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Abstract

Consider a bipartite network where N consumers choose to buy or not to buy M dif-
ferent products. This paper considers the properties of the logit fit of the N ×M array
of “i-buys-j” purchase decisions, Y = [Yij ]1≤i≤N,1≤j≤M , onto a vector of known func-
tions of consumer and product attributes under asymptotic sequences where (i) both
N and M grow large, (ii) the average number of products purchased per consumer
is finite in the limit, (iii) there exists dependence across elements in the same row or
same column of Y (i.e., dyadic dependence) and (iv) the true conditional probability
of making a purchase may, or may not, take the assumed logit form. Condition (ii)
implies that the limiting network of purchases is sparse: only a vanishing fraction of all
possible purchases are actually made. Under sparse network asymptotics, I show that
the parameter indexing the logit approximation solves a particular Kullback–Leibler
Information Criterion (KLIC) minimization problem (defined with respect to a cer-
tain Poisson population). This finding provides a simple characterization of the logit
pseudo-true parameter under general misspecification (analogous to a (mean squared
error (MSE) minimizing) linear predictor approximation of a general conditional ex-
pectation function (CEF)). With respect to sampling theory, sparseness implies that
the first and last terms in an extended Hoeffding-type variance decomposition of the
score of the logit pseudo composite log-likelihood are of equal order. In contrast, un-
der dense network asymptotics, the last term is asymptotically negligible. Asymptotic
normality of the logistic regression coefficients is shown using a martingale central limit
theorem (CLT) for triangular arrays. Unlike in the dense case, the normality result
derived here also holds under degeneracy of the network graphon. Relatedly, when
there “happens to be” no dyadic dependence in the dataset in hand, it specializes to
recently derived results on the behavior of logistic regression with rare events and iid
data. Simulation results suggest that sparse network asymptotics better approximate
the finite network distribution of the logit estimator. A short empirical illustration, and
additional calibrated Monte Carlo experiments, further illustrates the main theoretical
ideas.

JEL Codes: C31, C33, C35

Keywords: Networks, Exchangeable Random Arrays, Dyadic Clustering, Dyadic Re-
gression, Sparse Networks, Logistic Regression, Rare Events, Bipartite Network, Alter-
native Asymptotics, Sparse Network Asymptotics



Let i = 1, . . . , N index a random sample of consumers and j = 1, . . . ,M a random sample
of products. For each consumer-product pair ij we observe Yij = 1 if consumer i purchases
product j and Yij = 0 otherwise. Let Wi ∈ W be a vector of observed consumer attributes,

Xj ∈ X a vector of product attributes and n
def
≡ M + N the total number of sampled

consumers and products. The conditional probability that consumer i buys product j is
given by

Pr (Yij = 1|Wi, Xj) = gn (Wi, Xj) (1)

with gn : W × X → {0, 1} an unknown regression function. In this paper I consider the
statistical properties of (a sequence of) parametric logit approximations of gn (w, x) when (i)
both N and M grow large at the same rate (i.e., M/n → ϕ ∈ (0, 1) as n → ∞), (ii) the limit-

ing purchase graph Y
def
≡ [Yij]1≤i≤N,1≤j≤M is sparse, and (iii) there exists dyadic dependence

(i.e., Yi1j1 and Yi2j2 may covary whenever {i1, jj} and {i2, j2} share a common consumer or
product index). Dyadic dependence arises in the presence of unobserved consumer- and/or
product-specific heterogeneity.

The novelty relative to prior work on dyadic regression by Fafchamps and Gubert (2007),
Graham (2020a,b), Menzel (2021), Davezies et al. (2021) and others involves (i) the intro-
duction of “sparse network asymptotics” and (ii) an analysis which accommodates misspecifi-
cation of the regression function. The sparse network thought experiment introduced in this
paper leads to novel asymptotic approximations which appropriately account for the effects
of dyadic dependence when present, while simultaneously being robust to its absence (and
other forms of degeneracy).1 Accommodating misspecification allows researchers to conduct
inference on well-defined pseudo-true parameters in settings where their model for (1) is only
an approximation (as is invariably the case in practice).

The basic set-up developed in this paper may be used to characterize many settings
of interest to economists. For example, Chen and Song (2013) study the syndicated loan
market where banks form lending relationships with large firms, Fox (2018) the matching of
car part suppliers with downstream automotive assemblers, Henisz and Delios (2001) and
García-Canal and Guillén (2008) variants of the plant location problem, and Roussille and
Scuderi (2023) an online labor market where firms may bid (or not) for specific workers.

In what follows random variables are denoted by capital Roman letters, specific real-
izations by lower case Roman letters and their support by blackboard bold Roman letters.
That is Y , y and Y respectively denote a generic random draw of, a specific value of, and
the support of, Y . A “0” subscript on a parameter denotes its population value and may
be omitted when doing so causes no confusion. In what follows I use graph, network and

1An important precedent for the asymptotic thought experiment considered below is the work of Bickel
et al. (2011). They study the properties of acyclic subgraph frequencies under sparseness.
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purchase graph to refer to Y
def
≡ [Yij]1≤i≤N,1≤j≤M . All graph theory terms and notation used

below are standard (e.g., Chartrand and Zhang, 2012).

Sparseness

Let ρn = En [Yij] be the probability of the event that (randomly sampled) consumer i buys
(randomly sampled) product j. The notation En [·] is used to emphasize that the probability
law used to evaluate the expectation may vary with n (below I use the notation E0 [·] to
indicate an average with respect to the limiting probability law as n → ∞). Sparseness of
the limit graph implies that the average consumer purchases only a finite number of products
in the limit:

λc
n

def
≡ Mρn → λc

0 with 0 < λc
0 < ∞ as n → ∞. (2)

Condition (2) is concordant with the fact that, for example, although consumers choose from
tens of millions of books, it is rare for individual libraries to exceed a few hundred volumes
(i.e., average consumer degree λc

n is small). Similarly, the lifetime sales of most books rarely
exceed several hundred copies, such that

λp
n

def
≡ Nρn → λp

0 with 0 < λp
0 < ∞ as n → ∞ (3)

(i.e., average product degree λp
n is also small).

Conditions (2) and (3) restrict the sequence of regression functions (1) such that

En [gn (Wi, Xj)] = ρn = O
(
n−1
)
. (4)

Equation (4) implies that the number of purchases actually made is negligible relative to
the set of all possible purchases that could have been made; the purchase graph Y is sparse.
If, instead, the marginal purchase probability ρn was fixed at, or converged to, a constant
between zero and one, then the number of actual book purchases and the number of possible
book purchases would be of equal order (the so-called dense case). Sparseness is a property
of a sequence of graphs, each with an increasing number of vertices. It is used here in the
context of a particular asymptotic approximation argument, motivated by the fact that in
many real world graphs the number of edges present is small relative to the number that
could be present (e.g., Newman, 2010).
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Dyadic dependence

Dyadic dependence refers to a particular pattern of dependence across the rows and columns
of Y. Consider predicting whether randomly sampled consumer i purchases book j, say
The Clue in the Crossword Cipher, the forty-fourth novel in the celebrated Nancy Drew
mystery series. Knowledge of the frequency with which other consumers k = 1, . . . , i− 1, i+

1, . . . , N purchase book j will generally alter the econometrician’s prediction of whether i

also purchases book j. That is, for any k ̸= i,

Pr (Yij = 1|Ykj = 1) > Pr (Yij = 1)

or that Yi1j1 and Yi2j2 will covary whenever the two transactions correspond to a common
book (such that j1 = j2).

Similarly, if the econometrician knew that consumer i was a frequent book buyer, she
might conclude that this consumer is also more likely to purchase some other book (relative
to the average consumer). That is Yi1j1and Yi2j2 will also covary whenever the transactions
correspond to a common buyer (such that i1 = i2).

Importantly, dependence across Yi1j1 and Yi2j2 when {i1, jj} and {i2, j2} share a common
buyer or product index may hold even conditional on observed consumer, Wi, and product
attributes, Xj. Some consumers may have latent attributes (i.e., not contained in Wi) which
induce them to buy many books and some books may be especially popular (for reasons not
captured adequately by Xj). It might be, for example, that

Pr (Yij = 1|Ykj = 1,Wi, Xj) > Pr (Yij = 1|Wi, Xj) .

The structured form of dependence across the elements of [Yij]1≤i≤N,1≤j≤M described
above is a feature of separately exchangeable random arrays (Aldous, 1981; Hoover, 1979).
The inferential implications of such dependence, in the context of subgraph counts, were first
considered by Holland and Leinhardt (1976) almost fifty years ago. Bickel et al. (2011) make
an especially important recent contribution in this area. In the context of regression models,
the inferential implications of dyadic dependence have been considered by, among others,
Fafchamps and Gubert (2007), Cameron and Miller (2014), Aronow et al. (2017), Tabord-
Meehan (2018), Graham (2020a), Davezies et al. (2021) and Menzel (2021) (see Graham
(2020b, Section 4) for a review and additional references). This work generally considers the
dense case. Dyadic dependence, in the context of the sparse network asymptotics explored
below, generates new issues.
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1 Population and sampling assumptions

Let i ∈ N index consumers in an infinite population of interest. Associated with each
consumer is the vector of observed attributes Wi ∈ W = {w1, . . . , wJ} . Let j ∈ M index
products in a second infinite population of interest. The model is a two population one (see
Graham et al., 2018). Associated with each product is the vector of characteristics Xi ∈
X = {x1, . . . , xK}. The finite support assumption on W and X is not formally maintained
below, but invoking it here simplifies the discussion of exchangeability.

Let σw : N → N be a permutation of a finite number of consumer indices which satisfies
the restriction [

Wσw(i)

]
i∈N = [Wi]i∈N . (5)

Restriction (5) implies that σw only permutes indices across observationally identical con-
sumers (i.e., those homogenous in W ). Let σx : M → M be an analogously constrained
permutation of a finite number of product indices. Adapting the terminology of Crane and
Towsner (2018), I assume that the purchase graph is W -X-exchangeable

[
Yσw(i)σx(j)

]
i∈N,j∈M

D
= [Yij]i∈N,j∈M . (6)

Here D
= denotes equality of distribution. One way to think about (6) is as a requirement that

any probability law for [Yij]i∈N,j∈M should attach equal probability to all purchase graphs
which are isomorphic as vertex-colored graphs. Here Wi and Xj are associated with the color
of the corresponding consumer and product vertices in the overall purchase graph. Virtually
all single-population micro-econometric models assume that agents are exchangeable, restric-
tion (6) extends this idea to the two-population setting considered here: our probability law
for the model should not change if we re-label observationally identical units.

