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APPENDIX
A. Proof of Theorem 1
Consider the parametrization 6 for the model with covariates x. Define
Frold, z,x) = f(n = yld, z, %)

and

o1, z, x) = f(y = yld, z, x).

If ¢o(x) is the Radon—-Nikodym density of x with support on X, the likelihood function
for the data can be written as
folw, z,x) = [ffId, z, D1 [f§ (yId, z, )P Fd (x, 2)(1 = Fy(x, 2)) 179
x Q5(x)(1— Qg(x) 1™ py(x).

The score of the model associated with the joint density of observed data is specified as

Se(w, z,x) = (1 —d)sy(yld, z, x) + dsp(yld, z, x)

(1 — 2)Pog(x)

Fod-—Fa ol FEol

ZP1g(x)
t e nd—Fe o) FEN
+ A[z — Q(x)] + sp(x),

Q) (1 —-Q(x))
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where s¢(x) is the score corresponding to ¢¢(x). The expression for the tangent set of
the model for conditional distribution moments is given by

T ={(1-d)sh(yld, z, x) + dsg(yld, z, x) + z&(x, 2)[d — F(z,%)]
+ (1= 2){(x, 2)ld — F(z,x)] + a(x)[z — Qx)] + 1(x)},

where Eg[sf;,(y|d, z,x)|d,z,x] =0 for i =0,1, E{t(x)} =0, and (-), &(-), and a(-) are
square-integrable functions.

Now consider the directional derivative of the parameter vector 8 determined by
the conditional moment equation ¢(x, d, 8). We assume that the support of x—the set
X—is nondegenerate. In this case, we can potentially identify a parameter vector 8 with
arbitrarily many dimensions. Our strategy now will be to define a matrix of instrument
functions which will transform the conditional moment equation to an exactly identi-
fied system of unconditional moments. Suppose that A(d, x) is an arbitrary continuous
vector function such that A: {0, 1} x X — R¥. Without loss of generality, we can define
this vector function by a vector

0 d)_<i i)
Y=\ P) 1Pk

and a matrix M (x) of dimension dim(B) x 2 such that
A(d, x) = M(x){(d, x)

and

Qx)d (1-9(x))(1-4d)
P(x) 1-P(x)

A(d, x) = (P1(x) —Po(x))( )A(d,x)~

The instrument functions transfer the model into a set of unconditional moment
equations in the form

E[A(d, x)e(x,d, B)]=0.

This can be rewritten as Ey[Ag(d, x)Eg[g(y, d, x, B(6))|d, x, di > dy]] = 0.
Define the Jacobi matrix

,:E[A(d,x)w}

op’

Then we can solve for the directional derivative of the parameter g by solving a k x k
system of equations

JdB(6 Jd
J% = —%Eo[Ae(d, xX)Eglg(y,d, x, B)ld, x, dy > dol]. (12)
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The right-hand side component of equation (12) can be written as

E[A(d, x) f gy, d, x, B)sw(yld, x) fisc (¥ld, x) dy}

+ELM¢mme)/ﬂ%¢mﬁﬁg@wxmﬁ i~
9 Aq(d,
+E|:%x) g(w, x, B)f**(ﬂd,x)dy:l,

In the above expression, we have used the definition that

d
See(yld, ¥) = = log f&.(yld, x),

where f..(y|d, x) takes the form of either (1) or (2), depending on whetherd =1 ord =0.
Note that by definition of the function g(w,x, B), the integral

/g(w, X) e (yld, x)dy =0,

and the last two terms of equation (13) can be removed. Using this result, the system for
the directional derivative of the parameter vector can be rewritten as

IBO) _

070 _J_1E|:A(d’ x) / g(ya da X, B)S**(Y|d, x)f**(ﬂd, x) dy}'

Next we introduce the notations

gw, x, B)=—-J"1A4(d, x)g(w, x, B),

Qx)d  (1-9(x)(1—d)
P(x) 1—-P(x)

8w, x, B) = (P1(x) —Po(x))< )g(w,x,ﬁ),

and
Ad, x, B) =—J "' A(d, x)Ad, x, B).
Recall the definition that
A(x,d, B)={Elg(y,d,x,B)ld,z=d,x] — E[g(y,d,x,B)|d, z=1—d, x]}.

Differentiating equations (1) and (2), and combining notation give rise to the expres-
sion for the score:

S (Yd, X) fure (Y1, X)
_dPi(x) + (1 —d)(d — Po(x))
P1(x) —Po(x)
_dPy(x) + (1 =d)(1 = P1(x))
Pr(x) —Po(x)

so(yld, z=d,x)f(yld,z=d, x)

50()’|d,Z:1_d,x)f()’|d,Z:1_dax)
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N [[1 —d +P1(x)(2d — 1)1Pog(x) — [1 — d + Po(x)(2d — 1>]7519<x>}
(P1(x) — Pp(x))?

x(fyld,z=d,x) - f(yld,z=1—d, x)).

Following Newey (1990b), we look for a set of influence functions ¥ (w, z, x) that belong
to the tangent space 7 and have the properties that

9B (6)

0 = EV(w,z, x)Se(w, z, x).

