
A Online Appendix

A.1 Larger Seed Sets

The most prominent applications of targeted seeding in the economics literature involve

small sets of seeds, but the theoretical framework can readily adapt to offer guidance for

larger seed sets—this seems particularly relevant for mass marketing, in which susceptibility

is relatively low, and advertisements can reach a large fraction of the relevant population.

Equations (4) and (5) allow us to explicitly solve for the extent of contagion, given an

arbitrary vector s of seeded fractions. For convenience, I reproduce the key equations here:

yt(s) = αt

(
1− (1− st)

g′t(1− y(s) · qt)

µt

)
, πt(s) = αt

(
1− (1− st)gt(1− y(s) · qt)

)
,

in which gt(x) is the probability generating function for the degree distribution Dt. Writing

π(s) = π(s) · p for the infected fraction of the population, a natural way to formulate a

planner’s seeding problem is then

max
s≥0

π(s)

s.t. p · s ≤ c

for a suitable seeding budget c. We can solve this optimization using standard methods—

the optimal s∗ satisfies ∂π(s∗)
∂st

≤ λpt, for some λ ≥ 0, with equality for any type t such that

s∗t > 0.

To gain some insight into the properties of optimal seeding policies with larger budgets,

I specialize the model, assuming each type t has a Poisson degree distribution with mean µt,

and neighbor types follow a simple homophily model with parameter h—recall in the simple

homophily model we have qt = het + (1 − h)q∗ in which q∗t = ptµt∑
s∈Θ psµs

. This allows us to
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obtain an explicit expression for the partial derivatives ∂π(s)
∂st

.

Proposition 3. If each type has a Poisson degree distribution, and neighbor type distribu-

tions follow a simple homophily model with parameter h, then

1

pt

∂π(s)

∂st
=

e−µt(1−h)π(s)·q∗∑
r∈Θ prµr

µte
−µthπt(s)

1− h(αt − πt(s))
(pt +X) , (23)

in which

X =
(1− h)

∑
r∈Θ pr

q∗r (αr−πr(s))
1−h(αr−πr(s))

1− (1− h)
∑

r∈Θ
q∗r (αr−πr(s))
1−h(αr−πr(s))

.

Proof. See Appendix A.3.

At an optimal solution s∗, the expression in (23) must be the same for each type t such

that st > 0, and it must be lower for all other types. A higher value means seeding type

t makes a larger impact on the margin. We can read off a number of intuitive results. All

else equal, type t is a more attractive target if αt is bigger and πt(s) is smaller—greater

susceptibility and less redundancy makes for a better target. Increasing the average degree

µt has an ambiguous effect just like it did when we were calculating seed multipliers: high-

degree types can spread the infection to more neighbors, but they are also more redundant.

A.2 Alternative Objectives

At first glance, it appears as though we are limited to planners whose payoff is linear

in the fraction π(s) of the population that gets infected. In fact, this paper’s focus on

marginal effects means that the seed multipliers provide valid comparisons for a large class

of objectives. Suppose f is any strictly increasing differentiable function, and the planner

seeks to maximize the objective

f(π(s)).
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The marginal impact of an additional type t seed, assuming s is small, is then approximately

lim
s→0
s≫0

1

pt

∂

∂st
f(π(s)) = lim

s→0
s≫0

1

pt
f ′(π(s))

∂π(s)

∂st
= βt lim

s→0
s≫0

f ′(π(s)).

Since the last term is common to all types, the relative impact of seeding each type on the

margin is still proportional to the seed multipliers.

In a more significant departure, we can study the complementary immunization problem.

Suppose a planner wishes to prevent an infection from spreading beyond a small group and

can immunize individuals based on observed types. Write mt for the fraction of type t

individuals that get immunized, so the effective susceptibility of type t is αt(1−mt), and the

effective entries of the matrix M ′ are αsq
t
sµ

′
t(1−mt). If a fraction ϵ ≈ 0 of the population is

initially exposed, then the total fraction of the population that gets infected is approximately

zero if and only if there is no giant component, i.e. ρ(M ′) ≤ 1. If immunization costs are

linear, then the planner can achieve this at lowest cost by solving

min
m∈[0,1]Θ

∑
r∈Θ

prmr (24)

s.t. ρ(M ′) ≤ 1.