Graphon

It is well-known that exchangeability implies restrictions on the structure of dependence
across observations in the cross-section setting (e.g., de Finetti, 1931). Aldous (1981), Hoover
(1979) and Crane and Towsner (2018) showed that exchangeable random arrays also exhibit
a special dependence structure. Let µ, {(Wi, Ai)}i≥1, {(Xj, Bj)}j≥1 and {Vij}i≥1,j≥1 be se-
quences of i.i.d. random variables, additionally independent of one another, and consider
the purchase graph

[
Y ∗
ij

]
i∈N,j∈M, generated according to

Y ∗
ij = h (µ,Wi, Xj, Ai, Bj, Vij) (7)
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with h : [0, 1]×W× X× [0, 1]3 → {0, 1} a measurable function, henceforth referred to as a
graphon (we can normalize µ, Ai, Bj and Vij to have support on the unit interval, uniformly
distributed, without loss of generality).

The results of Crane and Towsner (2018), which extend the earlier work of Aldous (1981)
and Hoover (1979), show that, for any W -X-exchangeable random array [Yij]i∈N,j∈M, there
exists another array

[
Y ∗
ij

]
i∈N,j∈M, generated according to (7), such that the two arrays have

the same distribution. An implication of this result is that we may use (7) as a nonparametric
data generating process for [Yij]i∈N,j∈M.

Inspection of (7) indicates that exchangeability implies a particular pattern of dependence
across the elements of [Yij]i∈N,j∈M. In particular Yi1j1 and Yi2j2 may covary whenever i1 = i2 or
j1 = j2; this covariance may be present even conditional on observed consumer and product
attributes. This is, of course, precisely the dyadic dependence structure discussed earlier.

The aggregate shock, µ, in (7) is analogous to the latent mixing variable appearing in de
Finetti’s (1931) original theorem. The distribution of µ is never identified and the inference
results described below may be (informally) thought of as being conditional on its realization;
see Menzel (2021) for additional relevant discussion. Formally, the analysis which follows
works with a restriction of (7) which excludes µ:

Y ∗
ij = h (Wi, Xj, Ai, Bj, Vij) . (8)

Sampling process

Let Y = [Yij]1≤i≤N,1≤j≤M be the observed N × M matrix of consumer purchase decisions.
Let W and X be the associated matrices of consumer and product regressors. I assume
that Y is the adjacency matrix associated with the subgraph induced by a random sample
of consumers and products from a W -X-exchangeable network with graphon (8). Let G∞,∞

denote this population network. Let Vc and Vp denote the set of consumers and products
randomly sampled by the econometrician from G∞,∞. We have Y equal to the adjacency
matrix of the induced subgraph:

GN,M = G∞,∞ [Vc,Vp] . (9)

The marginal probability of the event, random consumer i, purchases random product j, is
thus

ρ0 = E [h (Wi, Xj, Ai, Bj, Vij)] . (10)

Let {GN,M} be a sequence of networks indexed by, respectively, the cardinality of the
sampled consumer and product index sets, N = |Vc| and M = |Vp|. The average number of
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products purchased per consumer, or average consumer degree,

λc
n = Mρ0 (11)

will diverge as M → ∞ when 0 < ρ0 < 1. Likewise the average number of times a product
is purchased, or average product degree,

λp
n = Nρ0 (12)

will also diverge as N → ∞. A consequence of this divergence is that the number of possible
purchases, and the number of actual purchases, will be of equal order. In practice, as
discussed earlier, only a small fraction of all possible purchases are made in many real world
settings. To capture this qualitatively in my asymptotic approximations requires a slightly
more elaborate thought experiment; which I outline next.

Instead of considering a sequence of graphs sampled from a fixed population, I consider
a sequence of graphs sampled from a corresponding sequence of populations. The sequence
of networks {GN,M} is one where both N and M grow at the same rate such that, recalling
that n = M +N ,

M/n → ϕ ∈ (0, 1) (13)

as n → ∞. For each n the graphon describing the infinite population sampled from is

Yij = hn (Wi, Xj, Ai, Bj, Vij) . (14)

This sequence of graphons/populations {hn} has the property that network density

ρn = En [hn (Wi, Xj, Ai, Bj, Vij)]

may approach zero as n → ∞. (It would be technically more appropriate to index the
sequence {hn} by both N and M , as opposed to just n, however doing so adds no real
insight and clutters the notation.) Under this setup the order of λc

n = Mρn and λp
n = Nρn

will depend upon the speed with which ρn approaches zero as n → ∞.
As in other exercises in alternative asymptotics, indexing the population data generating

process by the sample size is not meant to capture a literal feature of how the data are
generated, rather it is done so that the limiting properties of the model share important
qualitative features – in this case “sparseness” – with the actual finite network in hand.
In other settings such an approach has led to more useful asymptotic approximations, a
premise I maintain here (e.g., Staiger and Stock, 1997), and explore further via simulation
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experiments below.
The following two assumptions provide the foundation for the sparse network limit theory

presented below.

Assumption 1. (Sampling) (i) i = 1, . . . , N and j = 1, . . . ,M index independent random
samples of consumers (N) and products (M) respectively; (ii) Wi ∈ W, with W a compact
subset of Rdim(Wi) and fW (w) bounded and bounded away from zero on W; similarly Xj ∈ X,
with X a compact subset of Rdim(Xj) and fX (x) bounded and bounded away from zero on X;
(iii) [Yij]1≤i≤N,1≤j≤M is generated according to (14); (iv) the sequence of samples is such that

M
M+N

→ ϕ ∈ (0, 1) as N,M → ∞.

The sequence of graphons {hn} is left nonparametric, but restricted such that in the limit
the graph is sparse (i.e., conditions (2) and (3) above hold). To ensure this property I impose
the stronger condition, observing that En [hn (Wi, Xj, Ai, Bj, Vij)|Wi, Xj] = gn (Wi, Xj):

Assumption 2. (Conditional Sparseness) : The graphon sequence {hn} is such that
(i)

ngn (w, x) = λ0 (w, x) + o
(
n−1
)

with 0 < λ0 (w, x) < ∞ for all (w, x) ∈ W×X, (ii) ngn (w, x) ≤ k (w, x) for all n and (w, x) ∈
W × X with E [k (Wi, Xj)] < ∞ and (iii) En

[
|nEn [hn (Wi, Xj, Ai, Bj, Vij)|Wi, Ai]|3

]
< ∞

and En

[
|nEn [hn (Wi, Xj, Ai, Bj, Vij)|Xj, Bj]|3

]
< ∞.

Assumption 2 implies that the conditional probability that a type Wi = w customer buys
a type Xj = x product is O (n−1) for all (w, x) ∈ W×X. This restriction has two important
implications for the analysis which follows.

First, it ensures, as desired, that the limiting graph is sparse. Let λ0 = λc
0+λp

0 equal the
sum of the limiting average consumer and product degrees. Note that nρn → λ0 and further
that λ0 = E [λ0 (Wi, Xj)]. In what follows I will call λ0 (w, x) the (limiting) conditional degree
function.

Second, it implies that consumer and product attributes do not affect the order of the
probability that an edge forms. It rules out, for example, the existence of observable subpop-
ulations of products, say those with Xj = x, that are purchased by a non-trivial fraction of
consumers of, say, type Wi = w. This can be restrictive: if i indexes moviegoers and j films,
then it rules out film types Xj = x (say science fiction epics like Denis Villeneuve’s Dune)
which consumers of type Wi = w (say econometricians) see with very high probability. In
contrast, if i indexes econometricians and j research articles, it seems reasonable to assume
that there are no observable econometrician-article combinations, Wi = w, Xj = x, where
the event i cites j occurs with high probability. Indeed, sparseness of the type imposed by
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Assumption 2 appears to be a useful description of many real world graphs (Newman, 2010).
By ensuring that order of the linking probability does not vary with w, x, Parts (i) and (ii)
of Assumption 2, as will be come clear below, provides a well-defined function to target for
approximation.

Part (iii) of Assumption 2 is used to verify Lyapounov conditions needed for the asymp-
totic normality result below (Theorem 2). It rules out very extreme skewness in the consumer
degree distribution (conditional on Wi and Ai) as well as that in the corresponding product
degree distribution (conditional on Xj and Bj).2

Connection to conventional models of choice

While certain features of the data generating process outlined above are highly concordant
with the motivating demand application, others are not. Sparseness is an important fea-
ture of many bipartite graphs: consumers only purchase a handful of products from the
many available, firms only choose a handful of locations for their production facilities and
so on. Likewise the presence of the consumer and product specific heterogeneity, Ai and Bj,
accommodates dependencies that many researchers find important in practice. More nega-
tively, the assumption that consumers’ purchase decisions are iid conditional on observed and
unobserved product characteristics, does not accord with product complementarity, substi-
tutability and/or the presence of budget constraints. Similarly this assumption controverts
the reality that, to provide another counter-example, plant location problems are exercises
in combinatoric optimization.

Existing approaches to large demand models generally formally maintain finiteness of the
product space, with asymptotics based on a growing number of consumers and/or purchase
events per consumer (e.g., Lanier et al., 2023). Exploring the properties of these models as
the number of products grows, and their relationship with the framework presented here, is
an interesting area to explore. Menzel (2015, 2016) explores related ideas in the context of
one-to-one matching models and games of strategic interaction; ideas in his work may apply,
with adaptation, here.

Irrespective of such analyses the results presented here remain relevant. The assumption
of separate exchangeability is appropriate for many large bi-partite graphs; in such settings
the conditional degree function is a natural, albeit possibly “reduced form”, object of interest.

2Observe that NEn [hn (Wi, Xj , Ai, Bj , Vij)|Xj , Bj ] corresponds to the product degree in the subpopu-
lation homogenous in Xj and Bj . Certain configurations of Xj and Bj may correspond to “blockbusters”.
Product degree for such blockbusters will be large (e.g., a Harry Potter novel or Taylor Swift album). Part
(iii) of Assumption 2 rules out purchase graphs that while sparse, also have many blockbusters. I am grateful
to the referees for discussion and feedback that was helpful in formulating Assumption 2.
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2 Pseudo composite likelihood estimator

The estimation target is the coefficient vector indexing (an approximation of) the conditional
average degree function n · gn (w, x) . Other than the sparseness restrictions imposed by
Assumption 2, the form of gn (w, x) is left unspecified. Let Zij = z (Wi, Xj) be a vector
of known basis functions in the underlying consumer and product attributes Wi and Xj

(excluding the constant) and consider the sequence – indexed by n – of parametric logit
models:

en (Wi, Xj; θ) =
exp

(
α + Z ′

ijβ − lnn
)

1 + exp
(
α + Z ′

ijβ − lnn
) , (15)

where θ = (α, β′)′.
Sequence (15) has the feature that

nen (Wi, Xj; θ) → exp
(
α + Z ′

ijβ
)

as n → ∞ and hence shares the sparseness features of the population graphon gn (w, x). Its
implied (limiting) average consumer and product degrees are

λc (ϕ, θ) = ϕE0

[
exp

(
α + Z ′

ijβ
)]

, λp (ϕ, θ) = (1− ϕ)E0

[
exp

(
α + Z ′

ijβ
)]

.

