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Prediction markets for future events are increasingly common and they often
trade several contracts for the same event. This paper considers the distribution of
a normative risk-neutral trader who, given any portfolio of contracts traded on the
event, would choose not to reallocate that portfolio of contracts even if transac-
tions costs were zero. Because common parametric distributions can conflict with
observed prediction market prices, the distribution is given a nonparametric rep-
resentation together with a prior distribution favoring smooth and concentrated
distributions. Posterior modal distributions are found for popular vote shares of
the U.S. presidential candidates in the 100 days leading up to the elections of
1992, 1996, 2000, and 2004, using bid and ask prices on multiple contracts from
the Iowa Electronic Markets. On some days, the distributions are multimodal or
substantially asymmetric. The derived distributions are more concentrated than
the historical distribution of popular vote shares in presidential elections, but do
not tend to become more concentrated as time to elections diminishes.
Keywords. Forecasting, information systems analysis and design, probability
distributions, Bayesian estimation, Iowa Electronic Markets.
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1. Introduction

A prediction market executes trades of contracts whose final values will be determined
by the outcome of a specific future event. While the techniques developed here can be
applied widely in prediction markets, the focus of this paper is the Iowa Electronic Mar-
kets (IEM) for U.S. presidential elections. Final contract values in an IEM presidential
election market are determined by the popular vote share. For example, the final value
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of an IEM vote-share (VS) contract is proportional to the indicated candidate’s share of
the popular vote for the major parties, while an IEM winner-takes-all (WTA) contract has
value 1 if the indicated candidate wins a plurality of the popular vote and 0 otherwise.
Other contracts with final values that depend on vote shares have also been traded in
the IEM presidential election markets, as detailed in Section 2.

Prior to the determination of the final values of the contracts traded in a predic-
tion market, their prices fluctuate as the future event approaches. For an idealized risk-
neutral trader who has no transactions costs, the optimal allocation of a prediction mar-
ket portfolio is directly related to contract prices and that trader’s subjective probability
distribution of the future event that determines final contract values. This trader’s posi-
tion in an IEM VS contract is determined by prices and her subjective expectation of the
proportion of the major party popular vote won by the indicated candidate. Her position
in an IEM WTA contract is determined by prices and her subjective probability that the
indicated candidate receives the most votes.

The focus of our analysis is the subjective probability distribution of such an ide-
alized trader who, moreover, endowed with any portfolio of IEM presidential election
market contracts, would not reallocate that portfolio. Since, at any given time, traders
observe the highest bid and the lowest ask price of VS contracts, these bid and ask prices
bound the mean of this trader’s distribution of the proportion of the popular vote going
to each of the two major party candidates. Similarly, the WTA bid and ask prices bound
this trader’s subjective probabilities that each candidate’s share will exceed one-half. We
call this hypothetical individual the indifferent trader.

The objective of this paper is to learn from observed VS, WTA, and other contract
prices what the subjective probability distribution of an indifferent trader would be were
such a trader to exist. Our methods and results in no way rely on whether or not an
indifferent trader actually exists. Neither do they depend on the distribution of beliefs
among actual traders, an interesting but distinct issue (Manski (2006), Wolfers and Zite-
witz (2006)).

Mapping contract prices into an indifferent trader’s subjective probability distribu-
tion turns out to be a well framed but unexplored question with interesting answers. To
begin, it immediately raises the questions of whether there exists such a probability dis-
tribution and, if so, whether the distribution is unique. Section 3 of the paper addresses
the question of existence in a simple prediction market with only VS and WTA contracts,
each with coincident bid and ask prices. Proposition 1 shows that existence is equivalent
to a simple restriction on VS and WTA prices. The restriction is weak and easily satisfied
by the IEM presidential election market prices studied here.

It would be convenient to assume that the indifferent trader’s distribution has a sim-
ple parametric form.1 Section 3 shows that common parametric forms (beta and logis-
tic normal) impose much stronger restrictions on combinations of VS and WTA prices.

1Often, researchers estimate forecast distributions from prediction markets by imposing such forms. For
example, Berg, Neumann, and Rietz (2009) assumed a log normal distribution for market capitalization
after the Google initial public offering. Gruca, Berg, and Cipriano (2008) used a normal distribution for
movie box office revenues. Berg, Nelson, and Rietz (2008) assumed a logistic normal distribution for U.S.
presidential vote shares, while Page (2008) assumed a normal distribution as did Leigh and Wolfers (2006)
implicitly.
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These restrictions are violated in much of our data and in the data used in other studies
as well.2 Furthermore, in Section 3, we show that IEM presidential election market VS
and WTA prices rule out symmetric distributions on many days.

These restrictions on probability distributions imposed by prediction market con-
tract prices—which, to the best of our knowledge, are all new results—led us to a non-
parametric representation of the indifferent trader’s probability distribution of the ma-
jor party shares of the popular vote. Specifically, this distribution is cast as discrete on
the points ai = (i − 0�5)/n (i = 1� � � � � n). In a nonparametric environment there are, in
general, many distributions that are consistent with bid and ask prices as long as the
conditions of Proposition 1 are satisfied. These conditions are satisfied on all of the days
studied subsequently in this paper.

Our approach, detailed in Section 4, is to order the set of possible subjective distribu-
tions using a prior distribution that favors probability distributions that are smooth and
concentrated, the tension between these criteria being governed by the specific choice
of the prior. Because we wish to produce these distributions repeatedly, reliably, and in
real time, Section 4 focuses on a prior distribution for which finding the mode of the
posterior distribution amounts to the solution of a quadratic programming problem in
n variables.

Section 5 uses this approach to examine the probability distributions of the indif-
ferent trader, corresponding to the posterior mode, at midnight on the 100 days leading
up to the presidential elections of 1992, 1996, 2000, and 2004. We find that these distri-
butions are often notably asymmetric, many (though a minority) of them are bimodal,
and a few are multimodal. Significantly, neither the volatility nor the variance of these
distributions changes systematically as election day approaches.

The main conclusions of our research, elaborated in the final section, are (i) com-
mon parametric distributions must be avoided when inferring distributions from con-
tract prices in prediction markets, (ii) nonparametric probability distributions of the
events priced by these contracts can be found rapidly and reliably in real time, (iii) the
subjective probability distribution of the indifferent trader in the four presidential elec-
tions considered is substantially more concentrated than the distribution of realized
vote shares in the elections of 1868–1988, and (iv) the evolution of distributions leading
up to the elections is more consistent with inference about an evolving latent variable
than with classic learning about a fixed but unknown parameter.

