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1. INTRODUCTION

Individuals interact in all kinds of ways. In particular, they imitate and learn from the

behavior of others, especially those close to them, such as their friends, neighbors, and

colleagues. The impact of these interactions on individual behavior is referred to as peer

effects. The decisions individuals take in the presence of peer effects generate externalities.

There is substantial empirical evidence showing that peer effects matter in many contexts,

such as education, crime, and program participation.1 The overwhelming majority of em-

pirical research assumes that individuals are affected by a linear function of the mean be-

havior of their peers and are silent about the underlying behavioral foundation generating

the estimated peer effects.

Indeed, most peer-effect studies use the standard linear-in-means (LIM) model.2 For

example, the criminal activity of an individual is assumed to depend on the average criminal

activity of the neighborhood where she lives. In education, each student compares herself

with the average performance of students in her classroom, and so forth. The game theoretic

foundation of the LIM model is a network model such that the best-reply function of each

agent is linear in the mean action of her peers.3 Moreover, it is now well recognized that

the LIM model can be equivalently microfounded by games assuming either conformist

preferences or positive spillovers.4 With conformist preferences, individuals pay a cost for

deviating from the average effort of their peers (their social norm) while, with spillover

preferences, agents always benefit from a higher social norm.

In this paper, we develop a new general model of peer effects that relaxes the assumptions

of linearity of the best-reply functions and the mean peer behavior of the LIM model and

encompasses the spillover and conformist models as special cases. Instead of assuming

1See, e.g., Calvó-Armengol et al. (2009), Sacerdote (2011), and Dahl et al. (2014), and Lee et al. (2021).
2Manski (1993) was among the first to highlight the identification issues in estimating the LIM model, in

particular, the reflection problem.
3See, e.g., Patacchini and Zenou (2012), Blume et al. (2015), Boucher (2016), Kline and Tamer (2020) and

Ushchev and Zenou (2020).
4See Blume et al. (2015) and Boucher and Fortin (2016). In particular, Boucher and Fortin (2016) have high-

lighted the fact that both the conformist and spillover models can microfound the LIM model; they also have
suggested, but not implemented, a way to identify them separately using isolated individuals.
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that the social norm of each agent is given by the average action of her peers, we allow for

more flexibility and define the social norm using a CES function with elasticity parameter

β. In this model, the individual outcome is referred to as “effort”, whether it is a positive

(e.g., GPA) or a negative outcome (e.g., risky behavior). When β is equal to 1, we revert

to the LIM model. When β is very large, we obtain the “max” model in which agents only

care about the agents who exert the most effort (e.g., the highest-ability students in the

case of GPA) in their network, while when β is very negative, the “min” model prevails in

which agents only care about the agents who exert the least effort (e.g., the lowest-ability

students) in their network. The main advantage of providing a model in which the individual

action/outcome is a function of a CES of peer actions is that it contains the LIM model, as

well as the min and the max model, as special cases but provides flexibility in modeling,

since the relevant peer group is estimated from the data.

We show that, contrary to the linear case, the best-response function for the general

model with flexible β is not necessarily contracting. However, by relying on the literature

on supermodular games (Milgrom and Roberts, 1990) and by studying the structure of the

smallest and largest equilibria, we show that there always exists a unique Nash equilibrium.

Our proof of existence and uniqueness of a Nash equilibrium applies to any social norm

function that is homogeneous of degree one, increasing in individual action, and satisfies

either global convexity or global concavity; it includes the CES function as a special case.

Then, using data on teenagers in the United States from the National Longitudinal Sur-

vey of Adolescent Health (AddHealth), we structurally estimate this general model. We

estimate the value of β to determine the relevant peer reference group and estimate which

model matches best the data. We find that for GPA, social clubs, self-esteem, and exer-

cise, the spillover effect strongly dominates, while for risky behavior, study effort, fighting,

smoking, and drinking, conformism plays a stronger role. We also find that for many activ-

ities, individuals do not behave according to the LIM model. Indeed, for GPA, self-esteem,

exercise, and study effort, individuals have peer preferences skewed towards the right-hand

side of the distribution (that is, agents who exert relatively high effort), while for trouble

behavior at school, fighting, and drinking, the peers that matter are those who exert little

effort. This confirms the fact that imposing the mean action as an individual social norm is

misleading and may lead to incorrect policy implications.
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In order to quantitatively evaluate the policy implications in the context of our data, for

each activity, we simulate a counterfactual tax/subsidy policy that restores the first best.

In particular, we contrast the differences between a planner that uses the LIM model and

one that uses the general results obtained in our structural estimations. We show that the

differences are large. In general, with the LIM model, the planner tends to uniformly tax

or subsidize all agents in the network. In contrast, with the general model, it targets some

key agents; the choice of which agents are targeted depends on whether the spillover or the

conformist model dominates, and on the value of β. Consider, for example, GPA, which

is a spillover model for which β is much greater than 1; this means that peer preferences

are skewed toward students with the highest GPA. In contrast to the LIM model, we find in

our policy simulations that in the general model, there is a large mass at zero because these

individuals do not provide any positive spillover to their neighbors (they are not the highest-

ability friends), and there is therefore little social value in subsidizing them. We also show

that some individuals obtain very large positive subsidies; this is when the social norm

is made up of very low-performing students, and thus it becomes valuable to give large

subsidies to the highest-ability peers because they will generate large spillover effects.

We consider the baseline situation in which the network is exogenous and not affected

by policy shocks. This allows us to focus on the impact of the behavioral foundations

(conformism or spillovers) and non-linearity for public policies when the network is fixed.

We find that the policy recommendations resulting from conformism or spillover effects

differ wildly and that non-linearities have a huge influence on who should be targeted by

the policies. We provide an estimator that allows us to identify the behavioral foundation

and the non-linearity from the data.

Our main contribution is to provide a general structural framework to study peer ef-

fects in a context in which peers do not necessarily react to the average of their peers’

behavior, and that enables identification of the behavioral foundation of the estimated peer

effects. Even though the vast majority of papers have used the LIM model to estimate peer

effects, some have considered the maximum peers, namely the leaders, shining lights, or

high achievers (Carrell et al., 2010, Tao and Lee, 2014, Diaz et al., 2021, Islam et al., 2021),

some have included the minimum peers, namely the bad apples or low-ability individu-

als (Bietenbeck, 2020, Hahn et al., 2020), and some have incorporated both (Hoxby and
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Weingarth, 2005, Tatsi, 2015).5 However, none of these papers have developed a general

theoretical framework with different mechanisms (spillover or conformism) and different

peer-group references. In contrast, our proposed framework allows us to identify which

mechanism and which peer group matter most. Our main conclusion confirms the fact that

ex ante imposing the mean (max or min) action as an individual social norm is misleading

and leads to incorrect policy recommendations.

2. THEORY

2.1. Linear-in-means models

Before presenting our general model, we describe our setup using the well known linear-

in-means model. Our main specification is presented in Section 2.2. Consider n≥ 2 indi-

viduals who are embedded in a network g. The adjacency matrix G= [gij ] is an (n× n)-

matrix with {0,1} entries that keeps track of the direct connections in the network. By

definition, agents i and j are directly connected if and only if gij = 1; otherwise, gij = 0.

We assume that the network is directed (i.e., gij and gji are potentially different)6 and

has no self-loops (i.e. gii = 0). Ni = {j | gij ∈ g} denotes the set of i’s neighbors. The

cardinal of Ni is di, the degree or the number of direct neighbors of individual i, so that

di :=
∑n

j=1 gij = |Ni|. Finally, G̃ = [g̃ij ] denotes the (n× n) row-normalized adjacency

matrix defined by g̃ij := gij/di if di > 0 and g̃ij := 0 otherwise.