For large n, the logit model is shown to provide a well-defined approximation of the con-
ditional degree function λ0 (w, x). Furthermore, the pseudo-true parameter value indexing
this approximation is consistently estimable with a Gaussian limit distribution.

Note that in the event that gn (w, x) happens to take the logit form, Assumption 2 holds
since, with gn (w, x) = en (Wi, Xj; θ0) and λ0 (w, x) = exp

(
α0 + Z ′

ijβ0

)
, we have

ngn (w, x)− λ0 (w, x) =

[
exp

(
α0 + Z ′

ijβ0

)
1 + 1

n
exp

(
α0 + Z ′

ijβ0

) − exp
(
α0 + Z ′

ijβ0

)]

= − exp
(
α0 + Z ′

ijβ0

) [ 1
n
exp

(
α0 + Z ′

ijβ0

)
1 + 1

n
exp

(
α0 + Z ′

ijβ0

)]
= o

(
n−1
)
.

(we can also set k (w, x) = λ0 (w, x)).
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Estimation

To estimate θ I propose maximizing the pseudo composite log-likelihood function

θ̂ = argmax
θ∈Θ

Ln (θ) (16)

with Ln (θ) =
1

NM

∑N
i=1

∑M
j=1 lij,n (θ) and lij,n (θ) the logit kernel function:

lij,n (θ) = (2Yij − 1)
(
R′

ijθ − lnn
)
− ln

(
1 + exp

(
(2Yij − 1)

[
R′

ijθ − lnn
]))

(17)

for Rij

def
≡
(
1, Z ′

ij

)′. The use of the word ‘composite’ emphasizes that the criterion function
only models the data at the dyad level; no attempt is made to model the precise structure
of dependence across dyads (see Lindsey, 1988; Cox and Reid, 2004). The use of the word
‘pseudo’ emphasizes the allowance for misspecification of the dyad-level regression function.
Indeed the analysis in this paper is potentially compatible with a wide variety of actual
network generating process; whether the estimated regression function approximation has
any structural economic significance or is simply a predictor for Yij given Wi and Xj will
vary from application to application.

Consistency

Let θ0 = (α0, β
′
0)

′ denote the pseudo-true value of θ; θ0 indexes a unique “best approxima-
tion” of the conditional degree function λ0 (w, x). To characterize this “best approximation”
Lemma 1 below provides a uniform convergence result for the pseudo composite log-likelihood
function. This result is used to both characterize the population approximation problem for
which θ0 is the unique solution and to demonstrate consistency of the maximum pseudo
composite likelihood estimate θ̂ for θ0.

In addition to Assumptions 1 and 2 above, I require a standard identification condition
(e.g., Amemiya, 1985, p. 270).

Assumption 3. (Identification)

(i) θ0 = (α0, β
′
0)

′ ∈ A× B = Θ, A and B compact;
(ii) Zij ∈ Z with Z a compact subset of Rdim(Zij) with fZ (z) bounded on z ∈ Z;
(iii) E

[
ZijZ

′
ij

]
is a finite non-singular matrix.

Let f0 (v|w, x) be the Poisson probability mass function (pmf) with rate parameter
λ0 (x,w) and f (v|w, x; θ) the one with rate parameter λ (z; θ) = exp (α + z′β). The corre-

sponding distribution functions are F0 and Fθ. Let δn
def
≡ ln(n)

NM

∑N
i=1

∑M
j=1 Yij; in Appendix

A I show:

10



Lemma 1. (Limiting Objective Function) Let L∗
n (θ) = Ln (θ) + δn. Under Assump-

tions 1, 2 and 3
sup
θ∈Θ

|nL∗
n (θ)− L0 (θ)|

p→ 0

as n → ∞ with

L0 (θ) = −DKL (F0∥Fθ) + S (F0) ,

where DKL (F0∥Fθ)
def
≡ E0

[
ln
{

f0(Vij |Wi,Xj)

f(Vij |Wi,Xj ;θ)

}]
in the Kullback–Leibler divergence from Fθ to

F0 and S (F0)
def
≡ E0 [λ0 (Wi, Xj) · lnλ0 (Wi, Xj)]− E0 [λ0 (Wi, Xj)] does not vary with θ.

The addition of δn to Ln (θ) ensures the existence of a well-defined limit; since it does
not change the value of θ̂, replacing Ln (θ) with L∗

n (θ) does not change inference. The E0 [·]
notation in the definition of DKL (F0∥Fθ) indicates that Vij is (conditionally) Poisson with
rate parameter λ0 (Xi,Wj); which may or may not coincide with λ (Zij; θ) = exp

(
α + Z ′

ijβ
)
.

Lemma 1 suggests the follow pseudo-true parameter as a target for estimation:

θ0 = argmin
θ∈Θ

DKL (F0∥Fθ) . (18)

Equation (18) indicates that θ0 indexes the best approximation, in the (Poisson) Kullback–
Leibler divergence sense, of λ0 (x,w) – averaged over the distribution of Wi and Xj – in the
family of exponential parametric conditional degree functions {exp (α + z′β) : α ∈ A, β ∈ B}.
If en (w, x; θ0) = gn (w, x) for all (w, x) ∈ W × X, then θ0 indexes the true probability law
for the graph.

To interpret θ0 it helpful to consider the first order conditions associated with (18):

E

[
Uij

UijZij

]
= 0,

where Uij

def
≡ λ0 (Xi,Wj) − exp

(
R′

ijθ0
)

is the approximation error of exp
(
R′

ijθ0
)

for the
limiting conditional degree function. This indicates that θ0 is chosen such that the error
associated with approximating the conditional degree function, λ0 (Xi,Wj), by exp

(
R′

ijθ0
)

is mean zero and uncorrelated with Zij; similar to the familiar (MSE-minimizing) linear
regression approximation of a non-linear conditional expectation function.3,4

3I thank the Guest Co-Editor for some assistance in developing this characterization of θ0. Note that the
approximation is not a MSE-minimizing one, instead it is a KLIC-minimizing one.

4For computation most researchers will find it convenient to omit the ln (n) term from the logit function.
Let α̃n be the intercept estimate without the ln (n) term; an estimate of α0 is then α̂ = ln (n) + α̃n. This
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The purchase graph [Yij]1≤i≤N,1≤j≤M coincides with the outcome of NM dependent and
heterogenous Bernoulli trials, each with O (n−1) success probabilities. Given this structure
it is (perhaps) ex post unsurprising that the limiting criterion function, and hence the form
of the pseudo-true parameter θ0, is related to the Poisson distribution. The Bernoulli dis-
tribution with small success probabilities is well-approximated by the Poisson distribution
(Mises, 1921; Hodges and Le Cam, 1960). The take away for the analysis at hand, is that
λ (z; θ0) = exp (α0 + z′β0) is as close as possible to λ0 (x,w) over (w, x) ∈ W × X in a
well-defined and interpretable way.

Theorem 1. (Consistency) Under Assumptions 1, 2 and 3 (i) θ0 is the unique maximizer
of L0 (θ), as defined in Lemma 1, and (ii) the maximum pseudo composite likelihood estimate
θ̂

p→ θ0.

Proof. See Appendix A.

Asymptotic normality

The limit distribution of θ̂ under dense network asymptotics was derived by Graham
(2020b,a). More general results for dyadic M-estimators under dense network asymptotics,
including results on the bootstrap and cross-fitting, can be found in Menzel (2021), Davezies
et al. (2021) and Chiang et al. (2022a). None of these results apply here. To derive a result
that does apply, begin with the mean value expansion

√
n
(
θ̂ − θ0

)
=
[
nHn

(
θ̄
)]+ × n3/2Sn (θ0) ,

where F+ denotes a generalized inverse of the matrix F and

Sn (θ) =
1

NM

N∑
i=1

M∑
j=1

sij,n (θ) , (19)

with sij,n (θ) =
∂lij,n(θ)

∂θ
= (Yij − eij,n (θ))Rij and eij,n (θ) = en (Wi, Xj; θ) =

e
(
α + Z ′

ijβ − lnn
)
, corresponds to the score vector of the pseudo composite likelihood and

Hn

(
θ̄
)
=

1

NM

N∑
i=1

M∑
j=1

∂2lij,n
(
θ̄
)

∂θ∂θ′
(20)

is a bit awkward given the assumption that α0 ∈ A with A compact, but there is no contradiction. This
estimate will be numerically identically to the one based on the logit regression which does include the ln (n)
term. Implicit maximization over A is also possible, since for any fixed n, the parameter space for αn is also
compact. Whether compactness of A is required for Lemma 1 and Theorem 1 is an open question.
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to the associated Hessian matrix. Here θ̄ is a mean value between θ0 and θ̂ which may vary
from row to row.

Lemma 2, stated and proved in Appendix A, shows, after re-scaling by n, that nHn (θ)

converges uniformly to the negative of

Γ̃ (θ) = E

[
exp (α + Z ′

12β)

(
1 Z ′

12

Z12 Z12Z
′
12

)]
. (21)

An intuition for why Hn (θ) needs to be rescaled to ensure convergence is that, under sparse
network asymptotics, information accrues at a slower rate: the effective sample size is not
NM = O (n2), but rather O (n), an order of magnitude lower. Note that, under part (iii) of

Assumption 3, the matrix Γ̃0

def
≡ Γ̃ (θ0) is of full rank. This fact, in conjunction with Lemma

2 (stated in Appendix A), gives the linear approximation

√
n
(
θ̂n − θn

)
= −Γ̃−1

0 × n3/2Sn (θ0) + op (1) .