Notice that the generating functions have no role at all in solving the immunization

problem: the constraint depends only on the unconditional M ′, whose entries are functions

of the degree distributions’ first two moments. In this sense, the immunization problem is

simpler than the optimal choice of a larger seed set, or determining seed multipliers in the

viral case. With some structure on the neighbor type distributions, we can obtain a closed

form expression for the solutions.

Proposition 4. Suppose neighbor type distributions follow a simple homophily model. If
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h < 1, an optimal solution m∗ to (24) satisfies hαtµ
′
t(1−m∗

t ) < 1 for each t, and

1 =
1− h∑
prµr

∑
t∈Θ

αtptµtµ
′
t(1−m∗

t )

1− hαtµ′
t(1−m∗

t )
.

Moreover, there exists a constant C such that

m∗
t =


0 if

αtµtµ′
t

(1−αtµ′
th)

2 < C

1 if αtµtµ
′
t > C,

and otherwise
αtµtµ′

t

(1−αtµ′
th(1−m∗

t ))
2 = C. If h = 1, the optimal solution m∗ sets

m∗
t = max

{
0,

αtµ
′
t − 1

αtµ′
t

}
.

for each type t.

Proof. See Appendix A.3.

The solution in Proposition 4 highlights a few features that should be obvious: types

with high susceptibility, high degrees, and high forward degrees make the best targets for

immunization, and if the network is more dense, we need to immunize more individuals to

prevent large cascades of infection. The role of homophily is less obvious, but as a starting

point, comparing solutions at the extremes with h = 0 and h = 1 is instructive.

If h = 1, meaning all individuals only interact with others of the same type, then we

effectively have |Θ| separate networks, and we must immunize an appropriate fraction within

each to get under the viral threshold. On the other hand, in the absence of any homophily

(h = 0), the optimal policy lexicographically targets types with the highest values of αtµtµ
′
t—

there is a constant C such that m∗
t = 0 if αtµtµ

′
t < C and m∗

t = 1 if αtµtµ
′
t > C. We can

focus exclusively on the highest degree types because they both have more neighobrs they
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can infect and comprise a larger share of other types’ neighbors—we do not need to immunize

lower degree types because their neighbors are likely immunized.

These extremes underscore a general rule: with less homophily we can focus on the

highest degree types, while with greater homophily optimal immunization becomes more

uniform across the population. From the characterization in Proposition 4, we can deduce

that whenever

αtµtµ
′
t

(1− αtµ′
th(1−mt))

2 >
αsµsµ

′
s

(1− αsµ′
sh(1−ms))

2 ,

it is more cost effective on the margin to immunize type t rather than type s. We can

rearrange this inequality to obtain

1− αsµ
′
sh+ αsµ

′
shms

1− αtµ′
th+ αtµ′

thmt

>

√
αsµsµ′

s

αtµtµ′
t

.

From this we can see that whenever h is small, whether type t or type s is a better target

depends almost entirely on whether αsµsµ
′
s is greater than αtµtµ

′
t. When h is large, the

ratio on the left depends more on who is already immunized, with higher mt making type t

less attractive relative to type s—there is a force pushing towards more even immunization

across types.

A.3 Omitted Proofs

Proof of Theorem 1

Differentiating (4) yields

∂ys(s)

∂st
= αs(1− ss)

g′′s (1− y(s) · qs)

µs

∑
r∈Θ

qsr
∂yr(s)

∂st
,
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for s ̸= t, and

∂yt(s)

∂st
= αt

g′t(1− y(s) · qt)

µt

+ αt(1− st)
g′′t (1− y(s) · qt)

µt

∑
r∈Θ

qtr
∂yr(s)

∂st
.

Since y(s) → 0 as s →+ 0, we get

∂ys(0)

∂st
= αsµ

′
s

∑
r∈Θ

qsr
∂yr(0)

∂st
, ∀ s ̸= t,

∂yt(0)

∂st
= αt + αtµ

′
t

∑
r∈Θ

qtr
∂yr(0)

∂st
.

Writing Λα for a diagonal matrix with Λtt = αt, in matrix notation this gives

∂y(0)

∂st
= αtet + ΛαM

′Λ−1
α

∂y(0)

∂st
=⇒ ∂y(0)

∂st
= Λα(I −M ′)−1et.

Now differentiate (5) to get

∂πs(s)

∂st
= αs(1− ss)g

′
s(1− y(s) · qs)

∑
r∈Θ

qsr
∂yr(s)

∂st
,

for s ̸= t, and

∂πt(s)

∂st
= αtgt(1− y(s) · qt) + αt(1− st)g

′
t(1− y(s) · qt)

∑
r∈Θ

qtr
∂yr(s)

∂st
.

