ

1 + η
Ldt+i(h)

1+η

}

(1)

subject to

P̄tCt+
P̄t
Qt

(It+a(ut)Kt−1)+EtDt,t+1Bt+1 ≤Wt(h)L
d
t (h)+P̄trktutKt−1+Πt+Bt+Tt, (2)

Kt = (1− δt)Kt−1 +

[

1− S

(

It
It−1

)]

It, (3)

Denote by µt the Lagrangian multiplier for the budget constraint (2) and by µkt the

Lagrangian multiplier for the capital accumulation equation (3). The first order con-

ditions for the utility-maximizing problem are given by

AtUct = µtP̄t, (4)

Dt,t+1 = β
µt+1

µt
, (5)

µtP̄t
Qt

= µkt {1− S(λIt)− S ′(λIt)λIt}+ βEtµk,t+1S
′(λI,t+1)(λI,t+1)

2 (6)

µkt = βEt

[

µk,t+1(1− δt+1) + µt+1P̄t+1rk,t+1ut+1 −
µt+1P̄t+1

Qt+1
a(ut+1)

]

, (7)
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TECHNICAL APPENDIX I 2

rkt =
a′(ut)

Qt

, (8)

where λIt ≡ It/It−1.

Let qkt ≡ Qt
µkt
µtP̄t

denote the shadow price of capital stock (in units of investment

goods). Then, (4) and (6) imply that

1

Qt

=
qkt
Qt

{1− S(λIt)− S ′(λIt)λIt}+ βEt
qk,t+1

Qt+1

At+1Uc,t+1

AtUct
S ′(λI,t+1)(λI,t+1)

2. (9)

Thus, in the absence of adjustment cost or in the steady-state equilibrium where

S(λI) = S ′(λI) = 0, we have qkt = 1. One can interpret qkt as Tobin’s Q.

By eliminating the Lagrangian multipliers µt and µkt, the capital Euler equation (7)

can be rewritten as

qkt
Qt

= βEt
At+1Uc,t+1

AtUct

[

(1− δt+1)
qk,t+1

Qt+1
+ rk,t+1ut+1 −

a(ut+1)

Qt+1

]

. (10)

The cost of acquiring a marginal unit of capital is qkt/Qt today (in consumption unit).

The benefit of having this extra unit of capital consists of the expected discounted

future resale value and the rental value net of utilization cost.

By eliminating the Lagrangian multiplier µt, the first-order condition with respect

to bond holding can be written as

Dt,t+1 = β
At+1Uc,t+1

AtUct

P̄t
P̄t+1

. (11)

Denote by Rt = [EtDt,t+1]
−1 the interest rate for a one-period risk-free nominal bond.

Then we have

1

Rt

= βEt

[

At+1Uc,t+1

AtUct

P̄t
P̄t+1

]

. (12)

In each period t, a fraction ξw of households re-optimize their nominal wage setting

decisions. Those households who can re-optimize wage setting chooses the nominal

wage Wt(h) to maximize

Et

∞
∑

i=0

βiξiwAt+i[log(Ct+i − bCt+i−1)−
ψ

1 + η
Ldt+i(h)

1+η] + (13)

µt+i[Wt(h)χ
w
t,t+iL

d
t+i(h) +mt+i], (14)

where the labor demand schedule is given by

Ldt+i(h) =

(

Wt(h)χ
w
t,t+i

W̄t+i

)−θwt

Lt+i, θwt =
µwt

µwt − 1
, (15)
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the term mt is given by

mt = P̄trktutKt−1 +Πt +Bt + Tt − P̄tCt −
P̄t
Qt

(It + a(ut)Kt−1)− EtDt,t+1Bt+1,

and the term χwt,t+i is given by

χwt,t+i ≡

{

Πi
k=1π

γw
t+k−1π

1−γwλ∗t,t+i if i ≥ 1

1 if i = 0,
(16)

where λ∗t,t+i ≡
λ∗t+i

λ∗t
.

The first-order condition for the wage-setting problem is given by

Et

∞
∑

i=0

(βξw)
i

{

−At+iψL
d
t+i(h)

η ∂L
d
t+i(h)

∂Wt(h)
+ µt+i(1− θw,t+i)χ

w
t,t+iL

d
t+i(h)

}

= 0, (17)

where
∂Ldt+i(h)

∂Wt(h)
= −θw,t+i

Ldt+i(h)

Wt(h)
= −

µw,t+i
µw,t+i − 1

Ldt+i(h)

Wt(h)
.

Factoring out the common terms and rearranging, we obtain

Et

∞
∑

i=0

(βξw)
iµt+i
µt

Ldt+i(h)
1

µw,t+i − 1

{

µw,t+i
ψAt+iL

d
t+i(h)

η

µt+i
− χwt,t+iWt(h)

}

= 0.

Let MRSt(h) ≡
ψAtL

d
t (h)

η

µt
denote the marginal rate of substitution between leisure and

income. Then, using (11), we can rewrite the first-order condition for wage setting as

Et

∞
∑

i=0

ξiwDt,t+iL
d
t+i(h)

1

µw,t+i − 1

{

µw,t+iMRSt+i(h)− χwt,t+iWt(h)
}

= 0. (18)

I.2. Firms’ optimizing decisions. Pricing decisions are staggered across firms. In

each period, a fraction ξp of firms can re-optimize their pricing decisions and the other

fraction 1− ξp of firms mechanically update their prices according to the rule

Pt(j) = π
γp
t−1π

1−γpPt−1(j), (19)

If a firm can re-optimize, it chooses Pt(j) to solve

MaxPt(j) Et

∞
∑

i=0

ξipDt,t+i[Pt(j)χ
p
t,t+iY

d
t+i(j)− Vt+i(j)], (20)

subject to

Y d
t+i(j) =

(

Pt(j)χ
p
t,t+i

P̄t+i

)−
µp,t+i

µp,t+i−1

Yt+i, (21)
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where Vt+i(j) is the cost function and the term χpt,t+i comes from the price-updating

rule (19) and is given by

χpt,t+i =

{

Πi
k=1π

γp
t+k−1π

1−γp if i ≥ 1

1 if i = 0.
(22)

The first order condition for the profit-maximizing problem yields the optimal pricing

rule

Et

∞
∑

i=0

ξipDt,t+iY
d
t+i(j)

1

µp,t+i − 1

[

µp,t+iΦt+i(j)− Pt(j)χ
p
t,t+i

]

= 0, (23)

where Φt+i(j) = ∂Vt+i(j)/∂Y
d
t+i(j) denotes the marginal cost function. In the absence

of markup shocks, µpt would be a constant and (23) implies that the optimal price is

a markup over an average of the marginal costs for the periods in which the price will

remain effective. Clearly, if ξp = 0 for all t, that is, if prices are perfectly flexible, then

the optimal price would be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

Φt(j) =

[

α̃(P̄trkt)
α1

(

W̄t

Zt

)α2
]

1

α1+α2

Yt(j)
1

α1+α2
−1
, (24)

where α̃ ≡ α−α1

1 α−α2

2 and rkt denotes the real rental rate of capital input. The condi-

tional factor demand functions are given by

W̄t = Φt(j)α2
Yt(j)

Lft (j)
, (25)

P̄trkt = Φt(j)α1
Yt(j)

Kf
t (j)

. (26)

It follows that
W̄t

P̄trkt
=
α2

α1

Kf
t (j)

Lft (j)
, ∀j ∈ [0, 1]. (27)

I.3. Market clearing. In equilibrium, markets for bond, composite labor, capital

stock, and composite goods all clear. Bond market clearing implies that Bt = 0 for all

t. Labor market clearing implies that
∫ 1

0
Lft (j)dj = Lt. Capital market clearing implies

that
∫ 1

0
Kf
t (j)dj = utKt−1. Composite goods market clearing implies that

Ct +
1

Qt

[It + a(ut)Kt−1] +Gt = Yt, (28)

where aggregate output is related to aggregate primary factors through the aggregate

production function

GptYt = (utKt−1)
α1(ZtLt)

α2 , (29)



TECHNICAL APPENDIX I 5

with Gpt ≡
∫ 1

0

(

Pt(j)

P̄t

)−
µpt

µpt−1

1

α1+α2 dj measuring the price dispersion.

II. Stationary equilibrium conditions

Since both the neutral technology and the investment-specific technology are growing

over time, we transform the appropriate variables to induce stationarity. In particular,

we denote by X̃t the stationary counterpart of the variableXt and we make the following

transformations:

Ỹt =
Yt
λ∗t
, C̃t =

Ct
λ∗t
, Ĩt =

It
Qtλ∗t

, G̃t =
Gt

λ∗t
, K̃t =

Kt

Qtλ∗t
,

w̃t =
W̄t

P̄tλ
∗
t

, r̃kt = rktQt, Ũct = Uctλ
∗
t ,

where the underlying trend for output is given by

λ∗t ≡ (Zα2

t Q
α1

t )
1

1−α1 .

II.1. Stationary pricing decisions. In terms of the stationary variables, we can

rewrite the optimal pricing decision (23) as

Et

∞
∑

i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

1

µp,t+i − 1
[µp,t+iφt+i(j)− p∗tZ

p
t,t+i] = 0. (30)

In this equation, Ỹ d
t+i(j) =

Y d
t+i(j)

λ∗t+i

denotes the detrended output demand; p∗t ≡ Pt(j)
P̄t

denotes the relative price for optimizing firms, which does not have a j index since all

optimizing firms make identical pricing decisions in a symmetric equilibrium; the term

Zp
t,t+i is defined as

Zp
t,t+i =

χpt,t+i
∏i

k=1 πt+k
(31)

and finally, the term φt+i(j) ≡
Φt+i(j)

P̄t+i
denotes the real unit cost function, which is given

by

φt+i(j) =

[

α̃

(

r̃k,t+i
Qt+i

)α1
(

w̃t+i
λ∗t+i
Zt+i

)α2
]

1

α1+α2

Y d
t+i(j)

1

α1+α2
−1

= [α̃ (r̃k,t+i)
α1 (w̃t+i)

α2 ]
1

α1+α2 Ỹ d
t+i(j)

1

α1+α2
−1
. (32)
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The demand schedule Ỹ d
t+i(j) for the optimizing firm j is related to the relative price

and aggregate output through

Ỹ d
t+i(j) =

[

Pt(j)χ
p
t,t+i

P̄t+i

]−θp,t+i

Ỹt+i

=

[

p∗t
P̄t
P̄t+i

χpt,t+i

]−θp,t+i

Ỹt+i

= [p∗tZ
p
t,t+i]

−θp,t+iỸt+i. (33)

Combining (32) and (33), we have

φt+i(j) = φ̃t+i[p
∗
tZ

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ, (34)

where ᾱ ≡ 1−α1−α2

α1+α2
and

φ̃t+i ≡ [α̃ (r̃k,t+i)
α1 (w̃t+i)

α2 ]
1

α1+α2 . (35)

Given these relations, we can rewrite the optimal pricing rule (30) in terms of sta-

tionary variables

Et

∞
∑

i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

µp,t+i − 1
[µp,t+iφ̃t+i[p

∗
tZ

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ − p∗tZ

p
t,t+i] = 0, (36)

where φ̃ is defined in (35).