To derive the limit distribution of
√
n
(
θ̂n − θn

)
I show that the distribution n3/2Sn (θ0)

is well-approximated by a Gaussian random variable. The main tool used is a martingale
CLT for triangular arrays. That the variance stabilizing rate for Sn (θ0) is n3/2, like the
need to rescale the Hessian, is non-standard. The need to “blow up” Sn (θ0) at a faster
than

√
n rate is a consequence of the fact that the summands in Sn (θ0) are Op (n

−1). A
second complication is that, for any fixed n, Sn (θ0) is not mean zero. This bias reflects the
discrepancy between the finite network pseudo composite log-likelihood criterion and the
limiting population problem described by Lemma 1 above.

A detailed proof of Theorem 2, stated below, is provided in Appendix B. Here I outline
the main arguments, which begin with the following four part decomposition of the score
vector

Sn (θ) = U1n (θ) + U2n (θ) + Vn (θ) + bn (θ) (22)
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where

U1n (θ) =
1

N

N∑
i=1

[
s̄c1i,n (θ)− bn (θ)

]
+

1

M

M∑
j=1

[
s̄p1j,n (θ)− bn (θ)

]
(23)

U2n (θ) =
1

NM

N∑
i=1

M∑
j=1

{
s̄ij,n (θ)− bn (θ)−

[
s̄c1i,n (θ)− bn (θ)

]
(24)

−
[
s̄p1j,n (θ)− bn (θ)

]}
Vn (θ) =

1

NM

N∑
i=1

M∑
j=1

{sij,n (θ)− s̄ij,n (θ)} (25)

bn (θ) = E [Sn (θ)] (26)

with s̄ij,n (θ) = s̄n (Wi, Xj, Ai, Bj; θ), s̄n (w, x, a, b; θ) =

E [sij,n (θ)|Wi = w,Xj = x,Ai = a,Bj = b] and

s̄c1i,n (θ) =s̄c1,n (Wi, Ai; θ)

s̄p1j,n (θ) =s̄p1,n (Xj, Bj; θ)

with s̄c1,n (w, a; θ) = E [s̄n (w,Xj, a, Bj; θ)] and s̄p1,n (x, b; θ) = E [s̄n (Wi, x, Ai, b; θ)].
A variant of decomposition (22) also features in Graham (2020a), Menzel (2021) and

Graham et al. (2022). It can be derived by first projecting Sn (θ) on to A = [Ai]1≤i≤N ,
W = [Wi]1≤i≤N , B = [Bj]1≤j≤M , and X = [Xi]1≤j≤N as follows:

Sn (θ) = E [Sn (θ)|W,X,A,B] + {Sn (θ)− E [Sn (θ)|W,X,A,B]}

=
1

NM

N∑
i=1

M∑
j=1

s̄ij,n (θ) +
1

NM

N∑
i=1

M∑
j=1

{sij,n (θ)− s̄ij,n (θ)} . (27)

Next observe that 1
NM

∑N
i=1

∑M
j=1 s̄ij,n (θ) is a two sample U-Statistic, albeit one defined

partially in terms of the latent variables Ai and Bj. Equation (23) corresponds to the Hájek
Projection of this U-statistic onto (separately) {(W ′

i , Ai)}Ni=1 and
{(

X ′
j, Bj

)}M
j=1

. Equation
(24) is the usual Hájek Projection error term.

The final term in (22), bn (θ), arises because – for any fixed n – bn (θ0) = En [Sn (θ0)] is
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not mean zero. Instead we have, after some manipulation, that

bn (θ0) =
1

NM

N∑
i=1

M∑
j=1

E [(Yij − eij,n (θ0))Rij]

=
1

n
E [(λ0 (W1, X2)− exp (R′

12θ0))R12] +
1

n
E [(ngn (W1, X2)− λ0 (W1, X2))R12]

+
1

n
E [(exp (R′

12θ0)− ne12,n (θ0))R12]

=0 +
1

n
E [(ngn (W1, X2)− λ0 (W1, X2))R12]

+
1

n
E
[(

exp (R′
12θ0)

[
1− 1

1 + 1
n
exp (R′

12θ0)

])
R12

]
(28)

which, by Assumption 2, is o (n−2).5

Define ϕn

def
≡ M/n, s̄c1i,n

def
≡ s̄c1i,n (θ0) , s̄

p
1j,n

def
≡ s̄p1j,n (θ0) and also s̄ij,n

def
≡ s̄ij,n (θ0). Simi-

larly let Sn = Sn (θ0) and so on. Applying the variance operator to Sn yields:

V (Sn) =V (U1n) + V (U2n) + V (Vn) (29)

=
Σc

1n

N
+

Σp
1n

M
+

1

NM
[Σ2n − Σc

1n − Σp
1n] +

Σ3n

NM

where

Σc
1n = V

(
s̄c1i,n

)
Σp

1n = V
(
s̄p1j,n

)
(30)

Σ2n = V (s̄ij,n) = V (E [sij,n|Wi, Xj, Ai, Bj])

Σ3n = E [V (sij,n|Wi, Xj, Ai, Bj)] .

In the dense case Σc
1n, Σp

1n, Σ2n and Σ3n are all constant in n; hence the asymptotic
properties of Sn coincide with those of U1n (the bias term is also zero in this case). Since
U1n is a sum of independent random variables a standard argument gives

n1/2Sn
D→ N

(
0,

Σc
1

1− ϕ
+

Σp
1

ϕ

)
(31)

as long as Σc
1 and/or Σp

1 are non-zero (see Graham (2020a) or Davezies et al. (2021)). In the
degenerate – but still dense – case, as emphasized by Menzel (2021), the limiting behavior
of n1/2Sn may be degenerate and, after appropriate rescaling, may also be non-Gaussian.

5While not developed in the theory which follows, equation (28) suggests that part of the bias in Sn (θ0)
is estimable (namely the second term to the right of the last equality in (28)). This, in turn, suggests that
it might be fruitful to explore methods of bias reduction. Jackknife bias correction might also be of interest.
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Under the sparse network asymptotics considered here, the orders of Σc
1n, Σ

p
1n, Σ2n and

Σ3n vary with n. This affects the order of the four variance terms in (29) and, consequently,
which components of Sn contribute to its asymptotic properties. In Appendix B I show the
order of the four terms in (29) are, respectively,

V (Sn) =O

(
ρ2n
N

)
+O

(
ρ2n
M

)
+O

(
ρ2n
MN

)
+O

( ρn
MN

)
=O

([
λc
0,n

ϕn

]2
1

(1− ϕn)

1

n3

)
+O

([
λc
0,n

ϕn

]3
1

n3

)

+O

([
λc
0,n

ϕn

]2
1

ϕn (1− ϕn)

1

n4

)
+O

(
λc
0,n

ϕ2
n (1− ϕn)

1

n3

)
.

Since Σc
1 and Σp

1 are both O (ρ2n) = O (n−2) we can multiply them by n2 to stabilize them.
Define Σ̃c

1 to be the limit of n2Σ1n and Σ̃p
1 to be the limit of n2Σp

1n. Similarly we can define
Σ̃3 to be the limit of nΣ3n, all as n → ∞. Normalizing (29) by n3/2 therefore gives

V
(
n3/2Sn

)
=

Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)
+O

(
n−1
)

(32)

where I also use the fact that Σ2n = O (n−2). We also have, from Assumption 2, that
E
[
n3/2Sn

]2
= E

[
n3/2bn

]2
= o (n−1) .

Under sparse network asymptotics both U1n and Vn matter. In Appendix B I further
show that U1n + Vn is a martingale difference sequence (MDS) to which a martingale CLT
can be applied; Theorem 2 then follows.

Theorem 2. Under Assumptions 1, 2 and 3

√
n
(
θ̂ − θ0

)
D→ N

(
0, Γ̃−1

0

[
Σ̃c

1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)

]
Γ̃−1
0

)

as n → ∞.

Proof. See Appendix B.

Theorem 2 indicates that under sparse network asymptotics there are additional sources
of sampling variation in

√
n
(
θ̂ − θ0

)
relative to those which appear in the dense case. Not

incorporating these into inference procedures will lead to tests with incorrect size and/or
confidence intervals with incorrect coverage. A further advantage of considering sparse net-
work asymptotics is that Theorem 2 remains valid even under degeneracy of the graphon,
hn (Wi, Xj, Ai, Bj, Vij). For example, if the graphon is constant in Ai and Bj such that Yij and
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Yik do not covary conditional on covariates (and likewise for Yji and Yki), then Σ̃c
1 = Σ̃p

1 = 0,
but Theorem 2 nevertheless remains valid (condition (iii) of 3 ensures that Σ̃3 will be positive
definite). In contrast, under dense network asymptotics, degeneracy – as elegantly shown
by Menzel (2021) – generates additional complications. In that case the variance of U1n is
identically equal to zero, while that of U2n and Vn are of equal order. In some cases, the be-
havior of U2n may even induce a non-Gaussian limit distribution (see van der Vaart (2000)).
In the sparse network case, U2n is always negligible relative to Vn. Furthermore Vn is – after
suitable scaling – approximately a Gaussian random variable.

Limit theory under correct specification

Theorem 2 holds for a general nonparametric regression function gn (w, x), with θ0 a vector of
pseudo-true parameters as defined by equation (18) above. If, in fact, gn (w, x) = en (w, x; θ0)

for all (w, x) ∈ W×X, then calculations in the Appendix B indicate the asymptotic variance
simplifies to

√
n
(
θ̂ − θ0

)
D→ N

(
0, Γ̃−1

0

[
Σ̃c

1

1− ϕ
+

Σ̃p
1

ϕ

]
Γ̃−1
0 +

Γ̃−1
0

ϕ (1− ϕ)

)
,

which follows from an information matrix type equality result of nV (sij,n) → Γ̃0 as n → ∞.

Relationship with rare events analysis using iid data

King and Zeng (2001) discuss, with a focus on finite sample bias, the behavior of logistic
regression under “rare events” with iid data. Evidently binary choice analyses where the
marginal frequency of positive events is quite small are common in empirical work.6 The
properties of logistic regression under sequences where the number of “events” becomes small
(i.e., “rare”) relative to the sample size as it grows were recently characterized by Wang (2020)
(see also Owen (2007)). The main result in Wang (2020) coincides with a special case of
Theorem 2 above.7 To see this observe that if the graphon is constant in Ai and Bj, then
s̄ij,n will be identically equal to zero for all 1 ≤ i ≤ N and 1 ≤ j ≤ M . In this scenario there
is no “dyadic dependence” (after conditioning on Wi and Xj) and Σ̃c

1 = Σ̃p
1 = 0. Under these

6Interestingly King and Zeng’s (2001) motivating example involves dyadic logistic regression as it arises
in empirical international relations applications; their analysis, however, does not formally consider the
implications of dyadic dependence for estimation and inference.