2. The IEM presidential election markets

The University of Iowa runs the Iowa Electronic Markets (IEM)—real-money futures
markets—through the Internet for teaching and research purposes. Traders worldwide
can establish accounts with initial investments between $5 and $500. Since the IEM
is described in detail at its website (http://www.tippie.uiowa.edu/iem/) and elsewhere

2This is why Berg, Nelson, and Rietz (2008) frequently cannot estimate implied volatilities for the logistic
normal distribution they use. Figure 2 in Berg, Neumann, and Rietz (2009) sometimes shows evidence of
a multimodal distribution. Distributions in Chen and Plott (2002) show frequent asymmetries and, some-
times, multiple modes.
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(Forsythe, Nelson, Neumann, and Wright (1992), Forsythe, Rietz, and Ross (1999), Berg,
Forsythe, and Rietz (1997), Oliven and Rietz (2004)), we will be brief here.

IEM markets are organized as continuous electronic double auctions. At any time,
traders can place bids to buy contracts or asks to sell contracts into price and time or-
dered queues. At any given time, standing best (highest) bids and best (lowest) asks rep-
resent the best, immediately available prices that no trader is currently willing to accept.
Traders who wish to trade immediately can accept outstanding best bids or asks and, as
a result, execute a trade. This reveals the next best bid or ask. Finally, traders can buy
or sell “unit portfolios” to or from the exchange for $1 at any time. Unit portfolios con-
sist of one of each contract in a market. For example, in 2004 the vote-share market had
two contracts, one for the Republican and one for the Democrat. By design, the sum of
liquidation values of these contracts will always equal $1.

Prior to each of the four U.S. presidential elections 1992–2004, the IEM traded both
vote-share (VS) and interval (INT) contracts.3 Although the exact specification of the
contracts changed from election to election, all give information about the popular vote
shares of the candidates. The Appendix (Supplemental Material (Berg, Geweke, and Ri-
etz (2010))) details the specific definitions of all contracts studied. It also sets up a com-
mon nomenclature for the contracts, which we will use here. Each market had several
hundred active traders. Prospectuses for the markets are available from the IEM website.

After the election, VS contracts liquidate (pay their owners) $1 times the (appropri-
ately defined) share of the popular vote cast for the associated candidate. For example,
the contract we denote by VS�D|DR paid $1 multiplied by the Democratic nominee’s (i.e.,
John Kerry’s) share of the two-party vote in 2004 and the contract we denote by VS�R|DR
paid $1 multiplied by the Republican nominee’s (i.e., George Bush’s) share. Since Kerry
took 48.8% of the two-party vote to Bush’s 51.2%, the VS�D|DR contract paid $0.488 and
the VS�R|DR contract paid $0.512. The unit portfolio consisted of one of each contract
and was worth $1.

Interval contracts generally pay $1 if the vote share falls in a given range and $0 oth-
erwise. For example, a contract may pay $1 if the associated candidate takes the plu-
rality of the vote, like the contract we denote by W �D|DR in 2004 (which paid $1 if the
Democrat (Kerry) took more popular votes than the Republican (Bush)). The unit port-
folio consisted of this and a corresponding contract for the Republican party. We refer
to these interval contracts as winner-takes-all (WTA) contracts. Sometimes interval con-
tracts subdivided the vote ranges. For example, in 2004, the IEM subdivided the payoff
ranges of the original W �D|DR and W �R|DR, effectively splitting each into two new con-
tracts. The contract we denote by (50�52)�R|DR paid $1 if the Republican (Bush) took
between 50% and 52% of the two-party vote in 2004 and (52�100)�R|DR paid $1 if he took
more than 52%. Similar contracts were defined for the Democrat (Kerry) taking 50% to
52% and more than 52%. These four contracts formed a new unit portfolio.

Taken together, highest bid and lowest ask quotations for vote-share and interval
contracts restrict the indifferent trader’s subjective distribution of vote shares. Vote-
share contracts provide information about the mean of the distribution, while inter-
val contracts provide information about the probability mass over specified ranges. For

3In 1988, the IEM traded only VS contracts.
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each contract, we record the midnight highest outstanding bids and lowest outstanding
asks on each of the last 100 days of the market.4 Our indifferent trader’s expectation of
f must lie between the bid and ask prices of the vote-share contracts, and similarly this
trader’s subjective probabilities of each event in the interval markets must lie between
the bid and ask of the associated contract.

3. Multiple contracts and probability distributions

We begin by investigating implied distribution restrictions in a simple prediction mar-
ket for an event that is a fraction f ∈ [0�1]. The market studied is simple, with just two
contracts: the liquidation value of one contract is the realized value of f ; the liquidation
value of the other contract is 1 if f > 0�5 and 0 otherwise. In this section, we ignore com-
plications due to bid–ask spreads and assume that the contracts have unique prices v

(for vote share) and w (for winner take all), respectively. The Appendix (Supplemental
Material (Berg, Geweke, and Rietz (2010))) contains proofs of all of the propositions.

The hypothesis that, for some random variable f , it is simultaneously the case that
v =E(f) and w = P(f > 0�5) places restrictions on v and w.

Proposition 1. The set S of possible (v�w) is

S = {(v�w) : 0 < v < 1;0 ≤w ≤ 1;2v − 1 <w< 2v}�

The set S of Proposition 1 is the parallelogram outlined by the heavy lines in Fig-
ure 1(a). The points in this figure are the 399 combinations (v�w) for the days studied.
The latter are computed as means of bounds whose construction is detailed at the start
of the next section. Clearly all of the (v�w) values are well within S and, hence, satisfy
these minimal essential restrictions.