Assume that each individual has at least one neighbor, namely di > 0 for all i. Consider

the following class of best-response functions:

yi = αi + λy−i, (1)

where yi is the effort or outcome in some activity (such as GPA in education); αi = xiγ+ϵi

is a vector of individual characteristics that includes both the observable (xi)7 and unob-

servable (ϵi) characteristics of individual i; λ is the peer-effect propagation rate (common

5See also Brock and Durlauf (2001b) who look at a variety of models of peer behavior and suggest some
nonlinearities in some applications, and Blume et al. (2011) who classify these different peer effects.

6We can easily generalize our results to undirected and weighted networks.
7xi is a (1× k) vector of k observable characteristics, and γ is a (k× 1) vector, so that xiγ =

∑k
l=1 xlγl.
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for all individuals in the group); and

y−i =
n∑

j=1

g̃ijyj . (2)

is the average eort of is neighbors (excluding i). In Equation (1), individuals choose their

eort yi as a function of their own characteristics αi and also as a function of the eort of the

other individuals y−i in the population. The model in (1) with the norm y−i defined in (2)

is referred to as the linear-in-means (LIM) model and can thus be written as

yi = xiγ + λ

n∑
j=1

g̃ijyj + ϵi. (3)

2.2. A model with general social norms

So far, following the LIM model, we assumed that peers operate through a linear and

an average effect, that is, the social norm y−i is the average effort of i’s peers. This is a

strong assumption, especially for empirical applications. The empirical literature has been

partially addressing this issue by not only looking at the effect of the average peer, but

instead the minimum or maximum. In this section, we relax the linearity assumption and

provide a more general and flexible structure of peer preferences.

2.2.1. A general social norm

For each individual i, we generalize the social norm y−i given in (2) by considering the

following CES social norm:8

ỹ−i(β) =

 n∑
j=1

g̃ijy
β
j


1
β

. (4)

We can easily see that the social norm in the LIM model defined in (2) is a special case of

(4) when β = 1, that is, y−i ≡ ỹ−i(1) =
∑n

j=1 g̃ijyj . Our social norm is general, since (4)

allows for any β, that is, β ∈ [−∞,+∞]. We argue that this parameter, β, captures peer

8Observe that, in the theory, we focus (and provide conditions) on equilibria for which yi > 0, for all i. Thus,
Equation (4) is well-defined for all yi > 0.
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preference. Consider, for example, the study effort yi of each student i. Then, if we set

β =+∞, (4) becomes

lim
β→+∞

ỹ−i(β) =max
j∈Ni

{yj},

that is, the social norm is defined with respect to the most studious agents in the network.

Under β =−∞, (4) becomes

lim
β→−∞

ỹ−i(β) = min
j∈Ni

{yj},

that is, the social norm is defined with respect to the least studious agents. Other possible

values of β ∈R capture a rich spectrum of intermediate cases.9 We have:

∂ỹ−i(β)

∂yj
= g̃ij

 n∑
j=1

g̃ijy
β
j

( 1β−1)

yβ−1
j ,

while, in the LIM with the social norm given by Equation (2), we have: ∂y−i
∂yj

= g̃ij .

The main advantage of providing a model in which the individual action is a function of

a CES function of peer actions is that it contains the LIM, the min and max models and any

combination of them as a special case.

2.2.2. A general model

Define y−i := (y1, . . . , yi−1, yi+1, . . . , yn)
T the vector of effort without the effort of agent

i. The utility function for each non-isolated individual i is given by:10

Ui(yi,y−i,g) = αiyi + θ1yiỹ−i(β)︸ ︷︷ ︸
benefit

− 1

2

[
y2i + θ2 (yi − ỹ−i(β))

2
]

︸ ︷︷ ︸
cost

, (6)

9When β < 0, expression (4) reads as follows:

ỹ−i(β) =


(∑n

j=1 g̃ijy
β
j

) 1
β
, yj > 0 for all j ∈Ni;

0, yj = 0 for some j ∈Ni.
(5)

10For an isolated individual i, her utility is equal to Ui = αiyi − 1
2y

2
i , so that her action is yi = αi.
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where the social norm ỹ−i(β) is defined in (4) and αi > 0. The term θ1yiỹ−i(β) corre-

sponds to the spillover model (Brock and Durlauf, 2001a, Glaeser and Scheinkman, 2002,

Boucher and Fortin, 2016, Reif, 2019) while the term −1
2θ2 (yi − ỹ−i(β))

2 corresponds

to the conformism model (Akerlof, 1997, Bernheim, 1994, Patacchini and Zenou, 2012,

Boucher, 2016, Ushchev and Zenou, 2020). Thus, this utility function has the conformist

model (when θ1 = 0) and the spillover model (when θ2 = 0) as special cases.11

Denote λ1 := θ1/(1 + θ2) and λ2 := θ2/(1 + θ2). Then, the first-order condition can be

written as

yi = (1− λ2)αi + (λ1 + λ2)ỹ−i(β), (7)

or equivalently

yi = (1− λ2)αi + (λ1 + λ2)

 n∑
j=1

g̃ijy
β
j


1
β

. (8)

The main difference with the LIM model (where β = 1) is that the first-order conditions

(8) are not linear anymore. Thus, when estimating (8), in particular, β, we can determine

whether the correct model is the LIM (i.e., β = 1) and, if not, which peers matter. We have

the following result.

PROPOSITION 1: Assume that the utility function of each individual i= 1, . . . , n is given

by (6), with 0 < λ1 + λ2 < 1 and 0 < λ1 < 1, and her social norm ỹ−i(β) has the CES

functional form (4). Then, there exists a unique Nash equilibrium.

The proof of Proposition 1 is given in Appendix A. It is is not obvious because, contrary

to the LIM model, the best-reply mapping is neither linear nor a contraction. First, for the

existence of equilibrium, we use the fact that the game is supermodular and solve for a fixed

point theorem. To prove uniqueness, we use the fact that there always exist a maximum

and a minimum equilibrium and show that they are equal. To achieve this, we need to

differentiate between concave and convex norms and demonstrate this equality; thus, the

equilibrium is unique. In fact, we show that the existence and uniqueness of the equilibrium

11As highlighted by Boucher and Fortin (2016), when y−i ≡ ỹ−i(1), the LIM model corresponds to the best-
response function of two, observationally equivalent, types of social preferences: spillover or conformism.
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of this game is true for more general norms than the CES one, since we only need to

assume that the social norm is monotone increasing, continuous, linear homogeneous, and

normalized (see Assumption 1 and the proof of Proposition 1 in Appendix A).

3. STRUCTURAL ESTIMATION

3.1. Empirical Strategy

The model has two main components: the non-linearity of the social norm, and the nest-

ing of conformity and spillover effects. We are interested in structurally estimating (i) the

intensity of the spillover effect, λ1; (ii) the taste for conformity, λ2; and (iii) the peer

preference, β. We can formulate the equilibrium effort of individual i by

yis = (1− λ2)xisγ + (λ1 + λ2)ỹ−is(β) + ζs + εis. (9)

Equation (9) is the equivalent of the first-order condition (7), where, as above, αis :=

xisγ + ξs + ϵis captures the observable and unobservable characteristics of i as well as

the school fixed effects ξs, where ζs := (1− λ2)ξs, and εi := (1− λ2)ϵi. Indeed, as we dis-

cuss in Section 3.3 below, students in the data are assumed to interact within their school.