II.2. Stationary wage setting decision. Using (4) and (11), we can rewrite the

optimal wage-setting decision (18) as

Et

∞
∑

i=0

(βξw)
iAt+iUc,t+i

AtUct

P̄t
P̄t+i

Ldt+i(h)
1

µw,t+i − 1
[µw,t+iψ

Ldt+i(h)
η

Uc,t+i
P̄t+i −Wt(h)χ

w
t,t+i] = 0,

(37)

where the labor demand schedule Ldt+i(h) is related to aggregate variables through

Ldt+i(h) =

[

Wt(h)χ
w
t,t+i

W̄t+i

]−θw,t+i

Lt+i (38)

=

[

w∗
t

W̄t

W̄t+i

χwt,t+i

]−θw,t+i

Lt+i (39)

=

[

w∗
t

w̃tP̄tλ
∗
t

w̃t+iP̄t+iλ∗t+i
χwt,t+i

]−θw,t+i

Lt+i (40)

=

[

w∗
t w̃t
w̃t+i

χwt,t+i
∏i

k=1 πt+kλ
∗
t,t+i

]−θw,t+i

Lt+i (41)

≡

[

w∗
t w̃t
w̃t+i

Zw
t,t+i

]−θw,t+i

Lt+i, (42)



TECHNICAL APPENDIX I 7

with Zw
t,t+i defined as

Zw
t,t+i =

χwt,t+i
∏i

k=1 πt+kλ
∗
t,t+i

. (43)

Further, we can rewrite the individual optimal nominal wage Wt(h) as

Wt(h) = w∗
t W̄t = w∗

t w̃tP̄tλ
∗
t .

Given these relations, we can rewrite the wage setting rule (37) in terms of the

stationary variables. With some cancelations, we obtain

Et

∞
∑

i=0

i
∏

k=1

(βξw)
iAt+iŨc,t+iL

d
t+i(h)

µw,t+i − 1

{

µw,t+iψ

[

w∗
t w̃t
w̃t+i

Zw
t,t+i

]−ηθw,t+i Lηt+i

Ũc,t+i
− w∗

t w̃tZ
w
t,t+i

}

= 0.

(44)

II.3. Other stationary equilibrium conditions. We now rewrite the rest of the

equilibrium conditions in terms of stationary variables.

First, the optimal investment decision equation (9) can be written as

1 = qkt {1− S(λIt)− S ′(λIt)λIt}+ βEtqk,t+1
λ∗tQt

λ∗t+1Qt+1

At+1Ũc,t+1

AtŨct
S ′(λI,t+1)(λI,t+1)

2,

(45)

where

λIt =
It
It−1

=
ĨtQtλ

∗
t

Ĩt−1Qt−1λ∗t−1

. (46)

Second, the capital Euler equation (10) can be written as

qkt = βEt
At+1Ũc,t+1

AtŨct

λ∗tQt

λ∗t+1Qt+1
[(1− δt+1)qk,t+1 + r̃k,t+1ut+1 − a(ut+1)] . (47)

Third, the optimal capacity utilization decision (8) is equivalent to

r̃kt = a′(ut). (48)

Fourth, the intertemporal bond Euler equation (12) can be written as

1

Rt

= βEt

[

λ∗t
λ∗t+1

At+1Ũc,t+1

AtŨct

1

πt+1

]

. (49)

Fifth, the law of motion for capital stock in (3) can be written as

K̃t = (1− δt)
λ∗t−1Qt−1

λ∗tQt

K̃t−1 + [1− S(λIt)]Ĩt. (50)

Sixth, the aggregate resource constraint is given by

C̃t + Ĩt +
λ∗t−1Qt−1

λ∗tQt

a(ut)K̃t−1 + G̃t = Ỹt. (51)
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Seventh, the aggregate production function (29) can be written as

GptỸt =

[

λ∗t−1Qt−1

λ∗tQt

utK̃t−1

]α1

Lα2

t . (52)

Eighth, firms’ cost-minimizing implies that, in the stationary equilibrium, we have

w̃t
r̃kt

=
α2

α1

λ∗t−1Qt−1

λ∗tQt

utK̃t−1

Lt
. (53)

Finally, we rewrite the interest rate rule here for convenience of referencing:

Rt = κRρr
t−1

[

(

πt
π∗(st)

)φπ

Ỹ
φy
t

]1−ρr

eσrtεrt. (54)

III. Steady State

A deterministic steady state is an equilibrium in which all stochastic shocks are

shut off. Our model contains a non-standard “shock”: the Markov regime switching

in monetary policy regime and the shock regime. In computing the steady-state equi-

librium, we shut off all shocks, including the regime shocks. Since there is a mapping

between any finite-state Markov switching process and a vector AR(1) process (Hamil-

ton, 1994), shutting off the regime shocks in the steady state is equivalent to setting

the innovations in the AR(1) process to its unconditional mean (which is zero). In such

a steady state, all stationary variables are constant.

In the steady state, p∗ = 1 and Zp = 1, so that the price setting rule (36) reduces to

1

µp
= [α̃r̃α1

k w̃
α2]

1

α1+α2 Ỹ ᾱ. (55)

That is, the real marginal cost is constant and equals the inverse markup.

Similarly, in the steady state, w∗ = 1 and Zw = 1, so that the wage setting rule (44)

reduces to

w̃ = µw
ψLη

Ũc
, (56)

which says that the real wage is a constant markup over the marginal rate of substitu-

tion between leisure and consumption.

Given that the steady-state markup, and thus the steady-state real marginal cost,

is a constant, the conditional factor demand function (26) for capital input together

with the capital market clearing condition imply that

r̃k =
α1

µp

Ỹ λqλ
∗

K̃
. (57)
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The rest of the steady-state equilibrium conditions for the private sector come from

(45) -(53) and are summarized below:

1 = qk, (58)

λqλ
∗

β
= 1− δ + r̃k, (59)

r̃k = a′(1), (60)

R =
λ∗

β
π, (61)

Ĩ

K̃
= 1−

1− δ

λqλ∗
, (62)

Ỹ = C̃ + Ĩ + G̃, (63)

Ỹ =

(

K̃

λqλ∗

)α1

Lα2 , (64)

w̃

r̃k
=

1

λqλ∗
α2

α1

K̃

L
. (65)

IV. Linearized equilibrium conditions

We now describe our procedure to linearize the stationary equilibrium conditions

around the deterministic steady state.

IV.1. Linearizing the price setting rule. Log-linearizing the price setting rule (36)

around the steady state, we get

Et ln
∞
∑

i=0

(βξp)
i exp

{

ât+i + ûc,t+i + ŷdt+i(h)−
µp

µp − 1
µ̂p,t+i + µ̂p,t+i+

ˆ̃φt+i − θpᾱ[p̂
∗
t + Ẑp

t,t+i] + ᾱŷt+i

}

≈ Et ln
∞
∑

i=0

(βξp)
i exp

{

ât+i + ûc,t+i + ŷdt+i(h)−
µp

µp − 1
µ̂p,t+i + p̂∗t + Ẑp

t,t+i

}

,

where
ˆ̃
φt+i =

1

α1 + α2
[α1r̂k,t+i + α2ŵt+i]. (66)

Collecting terms to get

Et

∞
∑

i=0

(βξp)
i
{

µ̂p,t+i +
ˆ̃
φt+i − θpᾱ[p̂

∗
t + Ẑp

t,t+i] + ᾱŷt+i

}

≈ Et

∞
∑

i=0

(βξp)
i
{

p̂∗t + Ẑp
t,t+i

}

.
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Further simplifying

1 + θpᾱ

1− βξp
p̂∗t = Et

∞
∑

i=0

(βξp)
i
{

µ̂p,t+i +
ˆ̃φt+i + ᾱŷt+i − (1 + θpᾱ)Ẑ

p
t,t+i

}

.

Denote m̂ct+i ≡
ˆ̃φt+i + ᾱŷt+i. Expanding the infinite sum in the above equation, we

get

1 + ᾱθp
1− βξp

p̂∗t = µ̂pt + m̂ct − (1 + θpᾱ)Ẑ
p
t,t

+ βξpEt[µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑ
p
t,t+1]

+ (βξp)
2Et[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑ

p
t,t+2] + . . .

Forwarding this relation one period to get

1 + ᾱθp
1− βξp

p̂∗t+1 = µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑ
p
t+1,t+1

+ βξpEt+1[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑ
p
t+1,t+2]

+ (βξp)
2Et+1[µ̂p,t+3 + m̂ct+3 − (1 + θpᾱ)Ẑ

p
t+1,t+3] + . . .

Moving the Zp
t,t+i terms to the left, we have

1 + ᾱθp
1− βξp

p̂∗t + (1 + ᾱθp)Et[Ẑ
p
t,t + βξpẐ

p
t,t+1 + ...] = µ̂pt + m̂ct

+βξpEt[µ̂p,t+1 + m̂ct+1]

+(βξp)
2Et[µ̂p,t+2 + m̂ct+2] + . . .

= µ̂pt + m̂ct

+βξp

[

1 + ᾱθp
1− βξp

Etp̂
∗
t+1 + (1 + ᾱθp)Et[Ẑ

p
t+1,t+1 + βξpẐ

p
t+1,t+2 + ...]

]

,

Since Ẑp
t,t = 0, we have

1 + ᾱθp
1− βξp

p̂∗t = µ̂pt + m̂ct + βξp
1 + ᾱθp
1− βξp

Etp̂
∗
t+1

+ (1 + ᾱθp)βξpEt

∞
∑

i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1]. (67)

Using the definition of Zp
t,t+i in (31), we obtain

Ẑp
t,t+i+1 = −[π̂t+i+1 − γpπ̂t+i + · · ·+ π̂t+1 − γpπ̂t]

Ẑp
t+1,t+i+1 = −[π̂t+i+1 − γpπ̂t+i + · · ·+ π̂t+2 − γpπ̂t+1].

Thus,

Ẑp
t+1,t+i+1 − Ẑp

t,t+i+1 = π̂t+1 − γpπ̂t,
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and the Zp terms in (67) can be reduced to

∞
∑

i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1] =

1

1− βξp
[π̂t+1 − γpπ̂t].

