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Appendix B. Rates of convergence to the PDE solution

The results of Barles and Jakobsen (2007, Theorem 3.1) provide a bound on the

rate of convergence of V ∗
n (·) to V ∗(·). The technical requirements to obtain this

are described in their Assumptions A2 and S1-S3. Assumptions A2 and S1-S2 are

straightforward to verify using the regularity conditions given for Theorem 2 with

the additional requirement sups |µ+(s)| <∞.

Assumption S3 of Barles and Jakobsen (2007) is a strengthening of the consis-

tency requirement in (A.3) and (A.4). Suppose that the test function ϕ ∈ C∞(S)

is such that
∣∣∣∂β0
t D

β
(x,q)ϕ(x, q, t)

∣∣∣ ≤ Kε1−2β0−∥β∥ for all β0 ∈ N, β ∈ N× N. Then by

a third order Taylor expansion as in the proof of Theorem 2 and some tedious but

straightforward algebra,

∣∣∣nSn(z, ϕ(z) + ρ, [ϕ+ ρ])− F (D2ϕ(s), Dϕ(s), s)
∣∣∣ ≤ E(n, ε) ≡ K̄

n1/2ε2 ,

where K̄ depends only on K, defined above, and the upper bounds on µ+(·), µ(·).

The above suffices to verify the Assumption S3 of Barles and Jakobsen (2007);

note that the definition of S(·) in that paper is equivalent to nSn(·) here.

Under the above conditions, Barles and Jakobsen (2007, Theorem 3.1) implies

V ∗ − V ∗
n > sup

ε
(ε+ E(n, ε)) > n−1/6 and

V ∗
n − V ∗ > sup

ε

(
ε1/3 + E(n, ε)

)
> n−1/14. (B.1)

The asymmetry of the rates is an artifact of the techniques of Barles and Jakobsen

(2007). The rates are also far from optimal. The results of Barles and Jakobsen

(2007), while being relatively easy to apply, do not exploit any regularity properties

of the approximation scheme. There do exist approximation schemes for PDE (2.8)

that converge at the faster n−1/2 rates. While it is unknown whether (3.1) is one

of them, we do find that in practice the quality of approximation of V ∗ with V ∗
n

is far better than what (B.1) appears to suggest; the Monte-Carlo simulation in

Figure B.1 attests to this (the simulation employs a normal prior µ ∼ N (0, 502)

with σ = 5).
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A: Thompson sampling B: Optimal Bayes policy
Note: The parameter values are µ0 = 0, ν = 50 and σ = 5. The dashed red lines denote the values of
asymptotic Bayes risk. Black lines within the bars denote the Bayes risk in finite samples. The bars
describe the interquartile range of regret.

Figure B.1. Monte-Carlo simulations

Appendix C. Lower bounds on minimax risk

Recall the definition of Vn,π(0;h) from Section 5.4 as the frequentist risk under

some π ∈ Π. We also make the dependence of V ∗
n (0), V ∗(0) on the priors m0 ex-

plicit by writing them as V ∗
n (0;m0), V ∗(0;m0). Clearly, infπ∈Π sup|h|≤Γ Vn,π(0;h) ≥

V ∗
n (0;m0) for any prior m0 supported on |h| ≤ Γ. So, Theorem 5 implies

lim
n→∞

inf
π∈Π

sup
|h|≤Γ

Vn,π(0;h) ≥ sup
m0∈P

V ∗(0;m0)

where P is the set of all compactly supported distributions. We now claim that

sup
m0∈P

V ∗(0;m0) = V̄ ∗, (C.1)

where V̄ ∗ is the asymptotic minimax risk in the Gaussian setting. The above is

easily shown for scalar θ by transforming the state variable x to µ̇0x and replacing

σ2 with µ̇2
0σ

2, following which the infinitesimal generator (5.6) becomes equivalent

to the one in (2.8) since µ(s) = µ̇0h(s). The argument for vector θ is given below.

C.0.1. Proof of (C.1) for vector θ. We employ the same notation as in Section 5.3.

It is without loss of generality to suppose Σ = I, otherwise, we can perform the

subsequent analysis after applying the transformations h ← Σ−1/2h, x ← Σ−1/2x

and µ̇0 ← Σ1/2µ̇0. Consider the class, P̄ , of priors, m0, over h supported on

µ · µ̇0/(µ̇⊺
0µ0), where µ ∈ R can take on various values (so m0 is, in essence,

a prior on µ). For these priors, µ̇⊺
0h = µ. Recall that under the approximate
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posterior, p̃n(h|x, q) ∝ N (x|qh, qΣ) ·m0(h). It is then easily verified that, for the

class P̄ , p̃n(h|x, q) depends on x only through µ̇⊺
0x. Furthermore, we also have

h(s) = µ(s) · µ̇0/(µ̇⊺
0µ0), where µ(s), h(s) are the posterior means of µ, h under

p̃n(·|x, q).

Choose {ϕi}d−1
i=1 such that {µ̇0/µ̇

⊺
0µ0, ϕ1, . . . , ϕd−1} are orthonormal and span

Rd. Suppose we transform the state variables x to z as z = Px, where P ⊺ =

[µ̇0, ϕ1, . . . , ϕd−1]. Clearly, P is invertible, and the first component of z is x̄ := µ̇⊺
0x.

Consider the generator L[·] in (5.7). Following the transformation of variables,

h(s)⊺Dxf = µ(s)
µ̇⊺

0µ̇0
µ̇⊺

0 · P ⊺Dzf = µ(s) ·
[
1,01×(d−1)

]
·Dzf = µ(s)∂x̄f,

and Tr [D2
xf ] = Tr [PP ⊺ ·D2

zf ]. Clearly, PP ⊺ is block diagonal, with diagonal

entries µ̇⊺
0µ̇0 and I(d−1). Hence, we can write Tr [D2

xf ] = (µ̇⊺
0µ̇0) · ∂2

x̄f + Tr [D2
x̃f ]

where x̃ is the part of z excluding the first component. Combining the above, and

defining σ2 := µ̇⊺
0µ̇0 (more generally, for Σ ̸= I, this would be µ̇⊺

0Σµ̇0), we have

thus shown L[f ](s) = ∂qf + µ(s)∂x̄f + 1
2σ

2∂2
x̄f + 1

2Tr [D2
x̃f ] .

The minimal Bayes risk, V ∗(s;m0), solves the PDE:

∂tf(s) + µ+(s) + min {−µ(s) + L[f ](s), 0} = 0 if t < 1; f(s) = 0 if t = 1.