We therefore added the subscript s to denote each school s in our data. Thus, compared to

(7), we control for school fixed effects, ξs, which will absorb any factor that is common to

all students within a given school, including the effect of the school itself. We assume that

εis, the error term, is such that E(εis|X,G) = 0 for all i, implying an exogenous network.

For comparison purposes, we will also provide results for the reduced-form LIM model

(Equation (3)),

yis = xisγ + λy−is + ϵis, (10)

where yis is the effort or outcome in some activity (e.g., GPA), and y−is is the average

effort of i’s neighbors (excluding i), instrumented by their friends’ characteristics, x−is

(Bramoullé et al., 2009).

3.2. Identification

We show in Appendix B how to formally estimate θ = [γ ′, λ1, λ2, β]
′ by deriving the ap-

propriate generalized method of moment (GMM) estimator. Let us provide some intuition
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for the estimation procedure. Equation (9) does not allow us to separately identify λ2 from

γ or λ1. However, we can consider two types of individuals in the data: (a) isolated and (b)

non-isolated individuals. Isolated individuals are individuals without friends. This separa-

tion allows us to break the estimation problem into two parts and consequently identify λ2

and γ separately. This strategy rests on the assumption that isolated and non-isolated indi-

viduals are similar in that the impact of their individual characteristics (e.g. age, gender) on

the private benefit of effort is similar. This is a classical assumption, even in models with

endogenous network formation (e.g. Lee et al. (2021)).

First, note that isolated individuals have a simplified version of the general first-order

condition (9), given by

yis = xisγ + ξisos + εis, (11)

where ξisos , the school fixed effect specific to isolated individuals, has been added. This

equation is independent of any social norm and, therefore, of β, λ1 and λ2. Thus, in our

specification, the identification of γ can be obtained from isolated individuals, under the

independence assumption of the error term, E (εisxis) = 0. Note, identification does not

allow us to estimate separate γs for isolated and non-isolated students. However, we al-

low the school fixed effect to differ between the two types of students. We acknowledge

that assuming γ to be identical for isolated and non-isolated individuals can be a strong

assumption. In Section 3.4, we consider a robustness exercise by estimating a model that

does not identify separately the conformist and spillover model, so that the peer preference

parameter β can be estimated without isolated individuals.

Second, to identify θ̃ = [λ1, λ2, β], we require three further moment conditions. Let us

define three instruments, zis for non-isolated individuals that satisfy the moment condi-

tions, E (εiszis) = 0. First, we can identify (1− λ2)γ, and thus λ2, given the result of γ

from the solution of isolated individuals. Consequently, our first instrument is the set of

covariates, xis. Secondly, if ŷs is the OLS predictor of ys, on the covariates, xis,12 then,

given λ2, the identification of λ1 comes from the moment ỹ−is(ŷs, β) for non-isolated indi-

12Because yis is potentially endogenous, we estimate the reduced form of yis on xis to obtain the predicted
ŷs for each i. Thus, ŷs is an exogenous predictor and independent of β. While we use a simple OLS predictor for
simplicity, any predictor of yi (potentially non-parametric) that is based on the exogeneous variables X would be
admissible.
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viduals—our second instrument. Finally, the identification of β comes from the derivative

of the social norm with respect to β, ∂ỹ−is(ŷs,β)
∂β = ỹ′−is(ŷs, β)—our last instrument. The

intuition behind this instrument is that the slope of the social norm with respect to β should

inform the directional movement of search for the parameter that minimizes the objective

function during the numerical simulation. Also note that the choice of ỹ′−is(ŷs, β) as a

moment condition is justified by the fact that ỹ′−is(ŷs, β) is equal to the first-order condi-

tion for the nonlinear least-squares estimator of a model in which ỹis(β) is substituted by

ỹis(ŷs, β).13 Thus, the set of instruments for all non-isolated individuals can be summarized

by zis = [xis, ỹ−is(ŷs, β), ỹ
′
−is(ŷs, β)], with the assumption that E(εiszis) = 0.

Note that our additional moment conditions are evaluated at ŷs, the OLS predictor of ys.

While it is standard to use the entire matrix of observable characteristics as instruments,

namely G̃X (Bramoullé et al., 2009) when β = 1, this approach is not suitable for the

general model when β could be substantially different to 1. Indeed, suppose that β =+∞,

so that ỹ−is =maxj:gij,s=1 yj,s. While z̄i,s =maxj:gij,s=1 ŷj,s is likely a good predictor of

ỹ−i,s, it may well be the case that none of the maximum of characteristics of i’s friends,

taken individually (i.e., maxj:gij,s=1 x
l
j,s, l = 1, ..., k), would be a good predictor of ỹ−i,s.

Evaluating the instruments at ŷs is therefore a simple and effective way to ensure strong

instruments, irrespective of the value of β.

We therefore have four sets of moment conditions, one from isolated individu-

als (i.e. E (εisxis) = 0) and three from non-isolated individuals (i.e. E(εisxis) = 0,

E(εisỹ−is(ŷs, β)) = 0, and E(εisỹ′−is(ŷs, β)) = 0). Notice that the moment conditions for

γ and for (λ1, λ2, β), are not based on the same number of observations (isolated and non-

isolated individuals). Thus, the estimations for isolated and non-isolated individuals are

performed jointly using the sum of the GMM objective functions for both sets of moments,

leading to an observation-weighted average of the two sets of moment conditions (Angrist

and Krueger, 1992, Arellano and Meghir, 1992). Lastly, since the first-order condition is

linear in γ, we can use the model and the objective function to derive γ as a function of

the three remaining parameters [λ1, λ2, β] for both isolated and non-isolated individuals.

This allows us to concentrate the objective function around these remaining three param-

13For a textbook treatment of the nonlinear least-squares estimator, see Section 5.8.2 in Cameron and Trivedi
(2005). For an in-depth discussion of the optimal moment conditions for non-linear GMM, see also Section 6.3.7
in Cameron and Trivedi (2005).



12

eters, θ̃ = [λ1, λ2, β], which are numerically estimated. For further estimation details, see

Appendix B.

3.3. Data description

Our analysis is based on a well-known database of friendship networks from the National

Longitudinal Survey of Adolescent Health (AddHealth). The AddHealth survey has been

designed to study the impact of the social environment (i.e., friends, family, neighborhood,

and school) on adolescents behavior in the United States by collecting data on students in

grades 7–12 from a nationally representative sample of more than 130 private and public

schools in years 1994–1995 (Harris et al., 2019). AddHealth provides a wealth of infor-

mation regarding students’ activities and outcomes. We extracted a large number of the

activities available in the in-school interview sample to test our theory. For the purpose of

studying peer effects, AddHealth data also record friendship information, which is based

upon actual friends’ nominations. Pupils were asked to identify their best friends from a

school roster (up to five males and five females). Our estimation sample comprised over

70,000 students, from 134 schools.

We use AddHealth data because it is one of the few datasets that provides both the exact

network of all students and has information on multiple activities, so we can illustrate

our theory with different values of β and consider their policy implications. Nonetheless,

we acknowledge that AddHealth poses some limitations in terms of network endogeneity.

However, our aim is methodological, as we want to illustrate the importance of having a

microfoundation in estimating peer effect models. Thus, we assume that the network G is

conditional exogenous.

In Section 3.4, we report the estimation results for 10 activities: (1) grade point average

(GPA), (2) social clubs, (3) self-esteem, (4) risky behavior, (5) exercise, (6) study effort, (7)

fighting, (8) smoking, (9) drinking, and (10) trouble behavior. We also use a series of stu-

dents individual characteristics, such as age, gender, racial group, and mother’s education

and occupation.