We conjecture and subsequently verify that the efficient influence function takes the
form

Y(w, z, x)
P(x)dz . .
= d —F d d=1,z=1,
9P (0) _Pﬂ(x))(g(y, , %, B) — E[g(y,d, x, B z=1,x])
B P(x)d(1—2)
(1— Q(x))(P1(x) — Po(x))
x (8(y,d,x,B) — E[g(y,d,x,B)ld=1,z=0, x])
(1-Px)(1—d)(1-2)
(1—0(x)(P1(x) — Po(x))

x (8(y.d,x, B) — E[8(y,d, x, B)|d =0,z =0, x])

(=P -d)z
Q(x)(P1(x) — Py(x))
Ad=1,x)P(x) [Pl(x)(l —2) Pz
(P1(x) = Po(x)2L 1—Q(x) Q(x)

A(d=0,x)(1 - P(x)) [(1 —Pi(x)(A-2z) (1-Py(x))z
(P1(x) = Po(x))? 1-9Q(x) Q(x)

(8(y.d,x, B) — E[g(y,d,x, B)ld =0,z =1, x])

}(d—f(z,X))

:|(d — F(z,x)).

The first two lines correspond to the ds}, (yld, z, x) component of 7. The third and fourth
lines correspond to the (1 — d)sg(y|d, z,x) component of 7. The last two lines corre-
spond to the

z&(x, 2)ld — F(z, x)1+ (1 = 2){(x, 2)[d — F(z, x)]

component of the tangent space 7. The last two components of the tangent space are
null components.

Next we use the identities implied by the expressions for conditional density (1)
and (2):

Pi(X)E[g(Y,D,X,B)ID=1,Z=1,x]
=Po(x)EIZ(Y,D,X,B)ID=1,Z=0,x], (14)
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(1 - PO(X))E[g(Y’DaXa B)'D =0’ Z:07 x]
- (1 - P](X))E[g(Y,D,X, B)'D =Oa Z = 1’ x]'

In addition, we substitute the expression for the weighting matrix .A(d, x) into the ex-
pression obtained for the influence function. This leads us to the final result for the effi-
cient influence function:

V(w, 2. x) = (dz _ %d(l )+ d—d)yd—2)— %(1 _ d)z>
x g(y,d, x,B)
(z—Q(x))

Q(x)(1-Q(x))
x {Eldzgld=1,z=1,x]— E[(1 —d)(1 — 2)glwy =1,z =0, x]}
= lI’l(U)a Z, x) - IPZ(wa Z, x)'
We can now express the semiparametric efficiency bound as the variance of the ef-

ficient influence function V' (8) = E{¥¥'}. Note that the vector .A(d, x) can be repre-
sented as

d_
A(d’x)Z(Pl(x)_PO(x))(Q(x)d+(1—Q(x))(1—d))M(x)( pis )

P(x) 1-Px) %

where M (x) is a k x 2 matrix (k is the size of the Euclidean parameter 3). Denote

D(x) = diag{ 2(x) ﬂ}

P(x)’ 1—-P(x)

In this case, the Jacobi matrix can be written as

Qx)d
J=E {(Pl(x) —Po(x))M(x) ( ) ) %ﬁjf’ﬂ)]

(A=9x)H(1-d)
(1-P(x))?
= E{(P1(x) — Po(x))M(x)D(x)6(x)}.
To facilitate the manipulations, denote
wd,z(x) = V(g(y’ d’ x7 B)'da Z! x)
and
Yd,-(x) =E(g(y,d, x, B)ld, z, x).

Note that the expression for the variance has three components. The first component
corresponds to the variance of the first component ¥ (y, d, x, z):
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V(¥i(y,d, x, z))
Pix)wii(x) | Po(x)wip(x)
0w T (1-0m) 0
PLx0P() P
+ 5 =omra—o Y (*)
o Pom Q01— Y11
=/ EyMb@ (=Py)op) | (1=Py(x)eg (x)
1-0m) o)
(A-Pox)(1-P(x)) .2
+ TP oma-—om) Yoo (¥

x DOM(x) YTV,

The second component can be rearranged using the Jacobi matrix and instrument ma-
trix M(x):

Pix)Qx)
R —pa Y1) z—Q(x)
Yoy, d, x,z) =J" M(x) [_ (l—P(,ix_)I))(&;Q(x)) Voo(X)} 01— 0"

The corresponding variance is

V(¥ (y,d, x, 2))

_ M(x)D(x)
=7 1E{—
Q(x)(1—-9(x))

( P(x)y3, (x) —Py(x)(1 — Po(x))m(xme(x))
—P1(x)(1 — Po(x))y11(x)y00(x) (1= Pp(x)) 3, (x)

X D(x)/\/l(x)’}Jl’.

The third component is the covariance between the first two elements:
Cov(Y1(y,d, x,2), Va(y,d, x,2)) ==V (¥(y,d, x, 2)).
The variance of the efficient influence function can then be written as
V(B) = I E(M()D(x0) Q) DM )1 Y
=E{(P1(x) - 7’0()6))/\/1()6)1)()6)19()6)}71
x E{M(x)D(x)Q(x)D(x)M(x)'}
x E{(P1(x) - Po(x))M(x)D(x)e(x)}_l’,

where Q(x) is a 2 x 2 matrix constructed from conditional variances and conditional
expectations of the moment function. The components of {2(x) can be expressed in the
manner:

Pi(x)w11(x)  Po(X)wioa) ¥, (X)Py1 (x)P(x)
Q(x) 1-0(x) ' Po(x)Q(x)(1 - Q(x))

D11(x) = <
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[ 7’1(X)7’o(x)D
X|1l——1],

P(x)
Ooy(x) = <(1—P1(x))w01(x) (1 —Py(x))woo(x)
S Q(x) 1-0(x)

Yy (2)(1 — Po(x))(1 — P(x)) [1 (1= Py (1 - Pl(x»])
Q(x)(1— Q) (1 — P1(x)) 1—P(x) ’

and

Pir(x)(1 = Py(x))
Q)1 - Q(x))

D1(x) =01y (x) = ( 711(X)Y00(X)>-

By standard GMM-type arguments, we find that the minimum variance is achieved
when M(x) = (Pi(x) — Po(x))8(x)2(x)"'D(x)~! and the semiparametric efficiency
bound is

V(B) = E{(Py(x) — Po(x))20(x) D(x) " 0(x)) .