Substituting s = 0 and using the above expression for y(0) gives

∂πs(0)

∂st
= αsµs

∑
r∈Θ

qsr
∂yr(0)

∂st
,

∂πt(0)

∂st
= αt + αtµt

∑
r∈Θ

qtr
∂yr(0)

∂st
, implying

∂π(0)

∂st
= αtet + ΛαMΛ−1

α

∂y(0)

∂st
= αtet + ΛαM(I −M ′)−1et.
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Using the definition of the seed multiplier now gives

βt(0) =
1

pt

∂π(0)

∂st
=

1

pt
p⊺∂π(0)

∂st
= αt +

1

pt
p⊺ΛαM(I −M ′)−1et

The given expression is not quite that in the Theorem statement, but a simple counting

argument shows it is equivalent. Entry st of the matrix M(I − M ′)−1 exactly counts the

expected number of infectious paths from a given type s individual to type t individuals—

multiplying on the left by Λα gives us the number that start from a susceptible type s

individual. The second term above sums the entries in column t with weights pt
ps
, thereby

counting the number of these paths from a given type t individual to type s individuals. We

could equivalently sum the entries in row t of M(I−M ′)−1 and multiply by αt, which yields

the expression in the Theorem statement.

Proof of Theorem 2

Following the same argument as Theorem 1, at s = 0 we have

∂ys(0)

∂st
= αs

g′′s (1− ζ · qs)

µs

∑
r∈Θ

qsr
∂yr(0)

∂st
,

for s ̸= t, and

∂yt(0)

∂st
= αt

g′t(1− ζ · qt)

µt

+ αt
g′′t (1− ζ · qt)

µt

∑
r∈Θ

qtr
∂yr(0)

∂st
.

Recall that

ζt = αt

(
1− g′t (1− ζ · qt)

µt

)
=⇒ µt =

αtg
′
t(1− ζ · qt)

αt − ζt
,
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so we can rewrite these equations as

∂ys(0)

∂st
= (αs − ζs)

g′′s (1− ζ · qs)

g′s(1− ζ · qs)

∑
r∈Θ

qsr
∂yr(0)

∂st
,

for s ̸= t, and

∂yt(0)

∂st
= αt − ζt + (αt − ζt)

g′′t (1− ζ · qt)

g′t(1− ζ · qt)

∑
r∈Θ

qtr
∂yr(0)

∂st
.

The generating function for the conditioned degree distribution Dζ,t is

gζ,t(s) =
∞∑
k=0

P(Dζ,t = s)sk =
∞∑
k=0

P(Dt = k)(1− ζ · qt)k

gt(1− ζ · qt)
sk =

gt ((1− ζ · qt)s)

gt(1− ζ · qt)
.

From this we can compute

µζ,t = g′ζ,t(1) =
1− ζ · qt

gt(1− ζ · qt)
g′t(1− ζ · qt), and

µ′
ζ,t =

g′′ζ,t(1)

µζ,t

=
1− ζ · qt

g′t(1− ζ · qt)
g′′t (1− ζ · qt).

Define ỹt(s) = yt(s)
1−ζt

. Substituting the expression for µ′
ζ,t into the partial derivatives above

gives

∂ys(0)

∂st
=

(αs − ζs)µ
′
ζ,s

(1− ζ · qs)

∑
r∈Θ

qsr
∂yr(0)

∂st
=⇒ ∂ỹs(0)

∂st
= αζ,sµ

′
ζ,s

∑
r∈Θ

qsζ,r
∂ỹr(0)

∂st
,

for s ̸= t, and

∂yt(0)

∂st
= αt − ζt +

(αt − ζt)µ
′
ζ,t

(1− ζ · qt)

∑
r∈Θ

qtr
∂yr(0)

∂st
,
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which implies

∂ỹt(0)

∂st
= αζ,t + αζ,tµ

′
ζ,t

∑
r∈Θ

qtζ,r
∂ỹr(0)

∂st
.

Notice these equations are analogous to the ones we solved in the proof of Theorem 1, and

their solution is

∂ỹ(0)

∂st
= α̃tet + Λα̃M

′
ζΛ

−1
α̃

∂ỹ(0)

∂st
=⇒ ∂ỹ(0)

∂st
= Λα̃(I −M ′

ζ)
−1et.