Now, p̃n(h|x, q) depends on x only though x̄, so µ(s) ≡ Ẽ[µ|s], µ+(s) ≡ Ẽ[µI{µ ≥

0}|s] are functions only of x̄, q. Hence, by similar viscosity solution arguments as

in the proof of Theorem 6 (Appendix F), it follows that V ∗(s;m0) solves

∂tf(s̄) + µ+(s̄) + min
{
−µ(s̄) + L̄[f ](s̄), 0

}
= 0 if t < 1; f(s̄) = 0 if t = 1,

where s̄ := (x̄, q, t) and L̄[f ](s̄) = ∂qf + µ(s̄)∂x̄f + 1
2σ

2∂2
x̄f . But the above has the

same form as PDE (2.8) in the Gaussian setting if we interpret m0 as a prior on

µ. Hence, supm0∈P̄ V
∗(0;m0) = V̄ ∗, the minimax risk in the Gaussian regime.

Since P̄ ⊂ P , the set of all compactly supported priors on h, we have thereby

derived a lower bound on minimax risk. As an aside, we note that our proof also

goes through after replacing P̄ with the class of product priors defined in Section

6; the argument would then be similar to the proof of Theorem 6, see Appendix F.
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Appendix D. Proof of Theorem 5

Recall that yi = {Yk}ik=1 denotes the rewards after i pulls of the arms. De-

note by E(yn,h)[·] the expectation under the ‘true’ joint density dSn(yn, h) :={∏n
i=1 pθ0+h/

√
n(Yi)

}
· m0(h). Let ν(yn) := ∏n

i=1 ν(Yi), pn,θ(yn) := ∏n
k=1 pθ(Yk)

and P̄n be the probability measure corresponding to the ‘true’ marginal den-

sity dP̄n(yn) :=
∫
pn,θ0+h/

√
n(yn) · m0(h)dν(h). We use Ēn[·] to denote its cor-

responding expectation. As first defined in Appendix A.3, let ˜̄Pn denote the mea-

sure (but not necessarily a probability) corresponding to the density d ˜̄Pn(yn) :=∫
dΛn,h(yn) ·m0(h)dν(h). In what follows, we denote dΛn,h(yn) by λn,h(yn) for ease

of notation, and note that

λn,h(yn) := dΛn,h(yn) ≡ dΛn,h(yn)
dν(yn) = exp

{ 1
σ2hxn −

1
2σ2h

2
}
pn,θ0(yn).

Finally, ∥·∥TV denotes the total variation metric between two measures.

The proof follows the basic outline established in Appendix A.3. Recall the

notation used there, as well as the expressions for Vπ,n(0), Ṽπ,n(0) given in (A.7)

and (A.8).

Step 1 (Approximation of Vπ,n(0) with Ṽπ,n(0)): We start by proving some conver-

gence properties of ˜̄Pn and p̃n(·|ynq) to P̄n and pn(·|ynq). The proofs here make

heavy use of the SLAN property (5.2) established in Lemma 2. Let An denote the

event
{
yn : supq |xnq| ≤M

}
. For any measure P , define P ∩ An as the restriction

of P to the set An. By Lemma 6 in Appendix E, for any ϵ > 0 there exists M <∞

such that

lim
n→∞

P̄n (Acn) ≤ ϵ, (D.1)

lim
n→∞

∥∥∥P̄n ∩ An − ˜̄Pn ∩ An
∥∥∥

TV
= 0, and (D.2)

lim
n→∞

sup
q

Ēn
[
IAn ∥pn(·|ynq)− p̃n(·|ynq)∥TV

]
= 0. (D.3)

The measures Λn,h(·), ˜̄Pn(·) are not probabilities as they need not integrate to 1.

But Lemma 6 also shows the following: Λn,h(·), ˜̄Pn(·) are σ-finite and contiguous

with respect to Pn,θ0 , and letting Yn denote the sample space of yn,

lim
n→∞

˜̄Pn(Yn) = 1 and lim
n→∞

˜̄Pn(Acn) ≤ ϵ. (D.4)
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The first result in (D.4) implies that ˜̄Pn is almost a probability measure.

Based on the above, we show that

lim
n→∞

sup
π∈Π

∣∣∣Vπ,n(0)− Ṽπ,n(0)
∣∣∣ = 0 (D.5)

by bounding each term in the following expansion:

Vπ,n(0)− Ṽπ,n(0)

= Ēn

IAc
n

1
n

n−1∑
j=0

E
[
Rn(h, πj+1)|ynqj(π)

]+ Ẽn

IAc
n

1
n

n−1∑
j=0

Ẽ
[
Rn(h, πj+1)|ynqj(π)

]
+
(
Ēn − Ẽn

) IAn

1
n

n−1∑
j=0

Ẽ
[
Rn(h, πj+1)|ynqj(π)

]
+ Ēn

IAn

1
n

n−1∑
j=0

{
E
[
Rn(h, πj+1)|ynqj(π)

]
− Ẽ

[
Rn(h, πj+1)|ynqj(π)

]} . (D.6)

Because of the compact support of the prior, the posteriors pn(·|ynq), p̃n(·|ynq) are

also compactly supported on |h| ≤ Γ for all q. On this set |Rn(h, πj)| ≤ bΓ for

some b < ∞ by Assumption 1(iii). The first two quantities in (D.6) are therefore

bounded by bΓP̄n(Acn) and bΓ ˜̄Pn(Acn). By (D.1) and (D.4), these can be made

arbitrarily small by choosing a suitably large M in the definition of An. The third

term in (D.6) is bounded by bΓ
∥∥∥P̄n ∩ An − ˜̄Pn ∩ An

∥∥∥
TV

. By (D.2) it converges to 0

as n→∞. The expression within {} brackets in the fourth term of (D.6) is smaller

than bΓ
∥∥∥pn(·|ynqj(π))− p̃n(·|ynqj(π))

∥∥∥
TV

. Hence, by the linearity of expectations,

the term overall is bounded (uniformly over π ∈ Π) by

bΓ sup
q

Ēn
[
IAn ∥pn(·|ynq)− p̃n(·|ynq)∥TV

]
,

which is o(1) because of (D.3). We have thus shown (D.5).

Step 2 (Approximating V ∗
n (0) with a recursive formula): The measure, ˜̄Pn , used

in the outer expectation in the definition of Ṽπ,n(0) is not a probability. This can

be rectified as follows: First, note that the density λn,h(·) can be written as

λn,h(yn) =
n∏
i=1

{
exp

{
h√
n
ψ(Yi)−

h2

2σ2n

}
pθ0(Yi)

}
=

n∏
i=1

p̃n(Yi|h), (D.7)
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where19

p̃n(Yi|h) := exp
{
h√
n
ψ(Yi)−

h2

2σ2n

}
pθ0(Yi).