Substituting this result into (67), we obtain

p̂∗t =
1− βξp
1 + ᾱθp

(µ̂pt + m̂ct) + βξpEtp̂
∗
t+1 + βξpEt[π̂t+1 − γptπ̂t]. (68)

This completes log-linearizing the optimal price setting equation. We now log-linearize

the price index relation. In an symmetric equilibrium, the price index relation is given

by

1 = ξp

[

1

πt
π
γp
t−1π

1−γp

]
1

1−µpt

+ (1− ξp)(p
∗
t )

1

1−µpt , (69)

the linearized version of which is given by

p̂∗t =
ξp

1− ξp
(π̂t − γpπ̂t−1). (70)

Using (70) to substitute out the p̂∗t in (68), we obtain

ξp
1− ξp

[π̂t − γpπ̂t−1]

=
1− βξp
1 + ᾱθp

(µ̂pt + m̂ct)

+βξp
ξp

1− ξp
Et[π̂t+1 − γpπ̂t] + βξpEt[π̂t+1 − γpπ̂t],

or

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (71)

where the real marginal cost is given by

m̂ct =
1

α1 + α2
[α1r̂k,t+i + α2ŵt+i] + ᾱŷt. (72)

and the term κp is given by

κp ≡
(1− βξp)(1− ξp)

ξp

This completes the derivation of the price Phillips curve.
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IV.2. Linearizing the optimal wage setting rule. Log-linearizing this wage deci-

sion rule, we get

Et ln

∞
∑

i=0

(βξw)
i exp

{

ât+i + ûc,t+i + l̂dt+i(h)−
µw

µw − 1
µ̂w,t+i + µ̂w,t+i−

ηθw[ŵ
∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et ln
∞
∑

i=0

(βξw)
i exp

{

ât+i + ûc,t+i + l̂dt+i(h)−
µw

µw − 1
µ̂w,t+i + ŵ∗

t + ŵt + Ẑw
t,t+i

}

.

Collecting terms to get

Et

∞
∑

i=0

(βξw)
i
{

µ̂w,t+i − ηθw[ŵ
∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et

∞
∑

i=0

(βξw)
i
{

ŵ∗
t + ŵt + Ẑw

t,t+i

}

.

Further simplifying

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) = Et

∞
∑

i=0

(βξw)
i
{

µ̂w,t+i + ηl̂t+i − ûc,t+i + ηθwŵt+i − (1 + ηθw)Ẑ
w
t,t+i

}

.

Denote m̂rst+i ≡ ηl̂t+i − ûc,t+i. Expanding the infinite sum in the above equation,

we get

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)(ŵt − Ẑw

t,t)

+ βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw
t,t+1)]

+ (βξw)
2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw

t,t+2)] + . . .

Forwarding this relation one period to get

1 + ηθw
1− βξw

(ŵ∗
t+1 + ŵt+1) = µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw

t+1,t+1)

+ βξwEt+1[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw
t+1,t+2)]

+ (βξw)
2Et+1[µ̂w,t+3 + m̂rst+3 − ŵt+3 + (1 + ηθw)(ŵt+3 − Ẑw

t+1,t+3)] + . . .
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Moving the Zw
t,t+i terms to the left, we have

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) + (1 + ηθw)Et[Ẑ

w
t,t + βξwẐ

w
t,t+1 + ...] = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)ŵt+1]

+(βξw)
2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)ŵt+2] + . . .

= µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt

[

1 + ηθw
1− βξw

(ŵ∗
t+1 + ŵt+1) + (1 + ηθw)[Ẑ

w
t+1,t+1 + βξwẐ

w
t+1,t+2 + ...]

]

,

Since Ẑw
t,t = 0, we have

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt + βξw

1 + ηθw
1− βξw

Et(ŵ
∗
t+1 + ŵt+1)

+ (1 + ηθw)βξwEt

∞
∑

i=0

(βξw)
i[Ẑw

t+1,t+i+1 − Ẑw
t,t+i+1]. (73)

Using the definition of Zw
t,t+i in (43), we obtain

Ẑw
t,t+i+1 = −[π̂t+i+1 − γwπ̂t+i + · · ·+ π̂t+1 − γwπ̂t]

Ẑw
t+1,t+i+1 = −[π̂t+i+1 − γwπ̂t+i + · · ·+ π̂t+2 − γwπ̂t+1].

Thus,

Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1 = π̂t+1 − γwπ̂t,

and the Zw terms in (73) can be reduced to

∞
∑

i=0

(βξw)
i[Ẑw

t+1,t+i+1 − Ẑw
t,t+i+1] =

1

1− βξw
[π̂t+1 − γwπ̂t].

Substituting this result into (73), we obtain

ŵ∗
t+ŵt =

1− βξw
1 + ηθw

(µ̂wt+m̂rst−ŵt)+(1−βξw)ŵt+βξwEt(ŵ
∗
t+1+ŵt+1)+βξwEt[π̂t+1−γwπ̂t].

(74)

This completes log-linearizing the wage decision equation. We now log-linearize the

wage index relation. In an symmetric equilibrium, the wage index relation is given by

1 = ξw

[

w̃t−1

w̃t

1

πt
πγwt−1π

1−γw

]
1

1−µwt

+ (1− ξw)(w
∗
t )

1

1−µwt , (75)

the linearized version of which is given by

ŵ∗
t =

ξw
1− ξw

(ŵt − ŵt−1 + π̂t − γwπ̂t−1)]. (76)
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Using (76) to substitute out the ŵ∗
t in (74), we obtain

ŵt +
ξw

1− ξw
[ŵt − ŵt−1 + π̂t − γwπ̂t−1]

=
1− βξw
1 + ηθw

(µ̂wt + m̂rst − ŵt) + (1− βξw)ŵt

+βξwEt

{

ŵt+1 +
ξw

1− ξw
[ŵt+1 − ŵt + π̂t+1 − γwπ̂t]

}

+ βξwEt[π̂t+1 − γwπ̂t],

or

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt)+

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t], (77)

where κw ≡ (1−βξw)(1−ξw)
ξw

.

To help understand the economics behind this equation, we define the nominal wage

inflation as

πwt =
W̄t

W̄t−1

=
w̃tP̄tλ

∗
t

w̃t−1P̄t−1λ∗t−1

=
w̃t
w̃t−1

πtλ
∗
t−1,t. (78)

The log-linearized version is given by

π̂wt = ŵt − ŵt−1 + π̂t +∆λ̂∗t ,

where ∆xt = xt−xt−1 is the first-difference operator and λ̂
∗
t =

1
1−α1

(α1q̂t+α2ẑt). Thus,

the optimal wage decision (77) is equivalent to

π̂wt − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) + βEt(π̂

w
t+1 − γwπ̂t)

+
1

1− α1
[α1(∆ẑt − βEt∆ẑt+1) + α2(∆q̂t − βEt∆q̂t+1)]. (79)

This nominal-wage Phillips curve relation parallels that of the price-Phillips curve and

has similar interpretations.

IV.3. Linearizing other stationary equilibrium conditions. Taking total differ-

entiation in the investment decision equation (45) and using the steady-state conditions

that S(λI) = S ′(λI) = 0, we obtain

q̂kt = S ′′(λI)λ
2
I

[

λ̂It − βEtλ̂I,t+1

]

, (80)

which, combined with the definition of the investment growth rate

λ̂It = ∆ît +
1

1− α1
[∆q̂t + α2∆ẑt], (81)

implies the linearized investment decision equation in the text.
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Taking total differentiation in the capital Euler equation (47) and using the steady-

state conditions that q̃k = 1, u = 1, a(1) = 0, r̃k = a′(1), and β

λI
(1 − δ + r̃k) = 1, we

obtain

q̂kt = Et

{

∆ât+1 +∆Ûc,t+1 −∆λ̂∗t+1 −∆q̂t+1 +
β

λI

[

(1− δ)q̂k,t+1 − δδ̂t+1 + r̃kr̂k,t+1

]

}

,

(82)

which, upon substituting the expressions for the ∆λ̂∗t and ∆q̂t, implies the linearized

capital Euler equation in the text.

The linearized capacity utilization decision equation (48) is given by

r̂kt = σuût, (83)

where σu ≡ a′′(1)
a′(1)

is the curvature parameter for the capacity utility function a(u)

evaluated at the steady state.

The linearized intertemporal bond Euler equation (49) is given by

0 = Et

[

∆ât+1 +∆Ûc,t+1 −∆λ̂∗t+1 + R̂t − π̂t+1

]

, (84)

which, along with the definition of the exogenous term ∆λ̂∗t+1, implies the linearized

bond Euler equation in the text.

Log-linearize the capital law of motion (50) leads to

k̂t =
1− δ

λI
[k̂t−1 −∆λ̂∗t −∆q̂t]−

δ

λI
δ̂t +

Ĩ

K̃
ît, (85)

which implies the linearized capital law of motion in the text.

To obtain the linearized resource constraint, we take total differentiation of (51) to

obtain

ŷt = cyĉt + iy ît + uyût + gyĝt, (86)

where cy =
C̃

Ỹ
, iy =

Ĩ

Ỹ
, uy =

r̃kK̃

Ỹ λI
, and gy =

G̃

Ỹ
.

Log-linearizing the aggregate production function (52), we get

ŷt = α1[k̂t−1 + ût −∆λ̂∗t −∆q̂t] + α2 l̂t

= α1

[

k̂t−1 + ût −
1

1− α1

(α2∆ẑt +∆q̂t)

]

+ α2 l̂t. (87)

The linearized version of the factor demand relation (53) is given by

ŵt = r̂kt + k̂t−1 + ût −∆λ̂∗t −∆q̂t − l̂t

= r̂kt + k̂t−1 + ût −
1

1− α1
(α2∆ẑt +∆q̂t)− l̂t (88)
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Finally, linearizing the interest rate rule (54) gives

R̂t = ρrR̂t−1 + (1− ρr) [φπ(π̂t − π̂∗(st)) + φyŷt] + σrtεrt, (89)

where

π̂∗(st) ≡ log π∗(st)− log π.

Note that, with regime-switching inflation target, we have

π̂∗(st) = 1{st = 1}π̂∗(1) + 1{st = 2}π̂∗(2) = [π̂∗(1), π̂∗(2)]est,

where

est =

[

1{st = 1}

1{st = 2}

]

.

It is useful to use the result that the random vector est follows an AR(1) process:

est = Qest−1
+ vt,

where Q is the Markov transition matrix of the regime and Et−1vt = 0.

IV.4. Summary of linearized equilibrium conditions. We now summarize the

linearized equilibrium conditions to be used for solving and estimating the model.

These conditions are listed below.

