A Online Appendix

A.1 Larger Seed Sets

The most prominent applications of targeted seeding in the economics literature involve
small sets of seeds, but the theoretical framework can readily adapt to offer guidance for
larger seed sets—this seems particularly relevant for mass marketing, in which susceptibility
is relatively low, and advertisements can reach a large fraction of the relevant population.
Equations (4) and (5) allow us to explicitly solve for the extent of contagion, given an

arbitrary vector s of seeded fractions. For convenience, I reproduce the key equations here:

u(s) = o (1 (1 %= z” ' qt)) (s = (1— (1— s)g(l - y(s) - ).

in which g;(x) is the probability generating function for the degree distribution D;. Writing
7(s) = m(s) - p for the infected fraction of the population, a natural way to formulate a

planner’s seeding problem is then

ey )
st. ps<c

for a suitable seeding budget c. We can solve this optimization using standard methods—

the optimal s* satisfies In(st) < Apy, for some A > 0, with equality for any type t such that

(s*
st
sy > 0.
To gain some insight into the properties of optimal seeding policies with larger budgets,
I specialize the model, assuming each type ¢ has a Poisson degree distribution with mean g,

and neighbor types follow a simple homophily model with parameter h—recall in the simple

homophily model we have q* = he; + (1 — h)q* in which ¢} = %. This allows us to
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obtain an explicit expression for the partial derivatives 8:;—8@.
t

Proposition 3. If each type has a Poisson degree distribution, and neighbor type distribu-

tions follow a simple homophily model with parameter h, then
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Proof. See Appendix A.3. m

At an optimal solution s*, the expression in (23) must be the same for each type t such
that s; > 0, and it must be lower for all other types. A higher value means seeding type
t makes a larger impact on the margin. We can read off a number of intuitive results. All
else equal, type t is a more attractive target if oy is bigger and m(s) is smaller—greater
susceptibility and less redundancy makes for a better target. Increasing the average degree
1 has an ambiguous effect just like it did when we were calculating seed multipliers: high-

degree types can spread the infection to more neighbors, but they are also more redundant.

A.2 Alternative Objectives

At first glance, it appears as though we are limited to planners whose payoff is linear
in the fraction m(s) of the population that gets infected. In fact, this paper’s focus on
marginal effects means that the seed multipliers provide valid comparisons for a large class
of objectives. Suppose f is any strictly increasing differentiable function, and the planner

seeks to maximize the objective

f(m(s)).
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The marginal impact of an additional type ¢ seed, assuming s is small, is then approximately

tim -2 (r(s)) = im L /((5) 22 = 5, lim /'(n(s).
s—0 p; 084 s—0 Py sy s—0
s>0 s>0 s>0

Since the last term is common to all types, the relative impact of seeding each type on the
margin is still proportional to the seed multipliers.

In a more significant departure, we can study the complementary immunization problem.
Suppose a planner wishes to prevent an infection from spreading beyond a small group and
can immunize individuals based on observed types. Write m; for the fraction of type t
individuals that get immunized, so the effective susceptibility of type t is oy (1 —m;), and the
effective entries of the matrix M’ are a,q'u;(1 —m;). If a fraction € & 0 of the population is
initially exposed, then the total fraction of the population that gets infected is approximately
zero if and only if there is no giant component, i.e. p(M’) < 1. If immunization costs are

linear, then the planner can achieve this at lowest cost by solving

min Z prmy, (24)

me(0,1]© <o

st p(M') < 1.

Notice that the generating functions have no role at all in solving the immunization
problem: the constraint depends only on the unconditional M’ whose entries are functions
of the degree distributions’ first two moments. In this sense, the immunization problem is
simpler than the optimal choice of a larger seed set, or determining seed multipliers in the
viral case. With some structure on the neighbor type distributions, we can obtain a closed

form expression for the solutions.