B. Proofs of Theorems 4 and 5

The proof of Theorem 4 is self-evident. In particular, Assumption 2(ii)-(iv) combine to
insure that, uniformly, the estimated O(x) and /Al(x, d) can be replaced by their true
quantities. Assumption 2(v) insures that a law of large numbers uniform over g applies
to & S0, ¥k (B, Qo Ao).

Before verifying the regularity conditions of Theorem 5, we discuss the intuition of
the asymptotic distribution. It is not difficult to see that estimating M (x) has no impact
on the asymptotic variance, because, for example, for all x,

IPr (B, Qx), M(x))| |
E|: M) x] =0.

Following the argument of Newey (1994), the asymptotic representation

L 1O Ixi(B)
= M _
/—Nl;lﬁk(ﬁ) N k§=1 (xk){Xk(ﬁ)+E[ 90 xk:|(Zk Q(xk))}

+o,(1)

holds. Next we will show that the asymptotic variance of this moment function when
M(x) is chosen optimally equals the semiparametric efficiency bound. Let us use the
notations ¥ (y, d, x, z) and ¥,(y, d, x, z), which correspond to the two components of
the efficient influence function in the proof of Theorem 1. In this case, the first compo-
nent of this expression corresponds to

Mx)x(B) =JV(y,d, x, z)
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(where we omitted the subscript k in M(x;) and y(B)) for
de(x,d, B)
p )

The second component corresponds to the sampling uncertainty due to the error in
estimation of probability Q(x). To compute it, note that

J:E[A(d,x)

P1(x)Qx)
Ix(B) M(x)(Z—Q(x))|: C— = b~ Yux) j|
M(x)E — =
(x) [ 20 H(z M) = 5o d = a0 U=PUONI=0W) 3 1)

=—-J¥(y,d,x, z).
This means, in particular, that
IL(B) =J[1I’1(y, d; X, Z) - WZ(ya da X, Z)] ZJW(}’, da X, Z)a

so that the influence function is a scaled efficient influence function. Therefore, the vari-
ance of this estimator can be represented as

VB =I"WIW(y,d, x, )] ' =V (W(y,d, x,2)).

Thus, the estimator achieves the semiparametric efficiency bound.

Assumptions 3(i) and (ii), and 2(ii)-(iv) combine to insure stochastic equicontinuity,
that s, conditions (3.2) and (3.3) in Theorem 3 of Chen, Linton, and Van Keilegom (2003)
(CLK).

Assumption 3(v) is used to justify item (2.3)(ii) of Theorem 2 of CLK. Assump-
tion 3(iii) and (iv) is used to justify items (2.3)(i) and (2.4) of Theorem 2 of CLK.

Assumption 4 basically ensures that

. 1 &
E[80(X)(Q(X) — Q(X))] = N ZSO(Xi)(Zi — Qo(X)) +op(1).

i=1

It summarizes the key elements in (A.7)-(A.10) in the proof of Theorem 6.1 of in Newey
(1994).

C. Proofs of Theorems in Section 2.3

The proofs of Theorems 2, 3, and 6 depend exclusively only on the following lemma,
the proof of which can be found, for example, in Robins and Rotnitzky (1995) and Hahn
(1998).

LEMMA 1. For a categorial variable Z and a constant a on the support of Z, the semi-
parametric efficiency variance for estimating E(E(W|Z = a, X)) is given by the variance
of the influence function, for Q,(X) = P(Z = a|X),
1(Z=a)
Qa(X)

The rest of the proofs basically amount to rewriting the parameters of interest in
collections of components that take the form E(E(W|Z = a, X)).

(W—EW|Z=a,X))+EW|Z=a,X).
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C.1. Proofof Theorem 2
ParT 1 (ATE on Compliers). We discuss 81 and By in turn. Note first that due to inde-
pendence between y; and d, conditional on x and D1 > Dy,

B1=EIE(ld=1,x,Dy > Dg)|D1 > Dol = E[E(yld=1,x, Dy > Dg)|D1 > Dy]

1

= E[(P1(x) = Po)E(yld =1, %, D1 > Do)| pop—F -

so that B; is defined by the moment condition

E[(P1(x) = Po(x))E(yld =1, x, D1 > Do)] — E[(P1(x) — Py(x))]B1 =0.
It suffices to project this equation onto the tangent set. Recall the identification condi-
tion

P1(x) Po(x)
P E(yld=1,z=1,x) —
P — Py M =hE=h0 =5 0

—Po(x)E(yld=1,z=0, x).

E(yld=1,d| >dy,x) =

The moment condition that defines 8; is then rewritten as

Epl(x)E(Y|d= 17 Z= 17x) —E,PO(X)E()’W: 17 Z= 0> x)

(15)
— E[(P1(x) = Po(x))]B1 =0
or, equivalently,
EE(dylz=1,x) — EE(dy|z=0, x)
(16)

—(EE(d|z=1,x) —EE(d|z=0,x))B1 =0.
Similar calculations can be applied to By. Consider

Bo =E[E(y|ld=0,x,D1 > Dy)|Dy > Dyl = E[E(y|d =0, x, D1 > Dy)|D1 > D]

1

= E[(P1(x) — Po(x))E(y|d =0, x, D > DO)]M’

This translates into the moment condition

E[(P1(x) — Py(x)E(yld =0, x, Dy > Dg)] — E[(P1(x) — Py(x))]Bo = 0.
Recall the related identification condition
(1 —="Py(x))
Pi(x) — Po(x)

A =Pi1x)
Pi(x) —Po(x)

E(yld=0,d; >dy,x) = E(yld=0,z=0,x)

E(yld=0,z=1, x).
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The relevant moment condition for B¢ is then rewritten as
E(Q=Py(x))EQY|d=0,z=0,x) — (1 =P1(x)E(y|ld=0,z=1, x)
— E[(P1(x) = Po(x))]Bo =0
or, equivalently,
EE((1—d)y|lz=0,x) — EE((1—d)ylz=1, x)
—(EE(d|z=1,x)— EE(d|z=0,x))Bo=0.
Combining (16) and (18), 8 = B1 — By is defined through
EE(y|lz=1,x) — EE(y|z=0,x)

—(EE(d|z=1,x) — EE(d|z =0, x))Bo = 0.