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (90)

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) +

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t]. (91)

q̂kt = S′′(λI)λ
2
I

{

∆ît +
1

1− α1

(∆q̂t + α2∆ẑt)

−βEt

[

∆ît+1 +
1

1− α1

(∆q̂t+1 + α2∆ẑt+1)

]}

(92)

q̂kt = Et

{

∆ât+1 +∆Ûc,t+1 −
1

1− α1

[α2∆ẑt+1 +∆q̂t+1]

+
β

λI

[

(1− δ)q̂k,t+1 − δδ̂t+1 + r̃k r̂k,t+1

]

}

, (93)

r̂kt = σuût, (94)

0 = Et

[

∆ât+1 +∆Ûc,t+1 −
1

1− α1

[α2∆ẑt+1 + α1∆q̂t+1] + R̂t − π̂t+1

]

, (95)

k̂t =
1− δ

λI

[

k̂t−1 −
1

1− α1

(α2∆ẑt +∆q̂t)

]

−
δ

λI

δ̂t +

(

1−
1− δ

λI

)

ît, (96)

ŷt = cy ĉt + iy ît + uyût + gyĝt, (97)

ŷt = α1

[

k̂t−1 + ût −
1

1− α1

(α2∆ẑt +∆q̂t)

]

+ α2 l̂t, (98)
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ŵt = r̂kt + k̂t−1 + ût −
1

1− α1

(α2∆ẑt +∆q̂t)− l̂t, (99)

R̂t = ρrR̂t−1 + (1 − ρr)
[

φπ(π̂t − π̂∗(st)) + φy ŷt
]

+ σrtεrt, (100)

where

m̂ct =
1

α1 + α2

[α1r̂kt + α2ŵt] + ᾱŷt, (101)

m̂rst = ηl̂t − Ûct, (102)

Ûct =
βb(1 − ρa)

λ∗ − βb
ât −

λ∗

(λ∗ − b)(λ∗ − βb)
[λ∗ĉt − b(ĉt−1 −∆λ̂∗

t )]

+
βb

(λ∗ − b)(λ∗ − βb)
[λ∗Et(ĉt+1 +∆λ̂∗

t+1)− bĉt], (103)

π̂∗(st) = [π̂∗(1), π̂∗(2)]est , est = Qest−1
+ vt, (104)

(105)

and the steady-state variables are given by

r̃k =
λI

β
− (1 − δ), (106)

uy ≡
r̃kK̃

Ỹ λI

=
α1

µp

, (107)

iy = [λI − (1− δ)]
α1

µpr̃k
, (108)

cy = 1− iy − gy, (109)

with λI ≡ (λqλ
α2

z )
1

1−α1 , λ∗ ≡ (λα2

z λ
α1

q )
1

1−α1 , ∆λ̂∗t ≡ 1
1−α1

(α1∆q̂t + α2∆ẑt), and gy cali-

brated to match the average ratio of government spending to real GDP.

Recall that θp ≡
µp
µp−1

, ∆xt = xt − xt−1, κp ≡
(1−βξp)(1−ξp)

ξp
, ᾱ ≡ 1−α1−α2

α1+α2
, θw ≡ µw

µw−1
,

κw ≡ (1−βξw)(1−ξw)
ξw

, and π̂wt = ŵt − ŵt−1 + π̂t +∆λ̂∗t ,

To compute the equilibrium, we eliminate ût by using (97), leaving 10 equations

(90)-(96) and (98)-(100) with 10 variables π̂t, ŵt, ît, q̂kt, r̂kt, ĉt, k̂t, ŷt, l̂t, and R̂t. Out

of these 10 variables, we have 7 observable variables, that is, all but q̂kt, r̂kt, and k̂t, for

our estimation. We also include the biased technology shock q̂t in the set of observable

variables.

V. General setup for estimation

In this section, we describe our empirical strategy in general terms so that the method

can be applied to any state-space-form model.

Consider a regime-switching DSGE model with st following a Markov-switching pro-

cess. Let θ be a vector of all the model parameters except the transition matrix for

st. Let yt be an n × 1 vector of observable variables. In our case, n = 8. The vector

yt is connected to the state vector ft. For our regime-switching DSGE model, this
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state-space representation implies a non-standard Kalman-filter problem as discussed

in Kim and Nelson (1999).

Let (Yt, θ, Q, St) be a collection of random variables where

Yt = (y1, · · · , yt) ∈ (Rn)t ,

θ = (θi)i∈H ∈ (Rr)h ,

Q = (qi,j)(i,j)∈H×H ∈ R
h2,

St = (s0, · · · , st) ∈ H t+1,

STt+1 = (st+1, · · · , sT ) ∈ HT−t,

and H is a finite set with h elements and is usually taken to be the set {1, · · · , h}.

Because st represents a composite regime, h can be greater than the actual number

of regimes at time t. The matrix Q is the Markov transition matrix and qi,j is the

probability that st is equal to i given that st−1 is equal to j. The matrix Q is restricted

to satisfy

qi,j ≥ 0 and
∑

i∈H

qi,j = 1.

The object θ is a vector of all the model parameters except the elements in Q. The

object St represents a sequence of unobserved regimes or states. We assume that

(Yt, θ, Q, St) has a joint density function p (Yt, θ, Q, St), where we use the Lebesgue

measure on (Rn)t × (Rr)h × R
h2 and the counting measure on H t+1. This density

satisfies the following key condition.

Condition 1.

p (st | Yt−1, θ, Q, St−1) = qst,st−1

for t > 0.

V.1. Propositions for Hamilton filter. Given p(yt | Yt−1, θ, Q, st) for all t, the

following propositions follow from Condition 1 (Hamilton, 1989; Chib, 1996; Sims,

Waggoner, and Zha, 2008).

Proposition 1.

p (st | Yt−1, θ, Q) =
∑

st−1∈H

qst,st−1
p (st−1 | Yt−1, θ, Q)

for t > 0.
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Proposition 2.

p (st | Yt, θ, Q) =
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

∑

st−1∈H
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

for t > 0.

Proposition 3.

p (st | Yt, θ, Q, st+1) = p
(

st | YT , θ, Q, S
T
t+1

)

for 0 ≤ t < T .

V.2. Likelihood. We follow the standard assumption in the literature that the initial

data Y0 is taken as given. Using Kim and Nelson (1999)’s Kalman-filter updating

procedure, we obtain the conditional likelihood function at time t

p (yt | Yt−1, θ, Q, st) . (110)

It follows from the rules of conditioning that

p (yt, | Yt−1, θ, Q) =
∑

st∈H

p (yt, st | Yt−1, θ, Q)

=
∑

st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q) .

Using (110) and the above equation, one can show that the likelihood function of YT is

p (YT | θ,Q) =

T
∏

t=1

p (yt | Yt−1, θ, Q)

=
T
∏

t=1

[

∑

st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

]

.

(111)

We assume that p (s0 | Y0, θ, Q) = 1
h
for every s0 ∈ H .1 Given this initial condition,

the likelihood function (111) can be evaluated recursively, using Propositions 1 and 2.

V.3. Posterior distributions. The prior for all the parameters is denoted by p (θ,Q),

which will be discussed further in the main text of the article. By the Bayes rule, it

follows from (111) that the posterior distribution of (θ,Q) is

p(θ,Q | YT ) ∝ p(θ,Q)p(YT | θ,Q). (112)

The posterior density p(θ,Q | YT ) is unknown and complicated; the Monte Carlo

Markov Chain (MCMC) simulation directly from this distribution can be inefficient

1The conventional assumption for p (s0 | θ,Q) is the ergodic distribution of Q, if it exists. This

convention, however, precludes the possibility of allowing for an absorbing regime or state.
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and problematic. One can, however, use the idea of Gibbs sampling to obtain the

empirical joint posterior density p(θ,Q, ST | YT ) by sampling alternately from the

following conditional posterior distributions:

p(ST | YT , θ, Q),

p(Q | YT , ST , θ),

p(θ | YT , Q, ST ).

One can use the Metropolis-Hastings sampler to sample from the conditional posterior

distributions p(θ | YT , Q, ST ) and p(Q | YT , ST , θ). To simulate from the distribution

p(ST | YT , θ, Q), we can see from the rules of conditioning that

p (ST | YT , θ, Q) = p (sT | YT , θ, Q) p
(

ST−1 | YT , θ, Q, S
T
T

)

= p (sT | YT , θ, Q)

T−1
∏

t=0

p
(

st | YT , θ, Q, S
T
t+1

)

(113)

where STt+1 = {st+1, · · · , sT}. From Proposition 3,

p
(

st | YT , θ, Q, S
T
t+1

)

= p (st | Yt, θ, Q, st+1)

=
p (st, st+1 | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
p (st+1 | Yt, θ, Q, st) p (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
qst+1,stp (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)
.

(114)

The conditional density p
(

st | YT , ZT , θ, Q, S
T
t+1

)

is straightforward to evaluate accord-

ing to Propositions 1 and 2.

To draw ST , we use the backward recursion by drawing the last state sT from the

terminal density p(sT |YT , θ, Q) and then drawing st recursively given the path STt+1

according to (114). It can be seen from (113) that draws of ST this way come from

Pr(ST |YT , θ).

V.4. Marginal posterior density of st. The smoothed probability of st given the

values of the parameters and the data can be evaluated through backward recursions.
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Starting with sT and working backward, we can calculate the probability of st condi-

tional on YT , θ, Q by using the following fact

p (st | YT , θ, Q) =
∑

st+1∈H

p (st, st+1 | YT , θ, Q)

=
∑

st+1∈H

p (st | YT , θ, Q, st+1) p (st+1 | YT , θ, Q)

where p (st | Yt, θ, Q, st+1) can be evaluated according to (114).
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TECHNICAL APPENDIX II
SOURCES OF MACROECONOMIC FLUCTUATIONS: A

REGIME-SWITCHING DSGE APPROACH
(NOT INTENDED FOR PUBLICATION)

ZHENG LIU, DANIEL F. WAGGONER, AND TAO ZHA

This technical appendix differs from Technical Appendix I by allowing the price and

wage indexation rules and the interest rate rule to reflect regime changes in the inflation

target. Under this alternative specification, we derive the optimizing decisions, describe

the stationary equilibrium, and derive the log-linearized equilibrium conditions in the

paper entitled “Sources of Macroeconomic Fluctuations: A Regime-Switching DSGE

Approach” by Liu, Waggoner, and Zha.

For a quick reference, the equations affected by the dynamic indexation rules and

the dynamic Taylor rule include (16), (19), (22), (68), (69), (67), (70), (71), (72), (73),

(76), (78), (79), (80), (82), (93), (94), and (103).

I. The optimizing decisions

I.1. Households’ optimizing decisions. Each household chooses consumption, in-

vestment, new capital stock, capacity utilization, and next-period bond to solve the

following utility maximizing problem:

Max{Ct,It,Kt,ut,Bt+1} E
∞
∑

t=0

βtAt

{

log(Ct − bCt−1)−
ψ

1 + η
Ldt+i(h)

1+η

}

(1)

subject to

P̄tCt+
P̄t
Qt

(It+a(ut)Kt−1)+EtDt,t+1Bt+1 ≤Wt(h)L
d
t (h)+P̄trktutKt−1+Πt+Bt+Tt, (2)

Kt = (1− δt)Kt−1 +

[

1− S

(

It
It−1

)]

It, (3)

Date: January 24, 2011.