Proposition 4. Suppose neighbor type distributions follow a simple homophily model. If
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h <1, an optimal solution m* to (24) satisfies hayp,(1 —m;) < 1 for each t, and

1—h Oétpt/it/i::(l - m;‘)

1= :
Zpr,ur tcO 1 - hatu;(l - m:)

Moreover, there exists a constant C' such that

0 f o
. (1—apsh)

m, = ¢
* =

L if aypupy > C,

Qppuefr}
(1—aepih(1-my))

and otherwise s = C. If h =1, the optimal solution m* sets

gty — 1
mf:maX{O,t'ut—,}.
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for each type t.
Proof. See Appendix A.3. O]

The solution in Proposition 4 highlights a few features that should be obvious: types
with high susceptibility, high degrees, and high forward degrees make the best targets for
immunization, and if the network is more dense, we need to immunize more individuals to
prevent large cascades of infection. The role of homophily is less obvious, but as a starting
point, comparing solutions at the extremes with h = 0 and h = 1 is instructive.

If h = 1, meaning all individuals only interact with others of the same type, then we
effectively have |©| separate networks, and we must immunize an appropriate fraction within
each to get under the viral threshold. On the other hand, in the absence of any homophily
(h = 0), the optimal policy lexicographically targets types with the highest values of apusp1;—
there is a constant C' such that m; = 0 if oy < C and mj = 1 if oy > C. We can

focus exclusively on the highest degree types because they both have more neighobrs they
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can infect and comprise a larger share of other types’ neighbors—we do not need to immunize
lower degree types because their neighbors are likely immunized.

These extremes underscore a general rule: with less homophily we can focus on the
highest degree types, while with greater homophily optimal immunization becomes more
uniform across the population. From the characterization in Proposition 4, we can deduce

that whenever
Oét:u’t,ué > asus/l/s
(1= agph(1 —me))* ~ (1= agplh(1 —my))*

it is more cost effective on the margin to immunize type ¢ rather than type s. We can

rearrange this inequality to obtain

1 — aplh 4+ aspl hmg - Qs sl
1 — aypih + agpiphimy Quelefly

From this we can see that whenever h is small, whether type t or type s is a better target

depends almost entirely on whether agugpl, is greater than ayu.p;. When h is large, the
ratio on the left depends more on who is already immunized, with higher m; making type ¢
less attractive relative to type s—there is a force pushing towards more even immunization

across types.

A.3 Omitted Proofs

Proof of Theorem 1

Differentiating (4) yields

Jys(s) 9:(1 —y(s)-q’) sy (s)
D5, as(1 — sg) o Z



for s # t, and
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Iyi(s) atgé(l —~y(s)-d) )92’(1 ~y(s)-d') 3 L 0y (s)

+oy(l —s
0sy Lt t( ' Kt
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Since y(s) — 0 as s — 0, we get

8y8(0) _ / sayr(o) ayt(o) _ / tayr(o)
D5, _OzsuSqu 05, , Vs #t, Ds, —Oét—i-Oét,uthr Bs,

re® reo®

Writing A, for a diagonal matrix with A;; = a4, in matrix notation this gives

dy(0)
8St

dy(0) dy(0)
83t ast

= ;€4 —|— AaM/A;1 = Aa(I — M/)_let.

Now differentiate (5) to get

aﬂ-5<s) _ / s sayT(S)
oy — (1= 5)gl(1-¥(s) - a );@ T gy
for s # t, and
Om(s) B : e : + Oyr(s)
aSt - atgt(]- Y(S) q ) + at(]- St).gt(l Y(S) q ) T&Zg q, ast :

Substituting s = 0 and using the above expression for y(0) gives

0ms(0) 0y,-(0) om(0) .0y, (0) . .
= S = mpl
D, Qugfls E q, D5, D, ay + ol E q. D5, implying

re® ree

om(0)

8 = (€4 + AQMA;Iay(O) = (€4 ‘|‘ AaM(I — M/)_let.
St

8st
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Using the definition of the seed multiplier now gives

1 1 1
ﬁt(()) - _87T(0) = _pTaﬂ-_m) =oy + —pTAaM(I _ M’)_let
Dt 58,5 D ast yg;