7In fact, Theorem 2 is a bit more general even in the special case of no dyadic dependence as it also
accommodate misspecification of the the regression function.
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conditions, also maintaining correct specification, Theorem 1 specializes to

√
n
(
θ̂ − θn

)
D→ N

(
0,

Γ̃−1
0

ϕ (1− ϕ)

)
,

as n → ∞. This is precisely, up to some small differences in notation, the result given in
Theorem 1 of Wang (2020).8

In his analysis Wang (2020) emphasizes that information accumulates more slowly under
“rare event asymptotics”. In the present setting this is reflected in the need to rescale the
Hessian matrix by n to achieve convergence (see Lemma 2 in Appendix A). In the network
setting dyadic dependence additionally reduces the asymptotic precision with which θ0 may
be estimated (cf., Graham et al., 2022). If a researcher is working with a sparse network and
concerned about dyadic dependence, then she should base inference on Theorem 2. If the
graphon is degenerate or, more strongly, the elements of [Yij]1≤i≤N,1≤j≤M are, in fact, iid,
then her inferences will remain valid (since Theorem 2 specializes to the “rare events” result
of Wang (2020) in that case).

3 Application to the market for syndicated loans

Chen and Song (2013) study how banks and firms match with one another in the syndicated
loan market. The syndicated loan market sits at the interface between monetary policy and
the real economy. Using the maximum score matching estimator introduced by Fox (2018),
Chen and Song (2013) study whether firms and banks assortatively match based on size
(among several other hypotheses).

This section uses a sub-sample of the Chen and Song (2013) dataset to concretely il-
lustrate the key estimation and inference methods described in this paper.9 Additionally I
summarize the results of a Monte Carlo simulation study, calibrated to the empirical illus-
tration. The calibrated Monte Carlo study assesses the relevance and accuracy of “sparse
network asymptotics” in a real world setting. An annotated Python Jupyter Notebook, with
replication code for the material reported below, is available in the Supplemental Materials.
The empirical illustration and Monte Carlo experiments both utilize the ‘bilogit’ estimation
command included in the Python ‘netrics’ package. This package is available on GitHub
(https://github.com/bryangraham/netrics).

8Wang (2020) scales by the square root of the number of events or “ones” in the dataset. This is, of
course, of the same order as n as defined here. This difference leads to a minor difference in our two variance
expressions. After making these adjustments, the results coincide.

9An overview of the Refinitiv LPC DealScan dataset, from which the estimation sampled used below is
partially constructed, is provided by Cohen et al. (2021).
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Here I work with subset of Chen and Song’s (2013) estimation sample, corresponding to
all loans originating in the first six months of 2003. Only 2 percent of all possible bank-to-
firm lending relationships are present in the sample used here; providing a setting where an
asymptotic approximation which takes sparseness seriously may have value-added.

I fit a logit model for whether bank i lends to firm j with the following regressors: the total
assets of bank i (in billions of dollars), the total assets of firm j (also in billions of dollars), the
interaction of these two variables and the distance between the headquarters of bank i and
firm j (in thousands of kilometers). All of these variables enter the logit function in log form
(e.g., log-distance etc.). The coefficient on the asset interaction regressor provides a measure
of the extent to which larger banks prefer to lend to larger firms (assortative matching),
while the distance coefficient measures the importance of physical proximity for sustaining
lending relationships. Chen and Song (2013) discuss the monetary policy and regulatory
implications of positive assortative matching by size as well as those of proximity effects.
They also include additional references to the extensive empirical literature on syndicated
loan markets.10

Table 1 reports results. Standard errors based upon the sparse network asymptotic
approximation are presented in parentheses, while those for the dense asymptotic case are
presented in square brackets. The sparse intervals are Wald ones which use a variance
estimate suggested by Cameron and Miller (2014). This estimate can also be thought of as
a bias-corrected version of the usual jackknife variance estimate (see Efron and Stein (1981);
Cattaneo et al. (2014); Graham (2020b)). A description of the variance estimate, which
is a direct analog estimate of the asymptotic variance presented in Theorem 2, is given in
Supplemental Web Appendix D. The ‘dense’ intervals are based upon the analog estimate
of the dense asymptotic variance given by Graham (2020a) (see also Appendix D).

In a sufficiently dense network the two sets of standard errors will be close to another.
This is not the case here; the additional (estimated) variance terms retained by the sparse
network approximation are of similar magnitude to those which enter the dense network
approximation. Hence the two standard errors are appreciably different in size. For example,
the “sparse” standard error on the log-distance regressor is 1.6 times the size of the dense
one. This is a meaningful difference in estimated precision, with consequential implications
for inference.

To explore this latter claim, I calibrate a small Monte Carlo experiment to the dataset.
Let Ai ∼ Gamma

(
1
2
, 1
)
, Bi ∼ Gamma

(
1
2
, 1
)

and Vij ∼ Gamma (ρ− 1, 1); mutually inde-

10Their dataset was constructed by combining records in the Thomson Reuters LPC Dealscan database,
Compustat and Federal Reserve sources. I am very grateful to Jiawei Chen for providing me with their data.
Please see Chen and Song (2013) for additional details on the dataset and as well as for variable definitions.
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Table 1: Logit Model for Bank-Firm Lending Relationships in First Six Months of 2003
Covariate Coefficient

Bank assets
0.6154
(0.1302)
[0.1138]

Firm assets
−0.7241
(0.1198)
[0.0950]

Bank-by-firm assets
0.1557
(0.0200)
[0.0155]

Distance
−0.1663
(0.0423)
[0.0262]

N (Banks) 39
M (Firms) 351

Notes: Dataset includes all N ×M = 39× 351 = 13, 689 bank-firm pairs in the Chen and
Song (2013) dataset (first six months of 2003 only). Reported coefficients computed by logis-
tic regression with standard errors calculated as described in Supplemental Web Appendix
D. Standard errors valid under sparse network asymptotics are reported in parentheses, while
those that are valid only under dense network asymptotics are reported in square brackets.

pendent.11 Define the standard logistic random variable

Uij = ln

(
F
(
U∗
ij; ρ, 1

)
1− F

(
U∗
ij; ρ, 1

)) , with U∗
ij = Ai +Bj + Vij,

where F
(
U∗
ij; ρ, 1

)
is the Gamma (ρ, 1) CDF.12 The presence of Ai and Bj generates de-

pendence across Ui1j1 and Ui2j2 whenever they share an index in common; the marginal
distribution of Uij is nevertheless logistic. The variance of the unit-specific terms, Ai + Bj,
is one, while that of the entire underlying latent effects, Ai + Bj + Vij, is ρ. The magni-
tude of ρ calibrates the level of cross-dyad dependence, with smaller values generating more
dependence.

Next generate the binary outcome

Yij = 1
(
α0 + Z ′

ijβ0 − lnn ≥ Uij

)
,

for i = 1, . . . , 39 and j = 1, . . . , 351. The Zij vector includes those variables listed in Table
1 with values coinciding with those in the estimation sample. The coefficients are chosen

11I use the shape-rate parameterization of the Gamma distribution.
12That U∗

ij ∼ Gamma (ρ, 1) follows from the reproductive stable property of the Gamma distribution.
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such that α0 = α̂ + ln(39 + 351) and β0 = β̂ (with α̂ and β̂ the logit estimates computed
using the actual data). Finally, ρ is chosen to calibrate the level of dyadic dependence.
Three values are chosen, corresponding to a low, medium and high level of dependence. The
“medium” choice of ρ is chosen such that the simulated value of the interquartile range of
the bank degree sequence is close to its empirical value. The simulation design matches the
observed density of the dataset by construction. The level of ρ is chosen to additionally
match (approximately) the dispersion of degree across banks.

I simulate 5,000 samples and fit the model featured in Table 1 to each simulated sample.
Table 2 summarizes the sampling properties of the coefficient on the log-distance variable,
a key parameter of interest in the Chen and Song (2013) study. The Column 2 results
correspond to the design mostly closed matched to the dataset used to fit the model in Table
1, while those in Column 1 are associated with less dyadic dependence, and those in Column
3 with more.

Consistent with the graphon being correctly specified, mean and median bias are negli-
gible. It is also the case that the standard deviation of the distance coefficient across the
simulated datasets is very close to that of the average estimated sparse standard error. A
Monte Carlo estimate of the coverage of two different confidence intervals is also reported.
The sparse intervals’ actual coverage is close to their nominal coverage.13 The dense intervals’
coverage, in contrast, is very poor, consistent with the usual dense asymptotic approximation
being very poor for the setting at hand.

Appendix C presents the results of additional Monte Carlo experiments. These experi-
ments are constructed to verify the rate-of-convergence calculations present in Section 2, as
well as the accuracy of the distribution theory in a controlled setting.

In this dataset only 2 percent of all possible lending relationships are present. This is
“sparse”, but not unusually so: qualitative sparseness like this is quite common in other bi-
partite graphs studied by economists (see, for example, Henisz and Delios (2001) and García-
Canal and Guillén (2008) for facility location examples). The small empirical illustration, in
conjunction with the Monte Carlo results and theoretical arguments also presented, suggests
that researchers should consider using the sparse network asymptotic approximations devel-
oped in this paper. As in other settings where non-standard asymptotics play an important
role, specific test statistics and methods of inference may have varying theoretical and real
world properties (see, for example, Andrews et al., 2019). An open question is what precise
methods of inference perform best under sparse network asymptotics. Also open is the ques-
tion of whether related asymptotic approximations can be developed for dyadic regression

13Coverage is, however, significantly below nominal coverage in a statistical sense. Using the Column 2
results yields a two-sided t-statistics for the null of correct coverage of (0.9306− 0.9500)/0.003 = −6.5.
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Table 2: Monte Carlo Results, βDistance

βDistance = −0.1662 (1) (2) (3)

Mean Bias 0.0022 0.0007 0.0015
Median Bias 0.0006 -0.0009 -0.0005
Std. Dev. 0.0355 0.0348 0.0401

Mean S.E. - Sparse 0.0333 0.0333 0.0345
Coverage (95% CI) - ‘Sparse’ 0.9280 0.9306 0.9044
Coverage (95% CI) - ‘Dense’ 0.5256 0.5266 0.5052

Notes: Results based on 5,000 replications of the data generating process described in the text. The
Monte Carlo standard deviation of the point estimates (row 3) is a robust measure (the difference
between 95th and 5th percentiles of the estimated coefficient’s Monte Carlo distribution divided
by the corresponding quantile differences of a standard normal variate). The standard error of the
simulation error on the coverage estimates is

√
α (1− α) /5000 ≈ 0.003 for α = 0.05. See the text

for additional information. ρ = 35, 20, 5 respectively for the DGPs corresponding to Columns 1, 2
and 3.

settings beyond the logistic one explored here.
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Appendix

The appendix includes proofs of the formal results stated in the main text as well as
statements and proofs of supplemental results. All notation is as established in the main
text unless stated otherwise. Equation numbering continues in sequence with that established
in the main text.