1
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Denote by µt the Lagrangian multiplier for the budget constraint (2) and by µkt the

Lagrangian multiplier for the capital accumulation equation (3). The first order con-

ditions for the utility-maximizing problem are given by

AtUct = µtP̄t, (4)

Dt,t+1 = β
µt+1

µt
, (5)

µtP̄t
Qt

= µkt {1− S(λIt)− S ′(λIt)λIt}+ βEtµk,t+1S
′(λI,t+1)(λI,t+1)

2 (6)

µkt = βEt

[

µk,t+1(1− δt+1) + µt+1P̄t+1rk,t+1ut+1 −
µt+1P̄t+1

Qt+1
a(ut+1)

]

, (7)

rkt =
a′(ut)

Qt

, (8)

where λIt ≡ It/It−1.

Let qkt ≡ Qt
µkt
µtP̄t

denote the shadow price of capital stock (in units of investment

goods). Then, (4) and (6) imply that

1

Qt

=
qkt
Qt

{1− S(λIt)− S ′(λIt)λIt}+ βEt
qk,t+1

Qt+1

At+1Uc,t+1

AtUct
S ′(λI,t+1)(λI,t+1)

2. (9)

Thus, in the absence of adjustment cost or in the steady-state equilibrium where

S(λI) = S ′(λI) = 0, we have qkt = 1. One can interpret qkt as Tobin’s Q.

By eliminating the Lagrangian multipliers µt and µkt, the capital Euler equation (7)

can be rewritten as

qkt
Qt

= βEt
At+1Uc,t+1

AtUct

[

(1− δt+1)
qk,t+1

Qt+1
+ rk,t+1ut+1 −

a(ut+1)

Qt+1

]

. (10)

The cost of acquiring a marginal unit of capital is qkt/Qt today (in consumption unit).

The benefit of having this extra unit of capital consists of the expected discounted

future resale value and the rental value net of utilization cost.

By eliminating the Lagrangian multiplier µt, the first-order condition with respect

to bond holding can be written as

Dt,t+1 = β
At+1Uc,t+1

AtUct

P̄t
P̄t+1

. (11)

Denote by Rt = [EtDt,t+1]
−1 the interest rate for a one-period risk-free nominal bond.

Then we have
1

Rt

= βEt

[

At+1Uc,t+1

AtUct

P̄t
P̄t+1

]

. (12)

In each period t, a fraction ξw of households re-optimize their nominal wage setting

decisions. Those households who can re-optimize wage setting chooses the nominal
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wage Wt(h) to maximize

Et

∞
∑

i=0

βiξiwAt+i[log(Ct+i − bCt+i−1)−
ψ

1 + η
Ldt+i(h)

1+η] + (13)

µt+i[Wt(h)χ
w
t,t+iL

d
t+i(h) +mt+i], (14)

where the labor demand schedule is given by

Ldt+i(h) =

(

Wt(h)χ
w
t,t+i

W̄t+i

)−θwt

Lt+i, θwt =
µwt

µwt − 1
, (15)

the term mt is given by

mt = P̄trktutKt−1 +Πt +Bt + Tt − P̄tCt −
P̄t
Qt

(It + a(ut)Kt−1)− EtDt,t+1Bt+1,

and the term χwt,t+i is given by

χwt,t+i ≡

{

Πi
k=1π

γw
t+k−1π

∗(st+k)
1−γwλ∗t,t+i if i ≥ 1

1 if i = 0,
(16)

where λ∗t,t+i ≡
λ∗t+i

λ∗t
and π∗(st) is the regime-dependent inflation target.

The first-order condition for the wage-setting problem is given by

Et

∞
∑

i=0

(βξw)
i

{

−At+iψL
d
t+i(h)

η ∂L
d
t+i(h)

∂Wt(h)
+ µt+i(1− θw,t+i)χ

w
t,t+iL

d
t+i(h)

}

= 0, (17)

where

∂Ldt+i(h)

∂Wt(h)
= −θw,t+i

Ldt+i(h)

Wt(h)
= −

µw,t+i
µw,t+i − 1

Ldt+i(h)

Wt(h)
.

Factoring out the common terms and rearranging, we obtain

Et

∞
∑

i=0

(βξw)
iµt+i
µt

Ldt+i(h)
1

µw,t+i − 1

{

µw,t+i
ψAt+iL

d
t+i(h)

η

µt+i
− χwt,t+iWt(h)

}

= 0.

Let MRSt(h) ≡
ψAtL

d
t (h)

η

µt
denote the marginal rate of substitution between leisure and

income. Then, using (11), we can rewrite the first-order condition for wage setting as

Et

∞
∑

i=0

ξiwDt,t+iL
d
t+i(h)

1

µw,t+i − 1

{

µw,t+iMRSt+i(h)− χwt,t+iWt(h)
}

= 0. (18)
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I.2. Firms’ optimizing decisions. Pricing decisions are staggered across firms. In

each period, a fraction ξp of firms can re-optimize their pricing decisions and the other

fraction 1− ξp of firms mechanically update their prices according to the rule

Pt(j) = π
γp
t−1π

∗(st)
1−γpPt−1(j), (19)

If a firm can re-optimize, it chooses Pt(j) to solve

MaxPt(j) Et

∞
∑

i=0

ξipDt,t+i[Pt(j)χ
p
t,t+iY

d
t+i(j)− Vt+i(j)], (20)

subject to

Y d
t+i(j) =

(

Pt(j)χ
p
t,t+i

P̄t+i

)−
µp,t+i

µp,t+i−1

Yt+i, (21)

where Vt+i(j) is the cost function and the term χpt,t+i comes from the price-updating

rule (19) and is given by

χpt,t+i =

{

Πi
k=1π

γp
t+k−1π

∗(st+k)
1−γp if i ≥ 1

1 if i = 0.
(22)

The first order condition for the profit-maximizing problem yields the optimal pricing

rule

Et

∞
∑

i=0

ξipDt,t+iY
d
t+i(j)

1

µp,t+i − 1

[

µp,t+iΦt+i(j)− Pt(j)χ
p
t,t+i

]

= 0, (23)

where Φt+i(j) = ∂Vt+i(j)/∂Y
d
t+i(j) denotes the marginal cost function. In the absence

of markup shocks, µpt would be a constant and (23) implies that the optimal price is

a markup over an average of the marginal costs for the periods in which the price will

remain effective. Clearly, if ξp = 0 for all t, that is, if prices are perfectly flexible, then

the optimal price would be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

Φt(j) =

[

α̃(P̄trkt)
α1

(

W̄t

Zt

)α2
]

1

α1+α2

Yt(j)
1

α1+α2
−1
, (24)

where α̃ ≡ α−α1

1 α−α2

2 and rkt denotes the real rental rate of capital input. The condi-

tional factor demand functions are given by

W̄t = Φt(j)α2
Yt(j)

Lft (j)
, (25)

P̄trkt = Φt(j)α1
Yt(j)

Kf
t (j)

. (26)
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It follows that

W̄t

P̄trkt
=
α2

α1

Kf
t (j)

Lft (j)
, ∀j ∈ [0, 1]. (27)

I.3. Market clearing. In equilibrium, markets for bond, composite labor, capital

stock, and composite goods all clear. Bond market clearing implies that Bt = 0 for all

t. Labor market clearing implies that
∫ 1

0
Lft (j)dj = Lt. Capital market clearing implies

that
∫ 1

0
Kf
t (j)dj = utKt−1. Composite goods market clearing implies that

Ct +
1

Qt

[It + a(ut)Kt−1] +Gt = Yt, (28)

where aggregate output is related to aggregate primary factors through the aggregate

production function

GptYt = (utKt−1)
α1(ZtLt)

α2 , (29)

with Gpt ≡
∫ 1

0

(

Pt(j)
P̄t

)−
µpt

µpt−1

1

α1+α2 dj measuring the price dispersion.

II. Stationary equilibrium conditions

Since both the neutral technology and the investment-specific technology are growing

over time, we transform the appropriate variables to induce stationarity. In particular,

we denote by X̃t the stationary counterpart of the variableXt and we make the following

transformations:

Ỹt =
Yt
λ∗t
, C̃t =

Ct
λ∗t
, Ĩt =

It
Qtλ∗t

, G̃t =
Gt

λ∗t
, K̃t =

Kt

Qtλ∗t
,

w̃t =
W̄t

P̄tλ∗t
, r̃kt = rktQt, Ũct = Uctλ

∗
t ,

where the underlying trend for output is given by

λ∗t ≡ (Zα2

t Q
α1

t )
1

1−α1 .

II.1. Stationary pricing decisions. In terms of the stationary variables, we can

rewrite the optimal pricing decision (23) as

Et

∞
∑

i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

1

µp,t+i − 1
[µp,t+iφt+i(j)− p∗tZ

p
t,t+i] = 0. (30)

In this equation, Ỹ d
t+i(j) =

Y d
t+i(j)

λ∗t+i
denotes the detrended output demand; p∗t ≡ Pt(j)

P̄t

denotes the relative price for optimizing firms, which does not have a j index since all
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optimizing firms make identical pricing decisions in a symmetric equilibrium; the term

Zp
t,t+i is defined as

Zp
t,t+i =

χpt,t+i
∏i

k=1 πt+k
(31)

and finally, the term φt+i(j) ≡
Φt+i(j)

P̄t+i
denotes the real unit cost function, which is given

by

φt+i(j) =

[

α̃

(

r̃k,t+i
Qt+i

)α1
(

w̃t+i
λ∗t+i
Zt+i

)α2
]

1

α1+α2

Y d
t+i(j)

1

α1+α2
−1

= [α̃ (r̃k,t+i)
α1 (w̃t+i)

α2 ]
1

α1+α2 Ỹ d
t+i(j)

1

α1+α2
−1
. (32)

The demand schedule Ỹ d
t+i(j) for the optimizing firm j is related to the relative price

and aggregate output through

Ỹ d
t+i(j) =

[

Pt(j)χ
p
t,t+i

P̄t+i

]−θp,t+i

Ỹt+i

=

[

p∗t
P̄t
P̄t+i

χpt,t+i

]−θp,t+i

Ỹt+i

= [p∗tZ
p
t,t+i]

−θp,t+iỸt+i. (33)

Combining (32) and (33), we have

φt+i(j) = φ̃t+i[p
∗
tZ

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ, (34)

where ᾱ ≡ 1−α1−α2

α1+α2
and

φ̃t+i ≡ [α̃ (r̃k,t+i)
α1 (w̃t+i)

α2 ]
1

α1+α2 . (35)

Given these relations, we can rewrite the optimal pricing rule (30) in terms of sta-

tionary variables

Et

∞
∑

i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

µp,t+i − 1
[µp,t+iφ̃t+i[p

∗
tZ

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ − p∗tZ

p
t,t+i] = 0, (36)

where φ̃ is defined in (35).