Taking a derivative of (5), we have

∂πs(0)

∂st
= αsg

′
s(1− ζ · qs)

∑
r∈Θ

qsr
∂yr(0)

∂st

= αsµζ,s
gs(1− ζ · qs)

1− ζ · qs

∑
r∈Θ

qsr
∂yr(0)

∂st

= αsgs(1− ζ · qs)µζ,s

∑
r∈Θ

qsζ,r
∂ỹr(0)

∂st

for s ̸= t, and analogously

∂πt(0)

∂st
= αtgt(1− ζ · qt)

(
1 + µζ,t

∑
r∈Θ

qtζ,r
∂ỹr(0)

∂st

)

Writing Λ for a diagonal matrix with Λtt = αtgt(1− ζ · qt), in matrix notation this is

∂π(0)

∂st
= αtgt(1− ζ · qt)et +MΛ−1

α̃

∂ỹ(0)

∂st
= αtgt(1− ζ · qt)et + ΛMζ(I −M ′

ζ)
−1et.

We therefore have

βt(0) =
1

pt

∂π(0)

∂st
=

1

pt
p⊺∂π(0)

∂st
= αtgt(1− ζ · qt) +

1

pt
p⊺ΛMζ(I −M ′

ζ)
−1et,

and a similar counting argument as in the proof of Theorem 1 shows this is equivalent to
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the stated expression.

Proof of Proposition 1

I prove the following more general result that also applies to the viral case—taking ζ = 0

gives the stated Proposition.

Proposition 5. Suppose neighbor type distributions follow a simple homophily model with

parameter h. Write x for the vector (I −M ′
ζ)

−11, and define x =
∑

t∈Θ(αt − ζt)q
∗
t xt. Then

x =

∑
t∈Θ

(αt−ζt)(1−ζ·qt)q∗t
1−ζ·qt−hµ′

ζ,t(αt−ζt)

1− (1− h)
∑

t∈Θ
(αt−ζt)µ′

ζ,tq
∗
t

1−ζ·qt−hµ′
ζ,t(αt−ζt)

,

and for each t ∈ Θ, we have

βt = αtgt(1− ζ · qt)

(
1 + µζ,t

(
(h(αt − ζt) + (1− h)x)

1− ζ · qt − hµ′
ζ,t(αt − ζt)

))
. (25)

Proof. Recall entry ts of M ′
ζ is

αζ,sq
t
ζ,sµ

′
ζ,t =

αs − ζs
1− ζs

qts(1− ζs)

1− ζ · qt
µ′
ζ,t =

qts(αs − ζs)

1− ζ · qt
µ′
ζ,t.

We can rewrite x = (I − M ′
ζ)

−11 as x = 1 + M ′
ζx. This defines a system of equations in

which equation t is

xt = 1 +
µ′
ζ,t

1− ζ · qt

(
h(αt − ζt)xt + (1− h)

∑
s∈Θ

(αs − ζs)q
∗
sxs

)
.

Substituting x =
∑

s∈Θ(αs − ζs)q
∗
sxs and solving, we get

xt =
1− ζ · qt + µ′

ζ,t(1− h)x

1− ζ · qt − hµ′
ζ,t(αt − ζt)

.
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Now multiply by (αt − ζt)q
∗
t and sum over t ∈ Θ to get

x =
∑
t∈Θ

q∗t (αt − ζt)
(
1− ζ · qt + µ′

ζ,t(1− h)x
)

1− ζ · qt − hµ′
ζ,t(αt − ζt)

,

which implies

x

(
1− (1− h)

∑
t∈Θ

(αt − ζt)µ
′
ζ,tq

∗
t

1− ζ · qt − hµ′
ζ,t(αt − ζt)

)
=
∑
t∈Θ

(αt − ζt)(1− ζ · qt)q∗t
1− ζ · qt − hµ′

ζ,t(αt − ζt)
,

and hence

x =

∑
t∈Θ

(αt−ζt)(1−ζ·qt)q∗t
1−ζ·qt−hµ′

ζ,t(αt−ζt)

1− (1− h)
∑

t∈Θ
(αt−ζt)µ′

ζ,tq
∗
t

1−ζ·qt−hµ′
ζ,t(αt−ζt)

as desired.

To complete the proof, we compute the multipliers:

βt = αtgt(1− ζ · qt) (1 + e⊺tMζx)

= αtgt(1− ζ · qt)

(
1 +

∑
s∈Θ

mζ,tsxs

)

= αtgt(1− ζ · qt)

(
1 +

µζ,t

1− ζ · qt

∑
s∈Θ

qts(αs − ζs)xs

)

= αtgt(1− ζ · qt)

(
1 +

µζ,t

1− ζ · qt
((1− h)x+ h(αt − ζt)xt)

)
.