Using (D.7), Lemma 7 shows that ˜̄Pn can be disintegrated as

d ˜̄Pn(yn) =
n∏
i=1

{∫
p̃n(Yi|h)p̃n(h|yi−1)dν(h)

}
, (D.8)

with p̃n(h|y0) := m0(h). Now define cn,i :=
∫
{
∫
p̃n(Yi|h)dν(Yi)} p̃n(h|yi−1)dν(h),

and let P̃n denote the probability measure

P̃n(yn) =
n∏
i=1

P̃n(Yi|yi−1), where

dP̃n(Yi|yi−1) := 1
cn,i

∫
p̃n(Yi|h)p̃n(h|yi−1)dν(h). (D.9)

Note that cn,i is a random (because it depends on yi−1) integration factor ensuring

P̃n(yi+1|yi), and therefore P̃n, is a probability. In Lemma 8, it is shown that there

exists some non-random C <∞ such that

sup
i
|cn,i − 1| ≤ Cn−c for any c < 3/2, (D.10)

and furthermore,
∥∥∥P̃n − ˜̄Pn

∥∥∥
TV
→ 0 as n→∞. Hence, letting

V̆π,n(0) := EP̃n

 1
n

n−1∑
j=0

Ẽ
[
Rn(h, πj+1)|ynqj(π)

] ,
where EP̃n

[·] is the expectation with respect to P̃n, one obtains the approximation

sup
π∈Π

∣∣∣Ṽπ,n(0)− V̆π,n(0)
∣∣∣ ≤ bΓ

∥∥∥P̃n − ˜̄Pn
∥∥∥

TV
→ 0. (D.11)

See the arguments following (D.6) for the definition of b.

Since p̃n(h|yi−1) ≡ p̃n(h|x = xi−1, q = (i − 1)/n) by (5.5) with p̃n(h|x = 0, q =

0) := m0(h), it follows from (D.9) that P̃n(Yi|yi−1) ≡ P̃n(Yi|x = xi−1, q = (i−1)/n).

Define V̆ ∗
n (0) = infπ∈Π V̆π,n(0). Recall that for a given π ∈ {0, 1}, Ẽ

[
Rn(h, π)|ynqj

]
≡

Ẽ
[
Rn(h, π)|xnqj

, qj
]

by (5.5). Furthermore, we have noted above that the condi-

tional distribution of the future values of the rewards, P̃n(Ynqj+1|ynqj
), also depends

only on (xnqj
, qj). Based on this, standard backward induction/dynamic program-

ming arguments imply V̆ ∗
n (0) can be obtained as the solution at (x, q, t) = (0, 0, 0)

19Despite the notation, p̃n(Yi|h) is not a probability density.
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of the recursive problem

V̆ ∗
n (x, q, t) = min

π∈{0,1}

{
Ẽ [Rn(h, π)|x, q]

n
+ EP̃n

[
In · V̆ ∗

n

(
x+ πσ2ψ(Ynq+1)√

n
, q + π

n
, t+ 1

n

)∣∣∣∣∣ s
]}

;

if t < 1,

V̆ ∗
n (x, q, 1) = 0, (D.12)

where EP̃n
[ ·| s] denotes the expectation under P̃n(Ynq+1|ynq) ≡ P̃n(Ynq+1|x =

xnq, q) and In = I{t ≤ 1− 1/n}.

Now, Step 2 and (D.11) imply limn→∞ |V ∗
n (0) − V̆ ∗

n (0)| = 0. But, the value

π∗ ∈ {0, 1} that attains the minimum in (D.12) depends only on s. We would have

thus obtained the approximation, V̆ ∗
n (0), to V ∗

n (0) even if we restricted the policy

class to ΠS . This proves the first claim of the theorem.

Step 3 (Auxiliary results for showing PDE approximation of (D.12)): We now state

a couple of results that will be used to show that the solution, V̆ ∗
n (·), to (D.12)

converges to the solution of a PDE.

The first result is that, for any given π ∈ {0, 1}, Ẽ [Rn(h, π)|x, q] can be ap-

proximated by µ+(s)− πµ(s) uniformly over (x, q). To this end, denote R̄(h, π) =

µ̇0h (I(µ̇0h > 0)− π). Assumption 1(iii) implies sup|h|≤Γ |µn(h)−µ̇0h/
√
n| ≤ Γ2δn/

√
n.

Combining this with Lipschitz continuity of xI(x > 0)− πx gives

sup
|h|≤Γ;π∈{0,1}

∣∣∣Rn(h, π)− R̄(h, π)
∣∣∣ ≤ 2Γ2δn.

Recalling the definitions of µ+(s), µ(s) from the main text, the above implies

sup
(x,q);π∈{0,1}

∣∣∣Ẽ [Rn(h, π)|x, q]−
(
µ+(s)− πµ(s)

)∣∣∣ ≤ 2Γ2δn → 0. (D.13)

The next result is given as Lemma 9 in Appendix E. It states that there exists

ξn → 0 independent of both s and π ∈ {0, 1} such that

√
nσ2EP̃n

[πψ(Ynq+1)| s] = πh(s) + ξn, and (D.14)

σ4EP̃n

[
πψ2(Ynq+1)

∣∣∣ s] = πσ2 + ξn. (D.15)

Furthermore,

EP̃n

[
|ψ(Ynq+1)|3

∣∣∣ s] <∞. (D.16)
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Step 4 (PDE approximation of (D.12)): The unique solution, V̆ ∗
n (s), to (D.12)

converges locally uniformly to V ∗
n (s), the viscosity solution to PDE (2.8). This

follows by similar arguments as in the proof of Theorem 2:

Clearly the scheme defined in (D.12) is monotonic. Assumption 1(iii) implies

there exists b < ∞ such that supπ,|h|≤Γ |Rn(h, π)| ≤ bΓ. Hence, the solution to

(D.12) is uniformly bounded, with |V̆ ∗
n (s)| ≤ bΓ independent of s and n. This

proves stability. Finally, consistency of the scheme follows by similar arguments as

in the proof of Theorem 2, after making use of (D.13) and (D.14) - (D.16).

This completes the proof of the second claim of the theorem.

Step 5 (Proof of the third claim): Steps 1 and 2 imply limn→∞ Vπ∗
∆t
,n(0)−V̆π∗

∆t
n(0) =

0. In addition, we can follow the arguments in Step 2 to express V̆π∗
∆t
n(0) in

recursive form, in a manner similar to the definition of V ∗
∆t,n,l(·) in the proof of

Theorem 4; the only difference is that the operator S̃∆t [ϕ] (x, q) in that proof

should now read as the solution at (x, q,∆t) of the recursive equation

f (x, q, τ) = Ẽ [Rn(h, 1)|x, q]
n

+ EP̃n

[
f

(
x+ σ2ψ(Ynq+1)√

n
, q + 1

n
, τ − 1

n

)∣∣∣∣∣ s
]

; τ > 0

f (x, q, 0) = ϕ(x, q).