Activities are reported consistently across schools, with summary statistics similar across

standard demographic characteristics (e.g., age, gender, race). All activities are based on

increasing activity levels; for example, a higher value for self-esteem reflects an increased



TOWARD A GENERAL THEORY OF PEER EFFECTS 13

level of self-esteem. Importantly, 14–15 percent of students did not report any friends, and

we labeled them isolated.14,15

3.4. Empirical results

For each activity in the data, we estimate the value of β to determine the relevant peer

reference group, and we test which model (conformist or spillover) is the most appropri-

ate one. The aim here is not to study the quantitative impact of specific peer effects, but

rather to illustrate the importance of using a generalised theory of peer effects when trying

to estimate their economic impact and, consequently, design adequate policies that im-

prove agents outcomes. Thus, to provide a broad view of our theory, we pick from a wide

range of activities documented in AddHealth. That is, we provide estimation results for

θ̃ = [λ1, λ2, β] for the 10 activities described in Section 3.3.

Table I shows the GMM results of (9) for the general model with estimated peer pref-

erences, that is, the βs. For comparison purposes, the table also shows the general LIM

model, whereby we impose the social norm of the average peer (i.e., β = 1), and reduced-

form estimates from Equation (10). Lastly, the table reports two ways of testing the validity

of the general model relative to the LIM model; (1) we report the significance of the hy-

pothesis test of H0 : β ̸= 1, and (2) we report the objective value of each GMM procedure,

as well as the likelihood-ratio statistic, 2N(QLIM (λ1, λ2) − Q(λ1, λ2)), comparing it to

the general model. This latter measure is a simple way of establishing the relevant peer

preference in the estimation, as it compares the goodness of fit for a model with β ̸= 1 and

β = 1.

Just two of the ten activities have marginal cases regarding the most appropriate general

model choice (spillover, conformism, or both). As the coefficient on λ2 for self-esteem

and exercise are statistically zero, the general model exclusively estimates spillover effects.

14We follow Boucher and Houndetoungan (2023) in dropping individuals who are potentially falsely classified
as having no friends. Friendship nominations in the data are not always reciprocal, even when restricting to the
set of individuals for whom we can identify all of their nominated friends.

15The activity or outcome values often included an outcome of zero (e.g., non-smokers never smoke). Equation
(4) is not defined for values of zero if peer preference is skewed to the least active agent, β < 0. To avoid this
computational error, we have added in the estimation a value of 1 for each activity or outcome. For comparability,
we did this for all activities. Results without adding 1 in instances where β > 1 are comparable and available upon
request.



14

As the objective value is, by construction, always lowest for the general model with both

spillovers and conformism, we report it as our baseline.16

Table I also shows that activities have varying degrees of peer preference. Overall we

find a wide range of values for β = [−386,372]. Thus, peer preference does not necessarily

conform to the average peer, as per the assumption in the commonly used LIM model.

For example, GPA, self esteem, exercise, and study effort, have peer preferences skewed

towards the right of the distribution (that is, agents who exert relatively high effort). Trouble

behavior at school, fighting and drinking are skewed towards the left of the distribution (that

is, agents who exert relatively low effort), while social clubs, risky behavior, and smoking

are close to the LIM assumption of β = 1. However, only for risky behavior we cannot

reject that β = 1.

With varying degrees of peer preference, the resulting estimates on total peer effects, as

well as the magnitudes of spillover versus conformism effects, change in non-negligible

ways across activities. We find that the difference in total peer effects (λ1 + λ2) between

the general model (GM) and the general LIM model to be large for (i) trouble behavior

at school (36 percent), (ii) GPA and drinking (30 percent), (iii) study effort and fighting

(20 percent), (iv) exercise (30 percent), and (v) self-esteem, risky behavior, exercise and

smoking (10 percent).17 Only for social clubs and self-esteem the total peer effects remain

unchanged.

Thus, estimating the general model compared to imposing the reduced form model has

implications on behavior through changing (i) the shape of the distribution of individu-

als’ social norms, and/or (ii) the distribution of individuals’ total peer effect exposure. We

illustrate this further with three distinct examples, risky behavior, study effort and GPA

outcomes.

As for risky behavior, the estimated peer preference is close to one while the density

distribution of social norms is similar in the general model and LIM model. However, given

the sizable difference between the estimates on λ in the reduced form and (λ1 + λ2) in the

16For the two instances of self-esteem and exercise, the corresponding estimates of λ1 and β for the general
model with only spillovers are very similar to the general model reported here.

17Formally, the difference in peer preference reported is
∣∣∣∣1− λGM

1 +λGM
2

λLIM
1 +λLIM

2

∣∣∣∣.
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general model, the distribution of peer effects interacted with individuals’ social norms in

the reduced form has considerably more mass to the left.

The distribution of the social norm of study effort, for which the coefficient is above

one (i.e., β = 3.9), shows a slight skewedness towards the right for the general model.

Moreover, even stronger than for risky behavior, the total peer effect (λy−i) or (λỹ−i),

has large variance across the three models, with the general model strongly skewed toward

higher peer effect outcomes.

Lastly, GPA outcomes serve as an example where peer preference is highly skewed to-

wards the highest-ability students (i.e., β = 372). Thus, the distribution of the social norm

in the general model is skewed toward the right, with several distinct peaks, but still far from

the highest-ability students. Peaks appear because individuals might naturally have peers

who do not achieve the highest (4.0) GPA, but something just below it, such as from 3.0 to

4.0. In comparison, the LIM model will have a perfectly hump-shaped distribution follow-

ing the average peer social norm. The intensity of peer preference across the models greatly

exacerbates differences between the general model and the LIM model. As peer preference

increases towards the highest-ability agents in the general model, the conformism effect

mostly disappears. That is, for GPA, the friends with the best academic success will in-

fluence one’s outcomes through positive spillovers, while friends with average academic

outcomes will have no effect. Moreover, individuals do not try or succeed in conforming to

their peers’ academic outcomes.

These three different examples highlight the importance of moving towards a general

theory of peer effects. There is a large range of peer preference estimates. These differ-

ences translate into vastly different social norms that cannot be consistently approximated

by either the average, the max or the min. That is, moving from the reduced form to a gen-

eral LIM model (with both spillover and conformism behavior) but without relaxing the

functional form of the social norm is not enough to provide a general theory of peer effects.
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STRUCTURAL ESTIMATION: PEER PREFERENCES (β)

Peer preferences with general β β = 1 Reduced form Non-isolated only
Activity λ1 λ2 β Obj. Value λ1 λ2 Obj. Value L-R test λ λ β

GPA 0.32 0.06 371.8 (a) 0.0014 0.39 0.19 0.0026 180.5 0.59 0.36 +∞
(0.06) (0.05) (116.0) (0.06) (0.04) (0.02) (0.01) -

Clubs 0.33 0.33 1.4 (b) 0.0022 0.35 0.34 0.0023 18.9 0.64 0.62 1.55 (a)

(0.11) (0.07) (0.2) (0.10) (0.07) (0.03) (0.04) (0.18)

Self esteem 0.28 0.01 22.3 (a) 0.0020 0.25 0.03 0.0027 110.1 0.29 0.31 21.78 (a)

(0.11) (0.07) (8.1) (0.11) (0.07) (0.04) (0.04) (7.83)

Risky -0.16 0.50 0.8 0.0016 -0.19 0.49 0.0017 9.0 0.24 0.22 1.40
(0.08) (0.03) (0.4) (0.07) (0.03) (0.03) (0.05) (0.56)

Exercise 0.21 0.01 8.1 (b) 0.0008 0.18 0.02 0.0017 122.9 0.18 0.19 49.63
(0.06) (0.04) (3.5) (0.06) (0.04) (0.02) (0.02) (60.85)