Proposition 2. Suppose that the distribution of f is symmetric. The set S of possible
(v�w) is Ss = S1US2US3US4US5, where

S1 = {(v�w) : 1/4 < v < 1/2�0 <w< 1/2}�
S2 = {(v�w) : 1/2 < v < 3/4�1/2 <w< 1}�
S3 = {v =w = 1/2}�
S4 = {w = 0� v < 1/2}�
S5 = {w = 1� v > 1/2}�

4While the market never actually closes, the IEM commonly reports the last trade prices before midnight
as the “closing” prices for the day. Midnight bids and asks incorporate the accumulated information from
the day. While it can be changed by traders, bids and asks expire by default at midnight one or two days after
they are placed (depending on the election year). This results in a pattern of narrowing bid–ask spreads
during a day up to midnight. After midnight, they may widen. In 1992, data for the 65th day, September 28,
were lost. This accounts for the gap shown in many of our graphs. There are 99 days of contract prices for
1992 and 399 for all four elections together. Attesting to the liquidity of these markets, for most contracts
traded since 1996, the bid–ask spread is less than 1

2 cent. For some of these contracts, most spreads are 1
mil—the lowest possible since IEM trading prices are integer multiples of a mil.
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Figure 1. In each panel the interior of the region defined by the heavy lines indicates (v�w)

combinations consistent with a distributional assumption. The dots indicate the midpoints of
contract bid and ask prices for VS and WTA contracts before the four elections.

The sets S1 and S2 of Proposition 2 are the two rectangles each outlined by the heavy
lines in Figure 1(b). Of the 399 combinations (v�w) in the sample, 44 (11.0%) are not in
Ss—combinations in which one of the two prices was less than 0.5 while the other price
exceeded 0.5. Thus for a significant part of our sample, the center of the bid–ask range
is inconsistent with a symmetric distribution of f ; for some of these sample points, the
entire bid–ask range lies outside of S. The strongest violation of the constraints of Propo-
sition 2 occurs on October 2, 2000, when v = 0�4875 and w = 0�6005. Section 5 returns to
some of these cases in more detail.

The set of symmetric unimodal distributions places even more restrictions on the
set of corresponding (v�w).

Proposition 3. Suppose that f is a continuous random variable with a symmetric dis-
tribution that has a global mode at v = E(f). The set S of possible (v�w) is given by
Su = Su1USu2US3, where

Su1 = {(v�w) : 1/4 < v < 1/2�0 <w< 1 − (4v)−1}�
Su2 = {(v�w) : 1/2 < v < 3/4� [4(1 − v)]−1 <w< 1}�
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and S3 is defined in Proposition 2.

The set Su of Proposition 3 is outlined by the heavy lines in Figure 1(c). In addition
to the points excluded by Proposition 2, this result also excludes points (v�w) both less
than 0.5 or both exceeding 0.5, but for which w is too close to 0.5. There are 62 points
(15.5% of the total 399 days) in Figure 1(c) that violate the conditions of Proposition 3.
The strongest violation of the constraints of Proposition 3 occurs on August 17, 2004,
when v = 0�5150 and w = 0�4948; for consistency with Proposition 3, v would have to be
reduced by 0.0150 or w would have to be increased by 0.0207.

Beta and logistic normal are two common distributions for random variables on the
unit interval that need not be symmetric, but these distributions are also frequently in-
consistent with the IEM data. The difficulties again involve restrictions placed on (v�w)

near the point (0�5�0�5).
The beta distribution arises naturally when the information about a probability is

updated with binary outcomes (Zellner (1971, Section 2.13)), for example, a poll of vot-
ing intentions.

Proposition 4. Suppose that f has a beta distribution. The set S∗ of possible (v�w) is
S∗ = S∗1US∗2US3, where

S∗1 = {(v�w) : 0 < v < 1/2�0 <w< v}�
S∗2 = {(v�w) : 1/2 < v < 1� v < w < 1}�

and S3 is defined in Proposition 2.

The set S∗ of Proposition 4 is outlined by the heavy lines in Figure 1(d). Notice that
Su ⊂ S∗ ⊂ S. There are 59 days (14.8% of the total) in Figure 1(d) that are inconsistent
with a beta distribution for f . The strongest violation of Proposition 4 is on August 17,
2004, the same date noted in connection with Proposition 3. For the beta distribution,
however, an increase of 0.0202 in w would be required for consistency.

In previous work (e.g., Berg, Nelson, and Rietz (2008)), a log normal distribution has
been used to analyze prediction markets. Here, a logistic normal distribution would be
more appropriate.

Proposition 5. Suppose that f has a logistic normal distribution, log[f/(1 − f )] ∼

N(μ�σ2). The set of possible (v�w) is S∗ defined in Proposition 4.

Proposition 1 and Figure 1(a) suggest that there are many distributions for f that
will be consistent with the IEM data. Propositions 2 and 3 and Figure 1(b) and 1(c) show
that the distributions cannot all be symmetric. Proposition 4 and Figure 1(d) show that
many contract prices are inconsistent with beta distributions, and Proposition 5 and
Figure 1(d) show inconsistencies with logistic normal distributions. These findings re-
quire that we permit more flexible distributions. The next section considers the class of
all probability distributions for f , building on the ideas that a reasonable distribution
should have a smooth probability density function and not be too dispersed.
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4. A practical flexible model for subjective distributions

We begin by modeling the Democratic fraction of the two-party vote f as a discrete ran-
dom variable defined on a set of uniformly spaced points ai = (i − 0�5)/n (i = 1� � � � � n).
While this cannot literally be true, by taking n sufficiently large, it is possible to approx-
imate all relevant functions of the continuous random variable f . (All of the compu-
tations here take n = 100. None of the results reported subsequently changes substan-
tively for larger values of n.) Denote the support of f by the n× 1 vector a = (a1� � � � � an)

′.
Then the distribution of f on day t is given by the corresponding n × 1 vector pt =
(pt1� � � � �ptn)

′. For each election, t = 1� � � � �100 with t = 100 denoting the day before the
election.

Our strategy is to cast the problem with a Gaussian prior distribution for pt subject
to the constraint that pt is contained in the unit simplex of R

n:

pt ∈ P 0 =
{

p : p ≥ 0�
n∑

i=1

pti = 1

}
�

Contract bid and ask prices provide additional inequality constraints as detailed in the
Appendix. Intuitively, bids bound expectations from below, while asks bound them from
above.5 Table 1 shows the aspects of the distributions that are bounded by the traded
contracts for all elections. We work with bounds on the Democratic fraction of the two-
party vote in all four elections except 2000, in which it is the fraction of the three-party
vote.6

The last column of Table 1 indicates the median bid–ask spread constructed in this
way. Spreads in all of the 1996, 2000, and 2004 markets, and the 1992 VS market are a
penny or less, and in some cases, they are only 1 mil—the smallest bid–ask spread pos-
sible. In relative terms, these spreads are comparable to those in markets for large-cap
equities. Spreads in the 1992 INT markets are somewhat larger. There is no systematic
tendency for spreads to increase or decrease as the election approaches.