Now, an application of Barles and Jakobsen (2007, Theorem 3.1), using (D.13) -

(D.16) to verify the requirements (cf. Appendix B), gives
∣∣∣S̃∆t

[
V ∗

∆t,l+1

]
− S∆t

[
V ∗

∆t,l+1

]∣∣∣ ≲
min

{
n−1/14, ξn, δn

}
. The rest of the proof is analogous to that of Theorem 4.

Appendix E. Supporting lemmas for the proof of Theorem 5

We implicitly assume Assumption 1 for all the results in this section apart from

Lemma 1.

Lemma 1. Let p(Y |h) denote the likelihood of Y given some parameter h with

prior distribution m0(h). Under the one-armed bandit experiment, the posterior

distribution, pn(·|Ft), of h given all information until time t satisfies

pn(h|Ft) ∝


⌊nq(t)⌋∏
i=1

p(Yi|h)

 ·m0(h). (E.1)

In particular, the posterior distribution is independent of the past values of actions.
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Proof. Note that Ft is the sigma-algebra generated by ξt ≡ {{Aj}⌊nt⌋
j=1 , {Yi}

⌊nq(t)⌋
i=1 };

here, j refers to the time period while i refers to number of pulls of the arm. The

claim is shown using induction. Clearly, it is true for t = 1. For any t > 1, we

can think of pn(h|ξt−1) as the revised prior for µ. Suppose that At = 1. Then

nq(t) = nq(t− 1) + 1, and

pn(h|ξt) ∝ p(Yt, At = 1|ξt, h) · pn(h|ξt−1)

∝ π(At = 1|ξt−1) · p(Yt|h) · pn(h|ξt−1)

∝ p(Yt|h) · pn(h|ξt−1) =


⌊nq(t)⌋∏
i=1

p(Yi|h)

 ·m0(h).

Alternatively, suppose At = 0. Then, nq(t) = nq(t − 1), and p(At = 0|ξt, h) =

π(At = 0|ξt) is independent of h, so

pn(h|ξt) ∝ p(At = 0|ξt, h) · pn(h|ξt−1)

∝ pn(h|ξt−1) =


⌊nq(t)⌋∏
i=1

p(Yi|h)

 ·m0(h).

Thus the induction step holds under both possibilities, and the claim follows. □

Lemma 2. Suppose Pθ is quadratic mean differentiable as in (5.1). Then Pθ

satisfies the SLAN property as defined in (5.2).

Proof. The proof builds on Van der Vaart (2000, Theorem 7.2). Set pn := dPθ0+h/
√
n/dν,

p0 := dPθ0/dν and Wni := 2
[√
pn/p0(Yi)− 1

]
. We use E[·] to denote expectations

with respect to Pn,θ0 . Quadratic mean differentiability implies E[ψ(Yi)] = 0 and

E[ψ2(Yi)] = 1/σ2, see Van der Vaart (2000, Theorem 7.2).

It is without loss of generality for this proof to take the domain of q to be

{0, 1/n, 2/n, . . . , 1}. For any such q,

E

[ nq∑
i=1

Wni

]
= 2nq

(∫ √
pn · p0dν − 1

)
= −nq

∫
(√pn −

√
p0)2 dν.

Now, (5.1) implies there exists ϵn → 0 such that∣∣∣∣∣n
∫

(√pn −
√
p0)2 dν − h2

4σ2

∣∣∣∣∣ ≲ ϵnh
2.
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Hence, for any given h,

sup
q

∣∣∣∣∣E
[ nq∑
i=1

Wni

]
− qh2

4σ2

∣∣∣∣∣→ 0. (E.2)

Next, denote Zni = Wni − hψ(Yi)/
√
n − E[Wni] and Snq = ∑nq

i=1 Zni. Observe

that E[Zni] = 0 since E[ψ(Yi)] = 0. Furthermore, by (5.1),

Var[
√
nZni] = E

[(√
nWni − hψ(Yi)

)2
]
≲ ϵnh

2 → 0. (E.3)

Now, an application of Kolmogorov’s maximal inequality for partial sum processes

gives

P

(
sup
q
|Snq| ≥ λ

)
≤ 1
λ2 Var

[
n∑
i=1

Zni

]
= 1
λ2 Var[

√
nZni].

Combined with (E.2) and (E.3), the above implies
nq∑
i=1

Wni = h√
n

nq∑
i=1

ψ(Yi)−
qh2

4σ2 + oPn,θ0
(1) uniformly over q. (E.4)

We now employ a Taylor expansion of the logarithm ln(1+x) = x− 1
2x

2+x2R(2x)

where R(x)→ 0 as x→ 0, to expand the log-likelihood as

ln
nq∏
i=1

pn
p0

(Yi) = 2
nq∑
i=1

ln
(

1 + 1
2Wni

)

=
nq∑
i=1

Wni −
1
4

nq∑
i=1

W 2
ni + 1

2

nq∑
i=1

W 2
niR(Wni). (E.5)

Because of (E.3), we can write
√
nWni = hψ(Yi) + Cni where E[|Cni|2] → 0.

Defining Ani := 2hψ(Yi)Cni+C2
ni, some straightforward algebra then gives nW 2

ni =

h2ψ2(Yi) + Ani with E[|Ani|] → 0. Now, by the uniform law of large numbers for

partial sum processes, see e.g., Bass and Pyke (1984), n−1∑nq
i=1 h

2ψ2(Yi) converges

uniformly in Pn,θ0-probability to qh2/σ2. Furthermore, E
[
supq n−1∑nq

i=1 |Ani|
]
≤

E [n−1∑n
i=1 |Ani|] = E[|Ani|] → 0 and therefore n−1∑nq

i=1 Ani converges uniformly

in Pn,θ0-probability to 0. These results yield
nq∑
i=1

W 2
ni = qh2

σ2 + oPn,θ0
(1) uniformly over q.
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Next, by the triangle inequality and Markov’s inequality

nPn,θ0

(
|Wni| > ε

√
2
)
≤ nPn,θ0

(
h2ψ2(Yi) > nε2

)
+ nPn,θ0

(
|Ani| > nε2

)
≤ ε−2h2E

[
ψ2(Yi)I

{
ψ2(Yi) > nε2

}]
+ ε−2E [|Ani|]→ 0

for any given h. The above implies max1≤i≤n |Wni| = oPn,θ0
(1) and consequently,

max1≤i≤n |R(Wni)| = oPn,θ0
(1). The last term on the right hand side of (E.5) is

bounded by max1≤i≤n |R(Wni)| ·
∑n
i=1 W

2
ni and is therefore oPn,θ0

(1) by the above

results. We thus conclude

ln
nq∏
i=1

pn
p0

(Yi) =
nq∑
i=1

Wni −
qh2

4σ2 + oPn,θ0
(1) uniformly over q.