(17)

(18)

(19)

Invoking Lemma 1 immediately produces the efficient influence function for g; — By:

1 z
P(Dq > Dy) { O(x) y—EQ|z= 1,x)) +E(y|lz=1,x)

1-2z

—Tjéaﬂy—EUuzax»—E@pzax)

z
—<§Gﬁd—Ewu=an+Emu=Lx)

1-2z

C1-9(x)

PART 2 (ATT on Compliers). We also discuss y; and vy in turn. Consider first

(d—E(d|z=0,x)) — E(d|z= O,X))(Bl - ,30)}-

y1=EWld=1,Dy > Dy)=E(yld=1,D1 > Do)
= /E(y|d =1,D1> Dg,x)f(x|d=1,D1 > Dg)dx.
Note that the above conditional density can be written as

f(x|d=1,D1 > Dg)dx =

f(x,d=1,Dy > Do) _ f(x)Qx)(P1(x) —Po(x))

so that vy; is defined by the moment condition

P(d=1,D1>Dy)  EQ(x)(Pi(x)—Py(x))

>

EE(yld =1, D1 > Do, x)Q(x)(P1(x) = Po(x)) — (EQ(x)(P1(x) — Py(x))) y1 =0,

Using the identification result that
Pi(x)
Pr(x) —Po(x)
_ Po(x)
P1(x) —Po(x)

E(yld=1,dy > dy,x) = E(yld=1,z=1,x)

E(yld=1,2z=0,x),
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the moment condition that defines y; can be rewritten as
EQ)P1(x)E(yld=1,z=1,x) — EQ(x)Py(x)E(yld=1,z=0, x)
— EQ(x)(P1(x) = Po(x))y1 =0.
This can be equivalently written as
EE(yd|x) — EE(yd|z=0,x) — (EE(d|x) — EE(d|z=0,x))y; =0.

Now consider the analogous derivation for vy,
¥o=Elyold =1, Dy > Dyl = /E[yold = 1,Dy > Dy, x1f(xld =1, Dy > Dp) dx

_ EQM)(P1(x) = Po(x))Elyld =0, Dy > Dy, ]
EQ(x)(P1(x) —Po(x)) ’

so that vy is defined by the moment condition

EQ(x)(Pi(x) = Po(x))E[yld =0, Dy > Dy, x] = EQ(x)(P1(x) — Po(x))yo = 0.

Again using the identification condition that

1—7
E(yld=0,dy > dy, x) = %T%Ew ~0,2=0,x)
(1—Py(x)

- mE(J’|d=O,Z=LX),

the moment condition for vy, can be manipulated to be

EE(y(1-d)|z=0,x) —EE(y(1—-4d)|x) — (EE(d|x) — EE(d|z=0,x))y9 =0.
The moment condition for y = y; — yg therefore combines y; and v:

EE(y|lx) — EE(y|z=0,x) — (EE(d|x) — EE(d|z=0, x))y; =0.

Hence the efficient influence function for v is given through Lemma 1 by

1 1-z
P(dzl,D1>D[)){y_ 1_Q(x)(y_E(Y|Z=0,x))_E(Y|Z=0,x)

1-z
- (d— 1_—Q(x)(d—E(d|Z=07x)) —E(d|z=0,x)>(y1 - VO)}-

C.2. Proof of Theorem 3
Recall that the moment condition that defines vy is given by
EQ)P1(x)E(yld=1,z=1,x) = EQ(x)Py(x)E(yld =1,z=0, x)
—EQ(x)(1 =Py(x)E(yld=0,z=0, x)
+EQ(x)(1 =Pi(x)E(yld=0,z=1, x)
— EQ(x)(P1(x) —Po(x))y =0,
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which can be rewritten as
h(Q(x))=EQ(x)E(ylz=1,x) —EQ(x)E(y|z=0, x)
—EQ(x)(Ed=1|z=1,x)—E(d=1|z=0, x))v.

When Q(x) is known, the efficient projection into the tangent space obviously follows
immediately from Lemma 1:

zZ(y—E(ylz1i=1,x)) + Q(x)E(y|lz1 =1, x)
1-z

" 1o o 2WD T EGIz=0.01- Q®E(Iz=0,%)

- {Z(d —E(dz1=1,x)) + Qx)E(d|z1 =1, x)

1=z
1-0(x)

In addition, when Q(x) is known up to a finite-dimensional parameter «, there is an
extra term for the efficient influence function due to the parametric Cramer—Rao lower
bound for the estimation of & — «, as in A(Q4;(x)) — h(Q(x)). It is easy to see, using the
parametric Delta method, that this additional term is given by

Q(x)ld — E(d|z=0,x)] — Q(x)E(d|z =0, x)}?’-

Proj[(z — Q(x))k(x)[Sa(z; X)]
= E(K(X)%(x, a)) [ESa(z; X)S4(z: x) 17 Sa(z: x).