Substituting

xt =
1− ζ · qt + µ′

ζ,t(1− h)x

1− ζ · qt − hµ′
ζ,t(αt − ζt)

,
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we get

(1− h)x+ h(αt − ζt)xt = (1− h)x+ h(αt − ζt)
1− ζ · qt + µ′

ζ,t(1− h)x

1− ζ · qt − hµ′
ζ,t(αt − ζt)

= (1− ζ · qt)
h(αt − ζt) + (1− h)x

1− ζ · qt − hµ′
ζ,t(αt − ζt)

,

implying the result.

Proof of Proposition 2

Write q∗ for the unbiased neighbor type distribution and write {qt}t∈Θ for a fixed col-

lection of neighbor type distributions with qtt ≥ q∗t and qts ≤ q∗s for t ̸= s. I first show that

β = β̂ when qt = q∗ for each t. This is exactly the simple homophily model with h = 0, so

we can substitute into the formula derived in the proof of Proposition 5 to get

1

α
βt = 1 +

αµt

1− α
∑

s∈Θ µ′
sq

∗
s

= 1 +
αµt

1− αµ′ .

Averaging over types with weights pt exactly gives β̂ as desired.

Now define qt(x) = xq∗ + (1 − x)qt, and write βt(x) for the seed multiplier of type t

under the distributions {qt(x)}t∈Θ, holding fixed the degree distributions and susceptibilities.

Taking a weighted average of the multipliers and differentiating with respect to x gives

1

α

∂β(x)

∂x
= p⊺

(
∂M(x)

∂x
(I −M ′(x))−1 +M(x)(I −M ′(x))−1∂M

′(x)

∂x
(I −M ′(x))−1

)
1

= p⊺

(
∂M(x)

∂x
+M(x)(I −M ′(x))−1∂M

′(x)

∂x

)
(I −M ′(x))−11.
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Using the consistency condition psµsq
s
t = ptµtq

t
s, the vector p⊺ ∂M(x)

∂x
has entry s is equal to

α
∑
t∈Θ

ptµt(q
t
s − q∗s) = α

∑
t∈Θ

psµs(q
s
t − q∗t ) = 0.

We therefore have

1

α

∂β(x)

∂x
= p⊺M(x)(I −M ′(x))−1∂M

′(x)

∂x
(I −M ′(x))−11.

We can equivalently write the right hand side above as 1⊺DX1 in which D is a diagonal

matrix with entries p⊺M(x) and X = (I − M ′(x))−1 ∂M
′(x)

∂x
(I − M ′(x))−1. To finish the

proof, I show that DX is a limit of positive definite matrices, implying the derivative is

non-negative.

First, note that if X is positive definite, then then DX is as well. In this case, the

leading principal minors of X have strictly positive determinants, and since D is diagonal

with positive entries, the leading principal minors of DX also have positive determinants.

We conclude that DX is positive definite whenever X is. Second, observe that I −M ′(x) is

positive definite because ρ(M ′(x)) < 1, implying the eigenvalues of I −M ′(x) are all strictly

positive. Hence, we know that (I − M ′(x))−1 is positive definite. The matrix X is then

positive definite if we can show that ∂M ′(x)
∂x

is positive definite.

We can readily show that ∂M ′(x)
∂x

is positive semi-definite as its eigenvalues must be non-

negative. Entry ts of this matrix equals αµ′
t(q

t
s − q∗s)—by assumption, the diagonal entries

are non-negative, and each row sums to zero. Defining λ = maxt αµ
′
t(q

t
t − q∗t ), we can write

∂M ′(x)

∂x
= λI − A

for a positive matrix A with row sums bounded by λ. The Perron root of A is therefore

bounded by λ, implying all eigenvalues of λI − A are non-negative. The matrix Xϵ =
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(λ+ ϵ)I−A is then positive definite for any ϵ > 0, so our above work implies DXϵ is positive

definite, and 1⊺DXϵ1 > 0 for any ϵ. Taking a limit as ϵ → 0 shows that 1
α
∂β(x)
∂x

≥ 0 for all

x ∈ [0, 1] as desired. In particular, we have β = β(1) ≥ β(0) = β̂.