Study effort 0.02 0.34 3.9 (b) 0.0008 -0.02 0.32 0.0010 48.5 0.22 0.24 5.34 (c)

(0.09) (0.04) (1.4) (0.08) (0.04) (0.04) (0.05) (2.28)

Fight -0.08 0.12 73.5 (a) 0.0011 0.06 0.19 0.0013 18.6 0.25 0.03 +∞
(0.05) (0.04) (14.8) (0.07) (0.04) (0.03) (0.01) -

Smoke 0.21 0.65 0.7 (b) 0.0006 0.13 0.62 0.0009 41.8 0.73 0.74 0.95
(0.09) (0.04) (0.1) (0.07) (0.04) (0.03) (0.05) (0.16)

Drink -0.05 0.64 0.4 (a) 0.0018 -0.18 0.63 0.0019 13.4 0.16 0.09 4.32
(0.10) (0.03) (0.2) (0.07) (0.03) (0.04) (0.05) (3.21)

Trouble 0.19 0.11 -386.0 (a) 0.0004 0.22 0.25 0.0007 48.5 0.52 0.29 −∞
(0.11) (0.08) (161.6) (0.12) (0.07) (0.04) (0.03) -

Notes: We report the general model (Equation (9)), the general LIM model (β = 1), the reduced form (Equation (10)), and the general restricted model
(Equation (12)). All results control for school-fixed effects. Standard errors are reported in parentheses. For the general model, we report the significance
of the hypothesis test, H0 : β ̸= 1 with (a) p < 0.01, (b) p < 0.05, (c) p < 0.1. For the case of ±∞ the hypothesis test is omitted because, up to machine
precision, we cannot distinguish between ±∞ and and also between very large/small values of β. In the case of the LIM model, likelihood ratio tests,
2N(QLIM (λ1, λ2)−Q(λ1, λ2)), are also reported comparing the general LIM model with β = 1 with the peer preference outcome, β ̸= 1.
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Finally, to illustrate the validity of our assumption of using isolated individuals to iden-

tify a common γ, we estimate a model with general social norms, but with only one type of

peer effect (spillover or conformism) without isolated individuals. Without distinguishing

between spillover and conformism, Equation (9) simplifies to

yis = xisγ
niso + λỹ−is(β) + ξs + ϵis, (12)

where the superscript niso refers to non-isolated individuals. Identification of θ̃ = [λ,β]

comes exclusively from non-isolated individuals. The last two columns of Table I show

the results of estimating Equation (12) by GMM without isolated individuals compared to

the benchmark results. The results confirm that, for all activities, the average peer model

is rejected, that is β is not equal to one. Moreover, for the majority of activities, the peer

preference, β, is similar to the general model, although the precision of estimates is gener-

ally weaker. This confirms the fact that relying on both isolated and non-individuals for the

estimation of β is not crucial for our results.

4. POLICY IMPLICATIONS

4.1. Policy implications: Theory

The decisions individuals make in the presence of peer effects generate externalities and

thus inefficiencies. This creates room for a benevolent social planner to intervene. The

planner chooses the actions y1, y2, ..., yn of each of the n agents that maximizes the welfare

W(y,g) =
∑

iUi(yi,y−i,g), where each agent i’s utility Ui(yi,y−i,g) is given by (6).

In Appendix C, we determine the first-best outcome (Equation (24)) and show that it is

unique (Proposition 6). Because of different externalities, the market (Nash) equilibrium

is inefficient. For the spillover model (λ2 = 0), agents exert too little effort at the Nash

equilibrium as compared to the social optimum outcome because each agent ignores the

positive impact of her effort on the effort choices of others. For the conformist model

(λ1 = 0), at the Nash equilibrium, when deciding her individual effort, each agent does

not take into account the effect of her effort on the social norm of her peers, which creates

an externality that can be positive or negative.
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It is then straightforward to determine which subsidies restore the first best; the planner

needs to give to each agent i the following subsidy:18

SG
i =

yoi − yNi
1− λ2

=
1

1− λ2

λ1∑
j

yoj
∂ỹo−i(β)

∂yoi
+ λ2

∑
j

(yoj − ỹo−i(β))
∂ỹo−i(β)

∂yoi

 . (13)

4.2. Policy implications: Simulations

We now illustrate the importance of microfounding a model of peer effects through our

estimated activities. We proceed in two steps. First, following the general estimation pro-

cedure, we simulate the Nash equilibrium and the social optimum (first best) for the LIM

spillover and conformist model. Second, we simulate the Nash and social optimum for the

general LIM model and the general model.

In Figure 1, we display the (kernel) density of the subsidies required for all non-isolated

individuals to reach the first best for each model (see Equation (13) and Appendix C for

details). We use the same three activities as above for illustration, that is, risky behavior,

study effort and GPA outcomes; the results for all the other activities are available upon

request. In the left panels of Figure 1, we show the subsidies in the LIM spillover and

conformist models, while in the right panels, we show the subsidies in the general LIM

model (i.e., β = 1) and the general model (i.e., β can take any value).

Technically, we simulate the best-response outcomes yi for all students within each

school based on their individual characteristics, estimated school fixed effects, and a trun-

cated normally distributed error term using the parameter estimates from Table I.19 We

then proceed in steps to find the social optimum outcome and subsidy. First, we guess

an initial value of the first best subsidy, Ŝ0, based on the Nash outcome using (13). Sec-

ond, we compute the subsidised Nash outcome yi with subsidy Ŝ0. Third, we recom-

pute the first best subsidy Ŝ1 based on this new subsidised Nash outcome. Fourth, we

repeat the second and third steps until we have convergence of the first best subsidy.

In the spillover model, with positive peer effects, subsidies can potentially become un-

18A variable with the superscript o denotes its optimal value while a variable with the superscript N denotes
its Nash-equilibrium value.

19Errors come from the same normal distribution with mean zero, but truncation is individual specific, based
on the natural bounds of each outcome (e.g., the outcomes for GPA lie between 1 and 4.)
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bounded if the cost of exerting effort is smaller than the peer effect. To avoid such an

issue, we limit the amount of subsidy such that the first best outcomes never exceed the

highest outcome observed in the data. Thus, subsidies are bounded for each individual by

Si ∈
[
min

{
ydatai

}
i
− yNi ,max

{
ydatai

}
i
− yNi

]
.

From the theory (see Section 4.1), we know that the spillover model requires only pos-

itive subsidies, while, in the conformist model, the planner can tax or subsidize agents.

Consequently, policy prescriptions are vastly different depending on the selected micro-

foundation. Consider the left panels in Figure 1, where we compare the subsidies/taxes

in the LIM spillover and LIM conformist model. As predicted by the theory, to reach the

first best (social optimum) in the conformism model, the planner subsidizes some agents

and taxes others, while in the spillover model, all agents are subsidized. For both risky

behavior and study effort, peer effects are all driven by conformism (dashed line in left

panels of Figure 1), while GPA is almost exclusively driven by spillover effects (solid line).

However, picking between the conformism (right dashed line) and spillover (solid line),

subsidy schedules do not necessarily reflect the correct policy intervention, as we have so

far ignored the degree of peer preference.

Let us now focus on the right panels of Figure 1, in which we compare the policy that

restores the first best for the general LIM model (imposing β = 1) and the general model

with flexible peer preferences.20 We observe a wide range of results, which is consistent

with the large variation we obtained in the peer-preference estimates of β in Section 3.4.

An activity that has peer preferences close to the average peer (i.e., β = 1) displays similar

subsidy schedules between the general model and general LIM model (i.e., risky behavior).