The claim follows by combining the above with (E.4). □

Lemma 3. For any ϵ > 0, there exist M(ϵ), N(ϵ) < ∞ such that M ≥ M(ϵ) and

n ≥ N(ϵ) implies P̄n(Acn) < ϵ. Furthermore, letting Aqn =
{
ynq : supq̃≤q |xnq̃| < M

}
,

and En,0[·], the expectation under Pn,θ0,

sup
q

En,0
[
IAq

n

∥∥∥∥∥dPnq,θ0+h/
√
n

dPnq,θ0

(ynq)−
dΛnq,h

dPnq,θ0

(ynq)
∥∥∥∥∥
]

= o(1) ∀ {h : |h| ≤ Γ}.

Proof. Set An,M =
{
yn : supq |xnq| < M

}
and Pnq,h = Pnq,θ0+h/

√
n. Note that xnq is

a partial sum process with mean 0 under Pn,0 := Pn,θ0 . By Kolmogorov’s maximal

inequality, Pn,0
(
supq |xnq| ≥M

)
≤ M−1Var[xn] = M−1σ2. Hence, Pn.0(Acn,Mn

) →

0 for any Mn → ∞. But by (5.2) and standard arguments involving Le Cam’s

first lemma, Pn,h is contiguous to Pn,0 for all h. This implies P̄n :=
∫
Pn,hdm0(h)

is also contiguous to Pn,0 (this can be shown using the dominated convergence

theorem; see also, Le Cam and Yang, p.138). Consequently, P̄n(Acn,Mn
) → 0 for

any Mn →∞. The first claim is a straightforward consequence of this.

For the second claim, we follow Le Cam and Yang (2000, Proposition 6.2):

We first argue that Pnqn,h is contiguous to Pnqn,0 for any deterministic sequence

{qn} such that qn → q̄ ∈ [0, 1]. We have

ln dPnqn,h

dPnqn,0
= 1
σ2hxnqn −

qn
2σ2h

2 + oPn,0(1)

d−−→
Pn,0

N

(
− q̄h

2

2σ2 ,
q̄h2

σ2

)
, (E.6)
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where the equality follows from (5.2), and the weak convergence limit follows from:

(i) weak convergence of xnq under Pn,0 to a Brownian motion process W (q), see e.g.,

Van Der Vaart and Wellner (1996, Chapter 2.12), and (ii) the extended continuous

mapping theorem, see Van Der Vaart and Wellner (1996, Theorem 1.11.1). Since

EPn,0 [f(ynqn)] = EPnqn,0 [f(ynqn)] for any f(·), we conclude from (E.6) and the

definition of weak convergence that

ln dPnqn,h

dPnqn,0

d−−−→
Pnqn,0

N

(
− q̄h

2

2σ2 ,
q̄h2

σ2

)
.

An application of Le Cam’s first lemma then implies Pnqn,h is contiguous to Pnqn,0.

Now, let qn ∈ [0, 1] denote a quantity such that

sup
q

En,0
[
IAq

n

∥∥∥∥∥dPnq,hdPnq,0
− dΛnq,h

dPnq,0

∥∥∥∥∥
]
≤ En,0

[
IAqn

n

∥∥∥∥∥dPnqn,h

dPnqn,0
− dΛnqn,h

dPnqn,0

∥∥∥∥∥
]

+ ϵ

for some arbitrarily small ϵ ≥ 0 (such a qn, ϵ always exist by the definition of

the supremum). Without loss of generality, we may assume qn converges to some

q̄ ∈ [0, 1]; otherwise we can employ a subsequence argument since qn lies in a

bounded set. Define

Gn(q) := IAqn
n

∥∥∥∥∥dPnq,hdPnq,0
− dΛnq,h

dPnq,0

∥∥∥∥∥ .
The claim follows if we show En,0 [Gn(qn)]→ 0. By Lemma 2 and the definition of

Λnq,h(·),

Gn(q) = IAqn
n
· exp

{ 1
σ2hxnq −

q

2σ2h
2
}

(exp δn,q − 1) ,

where supq |δn,q| = o(1) under Pn,0. Since IAqn
n
· exp

{
1
σ2hxnqn − qn

2σ2h
2
}

is bounded

for |h| ≤ Γ by the definition of IAq
n
, this implies Gn(qn) = o(1) under Pn,0. Next,

we argue Gn(qn) is uniformly integrable. The term IAqn
n
· dΛnqn,h/dPnqn,0 in the

definition of Gn(qn) is bounded, and therefore uniformly integrable, for |h| ≤ Γ.

We now prove uniform integrability of dPnqn,h/dPnqn,0, and thereby that of the

remaining term, IAqn
n
· dPnqn,h/dPnqn,0, in the definition of Gn(qn). For any b <∞,

En,0
[
dPnqn,h

dPnqn,0
I
{
dPnqn,h

dPnqn,0
> b

}]
=
∫ dPnqn,h

dPnqn,0
I
{
dPnqn,h

dPnqn,0
> b

}
dPnqn,0

≤ Pnqn,h

(
dPnqn,h

dPnqn,0
> b

)
.
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But,

Pnqn,0

(
dPnqn,h

dPnqn,0
> b

)
≤ b−1

∫ dPnqn,h

dPnqn,0
dPnqn,0 ≤ b−1,

so the contiguity of Pnqn,h with respect to Pnqn,0 implies we can choose b and n̄

large enough such that

lim sup
n≥n̄

Pnqn,h

(
dPnqn,h

dPnqn,0
> b

)
< ϵ

for any arbitrarily small ϵ. These results demonstrate uniform integrability of

Gn(qn) under Pn,0. Since convergence in probability implies convergence in expecta-

tion for uniformly integrable random variables, we have thus shown En,0 [Gn(qn)]→

0, which concludes the proof. □

Lemma 4. limn→∞

∥∥∥P̄n ∩ An − ˜̄Pn ∩ An
∥∥∥

TV
= 0.

