
Supplemental web appendix

In this supplemental web appendix I describe the variance estimators used in the Monte
Carlo experiments reported in the main text. Graham (2020a) and Graham (2020b) both
discuss variance estimation under dyadic dependence and provide references to the primary
literature. Equation numbering continues in sequence with that established in the main
paper.

D Variance estimation
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′
ik,n. (56)

A similar argument gives
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The ‘dense’, Wald-based, confidence intervals whose coverage properties are analyzed by
Monte Carlo are based on the limit distribution for n1/2Sn given in equation (31) of the
main text (with (56), (57) and ϕn replacing their populating/limiting values). Under dense

asymptotics it is also the case that Γ̂n

def
≡ Hn
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)

converges to, say, Γ0, without rescaling
by n. From these two observations a simple sandwich variance estimator can be constructed
and inference based on the approximation (see, for example, Graham (2020a)):
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The ‘jackknife’ estimate of Σc
1n is
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See, for example, Efron and Stein (1981). Basic manipulation gives
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These calculations give the equality
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The jackknife estimate for V
(
n1/2Sn

)
in the dense case is thus
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This suggests the bias corrected estimate of V
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See Cattaneo et al. (2014) for a related estimator in the context of density weighted average
derivatives.14

To estimate V
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)
, as required for sparse network inference, I use n2Ω̂JK−BC since
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To estimate Γ̃0 I use −nHn

(
θ̂
)
. To ensure that Ω̂JK−BC

n is positive definite I threshold
negative eigenvalues as suggested by Cameron and Miller (2014).

The above estimators seem to be obvious places to start based on the prior work on
dyadic clustering surveyed in Graham (2020a) and Graham (2020b). However, exploring
the strengths and weakness of alternative methods of sparse network inference formally is a
topic for future research.

14Note that n2Ω̂JK appears to be a conservative estimate of V
(
n3/2Sn

)
under sparsity (again see Cattaneo

et al. (2014) for helpful discussion in a different context).
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