C.3. Proofof Theorem 6

Denote g(w, xB) =dgi(y, x, B) — (1 —d)go(y, x, B), and introduce the weighting ma-
trix

d 1— 1-d

and a moment function g = Ag(y, d, x, B). Also define
g(y,d,x,B)=g(y,d,x, B) — Elg(y,d, x, B)ld, x, D1 > Dy].

Given that the conditional equation (11) is valid, we have
E{A(d,x)E{g(y,d, x, B)|d, x, D1 > Dg}} =0.

As a result, we can express the directional derivative of the Euclidean parameter in the
same way as before
ip)  J

W - _%EO[AQ(da x)Ee[g(ya d, X, B)'d’ X, Dl > DO]]

Note that the difference between this formula and the formula for the conditional mo-
ment equation is that the weighting function A(d, x) depends on the parametrization
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path. The derivative of the right-hand side will contain three components:
E[ At [[0.d.x 50010 £ 010 00

+E[«4(d, x)so(d, x) f g(w, x, B) fux (yld, x)d)’}

dAg(d, x)

E
Sl

g(w, x, B) fux(yld, x) dy]

The first and the second components will have the same structure as in the conditional
moment equation. The first component multiplied by the Jacobi matrix can be written
as

—J7\®(y,d, x, 2)

(z— Q)+ Q(x) — 1) z—Q(x)
= Ald d, x, -
0(x)(1— 0(x)) (De(y.d.x. B) = 5050 = o))

x A(d)[Eldzgld=1,z=1,x]— E[(1—d)(1 —2)gld =0,z =0, x]]

=9
Q(x)(1 - Q(x))

x [(d —P1(x))Eldgld =1, x, D1 > Dy}

+ (d — Po(x))E[(1 — d)g|d =0, x, D1 > Do]].

A(d)

To derive the second component of the influence function, note that it should solve

E[Py(y,d, x,2)Se(y,d, x,2)] = E[A(d,x)Se(d, X)/g(y, d, x, B) fux(yld, x)dy}

+E[&Ag(d,x)

S [ st p)fatoidon dy |,

Note that

E[A(d, x)sg(x, d)E[gld, x, D1 > Dyl]
= E[sg(x)E[A(d, x)g(y, d, x, B)Id, x, D1 > Dol]
+ E[(E[A(d, x)gld =1, x, D1 > D]
— E[A(d, x)gld =0, x, D1 > D])Py(x)]
= E[A(P1(x) — Po(x))
x (Q(x)Elgld =1, x, D1 > Dol + (1 — Q(x))E[g|d =0, x, D1 > Do])sq(x)]
Q(x)E[gld =1, x, D1 > Dy]
P(x)

(1— Q(x))Elgld =0, x, Dy > Dol | «
- 1—Px) }Pf’(x)]

+E[A(d)(7’1(X) - 7’0()6)){
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Next we can express the directional derivative

2Ad, ) _ Pro(x) = Pog(x) | (P1(x) — Pp(x))(d — P(x))Q(x)
7 — A, x) A
J0 P1(x) — Po(x) P(x)(1—P(x))
: 2yd | (1—Q(x)(1-d)
+ A(P1(x) —Po(x))P(x)[— 200 A_P)) ]

Consider the expression
E[&Ag(d,x)
a0
=E[A(Q(x)Elgld =1, x, D1 > Dol + (1 — Q(x))Elg|d =0, x, D1 > D))
x (Prg(x) = Pog(x))]
+ E[A(P1(x) — Po(x))(El[gld =1, x, D1 > Dy]
~ Elgld =0,x, D1 > D)) Q(x)]
Q(x)Elgld =1, x, D1 > Dy]
P(x)

(1-Q(x))Elgld=0,x,D1> Dol |
+ 1P }Pe(x)]-

g(waxa B)f**(ylda x) dyi|

+E[A(7>1(x> —7>o<x>>{—

Finally, we can write the expression for the second component of the directional deriva-
tive of the parameter vector as
E[®;(y,d, x,2)S¢(y, d, x, )]
= —J'E[A(Q(x)EIgld =1, x, D1 > Dy]
+ (1 - Q(x))E[gld =0, x, D1 > Dy))
x ((PL(x) = Po(x))se(x) + P1o(x) — Pog(x))]
+ E[A(P1(x) — Po(x))(El[gld =1, x, D1 > Dy]
— E[gld =0, x, Dy > Dy])Q(x)].
This means that the second component of the efficient influence function takes the
form
_]qDZ(y’ d’ X, zZ, )
= A(P1(x) — Py(x))(Q(x)E[gld =1, x, D1 > Dy]

z— Q(x) d—F(z,x) ]
Q(x)(1 = Q(x)) P1(x) —Py(x)

+ A(P1(x) —Po(x))(E[gld =1, x, D1 > Dy] — E[g|ld =0, x, D1 > Dg])
x (z — Q(x)).

+ (1 —-9(x))E[gld=0,x,D > DO]) [1 +



Supplementary Material Semiparametric efficiency 15

Combining the two components of the efficiency bound, we obtain, for g = —J 1 Ag(y,
d,x,B),

®(y,d, x, z)
_ _ Q(x)d(1 —2z) _ o 1-9x)HA—-d)z].
_{dz 71—@()() +1-d)(1-2) o) }g(y,d,x,B)
z—Q(x)

A - 1-— Elo dZO’ 21,
50— oy [~ PN = QU)EIRId=0,2=1,x]

— Po(x)Q(x)E[gld =1,2z=0, x]].

D. Technical assumptions

To state the regularity conditions, we make use of the definitions of the weighted sup
norm metric ||/]|o0,, from Chen, Hong, and Torozzi (2008). Let Qy(x) denote the true
Q(x), and similarly for other estimated quantities. The first set of assumptions concerns
the consistency of the parameter estimate. The assumption that Qy(x) is bounded away
from 0 and 1 is convenient but strong.