Proof of Proposition 3

With a Poisson degree distribution, the forward distribution is the same as the degree

distribution, so we have

yt(s) = πt(s) = αt

(
1− (1− st)gt(1− π(s) · qt)

)
= αt

(
1− (1− st)e

−µtπ(s)·qt
)
.

Differentiating for each type s ∈ Θ with respect to st and solving gives

∂πs(s)

∂st
=

αs(1− ss)(1− h)
∑

r∈Θ q∗r
∂πr(s)
∂st

1− αsh(1− ss)e−µsπ(s)·qs e−µsπ(s)·qs

for s ̸= t, and

∂πt(s)

∂st
=

αt + αt(1− st)(1− h)
∑

r∈Θ q∗r
∂πr(s)
∂st

1− αth(1− st)e−µtπ(s)·qt e−µtπ(s)·qt

.

Weighting by q∗r and summing over types gives

∑
r∈Θ

q∗r
∂πr(s)

∂st
=

αtq
∗
t e

−µtπ(s)·qt

1− αth(1− st)e−µtπ(s)·qt

+

(∑
r∈Θ

q∗r
∂πr(s)

∂st

)∑
r∈Θ

αr(1− sr)q
∗
r(1− h)e−µrπ(s)·qr

1− αrh(1− sr)e−µrπ(s)·qr

=
αtq

∗
t e

−µtπ(s)·qt

1− h(αt − πt(s))
+

(∑
r∈Θ

q∗r
∂πr(s)

∂st

)∑
r∈Θ

q∗r(1− h)(αr − πr(s))

1− h(αr − πr(s))
,

xiv



in which the last line uses the fixed point equation for πr(s). Solving, we get

∑
r∈Θ

q∗r
∂πr(s)

∂st
=

αtq∗t e
−µtπ(s)·qt

1−h(αt−πt(s))

1−
∑

r∈Θ
q∗r (1−h)(αr−πr(s))
1−h(αr−πr(s))

.

Substituting this and simplifying, we obtain

∂π(s)

∂st
=
∑
s∈Θ

ps
∂πs(s)

∂st
=

αte
−µtπ(s)·qt

1− h(αt − πt(s))
(pt +X) ,

in which

X =
(1− h)

∑
r∈Θ pr

q∗r (αr−πr(s))
1−h(αr−πr(s))

1− (1− h)
∑

r∈Θ
q∗r (αr−πr(s))
1−h(αr−πr(s))

.

The result follows after substituting qt = het + (1− h)q∗ and q∗t = ptµt∑
s∈Θ psµs

.

Proof of Proposition 4

First note that if ρ(M ′) ≤ 1 with m = 0, this is clearly the solution, and it trivially

satisfies the conditions in the proposition. Otherwise, it should be clear that the constraint

must be met with equality, so at the optimal m∗, we have M ′x = x for some non-zero

vector x—if h < 1, the matrix M ′ is non-negative and irreducible, so the entries of x are

non-negative. This yields the system of equations

xt = µ′
t

(
hαt(1−m∗

t )xt + (1− h)
∑
s∈Θ

αs(1−m∗
s)q

∗sxs

)
.

Note in any solution we must have hαtµ
′
t(1−m∗

t ) < 1, since otherwise this implies xt > xt,

and the spectral radius cannot equal 1, and we can always ensure this by choosing m∗
t

sufficiently large. We can rearrange the above equation to get

xt =
µ′
t(1− h)

∑
s∈Θ αs(1−m∗

s)q
∗sxs

1− hαtµ′
t(1−m∗

t )
.

xv



Weighting each equation by αt(1−m∗
t )q

∗
t and summing, we get

∑
t∈Θ

αt(1−m∗
t )q

∗txt =

(∑
s∈Θ

αs(1−m∗
s)q

∗sxs

)(∑
t∈Θ

αt(1−m∗
t )q

∗
tµ

′
t(1− h)

1− hαtµ′
t(1−m∗

t )

)
.

Since x is the eigenvector corresponding to the Perron root, the left hand side is strictly

positive, so we know the second term in parentheses on the right must equal 1. Substituting

the definition of q∗t yields the first condition. This reduces our problem to minimizing m ·p,

subject to the above equation, and the second claim is an immediate consequence of the first

order conditions.

Finally, for the case h = 1, we need each subgraph to be non-viral, and the condition for

that is precisely αtµ
′
t(1−m∗

t ) ≤ 1, which is equivalent to m∗ ≥ αtµ′
t−1

αtµ′
t
.
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