Supplemental web appendix

In this supplemental web appendix I describe the variance estimators used in the Monte
Carlo experiments reported in the main text. |Graham| (2020a) and Graham (2020b)) both
discuss variance estimation under dyadic dependence and provide references to the primary

literature. Equation numbering continues in sequence with that established in the main

paper.

D Variance estimation

We have that X, = C,, (SijnSikn) for j # i. For each of the i = 1,..., N consumers there
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A similar argument gives
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The ‘dense’, Wald-based, confidence intervals whose coverage properties are analyzed by
Monte Carlo are based on the limit distribution for n'/2S, given in equation (31]) of the
main text (with (56)), and ¢, replacing their populating/limiting values). Under dense
asymptotics it is also the case that T, dg H, (é) converges to, say, I'g, without rescaling
by n. From these two observations a simple sandwich variance estimator can be constructed

and inference based on the approximation (see, for example, |Graham| (2020al)):
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The ‘jackknife’ estimate of Xf, is
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See, for example, |[Efron and Stein| (1981]). Basic manipulation gives
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These calculations give the equality
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The jackknife estimate for V (nl/ ZSn) in the dense case is thus
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This suggests the bias corrected estimate of V (nl/ 2S’n) equal to
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See (Cattaneo et al.| (2014) for a related estimator in the context of density weighted average
derivatives[™]

To estimate V (n*25,,), as required for sparse network inference, I use n?Q B¢

since
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which, under suitable conditions, should be such that
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To estimate Ty I use —nH, (é) To ensure that QIX-BC is positive definite I threshold
negative eigenvalues as suggested by (Cameron and Miller (2014).
The above estimators seem to be obvious places to start based on the prior work on
dyadic clustering surveyed in |Graham| (2020al) and Graham| (2020b)). However, exploring
the strengths and weakness of alternative methods of sparse network inference formally is a

topic for future research.

14Note that n2Q’K appears to be a conservative estimate of V (n3/ 2Sn) under sparsity (again see |Cattaneo
et al.| (2014)) for helpful discussion in a different context).
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