AssumPTION 2. The following conditions hold:
() E[ELA(x,d)g(y,d,x, B)|D1 > Dy, x,d]]1 =0 ifand only if B = Bo.
(i) Qo(-) e H={Q(-):0<g=<0Q(x) <q <1} forsomey>Q0.
(ii) 19¢) — Qo(lloo,0 =2 0, IA(-, &) = Ag(-, k) oo, —2> 0 for k =0, 1.
(iv) Elsupgpllg(yi, dis Xi; B)I*(1 + 1X:]%)*] < 0.

(v) There is a nonincreasing function b(-) such that b(8) — 0 as 6 — 0 and

E[ sup llgOis djy Xz B) = g(0isdis Xis B)IP] = b(3)
18—-BlI<é

for all small positive value &.
The next two assumptions pertain to asymptotic normality and efficiency of .

AssumPTION 3. The following conditions hold:

(i) There exist a constant ¢ € (0, 1] and a small 8y > 0 such that
E[ sup Im(Zi; )~ m(Zi, )] < const. 8¢
IB—Bl<5

for any small positive value 6 < §.

(ii) The class of nonparametric functions Q(-) and A(-, -) is managable in the sense of
Condition 3.3 of Theorem 3 in Chen, Linton, and Van Keilegom (2003).

(i) 1O() — Qo()lloo,w = 0p(m~V4), LAC, k) — Ao, K)lloo,0 = 0p(n~/*) for k =0, 1.
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(iv) Elsupgep lg(vi> dir Xi; BII(1+ [ X;]1%)%] < oo.
W) Elsupg_g, <5 IE[g(yi, di, Xiz B)Idy, xi1/IBI*(1 + [ X)) < o0.
The next assumption makes sure that the linear approximation of the sample mo-

ment condition (8) between the estimated O(x) and true Q(x) is asymptotically normal.
For this purpose, define

Sp(x) =— E(dA(x,d)g(y,d, x, Bo)lz=0,x)

_
1—Qy(x)

+ ﬁE((l —d)A(x,d)g(w, x, Bp)lz=1, x).

Also define 8y, (X) and Q, (x) to be the projections of 8p(X) and Qy(X) onto the
linear space spanned by g% (X). For example,
Qi () = ¢° (X (Eq*™ (X)g* ™ (X)) ™ EqH™ (X) Qo (X)'.

AssuMPTION 4. The following conditions hold:

nE[||80(X) — 8 (X)|°]+ E[| Qo(X) = Qumy(x)|)] —> 0.

E[|810m (X)(Qo(X) = Qg () |7] —> 0,
E8o(X)g"™ (X)) (Q'0/m) ' —(EQ'Q/m)™Y)

x Y g (X)) (Zi = Qi (X)) /n= 0, (1)
i=1

Finally, we need to give a set of primitive conditions for condition (iii) in Assump-
tion 3 regarding the estimation of the instrument function A(-, k; 8), k =0, 1, where the
dependence of A(-) on the initial estimate 8 is explicitly noted. Of course, in the first
stage initial estimation of 8, such assumption is not needed.

AssuMPTION 5. In addition to everything in Assumptions 2 and 3 except the second part
of condition (iii) of both assumptions, assume the following conditions hold:

D 0<p=<Pyx)<p<1L,0<p=<Pi(x)<p<l
i) 1Pk() =Pl llos,0 = 0p(n~Y*) fork =0, 1.
(i) supjg_g,<s, 19k (s B) = @Y (s B)lloo,w = 0p(n~Y/*) for jk =0,1.
(V) supjg_pyj<s, 17k (> B) = Y} (s Blios,w = 0p(n™!/4) for j, k=0, 1.
V) ¢(B, x, d) is twice continuously differentiable in B uniformly over x and d.
Vi) — + kP =o(n™h).

The last condition, in particular, requires that # — 0 at a rate that is slower than n—1/4
but faster than n~1/8. The notation /42 characterizes the bias of the two sided numerical
derivative under condition (v).
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ProrosITION 1. Assumption 5 implies condition (iii) in Assumption 3.

TECHNICAL ADDENDUM
E. Efficiency bound under semiparametric restrictions

Consider the semiparametric conditional moment equation

e(x,d, w(x), B) =E[g(y,d, x, u(x), B)ld, x, D1 > Dy] =0, (20)

where g(-) is a known function g:R x {0,1} x X x R x B+> R and w(-) is some un-
known function of x (which needs to be estimated along with B). The presence of an
additional semiparametric component in the model expectedly increases the efficiency
bound. However, the presence of this component does not change the general struc-
ture of the efficiency bound or the structure of the optimal instrument. The intuition for
this result is that the efficiency bound is, in general, determined by the projection of the
parametric part of the score of the model on the tangent set of the model. Thus an ex-
tra semiparametric component of the moment equation will not change the parametric
score, but it will change its projection. In the following theorem, we establish the struc-
ture of the semiparametric efficiency bound and the optimal instrument for model (20).