Because of bid–ask spreads, restrictions on pt come in natural pairs, for example,
VS�Db ≤ E(f) ≤ VS�Da for the vote-share contract (VS) that pays in proportion to the
fraction of the popular vote received by the Democratic nominee (D), where b and a

denote the highest bid and lowest ask, respectively. But, because contracts are part of
a unit portfolio, there is another set of bounds. Traders can effectively “buy” a VS�D in
two ways: (i) purchase it at the ask (VS�Da) or (ii) buy the unit portfolio for $1 and sell
the VS�R contract, giving a net price of 1 − VS�Rb to hold one additional share of VS�D.
Traders can also “sell” a VS�D either directly at the bid or indirectly using a portfolio

5While the indifferent trader incurs no transactions costs and, hence, the bids and asks form the bounds,
it is easy to adjust for transactions costs. One would simply lower the bound implied by the bid by sub-
tracting the (implicit or explicit) transactions costs and raise the upper bound implied by the ask similarly.
Increasing the bounds reduces the information content of the market and may lead to slightly smoother,
more compact distributions, but otherwise leaves the procedure unchanged.

6The specific treatment of 2000 arises from the definitions of contracts for that election.
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Table 1. Bounds on the vote-share distribution implied by each market.

Election Contracts Bounds Obtained
From the Market

Median Spread
Between Upper and

Lower Bounds

1992 VS E(f) 0.005
WTA* P(f > 0�5) 0.013
INT1 P(f > 0�46) 0.013
INT2* P(f > 0�50) 0.013
INT3 P(f > 0�54) 0.013
INT4** P(f > 0�58) 0.014

1996 VS E(f) 0.006
WTA P(f > 0�5) 0.004

2000 VS E(f) 0.003
WTA P(f>0�5) 0.004

2004 VS E(f) 0.003
WTA*** P(f > 0�5) 0.010
INT1*** P(f < 0�48) 0.001
INT2*** P(0�48 < f < 0�50) 0.001
INT3*** P(0�50 < f < 0�52) 0.002
INT4*** P(f > 0�52) 0.001

Note: The asterisks indicate that in 1992, the IEM traded redundant contracts that each paid off based on the 50% vote-
share cutoff. We computed the bounds using bids and asks from both markets. The spread reported here is the median smallest
spread across all the bids and asks for all the contracts based on the 50% cutoff. The double asterisks denote that trading began
21 days before the election. The triple asterisks indicate the winner-takes-all contracts in 2004 based on a 50% vote-share cutoff
were split into contracts associated with the <48%, 48%–50%, 50%–52%, and >52% intervals. The split occurred 58 days before
the election.

transaction. This leads to the second set of bounds: 1−VS�Ra ≤ E(f) ≤ 1−VS�Rb. As our
bounds, we use the more restrictive prices (lower buying price and higher selling price)

vt = max(VS�Db�1 − VS�Ra)≤ E(f) ≤ min(VS�Da�1 − VS�Rb)= vt � (1)

The corresponding restriction on the n× 1 vector pt in our model is

pt ∈ P 1
t = {pt :vt ≤ a′pt ≤ vt}�

If the lower and upper bounds in (1) are the same, as occurred on a few dates in
our sample, then the two inequality constraints are replaced by a single equality con-
straint.7 Since the conventional quadratic programming problem (and software) incor-
porates equality as well as inequality constraints, this poses no difficulty. By extension,
our procedures apply in markets with a market-maker rather than a continuous double
auction. Finally, the second set of bounds is necessitated by the unit portfolio structure
of the IEM. However, if unit portfolios did not exist, bounds could be derived from a
single set of bids and asks.

7Occasionally, when a no-arbitrage restriction is violated, the highest lower bound exceeds the lowest
upper bound. Oliven and Rietz (2004) showed that such arbitrage opportunities are quickly exploited. In
these cases, we set both bounds to their midpoint, creating a single equality constraint.
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The bounds for interval contracts are constructed according to the same principles,
but, depending on the configuration of contracts offered and the number of candidates,
the nature of the potential lower and upper bounds varies from year to year and case to
case. In the same way the bid and ask prices of the WTA contract, which traded preceding
each of the presidential elections we study, provide restrictions wt ≤ P(f ≥ 1/2) ≤ wt

at the end of each trading day t. The corresponding restriction on pt is pt ∈ P 2
t with

P 2
t := {pt :wt ≤ ∑n

i=n/2+1 pti ≤ wt}. Other interval contracts, indicated in Table 1, provide
similar restrictions. The restrictions on pt from the bid and ask prices of all contracts at
the end of day t can be expressed as

pt ∈ Pt = P 0 ∩ P 1
t ∩ · · · ∩ Pnt

t �

where nt is determined by the number of contracts traded. (For example, nt = 5 in Oc-
tober 1992 and nt = 2 in 2004. The Appendix details the construction of inequality con-
straints for each date from contract bid and ask prices.) The set Pt is the intersection of
P 0, which is the unit simplex in R

n, with 2nt additional inequality restrictions on linear
functions of pt . Table 1 lists the properties of the distributions bounded by contract bids
and asks preceding each election along with the median spreads between the bounds.
The Appendix contains the derivations of the specified bounds for each year. As it shows,
bounds can be obtained for a wide range of contract specifications within the IEM itself
and the principles followed can be easily adapted to other prediction markets.

We restrict ourselves to a Gaussian prior distribution for the 100×1 parameter vector
pt for pragmatic reasons. If the prior distribution is Gaussian, then the posterior distri-
bution is also Gaussian subject to the linear equality and inequality constraints just dis-
cussed. Since the logarithm of a Gaussian probability density is quadratic, finding the
mode of the posterior distribution amounts to the solution of a quadratic programming
problem. The solution can be computed in 0.4 seconds for the most complicated set of
bounds in our data using standard desktop computing software and hardware, and it,
therefore, can be implemented in real time in response to changing bid and ask prices—
as we, in fact, did for the 2008 IEM presidential election contracts while the markets
were running. The mode of the posterior distribution is our estimate p̂t of the 100 × 1
parameter vector pt .