A Identification and consistency

Proof of Lemma 1 (Representation result for θ0)

To show Lemma 1 is is convenient to observe that L0 (θ) = E
[
λ0 (Xi,Wj)R

′
ijθ
]
−

E
[
exp

(
R′

ijθ
)]

. To see this equality note that

L0 (θ) =E
[
λ0 (Xi,Wj)R

′
ijθ
]
− E

[
exp

(
R′

ijθ
)]

=E0

[
Vij ln

(
exp

(
R′

ijθ
)

λ0 (Xi,Wj)

)]
+ E [λ0 (Xi,Wj)]

− E
[
exp

(
R′

ijθ
)]

+ E [Vij ln (λ0 (Xi,Wj))]− E [λ0 (Xi,Wj)]

=E0

[
ln

{
f (Vij|Wi, Xj; θ)

f0 (Vij|Wi, Xj)

}]
+ E [λ0 (Xi,Wj) ln (λ0 (Xi,Wj))]− E [λ0 (Xi,Wj)]

=− DKL (F0∥Fθ) + S (F0) .

To show uniform convergence of nL∗
n (θ) to L0 (θ) write L∗

n (θ) = Ln (θ)+δn as the average

L∗
n (θ) =

1

NM

N∑
i=1

M∑
j=1

l∗ij,n (θ) (33)

with kernel, recalling that Rij =
(
1, Z ′

ij

)′,
l∗ij,n (θ) = YijR

′
ijθ − ln

(
1 +

1

n
exp

(
R′

ijθ
))

. (34)
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The form of (34) follows from the fact that, manipulating (17) in the main text

l∗ij,n (θ) = (2Yij − 1)
(
R′

ijθ − lnn
)
− ln

(
1 + exp

(
(2Yij − 1)

[
R′

ijθ − lnn
]))

+ Yij lnn

= Yij

(
R′

ijθ − lnn
)
− ln

(
1 + exp

(
R′

ijθ − lnn
))

+ Yij lnn

= YijR
′
ijθ − ln

(
1 +

1

n
exp

(
R′

ijθ
))

.

First I show that

lim
n→∞

E
[
nl∗ij,n (θ)

]
=L0 (θ) (35)

=E
[
λ0 (Xi,Wj)R

′
ijθ
]
− E

[
exp

(
R′

ijθ
)]

pointwise in θ ∈ Θ. By part (ii) of Assumption 1, part (ii) of Assumption 2 and parts (i)
and (ii) of Assumption 3 we have the dominating function

|ngn (w, x) r′θfW (w) fX (x)| ≤ k (w, x)× sup
r∈(1,Z),θ∈Θ

|r′θ| × fW (w) fX (x) < ∞.

Part (i) of Assumption 2 implies that ngn (w, x) r′θ converges pointwise to λ0 (x,w) r
′θ. The

Dominated Convergence Theorem then yields

lim
n→∞

E
[
ngn (Wi, Xj)R

′
ijθ
]
→ E

[
λ0 (Xi,Wj)R

′
ijθ
]
. (36)

Next, the exponential function characterization expx = lim
n→∞

(
1 + x

n

)n and continuity of the
ln (·) function yield the limit

lim
n→∞

ln

(
1 +

1

n
exp (r′θ)

)n

= exp (r′θ) .

To verify the stronger equality

lim
n→∞

E
[
ln

(
1 +

1

n
exp

(
R′

ijθ
))n]

= E
[
exp

(
R′

ijθ
)]

(37)

it suffices to show that

sup
w∈W,x∈X

∣∣∣∣ln(1 + 1

n
exp (r′θ)

)n

fW (w) fX (x)− exp (r′θ) fW (w) fX (x)

∣∣∣∣→ 0

as n → ∞. Under part (ii) of Assumption 1 and parts (i) and (ii) of Assumption 3 this
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follows if
sup

x∈[x,x̄]

∣∣∣∣ln(1 + 1

n
exp (x)

)n

− exp (x)

∣∣∣∣→ 0 (38)

with [x, x̄] the support of possible values for the index r′θ. Let bn (x) = ln
(
1 + 1

n
exp (x)

)n−
exp (x); since b′n (x) = exp (x)

[
1

1+ 1
n
exp(x)

− 1
]
< 0 on x ∈ [x, x̄] condition (38) holds since

both bn (x) and bn (x̄) converge to zero. Condition (35) follows directly from (36) and (37).
Second, since (35) also gives lim

n→∞
E [nL∗

n (θ)] = L0 (θ), the mean square error decomposi-
tion

E
[
(nL∗

n (θ)− L0 (θ))
2] = (E [nL∗

n (θ)]− L0 (θ))
2 + V (nL∗

n (θ))

implies convergence of nL∗
n (θ) to L0 (θ) in mean square if V (nL∗

n (θ)) → 0 as n → ∞. This
follows under Assumptions 2 and 3 since

V (nL∗
n (θ)) =

n2

N
O
(
ρ2n
)
+

n2

M
O
(
ρ2n
)
+

n2

NM
O (ρn)

= O
(
n−1
)
+O

(
n−1
)
+O

(
n−1
)
.

By concavity of L∗
n (θ) in θ, this convergence is uniform in θ ∈ Θ. Lemma 1 follows directly

with some algebra.

Proof of Theorem 1: consistency of θ̂ for θ0

The result follows by verifying conditions (i) to (iv) of Theorem 2.1 in Newey and McFadden
(1994, p. 2121). Part (ii) of follows from Assumption 3, part (iii) follows by inspection, part
(iv) was shown in Lemma 1. Part (i) requires demonstrating uniqueness of the solution

θ0 = argmax
θ∈Θ

L0 (θ) . (39)

For this to hold it suffices to verify global concavity of L0 (θ) in θ. Direct calculation yields
first and second order conditions equal to

E
[
∂L0 (θ)

∂θ

]
= E

[(
λ0 (Xi,Wj)− exp

(
R′

ijθ
))

Rij

]
E
[
∂2L0 (θ)

∂θ∂θ′

]
= −E

[
exp

(
R′

ijθ
)
RijR

′
ij

] def
≡ Γ (θ) . (40)

Under Assumption 3 the matrix Γ (θ) is negative definite for all θ ∈ Θ; therefore L0 (θ) is
globally concave in θ ∈ Θ with unique maximum θ0.
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Hessian convergence

Note that for en (v) = exp (v − lnn) / [1 + exp (v − lnn)] , we have that e′n (v) =

en (v) [1− en (v)] and e′′n (v) = en (v) [1− en (v)] [1− 2en (v)]. Further let eij,n (θ) =

en
(
R′

ijθ
)
; with this notation we can write the first three derivatives of the kernel function

of the composite log-likelihood with respect θ as

sij,n (n) = (Yij − eij,n (θ))Rij (41)
∂sij,n (θ)

∂θ′
= −eij,n (θ) [1− eij,n (θ)]RijR

′
ij (42)

∂

∂θ′

{
∂sij,n (θ)

∂θp

}
= −eij,n (θ) [1− eij,n (θ)] [1− 2eij,n (θ)]RijR

′
ijRp,ij (43)

with (43) holding for for p = 1, . . . , dim (θ).
Let t = (θ − θ0) and note that t ∈ T with T compact by Assumption 3. Associated

with any t ∈ T is a θ ∈ Θ. With these preliminaries we can show that nHn (θ) converges
uniformly to Γ̃ (θ), as defined in equation (21) of the main text.

Lemma 2. (Uniform Hessian Convergence) Under Assumptions 1, 2 and 3

sup
θ∈Θ

∥∥∥nHn (n)− Γ̃ (θ)
∥∥∥ p→ 0.

Proof. Let ∥A∥2,1 =
∑N

i=1

√∑M
j=1 A

2
ij denote the ℓ2,1 matrix norm. Note that θ = θ0 + t

and hence that Hn (θ0 + t) = Hn (θ) . The mean value theorem, as well as compatibility of
the Frobenius matrix norm with the Euclidean vector norm, gives for any t and t̄ both in T,

∥Hn (θ0 + t)−Hn (θ0 + t̄)∥2,1 ≤
dim(θ)∑
p=1

∥∥∥∥∥ 1

NM

N∑
i=1

M∑
j=1

∂

∂θ′

{
∂sij,n (θ0 + t)

∂θp

}∥∥∥∥∥
F

∥t− t̄∥2 .

Since E [eij,n (θ) [1− eij,n (θ)] [1− 2eij,n (θ)]] = O (n−1) we have that, inspecting (43) above,
for any t ∈ T, ∥∥∥∥∥ 1

NM

N∑
i=1

M∑
j=1

∂

∂θ′

{
∂sij,n (θ0 + t)

∂θp

}∥∥∥∥∥
F

= Op

(
n−1
)
.

This gives ∥nHn (θ0 + t)− nHn (θ0 + t̄)∥2,1 ≤ Op (1) · ∥t− t̄∥2. Next, again recalling that
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θ0 + t = θ, we have that

Hn (θ0 + t) = − 1

NM

N∑
i=1

M∑
j=1

eij,n (θ) [1− eij,n (θ)]RijR
′
ij

= − 1

NM

N∑
i=1

M∑
j=1

1

n
exp

(
R′

ijθ
)
RijR

′
ij +Op

(
1

n2

)
,

which gives, using a law of large numbers for U-Statistics, nHn (θ)
p→ Γ (θ) for all t ∈ T.

The claim then follows from an application of Lemma 2.9 of Newey and McFadden (1994,
p. 2138).

B Proof of Theorem 2

To show Theorem 2 I first verify the rate-of-convergence analysis for Sn given in the main
next. Next I show asymptotic normality of U1n + Vn, after normalization. I then prove the
main result.