THEOREM 7. Under Assumption 1, the semiparametric efficiency bound for a finite-
dimensional parameter B that characterizes the treatment effect for the subsample of
compliers with P(D1 > Dg) = 1 can be expressed as

_ (9(P(d,x, B)“‘ / A —1 % &QD(d,x, B/) -
V(B) _E<E|:7aﬂ L(x,d) x:|_(2(x) E|:§(x, d)iﬁﬁ x:|> .
In this theorem, we use notations
- dp )" e
§<d,x>=§(d,x>—{(?—} E[ad,x)—\x}
I v
Q(x)=EW(y,d,x,)¥(y,d, x,2)'],
and
. QA(x) 1-9(x)
q/(w, z, x) = <dZ — 1—7Q(_x)d(l — Z) + (1 — d)(l — Z) — W(l — d)Z>
x {(d, x)g(y, d,x, B)
(z—- QX))

~ 5o oo |Eldzid d=1,z=1
Q(x)(l—Q(x)){ [dz{(d, x)g| ,z=1,x]

—El(1-d)(1-2){(d, x)glwy =1,z =0, x]}.
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Proor. In the following discussion, we will use the result for the efficiency bound ob-
tained for the case ¢(x, d, B). Let us consider a specific parametric path 6 for the model
and differentiate the conditional moment equation with respect to this parametric path:

Je

B
This allows us to express the (scalar) directional derivative g in terms of the direc-
tional derivative of the finite-dimensional parameter of interest and the integral over
g(-). Then consider a transformation of the conditional moment equation into the sys-
tem of unconditional moments. This transformation will have the same structure as in
the case of only one finite-dimensional parameter. In fact, if we impose the restriction
that u(x) € L2(R¥), then the function g(-) will still belong to L? as a function of x and d
for each B. Differentiating the set of unconditional moments along the parametrization
path, we evaluate the relevant gradients at 6 = 0, which leads to

.9
B+ iﬂ(x) +fg(y, d, x, u(x), B)swx(yld, x) fus(yld, x) dy = 0.

de(d, x, u(x), B)
I

JB +E|:A(d,x) ,L:L(X)i|

(21)
+E[u4(d,x)/g(y, d,X,M(x),B)S**(yld,x)f**()’Id,x)dY] =0.
Now denote A(x) = E[A(d, x)Z—:j |x]. Then (21) can be rewritten as

JB+ E[A(x)(x)]

+E[A(d,x)/g(y, d,x,,u(X),B)s**(yld,x)f**(yld,X)dy] =0.

Then we can substitute the expression for f(x) obtained from the directional derivative
of the conditional moment and transform the expression (21) into

E|l( AW, x) - (9—“’_1)\ )a—“’ 34+ E (Ad - ‘9—9"_1)\
(a2 o) o (2] )
X/g(y, d,x,/u(x), B)S**()’Id,x)f**()’Id,x)d)’]=0-

All further manipulations are identical to the completely parametric case and are based
on finding the efficient influence function, which by Newey’s argument can be found
from the representation

B=E[¥Syl.

The structure of the efficient influence function will be the same as for the fully paramet-
ric case. The semiparametric efficiency bound and the optimal instrument, however,
will be different. In particular, denote

= 0 Je
§(d,x)=§(d,x)—{(9—} E[{(d,x)—‘x}.
M I
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Then the semiparametric efficiency bound is obtained from the semiparametric effi-
ciency bound for the model parametrized only by B8 by substituting l(d, x)for ¢(d, x). It
&@(d’xy B)“‘ ﬁ@(d,x, B/)
J

will have the form
-1
l(x,d) x:|> .
B P

The matrix (2(x) can be obtained from the similar matrix for the parametric moment
condition by substituting {(d, x) with {(d, x). It can then be expressed as

V(B) =E<E[ x}f)(x)_lE[Z(x, d)

Q(x) = E[¥(y,d,x, 2)¥(y,d, x,2)]

with efficient influence function ¥(-) the structure of which does not change. Note
that the semiparametric efficiency bound for the parameter in the conditional moment
equation ¢(d, x, u(x), B) = 0 will be above that for the conditional moment equation
o(d, x,0, B) = 0. The efficient estimation procedure may be implemented in two stages,
where, in the first stage, one estimates 8 and w(-) using an inefficient system of weights
(e.g., if one uses a sieve approximation for w(-), this will be equivalent to running a non-
linear instrumental variable (IV) regression on the covariates and the sieve terms). Then
using these estimates, one can construct the efficient estimator. O

E. Empirical application

The analyzed data set contains observations from the Family Transition Program (FTP)
which was conducted in Escambia County in the state of Florida from the year 1994 to
the year 1999. The subsample under consideration contains data for 2815 individuals
who applied for welfare in the year 1994 and early 1995.

The FTP program was launched to analyze it as an alternative to the welfare program
existing at the time—the Aid to Families with Dependent Children (AFDC). The main
differences between the two programs are, first, that FTP had a rigid time limit when
a family can receive cash assistance (up to 24 months within any 72-month period).
Second, under FTP, much more intensive training was offered to the participants, aiming
at improvement of job skills as well as job search skills.

The individuals applying for welfare were randomly assigned to either AFDC or FTP,
which allows one to compare the relative effect of the rules of the two welfare programs.
In addition to the immediate effect of the program, the collected data set tracks the in-
dividuals for the next 4 years after the program, thus allowing one to compare long-term
impacts of welfare programs on individuals.

The main sample contains the data for 2815 heads of single parent households
who applied for welfare and were randomly assigned to one of the welfare options be-
tween May 20, 1994 and February 31, 1996. In this sample, 1405 individuals were as-
signed to FTP and 1410 individuals were assigned to AFDC. The data contain three main
blocks. The administrative record data contain the data for individual incomes from
three sources in the state administration. First, the earnings from work from the state’s
Unemployment Insurance system. The second source of incomes is the payments from
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AFDC. The third source is Food Stamp payments. In addition, this data set contains in-
formation about the background characteristics of the individuals and data from the pri-
vate opinion survey. The adult survey data contain the information obtained by MRDC
(Manpower Demonstration Research Corporation). This information was collected in
45-minute interviews with 1730 individuals from the main data sample which were ad-
ministered in October 1998. This additional set contains information about characteris-
tics of individuals (including education, job experience, family and dependents, hous-
ing, food security, and living conditions). The child survey data are based on 1100 addi-
tional interviews with adult survey participants who have at least one child between 5
and 12 years old. This survey inquires about school outcomes and kids’ interactions with
other children. The information contained in the survey includes parenting and fathers’
involvement. The administrative record data contain 1132 variables, and the survey data
contain 849 variables in the adult survey and 679 variables in the child survey.