Our prior distribution reflects the belief that smoother, more concentrated distrib-
utions are more reasonable than rougher, more dispersed distributions. Therefore, the
prior distribution has two independent components that reflect the beliefs that (i) pti is
a smooth function of i and (ii) pti is likely to be smaller the larger is |a′pt −pti|.

The first component of the prior distribution (smoothness) is the conventional vi-
sual smoothness prior of Shiller (1984) in which the first derivative of a continuous
function follows a Wiener process with no drift and diffusion parameter τ2: smaller val-
ues of τ2 correspond to smoother functions. This implies a Gaussian prior for n regu-
larly spaced points with mean zero and precision (inverse variance) matrix of the form
τ−2R′GR. In this expression, G is an (n − 2) × (n − 2) tridiagonal matrix with gii = 1/3
(i = 1� � � � � n− 2) and gi�i+1 = gi+1�i = 1/6 (i = 1� � � � � n− 3), and R is an (n− 2)× n matrix
with three nonzero elements rii = 1, ri�i+1 = −2, and ri�i+2 = 1 in each row i. In our appli-
cation, n = 100 is the number of points in the unit interval used in the problem. Since the
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interval between units has length 1/n, that would call for scaling the precision matrix by
n if p remained constant as n varied, but the constraints pt ≥ 0 and

∑100
i=1 pti = 1 require

that the elements of pt are proportional to 1/n as well, for another factor of n2. There-
fore, the smoothness prior is Gaussian with precision matrix Hs(n� τ

2) = n3τ−2R′GR and
mean vector μs = 0. As explained in Geweke (2005, Section 5.4.1), this prior distribution
for functional smoothness can be extended to any value of n and to a continuous func-
tion in a logically consistent manner. This property is unique to this prior distribution
and provides a compelling reason for this particular form of the smoothness prior.

The second component of the prior distribution (concentration) severely penalizes
substantial values of pti relatively far from the mean and has the kernel

exp

[
−

n∑
i=1

exp(c|ai − a′pt |)pti

]
�

where c is a prior hyperparameter that regulates the size of the penalty. Since the log
kernel is not quadratic in pt this prior does not meet the objective of maximizing the log
posterior by means of quadratic programming. We avoid this problem by substituting
the mean vt of the VS contract bounds for a′pt . Given the small spreads in bounds for
VS contracts, the effect of substituting vt for a′pt should be small. The log kernel for this
component of the prior distribution thus has the form g(c)′pt , with gi(c) = −exp(c|ai −
vt |).

Incorporating both components, the log prior density kernel therefore has the form

Q(p;τ2� c�ω�n) = −ω
1
2

p′
tHs(n� τ

2)pt − (1 −ω)exp[g(c)]′pt �

where ω ∈ (0�1) is the weight on the smoothness component of the prior relative to con-
centration. Because rank[Hs(n� τ

2)] = n− 2, this is not a regular quadratic programming
problem. To bring it into regular form, replace Hs(n� τ

2) with the full rank matrix

H(n�τ2)= Hs(n� τ
2)+ n−1[ee′ + aa′]�

where e is an n× 1 vector of units. This changes the problem very little because e′pt = 1
and a′pt is tightly constrained by the VS bids and asks.

The log likelihood function is Lt(pt ) = 0 for pt ∈ Pt and Lt (pt ) = −∞ for pt /∈ Pt .
Hence, the mode of the posterior density is

p̂t = arg max
p∈Pt

Q(p;τ2� c�ω�n)�

Since Q is a quadratic function and Pt is the intersection of linear inequality constraints,
p̂t is the solution of a conventional quadratic programming problem.

It remains to set the hyperparameters ω, τ2, and c. Since the solution of the problem
is invariant to scaling Q and changes in τ2 scale p′

tHpt , ω and τ2 are redundant. With-
out loss of generality, take ω = 1/2. We experimented with the values of τ2 and c, ex-
amining the effects of various combinations of these hyperparameters on the posterior
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maximums for pt . We settled on the choices τ = 1 and c = 20. The Appendix discusses
sensitivity of the results to the selection of hyperparameters in more detail.

From a formal Bayesian perspective, p̂t is the estimate of pt given a zero–one loss
function (Bernardo and Smith (1993, Section 5.1), Geweke (2005, Section 2.4)). From
a formal sampling-theoretic perspective, the estimate is the maximum likelihood esti-
mate of pt using the penalized likelihood function

Lt (pt )+Q(p;τ2� c�ω�n)�

Under either the Bayesian or non-Bayesian interpretation, p̂t is a point estimate of the
indifferent trader’s subjective probability distribution. Of course there are many other
probability distributions pt that are not excluded by contract bid and ask prices, and the
point estimate conveys no sense of subjective uncertainty (in a Bayesian interpretation)
or a sampling-theoretic distribution (in a non-Bayesian interpretation).

It is a straightforward but computationally time-intensive task to access the en-
tire posterior distribution of pt by means of a conventional Markov chain Monte Carlo
algorithm for multivariate normal distributions subject to linear constraints (Geweke
(1991)). Doing so with the speed and reliability required for real-time public reporting of
pt , one of our primary objectives, raises challenges well beyond the scope of this paper.

The sampling-theoretic (non-Bayesian) distribution of p̂t presents more fundamen-
tal problems. The relevant construct for asymptotic distribution theory is the introduc-
tion of successive contracts. For example, interval contracts with payment thresholds
that become dense on the unit interval will render p̂t superconsistent and, more gen-
erally, convergence rates will be sensitive to the structure of contracts. None of that is
relevant here: the number of observations (i.e., inequality restrictions from bid and ask
prices) is as few as 4 and no more than 12, while the number of parameters estimated is
n = 100.

5. Subjective distributions of the indifferent trader

For the 100 days preceding the presidential elections from 1992 to 2004, we use daily
closing bids and asks and the methods from Section 4 to compute p̂t . These are our
estimates of the indifferent trader’s distribution of the Democratic popular vote share, f .
Figure 2 shows the results for the day preceding each election. The distribution is given
by the solid curve in each panel. The solid vertical line segments at the top of each panel
provide the lower and upper bounds of the VS contracts, and the dashed vertical line
segments do the same for the WTA contracts.8 The circle in the bound interval for the VS
price is centered at the mean of the distribution (i.e., a′p̂t ). The square is centered at the
probability that the Democrat receives more than half the popular vote in the election
(i.e.,

∑100
i=51 p̂ti). Finally, for reference, the light diamonds plot out show a logistic normal

distribution fit to the Democratic share of the two-party popular vote in the 1868–2004
presidential elections and centered at zero.