The given expression is not quite that in the Theorem statement, but a simple counting
argument shows it is equivalent. Entry st of the matrix M (I — M’)™! exactly counts the
expected number of infectious paths from a given type s individual to type t individuals—
multiplying on the left by A, gives us the number that start from a susceptible type s
individual. The second term above sums the entries in column ¢ with weights 5—:, thereby
counting the number of these paths from a given type ¢ individual to type s individuals. We
could equivalently sum the entries in row ¢t of M (I — M’)~! and multiply by ay, which yields

the expression in the Theorem statement. [
Proof of Theorem 2

Following the same argument as Theorem 1, at s = 0 we have

dys(0) N gi(1-¢-q°) 3 ,0y,(0)

ds, ILs @ 0s;

re®

for s # t, and

dy:(0) atgé(l -¢-q") N atgé’(l -¢-q") 3 :04,(0)

= q
0sy M He <o " Osy

Recall that

?

- g (1-¢-q") gl (1—¢-q)
Ct_at<1_tT> = M= tat—Ct
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so we can rewrite these equations as

8ys<0) _ ( Cs)gS(l C ) qs) Z sayT(O)

ast B gs(l C ' qs) reo® " Os
for s # t, and
ou(0) 1= ¢ d) 00 (0)
s, ap — G+ (ap — §) g1 —¢-q) TEZ@qT LT

The generating function for the conditioned degree distribution D, is

ggt

ZP Dg, = s)s* iMDtg: =€ a)f g ((1=C-d)s)

prd (1-¢-q') g:(1-¢-q')
From this we can compute

1-¢-q

/ / t
1=0-,(1)= ——"F——g(1—-¢-q’), and
e C,t( ) gt<1_C‘qt) t( )

9:(1) _ 1-¢-q
pee  gi(1—=¢-q)

Hey = g/(1—¢-dq").

Define g,(s) = uels), Substituting the expression for “/C,t into the partial derivatives above

1-C
gives
dys(0) (a5 — Co)pe . 0y,(0) dys(0) 99,(0)
e 2 _— — s s r ,
c%‘t (]__Cqs) reze:)qr ast a Qg, /LC g(;qc 88
for s # t, and
Oy+(0 ) o — G+ (v Ct):ugt Z 0y, (0)

0sy (1-¢-q) reeq dsy
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which implies

agt(o) ! t agr(())
=+« .
s, & Gttt reze:) q¢r s,

Notice these equations are analogous to the ones we solved in the proof of Theorem 1, and

their solution is

9y(0) _ /4 -19¥(0) 9y(0) -1
= A MAZ =As(I — M
aSt A + e aSt — aSt a( C) et
Taking a derivative of (5), we have
O, (0) : 9y, (0)
_ 1 — NS s
Be = o1 =C-a) ze(; T 5,
9s(1 = ¢-a*) \—~ 9%:(0)
= Q¢ s r
MC? 1 _ C . qs TEZ@ q 8St
07,(0
= a,0s(1 — € q*) s Z 9. %( )
reo 5t

for s # t, and analogously

o, t O
7:(0) = ag(l— ¢ q) <1+Mc7tzqw %g?)

8St reo®
Writing A for a diagonal matrix with Ay = aug:(1 — ¢ - @*), in matrix notation this is

om(0)
aSt

9y(0)
aSt

= Oétgt(l — C . qt>et + MA;l = Oétgt(l — C . qt)et + AMC(I — Mé)_let.

We therefore have

107(0) 1 _0m(0) 1 .
0)=— = —p' = 1—-¢- + —p"AM(I — M) ey,
5:(0) D Os, ptp Ds, . ge( ¢-q) ptp ol g) t

and a similar counting argument as in the proof of Theorem 1 shows this is equivalent to
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the stated expression. [J
Proof of Proposition 1

I prove the following more general result that also applies to the viral case—taking ¢ =0

gives the stated Proposition.