Asymptotic variance of the score

To prove (29), the decomposition of the variance of the score given in the main text, and
hence that

V
(
n3/2Sn

)
=

Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)
+O

(
n−1
)

use the definitions given in (30) of the main text and observe that

Σc
1n =E [(Y12 − e12,n) (Y13 − e13,n)R12R

′
13]− b2n

=O
(
ρ2n
)
+ o

(
n−4
)
, (44)

and also that

Σp
1n =E [(Y21 − e21,n) (Y31 − e31,n)R21R

′
31]− b2n

=O
(
ρ2n
)
+ o

(
n−4
)
. (45)
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Turning to Σ2n and Σ3n we get that

Σ2n =E [E [ (Y12 − e12,n)R21|W1, X2, A1, B2]

×E [ (Y12 − e12,n)R21|W1, X2, A1, B2]
′]− b2n

=O
(
ρ2n
)
+ o

(
n−4
)

(46)

and further that

Σ3n =E
[
{sij,n − s̄ij,n} {sij,n − s̄ij,n}′

]
=O (ρn) (47)

by virtue of the equality Y 2
ij = Yij (which holds because Yij is binary-valued).

From Assumption 2 we have that ρn = O (n−1), hence (44) implies that n2Σc
1n = O (1),

(45) that n2Σp
1n = O (1), and (47) that nΣ3n = O (1). This gives

V (Sn) =O

(
ρ2n
N

)
+O

(
ρ2n
M

)
+O

(
ρ2n
MN

)
+O

( ρn
MN

)
=O

([
λc
0,n

M

]2
1

N

)
+O

([
λc
0,n

M

]2
1

M

)
+O

([
λc
0,n

M

]2
1

MN

)
+O

(
λc
0,n

M

1

MN

)

=O

([
λc
0,n

ϕn

]2
1

(1− ϕn)

1

n3

)
+O

([
λc
0,n

ϕn

]2
1

ϕn

1

n3

)

+O

([
λc
0,n

ϕn

]2
1

ϕn (1− ϕn)

1

n4

)
+O

(
λc
0,n

ϕ2
n (1− ϕn)

1

n3

)
=O

(
n−3
)
+O

(
n−3
)
+O

(
n−4
)
+O

(
n−3
)
,

and hence the form of the variance expression stated in the Theorem.

Variance simplification when gn (w, x) takes the logit form

Observe that V (sij,n) = Σ2n + Σ3n. Therefore when gn (Wi, Xj) = en
(
α0 + Z ′

ijβ0

)
we have

that

nV (sij,n) = nE
[
(Yij − eij,n)

2RijR
′
ij

]
− nb2n

= nE
[
eij,n (1− eij,n)RijR

′
ij

]
+ o

(
n−3
)

→ Γ̃0,
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and hence the alternative limiting variance expression

V
(
n3/2Sn

)
=

n2Σc
1n

1− ϕn

+
n2Σp

1n

ϕn

+
n (Σ2n + Σ3n)

ϕn (1− ϕn)
+O

(
n−1
)

→ Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Γ̃0

ϕ (1− ϕ)

as n → ∞.

Triangular array setup

Observe that U1n + Vn =
∑T

t=1 Znt,where the triangular array {Znt} is defined as follows:

Zn1 =
1

N

(
s̄c11,n − bn

)
...

ZnN =
1

N

(
s̄c1N,n − bn

)
ZnN+1 =

1

M

(
s̄p11,n − bn

)
...

ZnN+M =
1

M

(
s̄p1M,n − bn

)
ZnN+M+1 =

1

NM
(s11,n − s̄11,n)

...

ZnN+M+NM =
1

NM
(sNM,n − s̄NM,n) ,

with T = T (n) = N +M +NM . For any vector Xi, let X t
1 = (X1, . . . , Xt)

′. Iterated expec-
tations, as well as the conditional independence relationships implied by dyadic dependence
(Assumptions 1 and 2), yield

E
[
Znt|Zt−1

n1

]
= 0,

29



establishing that {Znt} is a martingale difference sequence (MDS). The variance of this MDS
is

∆̄n

def
≡ V

(
T∑
t=1

Zni

)

=
Σc

1n

N
+

Σp
1n

M
+

Σ3n

NM
.

To show asymptotic normality of n3/2Sn (θ0) I first show, recalling decomposition (22) in
the main text, that, for a vector of constants c,

(
c′∆̄nc

)−1/2
c′Sn =

(
c′∆̄nc

)−1/2
c′ [U1n + Vn] + op (1) (48)

and subsequently that (
c′∆̄nc

)−1/2
c′ [U1n + Vn]

p→ N (0, 1) . (49)

To show (48) observe that

c′∆̄nc = O

(
ρ2n
N

+
ρ2n
M

+
ρn
NM

)
= O

(
ρ2n
n

(
1

1− ϕn

+
1

ϕn

+
1

(1− ϕn)λc
n

))
= O

(
ρ2n
n

)

and hence that
(
c′∆̄Nc

)−1
= O (nρ−2

n ) as long as λc
n ≥ C > 0 and ϕ ∈ (0, 1) (see Assumptions

1 and 2). Additionally using (46) yields

(
c′∆̄nc

)−1/2
c′U2n = O

(
n1/2ρ−1

n

)
O
(
ρ2n
)

= O
(
n1/2ρn

)
= o (1) ,

as long as ρn = O (n−α) for α > 1
2
, as is maintained here. We also have that(

c′∆̄nc
)−1/2

c′bn =O
(
n1/2ρ−1

n

)
o (n−2) = o (1). These two results imply assertion (48).

Central limit theorem

To show (49) I verify the conditions of Corollary 5.26 of Theorem 5.24 in White (2001);
specifically the Lyapunov condition, for r > 2
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T (n)∑
t=1

E

[(∣∣∣∣∣ c′Znt(
c′∆̄nc

)1/2
∣∣∣∣∣
)r]

= o (1) (50)

and the stability condition
T (n)∑
t=1

(c′ZNt)
2

c′∆̄nc

p→ 1. (51)

I will show (50) for r = 3. First I show that

E

[∣∣∣∣ 1N c′
(
s̄c1i,n − bn

)∣∣∣∣3
]
=O

(
ρ3n
N3

)
(52)

E

[∣∣∣∣ 1Mc′
(
s̄p1j,n − bn

)∣∣∣∣3
]
=O

(
ρ3n
M3

)
(53)

E

[∣∣∣∣ 1

NM
c′ (s11,n − s̄11,n)

∣∣∣∣3
]
=O

( ρn
N3M3

)
. (54)

Recall that s̄c1i,n = s̄c1,n (Wi, Ai; θ) with

s̄c1,n (w, a; θ) = E

[
(hn (w,Xj, a, Bj, Vij)− en (w,Xj; θ))

(
1

z (w,Xj)

)]

= E

[
(hn (Wi, Xj, Ai, Bj, Vij)− en (Wi, Xj; θ))

(
1

z (Wi, Xj)

)∣∣∣∣∣Wi = w,Ai = a

]
,

where the second equality follows form mutual independence of {(Wi, Ai)}i≥1,

{(Xj, Bj)}j≥1 and {Vij}i≥1,j≥1. Let, in a slight abuse of notation h̄n (Wi, Ai)
def
≡

E [hn (Wi, Xj, Ai, Bj, Vij)|Wi, Ai]; I bound the first term above, Equation (52), according
to

E

[∣∣∣∣ 1N c′
(
s̄c1i,n − bn

)∣∣∣∣3
]
≤ 8E

[∣∣∣∣c′s̄c1i,nN

∣∣∣∣3
]

≤ 64E

∣∣∣∣∣ h̄n (Wi, Ai)

N
c′

(
1

z̄ (Wi)

)∣∣∣∣∣
3


≤ C · E

[∣∣∣∣nh̄n (Wi, Ai)

nN

∣∣∣∣3
]

= O

(
ρ3n
N3

)
,
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where the third inequality follows from compactness of Z (Part (ii) of Assumption 3; with

z̄ (w)
def
≡ E [z (w,Xj)]) and the final equality from part (iii) of Assumption 2. Equation (53)

follows from a parallel argument. Finally, term (54) follows from (with h̄n (w, x, a, b)
def
≡

E [hn (w, x, a, b, Vij)]):

E

[∣∣∣∣ 1

NM
c′ (s11,n − s̄11,n)

∣∣∣∣3
]
= E

∣∣∣∣∣ 1

NM
c′
(
Yij − h̄n (Wi, Xj, Ai, Bj)

)( 1

z (w,Xj)

)∣∣∣∣∣
3


≤ C · E

[∣∣∣∣ Yij

NM

∣∣∣∣3
]

= O
( ρn
N3M3

)
.

These calculations, as well as independence of summands 1 to N , N + 1 to N +M and
N +M + 1 to N +M +NM , imply that

T (n)∑
t=1

E

(∣∣∣∣∣ c′ZNt(
c′∆̄nc

)1/2
∣∣∣∣∣
)3
 =Op

(
n3/2ρ−3

N

){
O

(
ρ3n
N2

)
+O

(
ρ3n
M2

)
+O

( ρn
N2M2

)}
=Op

(
n3/2

) {
Op

(
n−2
)
+O

(
n−2
)
+O

(
n−2
)}

=Op

(
n−1/2

)
=op (1)

as required.
To verify the stability condition (51) I re-write it as

T (n)∑
t=1

1

n3
(
c′∆̄nc

)n3
{
(c′Znt)

2 − E
[
(c′Znt)

2
]}

p→ 0 (55)

Since n−3
(
c′∆̄Nc

)−1
= O

(
n−3 · nρ−2

N

)
= O (1) the stability condition (51) will hold if the

numerator in (55) – S
def
≡
∑T (n)

t=1 n3
{
(c′Znt)

2 − E
[
(c′Znt)

2]} – converges in probability to
zero. By the independence restrictions on (Wi, Ai), (Xj, BJ) and Uij, the summands in S

are mutually uncorrelated such that

E
[
S2
]
= n6

T (n)∑
t=1

E
[
(c′Znt)

4
]
−
(
E
[
(c′Znt)

2
])2

.
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We then have

E
[
(c′Znt)

2
]
=


1
N2 c

′Σc
1nc = O

([
λc
n

(1−ϕn)ϕn

]2
1
n4

)
, t = 1, . . . , N

1
M2 c

′Σp
1nc = O

([
λc
n

ϕ2
n

]2
1
n4

)
, t = N + 1, . . . , N +M

1
N2M2 c

′Σ3Nc = O
(

λc
n

ϕ3
n(1−ϕn)

2
1
n5

)
, t = N +M + 1, . . . , N +M +NM

and

E
[
(c′Znt)

4
]
=



E
[
(c′s̄c1n1)

4
]

N4 = O

([
λc
n

(1−ϕn)ϕn

]4
1
n8

)
, t = 1, . . . , N

E
[
(c′s̄p1n1)

4
]

M4 = O

([
λc
n

ϕ2
n

]4
1
n8

)
, t = N + 1, . . . , N +M

E[(c′(sn11−s̄n11))
4]

N4M4 = O
(

λc
n

ϕ5
n(1−ϕn)

4
1
n9

)
, t = N +M + 1, . . . , N +M +NM

.