8The bounds for the VS contracts shown in Figures 2, 3, and 4 refer to the bounds on E(f) calculated as
indicated in the Appendix. The bounds for the WTA contracts in these figures refer to the bounds on P(f >

0�5) calculated as given in the Appendix for 1992, 1996, 2000, and the first 58 days in 2004. For the remaining
42 days in 2004, the WTA bid is the sum of the lower bounds for P(0�50 < f < 0�52) and P(f ≥ 0�52).
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Figure 2. Estimated probability distribution at midnight preceding election day, with upper
and lower bounds for vote-share and winner-takes-all contracts.

Using the same graphical presentation, we provide the distributions for all 399 days
preceding the elections at http://www.tippie.uiowa.edu/iem/research/Bayesian/. Simi-
lar graphs were updated each minute during the 2008 presidential election market at the
same website. Here we summarize some aspects of these distributions that are relevant
for the issues motivating this study and for the use of our methods in monitoring prices
in prediction markets more generally.

5.1 Asymmetry and multiple modes

Our procedure allows for asymmetric distributions. Section 3 shows that many of the
combinations of VS and WTA prices observed are inconsistent with beta and logistic
normal distributions, as well as with symmetric distributions. In particular, the combi-
nations (v < 0�5�w > 0�5) and (v > 0�5�w < 0�5) are inconsistent with any of these distri-
butions. For 23 of the 399 days, we observe these combinations not only for the mean of
the lower and upper bounds, but also for all v between the VS bid–ask bounds and all w
between the WTA bid–ask bounds. Figure 3 shows how our methods handle such situ-
ations. The distributions are asymmetric, as must be the case. Our methods accommo-
date v < 0�5 <w with a negatively skewed distribution and w < 0�5 < v with a positively
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Figure 3. Estimated probability distribution on four sample days in which bound ranges for
vote-share and winner-takes-all contracts were on opposite sides of 0.5.

skewed distribution. In all four cases, p̂t brings both E(f) and P(f > 0�5) as close to 0.5
as possible, as indicated at the top of each panel.

Our procedure can also generate distributions with multiple modes. Two of the dis-
tributions in Figure 3 are unimodal, and two are bimodal. For some days, the distribu-
tions are multimodal. Figure 4 shows a multimodal distribution from 1992, a bimodal
distribution from 2000, and the distribution on the following day in both cases.

Studying why multiple modes arise and disappear is informative. On September 22,
1992, the VS contract bounds were 0�535 and 0�540, and the WTA bounds were both
0.700. The indifferent trader’s distribution (Figure 4, top left panel) places E(f) = 0�535,
so the VS lower bound is binding. Hence, relative to the smooth concentrated distribu-
tions preferred by the prior, the VS range is too high. The indifferent trader’s probability
distribution reconciles this using the mass around the right mode. At 0.645, this mode is
much higher than the range of any of the INT contracts (Table 1). The left mode reflects
a lower bound for the INT contract with positive liquidation value if and only if f < 0�46.
Given the high VS lower bound, the distribution assigns a mode just below 0.46, rather
than a smoother distribution below 0.46 (which would decrease E(f)). The following day
the VS contract range fell to [0�500�0�533]. This drop completely resolves the conflict be-
tween the VS contract and the WTA contract whose September 23 range is [0�677�0�720].
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Figure 4. Estimated probability distribution on two sets of successive days in which there were
large changes in the distributions.

None of the VS and WTA contract bounds remains binding and the right mode vanishes.
While the left mode has also disappeared due to the drop in E(f), the asymmetry attests
to a relatively high lower bound for the INT contract paying off when f < 0�46.

Sometimes, multiple modes arise even without multiple interval contracts. In 2000,
only VS and WTA contracts (and no INT contracts) traded. The bound configuration on
October 2 (lower left panel, Figure 4) violates constraints from all of the specific distribu-
tions studied in Section 3. The left mode in that day’s distribution results from a VS upper
bound that is too low, relative to the WTA lower bound, in the context of the prior pref-
erences for smooth concentrated distributions. Accordingly, the VS upper bound and
the WTA lower bound are binding. The following day the same two bounds are bind-
ing. However, the VS upper bound has risen from 0.490 to 0.512. The WTA lower bound
increased slightly more from 0.602 to 0.628. Yet this removed the bimodality in the distri-
bution. The high concentration near the mean of the distribution is now consistent with
the bounds of the WTA contract. In general, distributions are more sensitive to VS con-
tract bounds than to WTA or INT bounds. Section 5.3 provides a more complete analysis
of these issues by examining closely the role of upper and lower bounds in inferring the
underlying distribution.

Changes between unimodality and bimodality occur regularly in all four years. The
propensity for multimodality is generally stronger in the 1992 and 1996 elections than
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in 2000 and 2004. In each election, there is substantial serial correlation in the number
of modes exhibited in the distributions of the indifferent trader.

5.2 The evolution of distributions

The previous section gives two examples of how the indifferent trader’s distributions
evolve through time. More generally, the probability distributions p̂t exhibit periods of
several weeks with little change, punctuated by periods of similar length with much
greater changes. The day-to-day change can be summarized by

∑100
i=1 |p̂t�i − p̂t−1�i|. This

function is bounded below by 0 (corresponding to no change in the distribution) and
above by 2 (corresponding to disjoint supports for the distribution on successive days).
Figure 5 plots these changes as dots connected by a solid line for each of the 4 years.
The horizontal line indicates the average change in each year: 0.216 in 1992, 0.092 in
1996, 0.117 in 2000, and 0.112 in 2004. (Vertical lines indicate dates when additional INT
contracts were introduced; see Table 1.) In each case, the volatility of the distribution
is persistent and there is no systematic tendency for the distribution to become more
or less volatile as the election approaches. There is also no systematic relationship be-
tween the magnitude of changes in p̂t and the sizes of bid–ask spreads in the VS and
WTA markets.