As peer preferences skew towards the right or the left of the distribution of agents’ efforts,

policy prescriptions start to differ more (e.g., study effort, GPA).

More specifically, in panel (b), for risky behavior, since peer preferences are close to 1

(β = 0.8), the general model policy implications seem to be similar to that of the general

LIM model. There is, however, one subtle difference: The general model mostly taxes in-

dividuals, while the general LIM model does also subsidize a share of individuals, some of

them with relatively large subsidies. Indeed, since for risky behavior, the conformist model

is the most prominent one, and since peer preferences are slightly skewed toward the agents

20Note the general LIM model represents the full effect (spillover, conformism, or both) from the left panel.



20

who do not engage in risky activities, there is little use in subsidizing individuals to increase

their risky behavior. Therefore, to reach the first best outcomes, it is optimal to tax the most

risk-loving agents because it will induce them to decrease their risky behavior. In contrast,

in the general LIM model, as the social planner tries to move individuals closer to their

average peers’ risky behavior, it is beneficial to increase some individuals’ risky behavior,

as each friend’s behavior has an equal impact on one’s social norm. Thus, the planner finds

it optimal to subsidize some individuals to engage in more risky behavior.

In panel (d), study effort requires, in general, greater levels of subsidy to reach the social

optimum (the mean of the distribution of subsidies is larger for the general model). In the

LIM model, since study effort is driven by conformism, the social planner needs to tax high-

effort students. However, in the general model, since peer preferences are skewed towards

the right (i.e., β = 4), the social planner can implement more targeted policies that require

less taxation and overall higher utility outcomes. Thus, in the general model, while the

social planner still taxes some of the most studious students, the number of students who

need to be taxed to reach the first best are fewer while the number of students receiving a

subsidy increases. This results in higher overall study effort and also higher utility.

Lastly, in panel (f), since GPA is driven by spillover effects, for the general LIM model,

the social planner gives every individual λy−i, namely the social norm times the peer effect.

In contrast, in the general model, since peer preferences are skewed towards the highest-

ability agents (i.e., β = 372), there is a large mass at zero because these individuals do

not have any positive spillover effect (they are not the highest-ability friends), and there is

therefore little social value in subsidising them. The general model also has some instance

of very large positive subsidies, which are cases where the social norm is made up of very

low-performing students. Indeed, from the social planner’s perspective, it is valuable to

greatly subsidize the highest-ability peers, even if they are low-performing students. This

is because, within their friendship group, being the highest performer will generate large

spillover effects for their poorly performing peers. For example, take two groups, one where

all peers have a GPA between 3.3 and 3.8 and one where all peers have a GPA between 1.2

and 1.5. For both of these groups, the social planner will give most subsidies to the peers
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FIGURE 1.—First-best subsidies (Examples)
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(f) Peer Preference (GPA)
Notes: Kernel density distribution of non-isolated individuals of the subsidy required to reach the social optimum
for (i) the linear-in-means (LIM) spillover and conformist model (estimates available upon request); and (ii) the
general model and general LIM model using estimates from the two left-hand panels of Table I.
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with the highest GPA because peer preferences are skewed toward the highest-ability

agents. A student with a lower GPA (1.5) in the second group will receive a considerably

higher subsidy than a student with a higher GPA (3.8) in the first group. This is mechanical

since subsidies are capped by the natural limit of 4.0 (the highest achievable GPA). Observe

that since the model has mostly spillover effects, no agent is taxed. More generally, policies

are very different between the LIM and the general model. In particular, compared to the

LIM model, with the general model, the planner gives no subsidy to a large share of agents

because they do not have the highest GPA in their peer group but she does give larger sub-

sidies; that is, the curve is flatter but more spread for the general model, compared to the

LIM model. In other words, with peer preferences skewed toward high-GPA students, the

most effective way of reaching the social optimum in the general model is by subsidizing

only a selected number of individuals.

We acknowledge that, as an applied exercise, there are limitations in our policy impli-

cations (in particular, potential network endogeneity). We therefore do not recommend to

take the exact estimates at face value. However, we urge researchers to acknowledge that

individuals do not necessarily respond to the mean of the peer group action and it is likely

a function of whether a conformism or spillover game is at play. These have important pol-

icy implications that can be tested, since nonlinearity and behavioral foundations can be

inferred from data.

5. CONCLUSION

Most papers that estimate peer effects use the LIM model, which assumes that impact on

outcomes is linear and that the mean peers’ outcomes matter. In this paper, we have argued

that to prescribe adequate policies, one needs to determine the correct peer reference group

(or social norm) and know which model microfounds the LIM model. We have developed

a general model that embeds the spillover and the conformist model and a general social

norm for which the LIM model is a special case.

We structurally estimated this model for ten different activities and showed which model

mattered the most for each activity. We found that, for most activities, individuals did not

behave according to the LIM model; that is, their social norm was not the average outcome

of their peers. For example, for GPA, self-esteem, exercise, and study effort, we found

that individuals cared mostly about the agents who made a relative high effort among their
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peers, while for trouble behavior, fighting and drinking, the peers that mattered were the

ones who exerted relatively low effort in each activity. We then implemented some coun-

terfactual policies; that is, we determined for each activity the taxes/subsidies that would

restore the first best. We found that in most cases, it was optimal to target some individuals

in the network. For example, for GPA, the most effective way of reaching the social opti-

mum would be to only subsidize a selected number of individuals while, in the LIM model,

the planner should give the same subsidy to all individuals. This implies that by imposing

the LIM model, the policy recommendations may be very wrong and lead to inefficient

outcomes.

More generally, our aim in this study was mainly methodological, as we wanted to show

the potential mistakes made by using the (reduced-form) LIM model. While we considered

a tax/subsidy policy that would restore the first best, other policies could be implemented.

For example, we could consider a policy for which the planner would either maximize (for

positive activities such as GPA or self-esteem) or minimize (for negative activities such as

risky behavior or drinking) total outcome (instead of welfare) under a budget constraint.

Since in our estimations, we show that the peer reference group greatly varies between dif-

ferent activities and very rarely corresponds to the mean peers’ outcomes, the discrepancy

between the LIM and our general model in terms of policy recommendations would still be

very large.

The takeaway from our study is that a tighter link between theory, econometric methods,

and data is necessary to deeply understand how peer effects work and which policy to

recommend.

APPENDIX A: EXISTENCE AND UNIQUENESS OF EQUILIBRIUM (PROPOSITION 1)

A.1. Existence of Nash equilibrium

Define the social norm mapping ỹ :Rn
+ →Rn

+ as follows:21

ỹ(y) := (ỹ1(y), ỹ2(y), . . . , ỹn(y)) . (14)

21For the ease of the presentation, the social norm of individual i is denoted by ỹi(y)≡ ỹ−i(β)≡ ỹ−i(y−i, β).
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ASSUMPTION 1: For all i = 1,2, . . . , n, agent i’s social norm ỹi(y) : Rn
+ → R+, is

monotone increasing, continuous, linear homogeneous, and normalized: ỹi(1) = 1.22

Clearly, the CES norm (4) satisfies Assumption 1 for any β ∈ [−∞,+∞]. The best-reply

(BR) mapping is given by (7) or, in matrix form:

y= b(y) := (1− λ2)α+ (λ1 + λ2)ỹ(y). (15)

Let µ := (λ1 + λ2) ∈ (0,1). For each i= 1,2, . . . , n, define

α̃i :=
1− λ2
1− µ

αi and α̃ := (α̃1, α̃2, . . . , α̃n) . (16)

Then, the BR mapping (15) can be written as follows:

y= b(y) := (1− µ)α̃+ µ ỹ(y). (17)

For any n-dimensional vector x= (x1, x2, . . . , xn), define:

xmin := min
1≤i≤n

{xi}, xmax := max
1≤i≤n

{xi}.