Proof. Set Pn,h := Pn,θ0+h/
√
n. By the properties of the total variation metric,

contiguity of P̄n with respect to Pn,0 and the absolute continuity of Λn,h with

respect to Pn,0,

lim
n→∞

∥∥∥P̄n ∩ An − ˜̄Pn ∩ An
∥∥∥

TV

= 1
2 lim
n→∞

∫ {∫
IAn

∣∣∣∣∣dPn,hdPn,0
(yn)− dΛn,h

dPn,0
(yn)

∣∣∣∣∣ dPn,0(yn)
}
m0(h)dν(h).

In the last expression, denote the term within the {} brackets by fn(h). By Lemma

3, fn(h) → 0 for each h. Additionally, IAn · (dΛn,h/dPn,0) is bounded because of

the definition of An and the fact |h| ≤ Γ, while
∫

IAn

∣∣∣∣∣dPn,hdPn,0

∣∣∣∣∣ dPn,0 ≤
∫ dPn,h
dPn,0

dPn,0 ≤ 1.

Hence, fn(h) is dominated by a (suitably large) constant for all n. The dominated

convergence theorem then implies
∫
fn(h)m0(h)dν(h)→ 0. This proves the claim.

□

Lemma 5. supq Ēn
[
IAn ∥pn(·|ynq)− p̃n(·|ynq)∥TV

]
= o(1).

Proof. Set Pn,h = Pn,θ0+h/
√
n, pnq,h(ynq) = dPnq,h(ynq)/dν, λnq,h(ynq) = dΛnq,h(ynq)/dν,

p̄nq(ynq) = dP̄nq(ynq)/dν and ˜̄pnq(ynq) = d ˜̄Pnq(ynq)/dν. Let Snq and S̃nq denote

joint measures over (ynq, h), corresponding to dSnq(ynq, h) = pnq,h(ynq) ·m0(h) and

dS̃nq(ynq, h) = λnq,h(ynq) ·m0(h).
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In the main text, we introduced the approximate posterior p̃n(h|ynq). For-

mally, this is defined via the disintegration dS̃nq(ynq, h) = p̃n(h|ynq) · d ˜̄Pn(ynq),

where d ˜̄Pn(ynq) :=
∫ {

dS̃nq(ynq, h)
}
dν(h). Such a conditional probability al-

ways exists, see, e.g., Le Cam and Yang (2000, p. 136). In a similar vein,

we can disintegrate dSnq = pn(h|ynq) · p̄nq(ynq). Since pn(h|ynq), p̃n(h|ynq) are

both conditional probabilities, we obtain p̄nq(ynq) =
∫
pnq,h(ynq)m0(h)dν(h) and

˜̄pnq(ynq) =
∫
λnq,h(ynq)m0(h)dν(h).

Define Ωn ≡ {yn : pn,0(yn) ̸= 0}. Since the total variation metric is bounded by

1 and P̄n is contiguous with respect to Pn,0,

sup
q

Ēn
[
IAn ∥pn(·|ynq)− p̃n(·|ynq)∥TV

]
= sup

q
Ēn
[
IAn∩Ωn ∥pn(·|ynq)− p̃n(·|ynq)∥TV

]
+o(1).

Now, by the properties of the total variation metric and the disintegration formula,

2 ∥pn(·|ynq)− p̃n(·|ynq)∥TV =
∫
|pn(h|ynq)− p̃n(h|ynq)| dν(h)

=
∫ ∣∣∣∣∣pnq,h(ynq) ·m0(h)

p̄nq(ynq)
− λnq,h(ynq) ·m0(h)

˜̄pnq(ynq)

∣∣∣∣∣ dν(h).

Hence,

2Ēn
[
IAn∩Ωn ∥pn(·|ynq)− p̃n(·|ynq)∥TV

]
≤ Ēn

[
IAn∩Ωn

∫ |pnq,h(ynq)− λnq,h(ynq)|
p̄nq(ynq)

m0(h)dν(h)
]

+ Ēn
[
IAn∩Ωn

∫
λnq,h(ynq)

∣∣∣∣∣ 1
p̄nq(ynq)

− 1
˜̄pnq(ynq)

∣∣∣∣∣m0(h)dν(h)
]

:= B1n(q) +B2n(q)

We start by bounding supq B1n(q). Recall the definition of Aqn ⊇ An from the

statement of Lemma 3. By Fubini’s theorem and the definition of p̄nq(·) as the

density of P̄nq,

B1n(q) ≤
∫ {∫

IAq
n∩Ωn

|pnq,h(ynq)− λnq,h(ynq)| dν(ynq)
}
m0(h)dν(h)

≤
∫ {∫

IAq
n

∣∣∣∣∣dPnq,hdPnq,0
(ynq)−

dΛnq,h

dPnq,0
(ynq)

∣∣∣∣∣ dPnq,0(ynq)
}
m0(h)dν(h), (E.7)
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the change of measure to Pnq,0 in the last inequality being allowed under Ωn. Hence,

sup
q
B1n(q) ≤

∫ {
sup
q

∫
IAq

n

∣∣∣∣∣dPnq,hdPnq,0
(ynq)−

dΛnq,h

dPnq,0
(ynq)

∣∣∣∣∣ dPnq,0(ynq)
}
m0(h)dν(h).

In the above expression, denote the term within the {} brackets by gn(h). By

Lemma 3, gn(h) → 0 for each h. Furthermore, by similar arguments as in the

proof of Lemma 4, gn(h) is bounded by a constant for all n (it is easy to see that

the bound derived there applies uniformly over all q). The dominated convergence

theorem then gives
∫
gn(h)m0(h)dν(h)→ 0, and therefore, supq B1n(q) = o(1).

We now turn to B2n(q). The disintegration formula implies λnq,h(ynq) ·m0(h) =
˜̄pnq(ynq) · p̃n(h|ynq). So,

B2n(q) = Ēn
[
IAn∩Ωn

∫
p̃n(h|ynq)

∣∣∣∣∣ ˜̄pnq(ynq)− p̄nq(ynq)p̄nq(ynq)

∣∣∣∣∣ dν(h)
]

= Ēn
[
IAn∩Ωn

∣∣∣∣∣ ˜̄pnq(ynq)− p̄nq(ynq)p̄nq(ynq)

∣∣∣∣∣
]

≤
∫

IAq
n∩Ωn

∣∣∣ ˜̄pnq(ynq)− p̄nq(ynq)∣∣∣ dν(ynq). (E.8)

By the integral representation for ˜̄pnq(ynq), p̄nq(ynq) the right hand side of (E.8)

equals∫
IAq

n∩Ωn

∣∣∣∣∣
∫ dΛnq,h

dPnq,0
(ynq)dm0(h)−

∫ dPnq,h
dPnq,0

(ynq)dm0(h)
∣∣∣∣∣ dPnq,0(ynq)

≤
∫ {∫

IAq
n

∣∣∣∣∣dΛnq,h

dPnq,0
(ynq)−

dPnq,h
dPnq,0

(ynq)
∣∣∣∣∣ dPnq,0(ynq)

}
m0(h)dν(h), (E.9)

where the second step makes use of Fubini’s theorem. The right hand side of (E.9)

is the same as in (E.7). So, by the same arguments as before, supq B2n(q) = o(1).