II.2. Stationary wage setting decision. Using (4) and (11), we can rewrite the

optimal wage-setting decision (18) as

Et

∞
∑

i=0

(βξw)
iAt+iUc,t+i

AtUct

P̄t
P̄t+i

Ldt+i(h)
1

µw,t+i − 1
[µw,t+iψ

Ldt+i(h)
η

Uc,t+i
P̄t+i −Wt(h)χ

w
t,t+i] = 0,

(37)
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where the labor demand schedule Ldt+i(h) is related to aggregate variables through

Ldt+i(h) =

[

Wt(h)χ
w
t,t+i

W̄t+i

]−θw,t+i

Lt+i (38)

=

[

w∗
t

W̄t

W̄t+i

χwt,t+i

]−θw,t+i

Lt+i (39)

=

[

w∗
t

w̃tP̄tλ
∗
t

w̃t+iP̄t+iλ∗t+i
χwt,t+i

]−θw,t+i

Lt+i (40)

=

[

w∗
t w̃t
w̃t+i

χwt,t+i
∏i

k=1 πt+kλ
∗
t,t+i

]−θw,t+i

Lt+i (41)

≡

[

w∗
t w̃t
w̃t+i

Zw
t,t+i

]−θw,t+i

Lt+i, (42)

with Zw
t,t+i defined as

Zw
t,t+i =

χwt,t+i
∏i

k=1 πt+kλ
∗
t,t+i

. (43)

Further, we can rewrite the individual optimal nominal wage Wt(h) as

Wt(h) = w∗
t W̄t = w∗

t w̃tP̄tλ
∗
t .

Given these relations, we can rewrite the wage setting rule (37) in terms of the

stationary variables. With some cancelations, we obtain

Et

∞
∑

i=0

i
∏

k=1

(βξw)
iAt+iŨc,t+iL

d
t+i(h)

µw,t+i − 1

{

µw,t+iψ

[

w∗
t w̃t
w̃t+i

Zw
t,t+i

]−ηθw,t+i Lηt+i

Ũc,t+i
− w∗

t w̃tZ
w
t,t+i

}

= 0.

(44)

II.3. Other stationary equilibrium conditions. We now rewrite the rest of the

equilibrium conditions in terms of stationary variables.

First, the optimal investment decision equation (9) can be written as

1 = qkt {1− S(λIt)− S ′(λIt)λIt}+ βEtqk,t+1
λ∗tQt

λ∗t+1Qt+1

At+1Ũc,t+1

AtŨct
S ′(λI,t+1)(λI,t+1)

2,

(45)

where

λIt =
It
It−1

=
ĨtQtλ

∗
t

Ĩt−1Qt−1λ∗t−1

. (46)

Second, the capital Euler equation (10) can be written as

qkt = βEt
At+1Ũc,t+1

AtŨct

λ∗tQt

λ∗t+1Qt+1
[(1− δt+1)qk,t+1 + r̃k,t+1ut+1 − a(ut+1)] . (47)
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Third, the optimal capacity utilization decision (8) is equivalent to

r̃kt = a′(ut). (48)

Fourth, the intertemporal bond Euler equation (12) can be written as

1

Rt

= βEt

[

λ∗t
λ∗t+1

At+1Ũc,t+1

AtŨct

1

πt+1

]

. (49)

Fifth, the law of motion for capital stock in (3) can be written as

K̃t = (1− δt)
λ∗t−1Qt−1

λ∗tQt

K̃t−1 + [1− S(λIt)]Ĩt. (50)

Sixth, the aggregate resource constraint is given by

C̃t + Ĩt +
λ∗t−1Qt−1

λ∗tQt

a(ut)K̃t−1 + G̃t = Ỹt. (51)

Seventh, the aggregate production function (29) can be written as

GptỸt =

[

λ∗t−1Qt−1

λ∗tQt

utK̃t−1

]α1

Lα2

t . (52)

Eighth, firms’ cost-minimizing implies that, in the stationary equilibrium, we have

w̃t
r̃kt

=
α2

α1

λ∗t−1Qt−1

λ∗tQt

utK̃t−1

Lt
. (53)

Finally, the interest rate rule is given by

Rt = κRρr
t−1

[

rπ∗(st)

(

πt
π∗(st)

)φπ

Ỹ
φy
t

]1−ρr

eσrtεrt, (54)

where r is the steady-state real interest rate and κ is a constant that captures the

steady-state value of Ỹ −φy(1−ρr).

III. Steady State

A deterministic steady state is an equilibrium in which all stochastic shocks are

shut off. Our model contains a non-standard “shock”: the Markov regime switching

in monetary policy regime and the shock regime. In computing the steady-state equi-

librium, we shut off all shocks, including the regime shocks. Since there is a mapping

between any finite-state Markov switching process and a vector AR(1) process (Hamil-

ton, 1994), shutting off the regime shocks in the steady state is equivalent to setting

the innovations in the AR(1) process to its unconditional mean (which is zero). In such

a steady state, all stationary variables are constant.
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In the steady state, p∗ = 1 and Zp = 1, so that the price setting rule (36) reduces to

1

µp
= [α̃r̃α1

k w̃
α2]

1

α1+α2 Ỹ ᾱ. (55)

That is, the real marginal cost is constant and equals the inverse markup.

Similarly, in the steady state, w∗ = 1 and Zw = 1, so that the wage setting rule (44)

reduces to

w̃ = µw
ψLη

Ũc
, (56)

which says that the real wage is a constant markup over the marginal rate of substitu-

tion between leisure and consumption.

Given that the steady-state markup, and thus the steady-state real marginal cost,

is a constant, the conditional factor demand function (26) for capital input together

with the capital market clearing condition imply that

r̃k =
α1

µp

Ỹ λqλ
∗

K̃
. (57)

The rest of the steady-state equilibrium conditions for the private sector come from

(45) -(53) and are summarized below:

1 = qk, (58)

λqλ
∗

β
= 1− δ + r̃k, (59)

r̃k = a′(1), (60)

R =
λ∗

β
π, (61)

Ĩ

K̃
= 1−

1− δ

λqλ∗
, (62)

Ỹ = C̃ + Ĩ + G̃, (63)

Ỹ =

(

K̃

λqλ∗

)α1

Lα2 , (64)

w̃

r̃k
=

1

λqλ∗
α2

α1

K̃

L
. (65)

IV. Linearized equilibrium conditions

We now describe our procedure to linearize the stationary equilibrium conditions

around the deterministic steady state.
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IV.1. Linearizing the price setting rule. Log-linearizing the price setting rule (36)

around the steady state, we get

Et ln
∞
∑

i=0

(βξp)
i exp

{

ât+i + ûc,t+i + ŷdt+i(h)−
µp

µp − 1
µ̂p,t+i + µ̂p,t+i+

ˆ̃φt+i − θpᾱ[p̂
∗
t + Ẑp

t,t+i] + ᾱŷt+i

}

≈ Et ln
∞
∑

i=0

(βξp)
i exp

{

ât+i + ûc,t+i + ŷdt+i(h)−
µp

µp − 1
µ̂p,t+i + p̂∗t + Ẑp

t,t+i

}

,

where

ˆ̃φt+i =
1

α1 + α2

[α1r̂k,t+i + α2ŵt+i]. (66)

Collecting terms to get

Et

∞
∑

i=0

(βξp)
i
{

µ̂p,t+i +
ˆ̃φt+i − θpᾱ[p̂

∗
t + Ẑp

t,t+i] + ᾱŷt+i

}

≈ Et

∞
∑

i=0

(βξp)
i
{

p̂∗t + Ẑp
t,t+i

}

.

Further simplifying

1 + θpᾱ

1− βξp
p̂∗t = Et

∞
∑

i=0

(βξp)
i
{

µ̂p,t+i +
ˆ̃φt+i + ᾱŷt+i − (1 + θpᾱ)Ẑ

p
t,t+i

}

.

Denote m̂ct+i ≡
ˆ̃
φt+i + ᾱŷt+i. Expanding the infinite sum in the above equation, we

get

1 + ᾱθp
1− βξp

p̂∗t = µ̂pt + m̂ct − (1 + θpᾱ)Ẑ
p
t,t

+ βξpEt[µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑ
p
t,t+1]

+ (βξp)
2Et[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑ

p
t,t+2] + . . .

Forwarding this relation one period to get

1 + ᾱθp
1− βξp

p̂∗t+1 = µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑ
p
t+1,t+1

+ βξpEt+1[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑ
p
t+1,t+2]

+ (βξp)
2Et+1[µ̂p,t+3 + m̂ct+3 − (1 + θpᾱ)Ẑ

p
t+1,t+3] + . . .
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Moving the Zp
t,t+i terms to the left, we have

1 + ᾱθp
1− βξp

p̂∗t + (1 + ᾱθp)Et[Ẑ
p
t,t + βξpẐ

p
t,t+1 + ...] = µ̂pt + m̂ct

+βξpEt[µ̂p,t+1 + m̂ct+1]

+(βξp)
2Et[µ̂p,t+2 + m̂ct+2] + . . .

= µ̂pt + m̂ct

+βξp

[

1 + ᾱθp
1− βξp

Etp̂
∗
t+1 + (1 + ᾱθp)Et[Ẑ

p
t+1,t+1 + βξpẐ

p
t+1,t+2 + ...]

]

,

Since Ẑp
t,t = 0, we have

1 + ᾱθp
1− βξp

p̂∗t = µ̂pt + m̂ct + βξp
1 + ᾱθp
1− βξp

Etp̂
∗
t+1

+ (1 + ᾱθp)βξpEt

∞
∑

i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1]. (67)

Using the definition of Zp
t,t+i in (31), we obtain

Ẑp
t,t+i+1 = −[π̂t+i+1 − γpπ̂t+i − (1− γp)π̂

∗
t+i+1 + · · ·+ π̂t+1 − γpπ̂t − (1− γp)π̂

∗
t+1],

(68)

Ẑp
t+1,t+i+1 = −[π̂t+i+1 − γpπ̂t+i − (1− γp)π̂

∗
t+i+1 + · · ·+ π̂t+2 − γpπ̂t+1 − (1− γp)π̂

∗
t+2].

(69)

Thus,

Ẑp
t+1,t+i+1 − Ẑp

t,t+i+1 = π̂t+1 − γpπ̂t − (1− γp)π̂
∗
t+1,

and the Zp terms in (67) can be reduced to

∞
∑

i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1] =

1

1− βξp
[π̂t+1 − γpπ̂t − (1− γp)π̂

∗
t+1].