LEMMA 2: Under Assumption 1, the following inequalities hold for any y ∈Rn
+:

ymin ≤ ỹmin(y)≤ ỹmax(y)≤ ymax. (18)

PROOF: By Assumption 1, ỹ(·) is increasing over Rn
+. Furthermore, linear homogeneity

and the normalization together imply that ỹ(c1) = c1 for any scalar c≥ 0. Hence:

ymin(y)1= ỹ (ymin(y)1)≤ ỹ (y)≤ ỹ (ymax(y)1) = ymax(y)1,

which is equivalent to (18). This completes the proof. Q.E.D.

PROPOSITION 3: For any α̃ ∈ R++, any µ ∈ (0,1), any network g, and any norm sat-

isfying Assumption 1, the set of Nash equilibria is non-empty and contains a minimum

equilibrium y∗ and a maximum equilibrium y∗∗.

22Here, and everywhere below, 1 stands for the n-dimensional vector of ones.



TOWARD A GENERAL THEORY OF PEER EFFECTS 25

PROOF: Consider a game with payoffs (6), social norms (14), and each agent’s strategy

space [α̃min − ε, α̃max + ε], where ε > 0 is small. Clearly, this is a supermodular game.23

Hence, the set of Nash equilibria of the restricted game contains a minimum equilibrium

y∗ and a maximum equilibrium y∗∗ (Topkis, 1998, Theorem 4.2.1). Also, the set of Nash

equilibria in the original game is the same as in the restricted game. To see this, using the

BR (17), concavity of the min-function (resp., convexity of the max-function), and Lemma

2, for any agent i, we find that

bi(y
∗)≥min1≤i≤n {(1− µ)α̃i + µỹi(y

∗)} ≥ (1− µ)α̃min + µỹmin(y
∗)

≥ (1− µ)α̃min + µy∗min =⇒ bi(y
∗)≥ α̃min;

bi(y
∗)≤max1≤i≤n {(1− µ)α̃i + µỹi(y

∗)} ≤ (1− µ)α̃max + µỹmax(y
∗)

≤ (1− µ)α̃min + µy∗max =⇒ y∗max ≥ α̃max.

Thus, every Nash equilibrium in both the restricted game and the unrestricted game is

interior and satisfies α̃min ≤ y∗i ≤ α̃max for all i= 1,2, . . . , n. Hence, restricting the strategy

space of each player to [α̃min − ε, α̃max + ε] does not change the set of Nash equilibria. This

completes the proof. Q.E.D.

A.2. Uniqueness of Nash equilibrium

A.2.1. Uniqueness of Nash equilibrium for convex norms

ASSUMPTION 2: The social norm mapping ỹ :Rn
+ →Rn

+ is globally convex, that is, the

inequality ỹ((1− γ)x+ γz)≤ (1− γ)ỹ(x) + γỹ(z) holds for any γ ∈ [0,1] and for any

x,z ∈Rn
+

PROPOSITION 4: Let the social norm mapping ỹ :Rn
+ →Rn

+ satisfy Assumptions 1 and

2. Then, (17), and hence (15), has a unique fixed point.

PROOF: Let ∥·∥∞ be the standard sup-norm over Rn, that is,

∥z∥∞ := max
i=1,2,...,n

|zi|, for all z= (z1, z2, . . . , zn) ∈Rn.

23A game with strategies in R is a supermodular game if (i) each player’s strategy space is compact; (ii) each
player’s utility is upper semi-continuous; (iii) each player’s utility function has increasing differences.
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For all x,z ∈Rn
+, the following relations are readily verified:24

∥z− x∥∞ = ∥x∨ z− x∧ z∥∞; (19)

− z≤ x≤ z =⇒ ∥x∥∞ ≤ ∥z∥∞; (20)

∥ỹ(z)∥∞ ≤ ∥z∥∞. (21)

From the monotonicity of the BR mapping (17), we have:

b(x∧ z)− b(x∨ z)≤ b(z)− b(x)≤ b(x∨ z)− b(x∧ z).

Using consecutively (20), (17), the homogeneity and convexity of ỹ(·), (21), and (19), we

obtain:

∥b(z)− b(x)∥∞ ≤ ∥b(x∨ z)− b(x∧ z)∥∞ = µ∥ỹ(x∨ z)− ỹ(x∧ z)∥∞
= µ∥ỹ(x∧ z+ x∨ z− x∧ z)− ỹ(x∧ z)∥∞

= µ
∥∥2ỹ (12x∧ z+ 1

2(x∨ z− x∧ z)
)
− ỹ(x∧ z)

∥∥
∞

≤ µ∥ỹ(x∧ z) + ỹ(x∨ z− x∧ z)− ỹ(x∧ z)∥∞
= µ∥ỹ(x∨ z− x∧ z)∥∞ ≤ µ∥x∨ z− x∧ z∥∞ = µ∥z− x∥∞ ,

i.e., for all x,z ∈ Rn
+, the following inequality holds: ∥b(z) − b(x)∥∞ ≤ µ∥z− x∥∞.

Therefore, as µ ∈ (0,1), b(·) is a contraction over the complete metric space
(
Rn
+, ρ

)
, with

the distance ρ(x,z) := ∥x− z∥∞ for all x,z ∈ Rn
+. By the contraction mapping theorem,

b(·) has a unique fixed point y∗ ∈Rn
+. This completes the proof. Q.E.D.

24We use standard notation of lattice theory: for all x,z ∈Rn,

x∨ z := (max{x1, z1},max{x2, z2}, . . . ,max{xn, zn}) ,
x∧ z := (min{x1, z1},min{x2, z2}, . . . ,min{xn, zn}) .

Observe that the inequality (21) is an immediate implication of Lemma 2.



TOWARD A GENERAL THEORY OF PEER EFFECTS 27

A.2.2. Uniqueness of Nash equilibrium for concave norms

ASSUMPTION 3: The social norm mapping ỹ : Rn
+ → Rn

+ is globally concave, that is,

the inequality ỹ((1− γ)x + γz) ≥ (1− γ)ỹ(x) + γỹ(z) holds for any γ ∈ [0,1] and for

any x,z ∈Rn
+

PROPOSITION 5: Let the social norm mapping ỹ :Rn
+ →Rn

+ satisfy Assumptions 1 and

3. Then, (17), and hence (15), has a unique fixed point.

PROOF: We proceed by contradiction. From Proposition 3, there exist the minimum

equilibrium y∗ and the maximum equilibrium y∗∗. Assume that y∗∗ ̸= y∗, so that the set

I := {i |y∗∗i > y∗i } of agents is non-empty. For each i ∈ I , define τi by

τiy
∗∗
i + (1− τi)y

∗
i = 0 =⇒ τi := 1− y∗∗i

y∗i
< 0.