The claim can therefore be considered proved. □

Lemma 6. Let Yn denote the domain of yn. Then, limn→∞ sup|h|≤Γ Λn,h(Yn) = 1,

and Λn,h is contiguous to Pn,θ0. Furthermore, limn→∞
˜̄Pn(Yn) = 1, ˜̄Pn is contiguous

to Pn,θ0 and for each ϵ > 0 there exists M(ϵ), N(ϵ) <∞ such that ˜̄Pn(Acn) < ϵ for

all M ≥M(ϵ) and n ≥ N(ϵ).

Proof. Set Pn,h := Pn,θ0+h/
√
n and pn,h = dPn,h/dν. Note that pn,0(yn) = ∏n

i=1 p0(Yi),

where p0(·) is the density function of Pθ0(Y ). Then, by the definition of Λn,h and
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λn,h(·), we can write Λn,h(Yn) ≡
∫
λn,h(yn)dν(yn) as

Λn,h(Yn) = (an(h))n where

an(h) :=
∫

exp
{
h√
n
ψ(Yi)−

h2

2σ2n

}
p0(Yi)dν(Yi).

Denote gn(h, Y ) = h√
n
ψ(Y ) − h2

2σ2n
, δn(h, Y ) = exp{gn(h, Y )} − {1 + gn(h, Y ) +

g2
n(h, Y )/2} and Ep0 [·], the expectation corresponding to p0(Y ). Then,

an(h) = Ep0

[
exp

{
h√
n
ψ(Y )− h2

2σ2n

}]

= Ep0

[
1 + gn(h, Y ) + 1

2g
2
n(h, Y )

]
+ Ep0 [δn(h, Y )]

:= Qn1(h) +Qn2(h). (E.10)

Since ψ(·) is the score function at θ0, Ep0 [ψ(Y )] = 0 and Ep0 [ψ2(Y )] = 1/σ2. Using

these results and the fact |h| ≤ Γ, straightforward algebra implies

Qn1(h) = 1 + bn, where bn ≤ Γ4/8σ4n2.

We can expand Qn2 as follows:

Qn2(h) = Ep0

[
Iψ(Y )≤Kδn(h, Y )

]
+ Ep0

[
Iψ(Y )>Kδn(h, Y )

]
. (E.11)

Since |h| ≤ Γ and ex−(1+x+x2/2) = O(|x|3), the first term in (E.11) is bounded by

K3Γ2n−3/2. Furthermore, for large enough n, the second term in (E.11) is bounded

by Epθ0
[exp |ψ(Y )|]/ exp(aK) for any a < 1. Hence, setting K = (3/2a) lnn gives

sup|h|≤Γ Qn2(h) = O
(
ln3 n/n3/2

)
. In view of the above,

sup
|h|≤Γ
|an(h)− 1| = O(n−c) for any c < 3/2.

Thus, sup|h|≤Γ |Λn,h(Yn) − 1| = |{1 +O(n−c)}n − 1| = O(n−(c−1)). Since it is

possible to choose any c < 3/2, this proves the first claim.

Under Pn,0, the likelihood dΛn,h/dPn,0 converges weakly to some V satisfying

EPn,0 [V ] = 1 (the argument leading to this is standard, see, e.g., Van der Vaart,

2000, Example 6.5). Since Λn,h(Yn) → 1, an application of Le Cam’s first lemma

implies Λn,h is contiguous with respect to Pn,0.

52



Becausem0(·) is supported on |h| ≤ Γ, | ˜̄Pn(Yn)−1| ≤
∫
|Λn,h(Yn)−1|m0(h)dν(h) =

O(n−(c−1)). Thus, limn→∞
˜̄Pn(Yn) = 1. Contiguity of ˜̄Pn with respect to Pn,0

follows from the contiguity of Λn,h with respect to Pn,0. The final claim, that
˜̄Pn(Acn) < ϵ, follows by similar arguments as in the proof of Lemma 3. □

Lemma 7. The measure, ˜̄Pn, can be disintegrated as in equation (D.8).

Proof. Let λnq,h(·), S̃nq be defined as in the proof of Lemma 5. Equation (D.7)

implies

λn,h(yn) ·m0(h) = λn−1,h(yn−1) ·m0(h) · p̃(Yn|h). (E.12)

Let S̃n−1 denote the probability measure corresponding to the density dS̃n−1 =

λn−1,h(yn−1) ·m0(h). As argued in the proof of Lemma 5, one can disintegrate this

as dS̃n−1 = pn(h|yn−1) · ˜̄pn−1(yn−1), where pn(h|yn−1) is a conditional probability

density and ˜̄pn−1(yn−1) =
∫
λn−1,h(yn−1)m0(h)dν(h). Thus,

λn−1,h(yn−1) ·m0(h) = pn(h|yn−1) · ˜̄pn−1(yn−1).

Combining the above with (E.12) gives

λn,h(yn) ·m0(h) = pn(h|yn−1) · ˜̄pn−1(yn−1) · p̃(Yn|h).

Taking the integral with respect h on both sides, and making use of the definition

of ˜̄pn(·),
˜̄pn(yn) = ˜̄pn−1(yn−1) ·

∫
p̃(Yn|h)pn(h|yn−1)dν(h). (E.13)

There is nothing special about the choice of n here, so iterating the above expression

gives the desired result, (D.8). □

Lemma 8. Let cn,i and P̃n denote the quantities defined in Step 4 of the proof of

Theorem 5. There exists some non-random C <∞ such that supi |cn,i−1| ≤ Cn−c

for any c < 3/2. Furthermore, limn→∞

∥∥∥P̃n − ˜̄Pn
∥∥∥

TV
= 0.

Proof. Denote

an(h) :=
∫
p̃n(Yi|h)dν(Yi) =

∫
exp

{
h√
n
ψ(Yi)−

h2

2σ2n

}
p0(Yi)dν(Yi).
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It is shown in the proof of Lemma 6 that sup|h|≤Γ |an(h)− 1| = O(n−c) for any c <

3/2. Since cn,i =
∫
an(h)p̃n(h|yi−1)dν(h), and p̃n(h|yi−1) is a probability density,

this proves the first claim.