One of the surprising outcomes of the program is the relative deterioration of the
school performance of children in the least disadvantaged families. Specifically, in the
group of families with the largest earning impacts, the school performance of children
(including grades and suspension) is worse in the FTP sample than in AFDC sample.
One of the hypotheses to explain this is that in this group, the parents worked the longest
hours and were not able to monitor their children closely. However, we cannot directly
use the data to test this hypothesis because of selection on unobservable ability: the
unobserved ability of parents should be correlated with both the school performance of
children and with the impact of training on parents. In this case, if we use the assignment
to a specific program as an instrument, then we will be able to identify the impact of
parents’ training on the children’s school performance on the set of compliers who will
only be employed because of training.

In particular, we study the influence of the work status of parents on the count in-
dicator of a child’s achievement which grades the school achievement from 1 to 5. The
main problem in these circumstances is that a simple linear relationship between the
indicator of achievement and the fact that the parent is working is contaminated by
the influence of the unobserved ability. In fact, the parent’s ability, indicating his or her
capability to find a job, should be correlated with the child’s ability, which influences
the achievement grade. For this reason, to obtain the correct measure of dependence of
child’s achievement on the parent’s employment, we can use the instruments to correct
for the biased caused by the endogeneity of the employment dummy. One such instru-
ment can be the participation of the parent in FTP as compared to AFDC, because the
former participation has increased the probability of employment.

In Table V we present the results of such modeling for a subset of individuals who
ever took a job (dropping those who never worked for pay). We regress the child’s
achievement variable on the dummy that indicates the parent is currently employed,
child’s gender, age dummies for the parent, and the dummy that indicates the parent
do not have a high school diploma. In column 1, we report the results of a simple lin-
ear regression. Column 2 reports the results of Poisson regression and column 3 reports
the results of the negative binomial regression, where the achievement of a child is con-
sidered as a count outcome. The coefficient of parent’s employment is quite small in all
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TaBLE V. Regression Outcomes.?

Model number
Variable 1 2 3 4 5 6
Employment dummy —0.196 —0.049 —0.049 —1.882 —0.1550 —0.1550
(2.56)* (2.54)** (2.54)** (3.88)** (3.02)** (3.02)**
Male dummy —0.235 —0.058 —0.058 —0.31 —0.0126 —0.0126
(3.36)** (3.37)** (3.37)** (3.34)** (4.01)** (4.01)**
Age 25-34 —0.309 —0.076 —0.076 —0.394 —0.0585 —0.0585
(4.13)** (4.14)** (4.14)** (3.97)** (3.11)** (3.11)**
Age 35-44 —0.127 —0.031 —0.031 —0.16 —0.0247 —0.0247
-1.09 —1.08 —1.08 —1.11 —0.94 —0.94
No high school degree —0.139 —0.035 —0.035 0.086 —0.1308 —0.1308
—1.86 (1.86)* (1.86)* —-0.72 —0.88 —0.88
Constant 4.87 1.601 1.601 7.202 1.5119 1.5119
(32.83)** (44.21)** (44.21)** (10.58)** (20.21)** (20.21)**
N. obs. 918 918 918 887 918 918

R? 0.04

4Robust 7-statistics are given in parentheses. *significant at 5% level; **significant at 1% level.

the models. In column 4, we report the results of the IV regression, where we use in-
struments for the employment dummy that include the FTP/AFDC dummy and hourly
wage of the last job taken. As one can see, the coefficient indicates now that the parent’s
employment leads to the decline in the child’s achievement by almost 2 points. This sug-
gests that if we do not take into account the endogeneity of the employment dummy;,
we will understate the influence of parent’s employment on the child’s achievement at
school.

To apply our estimation method, we adopt the conditional moment condition im-
plied by the count structure of the outcome variable (child’s achievement grade). The
moment condition corresponds to the score of the Poisson regression mode with

, d
gy, d, x, B) =y —exp(Bod + x'B1)] <x>
and the moment condition
o(d,x,B)=E[g(y,d,x, B)lx,d, D1 > Dy]=0.

We apply the efficient estimator developed in the previous section to estimate .
For the negative binomial model, the moment condition was formed by
§2+y
872 +exp(Bod + x'B1)

d
g(y.d,x, B)= [y eXp(Bod+x’B1)] (x>
and the moment conditions were written similarly to the case of the Poisson model. The
results of efficient estimation adapted to the moment equations implied by the scores
of Poisson and negative binomial regression models are presented in columns 5 and 6.
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Similarly to the two-stage least squares (2SLS) case, the coefficients in the count data
models with endogeneity taken into account are significantly larger in absolute value
than in which do not take endogeneity into account. This implies that the endogeneity of
job participation causes an upward bias in the estimate of the influence of parent’s em-
ployment on child’s achievement. One can also see that the values of other coefficients
remain on the same order of magnitude, which indicates robustness of our results.

The marginal effects of variables in the Poisson model are consistent with the esti-
mates from linear models. Specifically, the treatment effect in model 2 is —0.196 with a
standard error of 0.0773, which is almost identical to the corresponding estimate from
the linear model. In the case with moment condition, taking endogeneity into account,
the marginal effect estimate is —0.538 with a standard error of 0.177. This is smaller than
the 2SLS estimate, but almost four times larger than the marginal effect in the model
that does not take endogeneity of job participation into account.
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