Proposition 5. Suppose neighbor type distributions follow a simple homophily model with

parameter h. Write x for the vector (I — M{)~'1, and define T = Y_,co(ay — G )gia,. Then

3 (=) (1=¢-q")gf
t€® 1-¢-qf—hpp (ot —Ce)

(o —Ce)pe a7 ’
1—=(1-h) o 1—c~qt—hu2,z(;t—ft)

T =

and for each t € ©, we have

B =agi(l1-¢-d) (1 + Kt (1%(? ;f?};;&(;f_)i)ﬁ)) : (25)

Proof. Recall entry ts of M is

o — G qh(1 — gs),u/ _ qs(as — CS)'U/
-G 1=Cq " 1-C-q ¢

ac’sqérsuévt =

We can rewrite x = (I — M{)™'1 as x = 1 + M/x. This defines a system of equations in

which equation t is

Ty =1+ Lt (h(@t —G)re+ (1= h) Z(Oés - Cs)q:x3> :

1= C q s€0
Substituting T = _o(as — (5)qix, and solving, we get

1= Cd (- h)T
1-¢-q" - hM/(,t<at —G)

Ty



Now multiply by (o — (;)¢; and sum over t € O to get

Gl =) (1= ¢-d + g, (1 — h)T)
x—z 1—C'qt—h,u/g,t(04t—gt> ,

which implies

T (1 —(1-nY (0~ Cliigadi ) = (e =)A= ¢ a)g;

o 1-¢-q' — hﬂlg,t(at —G) o 1-¢-q' — h:u,g,t(at —Gt)’

and hence
D (=) (1=¢-a")g;
_ t€0 1-¢-q'—hpug ,(ar—C:)
r =
(o —Ce)pe a7
1- (1 - h> Zte@ 1=¢-qf—hpg (ar—Ct)
as desired.

To complete the proof, we compute the multipliers:

Br=ag(1—¢-q) (1+ e; M¢x)

= age(1—¢-d') <1 + ch,tsxs>

SEO

= ag(1—¢-d) <1 + 1M—C’t_qt > dilas - Q)%)

o C SEO

= a1~ ¢ o) (14 LS (= W = G

Substituting
R et
C1-¢at = hpgy (= G)

Ty

x1



we get

1-¢-d +“/§,t(1 —h)T

1-¢-q' - h,u/g,t(at —Ct)
h(ay — G)+ (1 —h)T

1-¢-q' - h/i/g,t(@t —G)’

(1=h)T+h(w —G)ry = (1 —h)T+ h(ay — )

=(1-¢-d)

implying the result.

Proof of Proposition 2

Write q* for the unbiased neighbor type distribution and write {q'}:co for a fixed col-
lection of neighbor type distributions with ¢! > ¢ and ¢! < ¢* for t # s. I first show that
B = B when q' = q* for each ¢. This is exactly the simple homophily model with A = 0, so

we can substitute into the formula derived in the proof of Proposition 5 to get

Qfly Ay
=1+ .
L—a) cond: 1 —apn

1
G =1+
«

Averaging over types with weights p; exactly gives 3 as desired.
Now define q*(z) = xzq* + (1 — z)q’, and write 3;(z) for the seed multiplier of type ¢
under the distributions {q'(x) };co, holding fixed the degree distributions and susceptibilities.

Taking a weighted average of the multipliers and differentiating with respect to = gives

2O (PG - aroy a0 P - ) )

= (P arotr - o) ) (1 - )
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Using the consistency condition p,pusqf = pepeq’, the vector pTaJ‘g—im) has entry s is equal to

@Y puuldi —a;) = @Y pos(a; —qf) = 0.

tcO tcO
We therefore have
1 0B(x) . a1 OM (@)
o or p M(x)(] M (x)) O (I M (m))

We can equivalently write the right hand side above as 17D X1 in which D is a diagonal

matrix with entries pTM(z) and X = (I — M'(x))” laM( DI — M'(x))"*. To finish the
proof, I show that DX is a limit of positive definite matrices, implying the derivative is
non-negative.

First, note that if X is positive definite, then then DX is as well. In this case, the
leading principal minors of X have strictly positive determinants, and since D is diagonal
with positive entries, the leading principal minors of DX also have positive determinants.
We conclude that DX is positive definite whenever X is. Second, observe that I — M'(z) is
positive definite because p(M'(z)) < 1, implying the eigenvalues of I — M'(z) are all strictly
positive. Hence, we know that (I — M'(x))™! is positive definite. The matrix X is then
OM' ()

oz

positive definite if we can show that is positive definite.