Substituting this result into (67), we obtain

p̂∗t =
1− βξp
1 + ᾱθp

(µ̂pt + m̂ct) + βξpEtp̂
∗
t+1 + βξpEt[π̂t+1 − γptπ̂t − (1− γp)π̂

∗
t+1]. (70)

This completes log-linearizing the optimal price setting equation. We now log-linearize

the price index relation. In an symmetric equilibrium, the price index relation is given

by

1 = ξp

[

1

πt
π
γp
t−1π

∗(st)
1−γp

]
1

1−µpt

+ (1− ξp)(p
∗
t )

1

1−µpt , (71)

the linearized version of which is given by

p̂∗t =
ξp

1− ξp
(π̂t − γpπ̂t−1 − (1− γp)π̂

∗
t ). (72)
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Using (72) to substitute out the p̂∗t in (70), we obtain

ξp
1− ξp

[π̂t − γpπ̂t−1 − (1− γp)π̂
∗
t ]

=
1− βξp
1 + ᾱθp

(µ̂pt + m̂ct)

+βξp
ξp

1− ξp
Et[π̂t+1 − γpπ̂t − (1− γp)π̂

∗
t+1] + βξpEt[π̂t+1 − γpπ̂t − (1− γp)π̂

∗
t+1],

or

π̂t − γpπ̂t−1 − (1− γp)π̂
∗
t =

κp
1 + ᾱθp

(µ̂pt+ m̂ct) + βEt[π̂t+1 − γpπ̂t − (1− γp)π̂
∗
t+1], (73)

where the real marginal cost is given by

m̂ct =
1

α1 + α2

[α1r̂k,t+i + α2ŵt+i] + ᾱŷt. (74)

and the term κp is given by

κp ≡
(1− βξp)(1− ξp)

ξp

This completes the derivation of the price Phillips curve.

IV.2. Linearizing the optimal wage setting rule. Log-linearizing this wage deci-

sion rule, we get

Et ln
∞
∑

i=0

(βξw)
i exp

{

ât+i + ûc,t+i + l̂dt+i(h)−
µw

µw − 1
µ̂w,t+i + µ̂w,t+i−

ηθw[ŵ
∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et ln
∞
∑

i=0

(βξw)
i exp

{

ât+i + ûc,t+i + l̂dt+i(h)−
µw

µw − 1
µ̂w,t+i + ŵ∗

t + ŵt + Ẑw
t,t+i

}

.

Collecting terms to get

Et

∞
∑

i=0

(βξw)
i
{

µ̂w,t+i − ηθw[ŵ
∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et

∞
∑

i=0

(βξw)
i
{

ŵ∗
t + ŵt + Ẑw

t,t+i

}

.

Further simplifying

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) = Et

∞
∑

i=0

(βξw)
i
{

µ̂w,t+i + ηl̂t+i − ûc,t+i + ηθwŵt+i − (1 + ηθw)Ẑ
w
t,t+i

}

.
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Denote m̂rst+i ≡ ηl̂t+i − ûc,t+i. Expanding the infinite sum in the above equation,

we get

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)(ŵt − Ẑw

t,t)

+ βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw
t,t+1)]

+ (βξw)
2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw

t,t+2)] + . . .

Forwarding this relation one period to get

1 + ηθw
1− βξw

(ŵ∗
t+1 + ŵt+1) = µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw

t+1,t+1)

+ βξwEt+1[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw
t+1,t+2)]

+ (βξw)
2Et+1[µ̂w,t+3 + m̂rst+3 − ŵt+3 + (1 + ηθw)(ŵt+3 − Ẑw

t+1,t+3)] + . . .

Moving the Zw
t,t+i terms to the left, we have

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) + (1 + ηθw)Et[Ẑ

w
t,t + βξwẐ

w
t,t+1 + ...] = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)ŵt+1]

+(βξw)
2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)ŵt+2] + . . .

= µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt

[

1 + ηθw
1− βξw

(ŵ∗
t+1 + ŵt+1) + (1 + ηθw)[Ẑ

w
t+1,t+1 + βξwẐ

w
t+1,t+2 + ...]

]

,

Since Ẑw
t,t = 0, we have

1 + ηθw
1− βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt + βξw

1 + ηθw
1− βξw

Et(ŵ
∗
t+1 + ŵt+1)

+ (1 + ηθw)βξwEt

∞
∑

i=0

(βξw)
i[Ẑw

t+1,t+i+1 − Ẑw
t,t+i+1]. (75)

Using the definition of Zw
t,t+i in (43), we obtain

Ẑw
t,t+i+1 = −[π̂t+i+1 − γwπ̂t+i − (1− γw)π̂

∗
t+i+1 + · · ·+ π̂t+1 − γwπ̂t − (1− γw)π̂

∗
t+1]

Ẑw
t+1,t+i+1 = −[π̂t+i+1 − γwπ̂t+i − (1− γw)π̂

∗
t+i+1 + · · ·+ π̂t+2 − γwπ̂t+1 − (1− γw)π̂

∗
t+2].

Thus,

Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1 = π̂t+1 − γwπ̂t − (1− γw)π̂
∗
t+1, (76)

and the Zw terms in (75) can be reduced to

∞
∑

i=0

(βξw)
i[Ẑw

t+1,t+i+1 − Ẑw
t,t+i+1] =

1

1− βξw
[π̂t+1 − γwπ̂t − (1− γw)π̂

∗
t+1].
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Substituting this result into (75), we obtain

ŵ∗
t+ŵt =

1− βξw
1 + ηθw

(µ̂wt+m̂rst−ŵt)+(1−βξw)ŵt+βξwEt(ŵ
∗
t+1+ŵt+1)+βξwEt[π̂t+1−γwπ̂t−(1−γw)π̂

∗
t+1].

(77)

This completes log-linearizing the wage decision equation. We now log-linearize the

wage index relation. In an symmetric equilibrium, the wage index relation is given by

1 = ξw

[

w̃t−1

w̃t

1

πt
πγwt−1π

∗(st)
1−γw

]
1

1−µwt

+ (1− ξw)(w
∗
t )

1

1−µwt , (78)

the linearized version of which is given by

ŵ∗
t =

ξw
1− ξw

(ŵt − ŵt−1 + π̂t − γwπ̂t−1)− (1− γw)π̂
∗
t ]. (79)

Using (79) to substitute out the ŵ∗
t in (77), we obtain

ŵt +
ξw

1− ξw
[ŵt − ŵt−1 + π̂t − γwπ̂t−1 − (1− γw)π̂

∗
t ]

=
1− βξw
1 + ηθw

(µ̂wt + m̂rst − ŵt) + (1− βξw)ŵt

+βξwEt

{

ŵt+1 +
ξw

1− ξw
[ŵt+1 − ŵt + π̂t+1 − γwπ̂t − (1− γw)π̂

∗
t+1]

}

+βξwEt[π̂t+1 − γwπ̂t − (1− γw)π̂
∗
t+1],

or

ŵt − ŵt−1 + π̂t − γwπ̂t−1 − (1− γw)π̂
∗
t =

κw
1 + ηθw

(µ̂wt + m̂rst − ŵt)+

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t − (1− γw)π̂
∗
t+1], (80)

where κw ≡ (1−βξw)(1−ξw)
ξw

.

To help understand the economics behind this equation, we define the nominal wage

inflation as

πwt =
W̄t

W̄t−1

=
w̃tP̄tλ

∗
t

w̃t−1P̄t−1λ∗t−1

=
w̃t
w̃t−1

πtλ
∗
t−1,t. (81)

The log-linearized version is given by

π̂wt = ŵt − ŵt−1 + π̂t +∆λ̂∗t ,

where ∆xt = xt−xt−1 is the first-difference operator and λ̂
∗
t =

1
1−α1

(α1q̂t+α2ẑt). Thus,

the optimal wage decision (80) is equivalent to

π̂wt − γwπ̂t−1 − (1− γw)π̂
∗
t =

κw
1 + ηθw

(µ̂wt + m̂rst − ŵt) + βEt(π̂
w
t+1 − γwπ̂t − (1− γw)π̂

∗
t+1)

+
1

1− α1
[α1(∆ẑt − βEt∆ẑt+1) + α2(∆q̂t − βEt∆q̂t+1)].(82)
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This nominal-wage Phillips curve relation parallels that of the price-Phillips curve and

has similar interpretations.

IV.3. Linearizing other stationary equilibrium conditions. Taking total differ-

entiation in the investment decision equation (45) and using the steady-state conditions

that S(λI) = S ′(λI) = 0, we obtain

q̂kt = S ′′(λI)λ
2
I

[

λ̂It − βEtλ̂I,t+1

]

, (83)

which, combined with the definition of the investment growth rate

λ̂It = ∆ît +
1

1− α1

[∆q̂t + α2∆ẑt], (84)

implies the linearized investment decision equation in the text.

Taking total differentiation in the capital Euler equation (47) and using the steady-

state conditions that q̃k = 1, u = 1, a(1) = 0, r̃k = a′(1), and β

λI
(1 − δ + r̃k) = 1, we

obtain

q̂kt = Et

{

∆ât+1 +∆Ûc,t+1 −∆λ̂∗t+1 −∆q̂t+1 +
β

λI

[

(1− δ)q̂k,t+1 − δδ̂t+1 + r̃kr̂k,t+1

]

}

,

(85)

which, upon substituting the expressions for the ∆λ̂∗t and ∆q̂t, implies the linearized

capital Euler equation in the text.

The linearized capacity utilization decision equation (48) is given by

r̂kt = σuût, (86)

where σu ≡ a′′(1)
a′(1)

is the curvature parameter for the capacity utility function a(u)

evaluated at the steady state.

The linearized intertemporal bond Euler equation (49) is given by

0 = Et

[

∆ât+1 +∆Ûc,t+1 −∆λ̂∗t+1 + R̂t − π̂t+1

]

, (87)

which, along with the definition of the exogenous term ∆λ̂∗t+1, implies the linearized

bond Euler equation in the text.

Log-linearize the capital law of motion (50) leads to

k̂t =
1− δ

λI
[k̂t−1 −∆λ̂∗t −∆q̂t]−

δ

λI
δ̂t +

Ĩ

K̃
ît, (88)

which implies the linearized capital law of motion in the text.

To obtain the linearized resource constraint, we take total differentiation of (51) to

obtain

ŷt = cyĉt + iy ît + uyût + gyĝt, (89)



TECHNICAL APPENDIX 16

where cy =
C̃

Ỹ
, iy =

Ĩ

Ỹ
, uy =

r̃kK̃

Ỹ λI
, and gy =

G̃

Ỹ
.

Log-linearizing the aggregate production function (52), we get

ŷt = α1[k̂t−1 + ût −∆λ̂∗t −∆q̂t] + α2 l̂t

= α1

[

k̂t−1 + ût −
1

1− α1

(α2∆ẑt +∆q̂t)

]

+ α2 l̂t. (90)

The linearized version of the factor demand relation (53) is given by

ŵt = r̂kt + k̂t−1 + ût −∆λ̂∗t −∆q̂t − l̂t

= r̂kt + k̂t−1 + ût −
1

1− α1
(α2∆ẑt +∆q̂t)− l̂t (91)

Finally, linearizing the interest rate rule (54) gives

R̂t = ρrR̂t−1 + (1− ρr) [φππ̂t + (1− φπ)π̂
∗
t + φy ŷt] + σrtεrt, (92)

where

π̂∗
t ≡ log π∗(st)− log π.