Figure 5. Daily changes in the estimated probability distributions.
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5.3 Analysis of constraints

As detailed in the Appendix, combinations of contract bid and ask prices provide lower
and upper bounds for a function of pt specific to each contract. (Figures of the bounds
appear in the Appendix.) Each day, our approach indicates whether the upper, lower, or
neither bound is binding for p̂t . Typically there are many days in succession in which the
upper, lower, or neither bound is binding. Clearly, the elections differ from each other. In
1996, the value of P(f > 0�5) implicit in p̂t is as high as it possibly can be (i.e., the upper
bound of the WTA contract is binding) in all 100 days. For 97 of the 100 days in 1996, the
lower bound of the VS contract is binding, making the value of E(f) implicit in p̂t as low
as it can be on those days. On the other 3 days in 1996, neither VS bound was binding. In
2000 and 2004, upper bounds of VS contracts and lower bounds of WTA contracts were
predominantly binding. In 1992, VS lower bounds were binding on 21 days and upper
bounds were binding on 47 days, while WTA lower bounds were binding on 55 days and
upper bounds were binding on 39 days.

If a lower (upper) bound is binding, then a hypothetical decrease (increase) in that
bound would lead to p̂t that has higher probability under our prior distribution—that
is, the corresponding probability distribution would be smoother and/or more concen-
trated. A standard measure of the strength of a binding constraint is the derivative of
the objective function (in our case, the log of the posterior density) with respect to a
change in that constraint. For our quadratic objective function, this derivative is mea-
sured by the Lagrange multiplier (“shadow price”) of the constraint in the solution of
the quadratic programming problem, computed as a by-product of the solution. For the
VS contracts, a Lagrange multiplier is positive if and only if a corresponding contract
bound is binding. The same is true for WTA contracts on those days when no other INT
contracts are traded. Since the bounds reflect sums of contract bounds on other days,
Lagrange multipliers can be positive even if the individual contract bounds do not bind
P(f > 0�5); in these cases, the contract bounds are binding for some other function, for
example, P(f > 0�54) in 1992 or P(f > 0�52) on the 42 days preceding the 2004 election.

Generally higher Lagrange multipliers for VS contracts arise because the distribution
is much more sensitive to changes in E(f) than it is to P(f > 0�5) in the IEM presidential
election markets. The sensitivity results from the concentration of the distribution—the
fact that most of its support is typically over an interval of about 0.12 units. Figures 2–4
illustrate this fact and Section 5.4 provides more systematic evidence based on the stan-
dard deviation of the inferred distributions.9 The large changes in p̂t between successive
days shown in Figure 4 are driven by large changes in binding VS contract bounds, while
the WTA bounds changed relatively little. In general, the opposite must be true and, in
general, it is, as indicated by the (v�w) means of lower and upper bounds shown in these
figures.

9To understand the relative difference in sensitivity, consider a uniform distribution on an interval of
length 0.125, and therefore height 8, that includes the point 0.5. If the mean of this distribution E(f) in-
creases by 0.01, then (as long as 0.5 remains in its support) P(f > 0�5) increases by 0�01 × 8 = 0�08. Other
distributions lead to variants on this result, but as long as the distribution is concentrated in a neighbor-
hood of a value of f corresponding to an interval contract price, and movements in the distribution are
primarily location shifts, then interval contract prices should move much more than VS contract prices.
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Preliminary analysis suggests that the Lagrange multipliers contain important in-
formation. Typically, the multipliers are positive on one side of the VS market and on
the opposite side of the WTA market at any given time. For example, throughout the
1996 race, multipliers were typically positive on the lower bound of the VS market and
the upper bound of the WTA market. This indicates that a lower VS bid and a higher
WTA ask would be consistent with a smoother and more concentrated distribution. In-
deed, there is a significant correlation between high VS Lagrange multipliers (on the
lower bound) and decreases in VS prices over the next 24 hour period. While a complete
analysis of their impact is beyond the scope of this paper, we point this out here to show
that, through the Lagrange multipliers, our procedure generates additional, potentially
useful, information.

5.4 Summary of the distributions

Figure 6 summarizes the distributions p̂t of our indifferent trader over the 100 days pre-
ceding each of the four elections. The horizontal axis numbers the days before the elec-
tions, just as in Figure 5. The corresponding lines provide aspects of each day’s distribu-
tion, the same distributions detailed in Figures 2, 3, and 4 for some specific days. These

Figure 6. Solid lines are the means of the estimated distributions. Dotted lines near the means
are the medians; light dashed lines denote the 0.25 and 0.75 quantiles; dotted lines denote the
0.10 and 0.90 quantiles; dark dashed lines denote the 0.05 and 0.95 quantiles.
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aspects are indicated by a series of solid, dashed, and dotted lines. The solid line near
the middle of the others is the mean of each day’s distribution. The dotted line near the
solid line is the median of each day’s distribution. The dashed line immediately below
is the first quartile and the one above is the third quartile. The dashed line at the top is
the 0.99 quantile and the dotted line immediately below is the 0.95 quantile. The dashed
line at the bottom is the 0.01 quantile and the dotted line immediately above is the 0.05
quantile.10

Periods of transient asymmetry are prominent features of the evolution of the distri-
butions. Note the strong outward movement in the right tail of the distribution in days
56–59 (October 19–22) of the 1992 election, the virtual collapse of the right side of the
distribution in days 20 and 21 (August 18 and 19) in 1996, and the tendency for a long
left tail to emerge sporadically in 2004. In all of these cases, there is a corresponding shift
in the mean, but the median is relatively unaffected.

The overall means and variances of the distributions suggest that the markets are
informative. Figure 2 shows the distributions p̂t the night before each election. The
spreads in the distributions, difficult to see in the quantiles in Figure 6, are measured
by their standard deviations in Figure 7. For reference, the panels in Figure 7 also show,
as a light horizontal dashed line, the standard deviation of a logistic normal distribu-
tion fit to the Democratic share of the two-party popular vote in the 1868–2004 presi-
dential elections. There is a lower bound to the standard deviation that corresponds to
the unconstrained maximum of the prior density (i.e., the lower bound is achieved if
no bounds are binding). As shown by the heavy dashed line, the lower bound is about
half the standard deviation of the logistic normal distribution fit to the historical data.
Frequently, the lower bound is approached in 2000 and 2004.11

Across all four elections, the standard deviation of our fitted subjective distribution
is closer to this lower bound than it is to the historical standard deviation on more days
than not.12 However, there appears to be no systematic tendency for the spreads of the
distributions to decrease as the election approaches.13

5.5 Reliability of the distributions

The changes in contracts traded in 1992 and 2004, at the points indicated by the verti-
cal dotted lines in Figures 6 and 7, provide an informal indication of the reasonableness
of our prior distribution. Since an increase in the number of contracts provides more

10In computing quantiles, the discrete distribution on the 100 points 0�005� � � � �0�995 was spread evenly
on the surrounding interval of length 0�01. This does not affect the mean of the distribution and, by making
the support of the quantiles continuous rather than discrete, makes the chart easier to read.