We therefore have

n6

{
E
[
(c′Znt)

4
]
−
(
E
[
(c′Znt)

2
])2}

=
n6 [O (n−8) +O (n−8)] = O (n−2) , t = 1, . . . , N

n6 [O (n−8) +O (n−8)] = O (n−2) , t = N + 1, . . . , N +M

n6 [O (n−9) +O (n−10)] = O (n−3) , t = N +M + 1, . . . , N +M +NM

The sum of the first N terms in S is therefore of order O (N/n2) = O (1/n) = o (1), that of
the next M terms of order O (M/n2) = O (1/n) = o (1), while that of the final NM terms
is of order O (NM/n3) = O (1/n) = o (1). Therefore S converges in probability to zero as
n → ∞ and condition (55) holds as required.

Next observe that

n3∆̄n → Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)

as n → ∞, such that, using (48) and the Cramér-Wold Theorem, n3/2Sn
D→

N
(
0,

Σ̃c
1

1−ϕ
+

Σ̃p
1

ϕ
+ Σ̃3

ϕ(1−ϕ)

)
. The result then follows from Lemma 2 and Slutsky’s Theorem.

C Additional simulation experiments

In this Appendix I report the results of a small set of additional simulation experiments. An
annotated Python Jupyter Notebook with replication code is available in the Supplemental
Materials. The goal of these experiments is to assess the finite sample quality of the sparse
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network asymptotic approximations developed in the paper in a stylized and controlled
setting. The question of precisely how to best conduct inference when analyzing sparse
networks (e.g., assessing the relative merits of different methods of variance estimation) is
largely open and not directly addressed (see Chiang et al. (2022b)).

For the Monte Carlo experiments I set the graphon, hn (Wi, Xj, Ai, Bj, Vij), equal to

Yij = 1
(
α + z (Wi, Xj)

′ β + ln (Ai) + ln (Bj)− ln (n) ≥ Vij

)
with Vij a standard exponential random variable. Averaging over Vij yields

En [Yij|Wi, Xj, Ai, Bj] =
1

n
exp

(
α + z (Wi, Xj)

′ β
)
AiBj.

I set {Ai}Ni=1 and {Bj}Mj=1 to be iid log-normal sequences of random variables with µ = −1/12

and σ = 1/
√
6. This implies that both Ai and Bj are mean one and, furthermore, that the

variance of ln (Ai) + ln (Bj) is one third that of Vij. This generates meaningful, but not
overpowering, cross dyad dependence. Under these assumptions the regression function
equals

gn (w, x) =
1

n
exp

(
α + z (Wi, Xj)

′ β
)
.

Finally I set z (Wi, Xj) =
(

Wi Xj WiXj

)′
with {Wi}Ni=1 iid Bernoulli with a success

probability πw = 1/
√
3 and {Xj}Mj=1 iid Bernoulli with a success probability πx = 1/

√
3.

This implies that one third of dyads are of the Wi = Xj = 1 type.
I simulate data for five sample sizes: n = 64, 144, 256, 576 and 1024 with N = M in all

cases. I set α = ln (64× 0.04), βw = βx = 0 and βwx = ln 4 ≈ 1.3863. This implies that
ρn = 0.08, 0.036, 0.020, 0.009 and 0.005 across the five designs. Note that θ0 is fixed across
these designs, but the triangular array structure of the DGP induces a decline in density
with n. For each design I perform 5, 000 Monte Carlo replications.

The design is a stylized version of how a researcher might analyze data from a simple
consumer-product promotion experiment. Let Ai be consumer-specific heterogeneity, Bj

product quality heterogeneity, Wi = 1 if consumer i was randomly invited to participate in
a ‘sale’ and zero otherwise and Xj = 1 if product j was randomly determined to be ‘sale
eligible’ and zero otherwise. The treatment effect of being invited to participate in the sale
increases the purchase probability for sale eligible items by a factor of four (βwx = ln 4);
there is no spillover effect onto non-eligible items (βw = 0). Likewise there is no direct effect
of an item being ‘sale eligible’ on the probability of making a purchase (βx = 0). In what
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Table 3: Monte Carlo Results, βwx

(1) (2) (3) (4) (5)
n = 64

ρn = 0.080
n = 144

ρn = 0.036
n = 256

ρn = 0.020
n = 576

ρn = 0.009
n = 1, 024
ρn = 0.005

Mean Bias 0.1209 0.0615 0.0396 0.0171 0.0119
Median Bias 0.1632 0.0635 0.0406 0.0149 0.0127
Std. Dev. 0.7039 0.4221 0.2968 0.1972 0.1516

Mean S.E. - Sparse 0.6779 0.4638 0.3445 0.2340 0.1783
Coverage (95% CI) - ‘Sparse’ 0.8754 0.9286 0.9442 0.9496 0.9434
Coverage (95% CI) - ‘Dense’ 0.3468 0.3620 0.3506 0.3208 0.2922

Notes: Results based on 5,000 replications of the data generating process described in the text. The
Monte Carlo standard deviation of the point estimates (row 3) is a robust measure (the difference
between 95th and 5th percentiles of the estimated coefficient’s Monte Carlo distribution divided
by the corresponding quantile differences of a standard normal variate). The standard error of the
simulation error on the coverage estimates is

√
α (1− α) /5000 ≈ 0.003 for α = 0.05. See the text

for additional information.

follows I focus on estimation of, and inference on, the interaction coefficient βwx.
In the experiments, the logit approximation does not coincide with the population re-

gression function for any fixed n, however the approximation error declines as n → ∞.
Therefore the pseudo composite maximum likelihood estimates of θ̂ are consistent for their
population analogs. However, we would expect to observe noticeable bias in small samples.
This is shown in the first two rows of Table 3: for smaller samples mean and median bias
are modestly large relative to the standard deviation of β̂wx across the 5, 000 Monte Carlo
replications (row 3). As predicted, this bias declines with n.

The theoretical rate-of-convergence results outlined above suggest that the standard de-
viation of β̂wx in design 2 should be two thirds of that in design 1. In practice we have

that 0.4221
0.7039

≈ 0.60 ≈
1√
144
1√
64

= 2
3
, which is close. That in design 3 should be three quarters of

that in design 2 (actual: 0.2968
0.4221

≈ 0.70 ≈
1√
256
1√
144

= 3
4
); design 4 two thirds of that in design 3

(actual: 0.1972
0.2968

≈ 0.66 ≈
1√
576
1√
256

= 2
3
); and design 5 three quarters of that in design 4 (actual:

0.1516
0.1972

≈ 0.77 ≈
1√
1024
1√
576

= 3
4
). Overall the Monte Carlo rate-of-convergence estimates track

theoretical predictions well.
The final two rows of Table 3 report the actual coverage of two different nominal 95

percent Wald-based confidence intervals. These two intervals are constructed as described
in the discussion of the Monte Carlo experiments reported in the main text of the paper
(further details are in Supplemental Web Appendix D). In the designs with smaller samples,
the sparse confidence intervals undercover slightly, but once n is large enough such that bias
is negligible, their actual and nominal coverage coincide. As suggested by the theory, the
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actual coverage of the dense asymptotic intervals are well below nominal levels in all designs.
Table 4 summarizes the sampling behavior of the components of

n3/2Sn (θ0) = n3/2U1n (θ0) + n3/2U2n (θ0) + n3/2Vn (θ0) + n3/2bn (θ0) .

For each Monte Carlo draw I construct each component of n3/2Sn (θ0) analytically (see the
Python Jupyter Notebook in the Supplemental Materials). The variance of these components
is then estimated by their sampling variance across the 5,000 Monte Carlo draws (i.e., by
Monte Carlo integration). Table 4 reports the mean and standard deviation of each of the
components n3/2Sn (θ0) in the the n = 256 and n = 1, 024 designs; specifically the elements
corresponding to the interaction coefficient βwx.

Table 4 indicates that, for the designs considered here, n3/2U1n (θ0) and n3/2Vn (θ0) are
of equal order, while – as asserted by the theoretical analysis – n3/2U2n (θ0) is of lower order.
The closeness of the Monte Carlo standard deviations across the two samples also indicates
that n3/2 is the correct variance stabilizing rate. The Monte Carlo estimate of the bias
in n3/2Sn (θ0) also closely tracks its theoretical counterpart. Most importantly, the normal
approximation to n3/2 [U1n (θ0) + Vn (θ0)], which underlies Theorem 2, appears to be quite
accurate. Normalized by its standard deviation, the tail frequencies of n3/2 [U1n (θ0) + Vn (θ0)]

are close to those of a standard normal random variable (especially for the larger sample
size).

36



Table 4: Accuracy Sparse Network Asymptotics for β̂wx

(1) (2) (3) (4) (5) (6)
n3/2Sn (θ0) n3/2U1n (θ0) n3/2U2n (θ0) n3/2Vn (θ0) n3/2 [U1n (θ0) + Vn (θ0)] n3/2bn (θ0)

Panel A: n = 256

Mean 2.164 0.0446 -0.0045 0.0227 0.0672 2.101
Std. Dev. 5.2165 3.8460 0.3196 3.6122 5.2090 -

Pr (T ≥ 1.645) 0.0578 0.0546 0.0422 0.0542 0.0576 -
Pr (T ≤ 1.645) 0.0400 0.0432 0.0502 0.0472 0.0412 -
Pr (T ≥ 1.96) 0.0324 0.0290 0.0282 0.0308 0.0304 -
Pr (T ≤ 1.96) 0.0154 0.0184 0.0360 0.0246 0.0166 -

Panel B: n = 1, 024

Mean 1.116 0.0399 -0.0025 -0.0019 0.0380 1.081
Std. Dev. 5.3091 3.8169 0.1555 3.7162 5.3123 -

Pr (T ≥ 1.645) 0.0502 0.0526 0.0432 0.0508 0.0504 -
Pr (T ≤ 1.645) 0.0490 0.0490 0.0522 0.0476 0.0490 -
Pr (T ≥ 1.96) 0.0276 0.0244 0.0266 0.0236 0.0268 -
Pr (T ≤ 1.96) 0.0236 0.0234 0.0362 0.0234 0.0244 -

Notes: Results based on 5,000 replications of the data generating process described in the text. The forms of Sn (θ0), U1n (θ0), U2n (θ0),
Vn (θ0) and bn (θ0) are based on pencil and paper calculations and the details of the simulated data generating process (see the Python
Jupyter Notebook in the Supplemental Materials for details).
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