Note that, with regime-switching inflation target, we have

π̂∗
t = 1{st = 1}π̂∗(1) + 1{st = 2}π̂∗(2) = [π̂∗(1), π̂∗(2)]est ,

where

est =

[

1{st = 1}

1{st = 2}

]

.

It is useful to use the result that the random vector est follows an AR(1) process:

est = Qest−1
+ vt,

where Q is the Markov transition matrix of the regime and Et−1vt = 0.

IV.4. Summary of linearized equilibrium conditions. We now summarize the

linearized equilibrium conditions to be used for solving and estimating the model.

Note that

Etπ̂
∗
t+1 = [π̂∗(1) π̂∗(2)]Etest+1

= [π̂∗(1) π̂∗(2)]Qest .

The log-linearized equations are listed below.
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π̂t − γpπ̂t−1 − (1 − γp)π̂
∗

t =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t − (1− γp)π̂

∗

t+1], (93)

ŵt − ŵt−1 + π̂t − γwπ̂t−1 − (1− γw)π̂
∗

t =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) +

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t − (1− γw)π̂
∗

t+1]. (94)

q̂kt = S′′(λI)λ
2
I

{

∆ît +
1

1− α1

(∆q̂t + α2∆ẑt)

−βEt

[

∆ît+1 +
1

1− α1

(∆q̂t+1 + α2∆ẑt+1)

]}

(95)

q̂kt = Et

{

∆ât+1 +∆Ûc,t+1 −
1

1− α1

[α2∆ẑt+1 +∆q̂t+1]

+
β

λI

[

(1− δ)q̂k,t+1 − δδ̂t+1 + r̃k r̂k,t+1

]

}

, (96)

r̂kt = σuût, (97)

0 = Et

[

∆ât+1 +∆Ûc,t+1 −
1

1− α1

[α2∆ẑt+1 + α1∆q̂t+1] + R̂t − π̂t+1

]

,(98)

k̂t =
1− δ

λI

[

k̂t−1 −
1

1− α1

(α2∆ẑt +∆q̂t)

]

−
δ

λI

δ̂t +

(

1−
1− δ

λI

)

ît, (99)

ŷt = cy ĉt + iy ît + uyût + gy ĝt, (100)

ŷt = α1

[

k̂t−1 + ût −
1

1− α1

(α2∆ẑt +∆q̂t)

]

+ α2 l̂t, (101)

ŵt = r̂kt + k̂t−1 + ût −
1

1− α1

(α2∆ẑt +∆q̂t)− l̂t, (102)

R̂t = ρrR̂t−1 + (1− ρr) [φππ̂t + (1 − φπ)π̂
∗

t + φy ŷt] + σrtεrt, (103)

where

m̂ct =
1

α1 + α2

[α1r̂kt + α2ŵt] + ᾱŷt, (104)

m̂rst = ηl̂t − Ûct, (105)

Ûct =
βb(1− ρa)

λ∗ − βb
ât −

λ∗

(λ∗ − b)(λ∗ − βb)
[λ∗ĉt − b(ĉt−1 −∆λ̂∗

t )]

+
βb

(λ∗ − b)(λ∗ − βb)
[λ∗Et(ĉt+1 +∆λ̂∗

t+1)− bĉt], (106)

π̂∗

t = [π̂∗(1), π̂∗(2)]est , est = Qest−1
+ vt, (107)

(108)

and the steady-state variables are given by

r̃k =
λI

β
− (1 − δ), (109)

uy ≡
r̃kK̃

Ỹ λI

=
α1

µp

, (110)

iy = [λI − (1− δ)]
α1

µpr̃k
, (111)

cy = 1− iy − gy, (112)
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with λI ≡ (λqλ
α2

z )
1

1−α1 , λ∗ ≡ (λα2

z λ
α1

q )
1

1−α1 , ∆λ̂∗t ≡ 1
1−α1

(α1∆q̂t + α2∆ẑt), and gy cali-

brated to match the average ratio of government spending to real GDP.

Recall that θp ≡
µp
µp−1

, ∆xt = xt − xt−1, κp ≡
(1−βξp)(1−ξp)

ξp
, ᾱ ≡ 1−α1−α2

α1+α2
, θw ≡ µw

µw−1
,

κw ≡ (1−βξw)(1−ξw)
ξw

, and π̂wt = ŵt − ŵt−1 + π̂t +∆λ̂∗t ,

To compute the equilibrium, we eliminate ût by using (100), leaving 10 equations

(93)-(99) and (101)-(103) with 10 variables π̂t, ŵt, ît, q̂kt, r̂kt, ĉt, k̂t, ŷt, l̂t, and R̂t. Out

of these 10 variables, we have 7 observable variables, that is, all but q̂kt, r̂kt, and k̂t, for

our estimation. We also include the biased technology shock q̂t in the set of observable

variables.

V. General setup for estimation

In this section, we describe our empirical strategy in general terms so that the method

can be applied to any state-space-form model.

Consider a regime-switching DSGE model with st following a Markov-switching pro-

cess. Let θ be a vector of all the model parameters except the transition matrix for

st. Let yt be an n × 1 vector of observable variables. In our case, n = 8. The vector

yt is connected to the state vector ft. For our regime-switching DSGE model, this

state-space representation implies a non-standard Kalman-filter problem as discussed

in Kim and Nelson (1999).

Let (Yt, θ, Q, St) be a collection of random variables where

Yt = (y1, · · · , yt) ∈ (Rn)t ,

θ = (θi)i∈H ∈ (Rr)h ,

Q = (qi,j)(i,j)∈H×H ∈ R
h2,

St = (s0, · · · , st) ∈ H t+1,

STt+1 = (st+1, · · · , sT ) ∈ HT−t,

and H is a finite set with h elements and is usually taken to be the set {1, · · · , h}.

Because st represents a composite regime, h can be greater than the actual number

of regimes at time t. The matrix Q is the Markov transition matrix and qi,j is the

probability that st is equal to i given that st−1 is equal to j. The matrix Q is restricted

to satisfy

qi,j ≥ 0 and
∑

i∈H

qi,j = 1.

The object θ is a vector of all the model parameters except the elements in Q. The

object St represents a sequence of unobserved regimes or states. We assume that
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(Yt, θ, Q, St) has a joint density function p (Yt, θ, Q, St), where we use the Lebesgue

measure on (Rn)t × (Rr)h × R
h2 and the counting measure on H t+1. This density

satisfies the following key condition.

Condition 1.

p (st | Yt−1, θ, Q, St−1) = qst,st−1

for t > 0.

V.1. Propositions for Hamilton filter. Given p(yt | Yt−1, θ, Q, st) for all t, the

following propositions follow from Condition 1 (Hamilton, 1989; Chib, 1996; Sims,

Waggoner, and Zha, 2008).

Proposition 1.

p (st | Yt−1, θ, Q) =
∑

st−1∈H

qst,st−1
p (st−1 | Yt−1, θ, Q)

for t > 0.

Proposition 2.

p (st | Yt, θ, Q) =
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

∑

st−1∈H
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

for t > 0.

Proposition 3.

p (st | Yt, θ, Q, st+1) = p
(

st | YT , θ, Q, S
T
t+1

)

for 0 ≤ t < T .

V.2. Likelihood. We follow the standard assumption in the literature that the initial

data Y0 is taken as given. Using Kim and Nelson (1999)’s Kalman-filter updating

procedure, we obtain the conditional likelihood function at time t

p (yt | Yt−1, θ, Q, st) . (113)

It follows from the rules of conditioning that

p (yt, | Yt−1, θ, Q) =
∑

st∈H

p (yt, st | Yt−1, θ, Q)

=
∑

st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q) .
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Using (113) and the above equation, one can show that the likelihood function of YT is

p (YT | θ,Q) =

T
∏

t=1

p (yt | Yt−1, θ, Q)

=
T
∏

t=1

[

∑

st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

]

.

(114)

We assume that p (s0 | Y0, θ, Q) = 1
h
for every s0 ∈ H .1 Given this initial condition,

the likelihood function (114) can be evaluated recursively, using Propositions 1 and 2.

V.3. Posterior distributions. The prior for all the parameters is denoted by p (θ,Q),

which will be discussed further in the main text of the article. By the Bayes rule, it

follows from (114) that the posterior distribution of (θ,Q) is

p(θ,Q | YT ) ∝ p(θ,Q)p(YT | θ,Q). (115)

The posterior density p(θ,Q | YT ) is unknown and complicated; the Monte Carlo

Markov Chain (MCMC) simulation directly from this distribution can be inefficient

and problematic. One can, however, use the idea of Gibbs sampling to obtain the

empirical joint posterior density p(θ,Q, ST | YT ) by sampling alternately from the

following conditional posterior distributions:

p(ST | YT , θ, Q),

p(Q | YT , ST , θ),

p(θ | YT , Q, ST ).

One can use the Metropolis-Hastings sampler to sample from the conditional posterior

distributions p(θ | YT , Q, ST ) and p(Q | YT , ST , θ). To simulate from the distribution

p(ST | YT , θ, Q), we can see from the rules of conditioning that

p (ST | YT , θ, Q) = p (sT | YT , θ, Q) p
(

ST−1 | YT , θ, Q, S
T
T

)

= p (sT | YT , θ, Q)

T−1
∏

t=0

p
(

st | YT , θ, Q, S
T
t+1

)

(116)

1The conventional assumption for p (s0 | θ,Q) is the ergodic distribution of Q, if it exists. This

convention, however, precludes the possibility of allowing for an absorbing regime or state.
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where STt+1 = {st+1, · · · , sT}. From Proposition 3,

p
(

st | YT , θ, Q, S
T
t+1

)

= p (st | Yt, θ, Q, st+1)

=
p (st, st+1 | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
p (st+1 | Yt, θ, Q, st) p (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
qst+1,stp (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)
.

(117)

The conditional density p
(

st | YT , ZT , θ, Q, S
T
t+1

)

is straightforward to evaluate accord-

ing to Propositions 1 and 2.

To draw ST , we use the backward recursion by drawing the last state sT from the

terminal density p(sT |YT , θ, Q) and then drawing st recursively given the path STt+1

according to (117). It can be seen from (116) that draws of ST this way come from

Pr(ST |YT , θ).

V.4. Marginal posterior density of st. The smoothed probability of st given the

values of the parameters and the data can be evaluated through backward recursions.

Starting with sT and working backward, we can calculate the probability of st condi-

tional on YT , θ, Q by using the following fact

p (st | YT , θ, Q) =
∑

st+1∈H

p (st, st+1 | YT , θ, Q)

=
∑

st+1∈H

p (st | YT , θ, Q, st+1) p (st+1 | YT , θ, Q)

where p (st | Yt, θ, Q, st+1) can be evaluated according to (117).
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