11The lower bound was actually attained on one day in 2000 (day 71, 10/8/00) and three days in 2004
(day 34, 8/27; day 37, 8/30; and day 40, 9/1).

12There are exceptions, and in 1992 there are a few days when the standard deviation exceeds that of the
reference historical distribution.

13The behavior of the distributions in 1996 after day 40 might bear that interpretation, but 1992 and 2004
might bear the opposite interpretation. None of these tendencies is very pronounced, and there is little
indication that the subjective distributions of our hypothetical indifferent trader increases in precision as
the election approaches.
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Figure 7. The solid line indicates the standard deviations of the estimated probability distri-
butions. The light dashed line indicates the standard deviation of the historical f from 1868 to
2004. The heavy lower dashed line indicates the lowest possible standard deviation: that of the
distribution corresponding to the unconstrained mode of the prior.

detailed information about the underlying distribution, these events have the potential
to substantially affect inferences about the distribution. For example, the new contracts
could indicate that the distribution had larger or smaller dispersion than previously be-
lieved, or that it was smoother or rougher. The results in Figures 6 and 7 hint at the pos-
sibility of such effects, but the changes near those dates are reflected in similar behavior
at other dates in the same and other years. Our interpretation is that these events, which
could raise serious questions about the model, fail to do so.

6. Conclusion

Prediction markets for future events are becoming increasingly common and are draw-
ing sustained interest in the academic literature. Often there are several markets for the
same event. In the case of the IEM presidential election markets, the focus of this paper,
both vote-share and winner-takes-all contracts are traded, and on some days additional
contracts are traded as well. While these markets were designed specifically for forecast-
ing, given their proliferation, it is natural to ask whether the information in prediction
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market prices can be integrated in a way that is useful more generally in decision mak-
ing.

The approach taken in this paper is to derive a probability distribution for the event
that is consistent with the prediction market prices. A probability distribution is a nat-
ural mode of integration of information, especially when there are multiple markets for
the same event. In classical decision theory, uncertainty is represented by probability
distributions, and so this mode of integration opens up prediction markets to analytical
tools that are well understood in formal decision making.

In pursuing this approach, we followed two core principles. The first is that the prob-
ability distribution we seek is that of an indifferent trader: the subjective distribution
of a normative risk-neutral individual who, given any portfolio of contracts traded in
the prediction market, would choose not to reallocate that portfolio of contracts even if
transactions costs were zero. In Proposition 1, we derive necessary and sufficient con-
ditions for such a distribution to exist. These conditions are satisfied in the hundreds of
configurations of IEM contract bid and ask prices that we study, and it is likely that these
conditions are satisfied in other prediction markets in which arbitrage opportunities are
quickly extinguished, as they are in the IEM. Such distributions are generally not unique,
however. This characteristic is addressed by our second core principle, which is that the
subjective distribution in question is the one that has the highest prior probability over
all possible distributions consistent with market data, based on an explicit prior.

In general, the probability distribution of the indifferent trader need not belong to a
conventional parametric family, like a beta or logistic normal distribution; neither need
it have specific properties like symmetry or unimodality. Propositions 2–5 demonstrate
that all of these conditions place constraints on contract prices that are violated in the
IEM presidential election markets, and this outcome is likely in other prediction markets
as well.14 Thus our two principles imply abandonment of a parametric approach, and
in this paper we have devised practical and reliable Bayesian nonparametric methods to
infer the probability distribution of the indifferent trader.

The specifics of this approach were dictated by our desire to update the distribution
of the indifferent trader in real time during the 2008 IEM presidential election markets.
This led us to choose a functional form for the prior distribution such that determi-
nation of the posterior mode is equivalent to the solution of a conventional quadratic
programming problem. With this solution, we updated the distribution of the indiffer-
ent trader every minute for several months leading up to the 2008 presidential election.
Each computation required less than a second and there were no convergence failures
of the quadratic programming algorithm in over 100,000 successive executions.

The application of this method to contract bid and ask prices leading up to the 1992–
2004 presidential elections in this paper leads to subjective probability distributions for
the indifferent trader that have several notable characteristics:

(i) They are substantially more concentrated than is the empirical distribution of
popular vote shares of the major party candidates in the 1868–1988 presidential elec-

14For example, Figure 2 in Berg, Neumann, and Rietz (2009) often shows a narrow interior band between
two wider ones, indicating the potential for a multimodal distribution.
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tions. Relative to this distribution, contract prices in the IEM presidential election mar-
kets are informative.

(ii) The probability distributions display volatility similar to that found in financial
asset prices, and with no systematic increase or decrease in volatility as election day
approaches.

(iii) There is no systematic tendency for the indifferent trader’s distribution to be-
come more concentrated as election day approaches. This outcome is more consistent
with Bayesian learning about a time-varying latent variable (preferences of the elec-
torate, for voting or not voting as well as for candidates) than with prediction of a time
series repeatedly observed (which, taken literally, would require that the election be held
repeatedly every day).

(iv) The inferred distributions are bimodal on many days and multimodal on some.
As detailed in Section 5, most of these occurrences can be interpreted in terms of the
inconsistency of WTA and VS contract prices with a common smooth and concen-
trated distribution. Our hypothetical indifferent trader’s distribution resolves WTA and
VS prices in terms of asymmetric or multimodal distributions.

The technique developed in this paper applies to prediction markets with multiple
contracts linked to a single underlying continuous distribution. There are many such
markets run on the IEM and on other prediction markets around the world. For example,
the IEM has organized the Google IPO markets (Berg, Neumann, and Rietz (2009)) and
movie box office markets (Gruca, Berg, and Cipriano (2008)). Other examples include the
Hollywood Stock Exchange’s “MovieStocks,”15 sales markets at Hewlett–Packard (Chen
and Plott (2002)), and many Intrade financial markets, for example, the Dow Jones In-
dex Markets.16 Wolfers and Zitzewitz (2004), Tziralis and Tatsiopoulos (2007), and Berg,
Forsythe, Nelson, and Rietz (2008) provide further examples.
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