Pick j ∈ I such that τj =max{τi | i ∈ I}. It is readily verified that25

τjy
∗∗ + (1− τj)y

∗ ≥ 0 =⇒ bj (τjy
∗∗ + (1− τj)y

∗)≥ bj (0)> 0. (22)

From (22), and by definition of τj , we get:26

bj (τjy
∗∗ + (1− τj)y

∗)> 0 = τjy
∗∗
j + (1− τj)y

∗
j =⇒

bj (τjy
∗∗ + (1− τj)y

∗)> τjbj(y
∗∗) + (1− τj)bj(y

∗).
(23)

However, applying bj(·) to both parts of the identity, we obtain:

y∗ =
−τj
1− τj

y∗∗ +
1

1− τj
(τjy

∗∗ + (1− τj)y
∗) ,

and using concavity of bj(·), we get:

bj (y
∗)≥

−τj
1− τj

bj (y
∗∗) +

1

1− τj
bj (τjy

∗∗ + (1− τj)y
∗) =⇒

25Here bj(·) is the jth component of (17). We use monotonicity of bj(·) and bj(0) = (1− µ)α̃i > 0.
26Because y∗ and y∗∗ are Nash equilibria, τjbj(y∗∗) + (1− τj)bj(y

∗) = τjy
∗∗
j (1− τj)y

∗
j .
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bj (τjy
∗∗ + (1− τj)y

∗)≤ (1− τj)bj (y
∗) + τjbj (y

∗∗) ,

which contradicts (23). This completes the proof. Q.E.D.

It is now straightforward to prove Proposition 1.

Case 1: β ∈ (1,+∞]. In this case, the social norm mapping ỹ :Rn
+ →Rn

+ is convex. The

existence and uniqueness result follows from Proposition 4.

Case 2: β ∈ (1,+∞]. In this case, the social norm mapping ỹ : Rn
+ → Rn

+ is concave.

The existence and uniqueness result follows from Proposition 5.

APPENDIX B: ADDITIONAL DETAILS STRUCTURAL ESTIMATION

Weighted Average GMM
Given the moment conditions are based on two distinct groups, we follow the estimation

strategy of Arellano and Meghir (1992). Formally, let ŷ be the OLS predictor of y (or any

exogenous predictor of y, that is, an object that is only a function of x), and let ỹ′−is(ŷs, β)

denote the derivative of ỹ−is(ŷs, β) with respect to β. Further, define the set of instru-

ments as zi = [xi, ỹ−is(ŷs, β), ỹ
′
−is(ŷs, β)]. There are two orthogonality assumptions on

the error term: (1) E (εizi) = 0 for all non-isolated individuals, and (2) E (εixi) = 0 for

all isolated individuals. The orthogonality conditions follows directly from the assumption

that E (εi|Z,G) = 0 for all i as ŷ is only a function of x. Then, the method of moments

estimator θ = [γ ′, λ1, λ2, β]
′ is the solution of,

Q(θ) = h1(θ)W1h
′
1(θ) + h2(θ)W2h

′
2(θ),

where

h1(θ) =
1

N1

N1∑
i=1

[yi − (1− λ2)xiγ − (λ1 + λ2)ỹ−is(y−is, β))]zi

and

h2(θ) =
1

N2

N2∑
i=1

[yi −xiγ]xi
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for non-isolated and isolated individuals, respectively. Note, N1 is the number of non-

isolated individuals and N2 is the number of isolated individuals . Note, the identifica-

tion of θ relies on both moment conditions so we need to ensure that both are asymp-

totically not-negligible, i.e. limN1+N2→∞
N1

N1+N2
= r1 ∈ (0,1) (which is equivalent to

limN1+N2→∞
N2

N1+N2
= r2 ∈ (0,1)).

Concentrated GMM
For estimation purposes, as the moment functions are linear in γ, we can concentrate the

objective function around [λ1, λ2, β]. Taking the first order condition of Q(θ) with respect

to γ, we obtain (after long, but straightforward algebra):

γ̂(λ1, λ2, β) =

[
(1− λ2)

2

N2
1

X′
1Z1W1Z

′
1X1 +

1

N2
2

X′
2X2W2X

′
2X2

]−1

×

[
(1− λ2)

N2
1

X′
1Z1W1Z

′
1(y1 − (λ1 + λ2)ϕ1(y−i, β)) +

1

N2
2

X′
2X2W2X

′
2y2

]−1

,

where for any (row) vector ai = (xi,zi,wi,yi), the matrix A1 = (X1,Z1,W1) is obtained

by staking ai for all non-isolated individual i, and A2 = (X2,Z2,W2) is obtained by stak-

ing ai for all isolated individual i.

The concentrated objective function is therefore Q̃(θ̃) = Q̃([λ1, λ2, β]) =Q([γ̂ ′(λ1, λ2, β), λ1, λ2, β]),

where θ̃ = [λ1, λ2, β]. The function is minimized numerically in Section 3.4.

APPENDIX C: SOCIAL OPTIMUM (FIRST BEST)

Consider a standard welfare function W(y,g) =
∑

iUi(yi,y−i,g), where each agent i’s

utility Ui(yi,y−i,g) is given by (6). The planner chooses the actions y1, y2, ..., yn of each

of the n agents that maximizes W(y,g). The first best is equal to:

yoi = (1− λ2)αi + (λ1 + λ2)ỹ−i(β) + λ1
∑
j

yj
∂ỹ−i(β)

∂yi
+ λ2

∑
j

(yj − ỹ−j(β))
∂ỹ−i(β)

∂yi
,

(24)

PROPOSITION 6: Assume that λ1 + λ2 < 1. Then, the first best outcome is unique.



30

PROOF: To render the notations more explicit, denote ỹ−i(β)≡ ỹ−i(z, β). Let us restate

(24) in vector-matrix form:

y= (1− λ2)α+ λ1F(y) + λ2G(y), (25)

where the mappings F(y) = (F1(y), F2(y), . . . , Fn(y)) and G(y) = (G1(y),G2(y), . . . ,Gn(y))

are defined, respectively, as follows:

Fi(y) := ỹ−i(y−i, β) +
∑
j

yj(y−j)
∂ỹ−i(y−j , β)

∂yi
,

Gi(y) := ỹ−i(y−i, β) +
∑
j

(yj − ỹ−i(y−j , β))
∂ỹ−i(y−j , β)

∂yi
.

At the extreme case of λ1 = λ2 = 0, the fixed point condition (25) has a unique solution

yO =α. Furthermore, since the right-hand side of (25) is continuously differentiable with

respect to λ1, λ2, and at (λ1, λ2,y) = (0,0,α), by the implicit function theorem, there

exist threshold values λ̂1 > 0 and λ̂2 > 0 of λ1 and λ2 respectively, such that (25) defines a

single-valued function yO(λ1, λ2) for all (λ1, λ2) ∈
[
(0,0); (λ̂1, λ̂2)

]
. Moreover, we need

to impose that λ1 + λ2 < 1 for each model to be well-defined, which implies that 0 <

λ̂1 + λ̂2 < 1. It remains to prove that yO(λ1, λ2) is a unique solution to (25). We proceed

by contradiction. Assume that there exists a sequence (λk1, λ
k
2) → 0, such that, for any

(λk1, λ
k
2) there exists ŷ(λk1, λ

k
2) ̸= yO(λk1, λ

k
2). Two cases may arise.

Case 1: the sequence ŷ(λk1, λ
k
2) converges to α. This case is impossible since it implies

the existence of two distinct branches of the fixed-point correspondence defined by (25),

which violates the implicit function theorem.

Case 2: the sequence ŷ(λk1, λ
k
2) has a subsequence, which does not converge to α but

converges to some ξ ̸=α. This leads to a contradiction since both the left-hand side and the

right-hand side of (25) are continuous with respect to (λ1, λ2,y) at (λ1, λ2,y) = (0,0,ξ).

Taking the limit on both sides of (25) under (λk1, λ
k
2, ŷ(λ

k
1, λ

k
2))→ (0,0,ξ), we conclude

that y = ξ must be a solution to (25) in the extreme case of λ1 = λ2 = 0. But we have

assumed ξ ̸=α, and (25) clearly has no solutions other than α, a contradiction.

This completes the proof. Q.E.D.
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