We can readily show that 2 ( ) |

is positive semi-definite as its eigenvalues must be non-
negative. Entry ts of this matrix equals au,(qt — ¢¥)—by assumption, the diagonal entries
are non-negative, and each row sums to zero. Defining \ = max; au}(qf — ¢;), we can write

M ()

g =M —-A

for a positive matrix A with row sums bounded by A. The Perron root of A is therefore

bounded by A, implying all eigenvalues of A\I — A are non-negative. The matrix X, =
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(A+€)I — A is then positive definite for any € > 0, so our above work implies DX, is positive
definite, and 17D X .1 > 0 for any e. Taking a limit as ¢ — 0 shows that 1 85 > 0 for all

€ [0,1] as desired. In particular, we have § = (1) > (0) = 4. [
Proof of Proposition 3

With a Poisson degree distribution, the forward distribution is the same as the degree

distribution, so we have

yi(s) = m(s) = ar (1 = (1 = s)gu(1 = m(s) - q)) = v (1 - (1= St)e_”tﬁ(s)'q? :

Differentiating for each type s € © with respect to s; and solving gives

. . % Omr(8)
67'('5(8) O-/s(l SS)(l h) Zr&@ 4 Ost e—,usﬂ'(s)-qs

0sy - 1 — ash(1l — s5)eHem(s)a® for s #¢, and
* 0T (s
87Tt<s) _ o + at(l - St)(l - h) Zre@ 4y Bs(t : efut‘rr(s)-qt
Jsy 1 — oyh(l — s)e mem(s)al '

Weighting by ¢F and summing over types gives

R
@ s, 1 —ouh(l — s)emm(s)al

LOm,(s) (1 = 8,)q7 (1 — h)e Hr(s)

+ e T
(; ! ast ) T,ezg 1-— Oérh(l — Sr)e*,urﬂ'(s)-q
Oétq;{e_mﬂ-(s}qt aﬂ-r qr — Ty (S))

- h(at N Trt(S)) Z Z Oér - 7TT(S>>

re®

re®

r
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in which the last line uses the fixed point equation for m,.(s). Solving, we get

oetq*e*“t"“(s)'qt
Z 7 om.(s) _ 1—2(%—7&(5))

s (1—h)(ar—mr(s) *
aSt 1— ZrG@ : 1=h(ar—mr(s))

reo®

Substituting this and simplifying, we obtain

aﬂ-s O(te_utﬂ-(s)Aqt
S X b
e B et Tyt ALY
in which ( )
(1=h)> o Pr—f!rh(ér (s

1= (1—h)Y g el

r€O 1—h(ar—m,(s))

The result follows after substituting q* = he; + (1 — h)q* and ¢; = Z—p;%. O
s€© sks

Proof of Proposition 4

First note that if p(M') < 1 with m = 0, this is clearly the solution, and it trivially
satisfies the conditions in the proposition. Otherwise, it should be clear that the constraint
must be met with equality, so at the optimal m*, we have M'x = x for some non-zero
vector x—if h < 1, the matrix M’ is non-negative and irreducible, so the entries of x are

non-negative. This yields the system of equations

Ty = (hozt(l—mt r+(1—h Zozs 1 —m})q sx5>.

sEO

Note in any solution we must have hayui(1 —m;) < 1, since otherwise this implies x; > x4,
and the spectral radius cannot equal 1, and we can always ensure this by choosing m;

sufficiently large. We can rearrange the above equation to get

1= ) Do (1 = mi)gsa,
1 — haypy(1 —mj) ‘
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Weighting each equation by a;(1 — m;)gS and summing, we get

ar(1 —mi)gi (1 —h)
>l —mi)gte, = (ZO‘S (1=m qsxs) (Z 1 —hoypy(1—my) |

tco 5€0 €O

Since x is the eigenvector corresponding to the Perron root, the left hand side is strictly
positive, so we know the second term in parentheses on the right must equal 1. Substituting
the definition of ¢; yields the first condition. This reduces our problem to minimizing m - p,
subject to the above equation, and the second claim is an immediate consequence of the first
order conditions.

Finally, for the case h = 1, we need each subgraph to be non-viral, and the condition for

that is precisely aup;(1 —m}) < 1, which is equivalent to m* > % O
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