For the second claim, denote p̃n(Yi|yi−1) :=
∫
p̃n(Yi|h)p̃n(h|yi−1)dν(h). We also

write cn,i(yi−1) for cn,i to make it explicit that this quantity depends on yi−1. The

properties of the total variation metric, along with (D.8) and (D.9) imply

∥∥∥P̃n − ˜̄Pn
∥∥∥

TV
= 1

2

∫ ∣∣∣∣∣∣dP̃ndν − d ˜̄Pn
dν

∣∣∣∣∣∣ dν
= 1

2

∫ n∏
i=1

p̃n(Yi|yi−1)
∣∣∣∣∣
n∏
i=1

1
cn,i(yi−1)

− 1
∣∣∣∣∣ dν(yn)

≤ 1
2 sup

yn

∣∣∣∣∣
n∏
i=1

1
cn,i(yi−1)

− 1
∣∣∣∣∣ ·
∫ n∏

i=1
p̃n(Yi|yi−1)dν(yn).

Recall from (D.8) that ∏n
i=1 p̃n(Yi|yi−1) is the density (wrt ν) of ˜̄Pn, so the integral

in the above expression equals
∫
d ˜̄Pn = ˜̄Pn(Y) → 1 by Lemma 6. Furthermore,

using the first claim of the present lemma, it is straightforward to show

sup
yn

∣∣∣∣∣
n∏
i=1

1
cn,i(yi−1)

− 1
∣∣∣∣∣ = O(n−(c−1)).

Thus,
∥∥∥P̃n − ˜̄Pn

∥∥∥
TV

= O(n−(c−1)) and the claim follows. □

Lemma 9. For the probability measure P̃n defined in Step 4 of the proof of Theorem

5, there exists a deterministic sequence ξn → 0 independent of s and π ∈ {0, 1}

such that equations (D.14) - (D.16) hold.

Proof. Start with (D.14). We have

EP̃n
[ψ(Ynq+1)| s] = c−1

n,nq+1

∫ {∫
ψ(Ynq+1)p̃n(Ynq+1|h)dν(Ynq+1)

}
p̃(h|x, q)dν(h)

= c−1
n,nq+1

∫
Epθ0

[
ψ(Y ) exp

{
h√
n
ψ(Y )− h2

2σ2n

}]
p̃(h|x, q)dν(h)

=
(
1 +O(n−c)

)
·
∫
Epθ0

[
ψ(Y ) exp

{
h√
n
ψ(Y )− h2

2σ2n

}]
p̃(h|x, q)dν(h),

where the second equality follows by the definition of p̃(Yi|h), and the third equality

follows by (D.10), where it may be recalled we can choose any c ∈ (0, 3/2). Define
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gn(h, Y ) = h√
n
ψ(Y )− h2

2σ2n
and δn(h, Y ) = exp{gn(h, Y )} − {1 + gn(h, Y )}. Then,

Epθ0

[
ψ(Y ) exp

{
h√
n
ψ(Y )− h2

2σ2n

}]

= Epθ0

[
ψ(Y )

{
1 + h√

n
ψ(Y )− h2

2σ2n

}]
+ Epθ0

[ψ(Y )δn(h, Y )] .

Assumption 1(i) implies, see e.g., Van der Vaart (2000, Theorem 7.2), Epθ0
[ψ(Y )] =

0 and Epθ0
[ψ2(Y )] = 1/σ2. Hence, the first term in the above expression equals

h/(
√
nσ2). For the second term,

Epθ0
[ψ(Y )δn(h, Y )] = Epθ0

[
Iψ(Y )≤Kψ(Y )δn(h, Y )

]
+ Epθ0

[
Iψ(Y )>Kψ(Y )δn(h, Y )

]
.

(E.14)

Since |h| ≤ Γ and ex − (1 + x) = o(x2), the first term in in (E.14) is bounded by

K3Γ2n−1. The second term in (E.14) is bounded by Epθ0
[exp |ψ(Y )|]/ exp(aK) for

any a < 1. Hence, setting K = (1/a) lnn gives sup|h|≤Γ |Epθ0
[ψ(Y )δn(h, Y )] | =

O(ln3 n/n). Combining the above results and noting that |h| ≤ Γ, we obtain

√
nσ2EP̃n

[ψ(Ynq+1)| s] =
(
1 +O(n−c)

)
·
{∫

hp̃(h|x, q)dν(h) +O(lnn/
√
n)
}

= h(s)+ξn,

where ξn ≍ lnn/
√
n. This proves (D.14). The proofs of (D.15) and (D.16) are

similar. □

Appendix F. Additional details and proof of Theorem 6 for

non-parametric models

We start with a formal definition of the parametric sub-models and priors used

in our setup.

F.0.1. Parametric sub-models and priors on tangent spaces. Following Van der

Vaart (2000), we define one-dimensional parametric sub-models,{Pt,h : t ≤ η}, to

be the class of probability densities such that

∫ 
(
dP

1/2
t,h − dP

1/2
0

)
t

− 1
2hdP

1/2
0

2

dν → 0 as t→ 0, (F.1)

for some measure function h(·). It is well known, see e.g., Van der Vaart (2000),

that (F.1) implies
∫

hdP0 = 0 and
∫

h2dP0 < ∞. As mentioned in the main text,

the set of all such candidate h is termed the tangent space T (P0). This is a subset

55



of the Hilbert space L2(P0), endowed with the inner product ⟨f, g⟩ = EP0 [fg] and

norm ∥f∥ = EP0 [f 2]1/2. As in Section 5, (F.1) implies the SLAN property that for

all h ∈ T (P0),

⌊nq⌋∑
i=1

ln
dP1/

√
n,h

dP0
(Yi) = 1√

n

⌊nq⌋∑
i=1

h(Yi)−
q

2 ∥h∥
2 + oP0(1), uniformly over q. (F.2)

Asymptotic Bayes risk is defined in terms of priors on the tangent space T (P0).

To define this formally, we start by selecting {ϕ1, ϕ2, . . . } ∈ T (P0) such that

{ψ/σ, ϕ1, ϕ2, . . . } form an orthonormal basis for the closure of T (P0); the divi-

sion of ψ by σ is simply to ensure ∥ψ/σ∥2 =
∫
x2/σ2dP0(x) = 1. By the Hilbert

space isometry, each h ∈ T (P0) can then be associated with an element from

the l2 space of square integrable sequences, (h0/σ, h1, . . . ), where h0 = ⟨ψ,h⟩ and

hk = ⟨ϕk,h⟩ for all k ̸= 0. A prior on T (P0) therefore corresponds to a prior on l2.

Let (ϱ(1), ϱ(2), . . . ) denote an arbitrary permutation of (1, 2, . . . ). As mentioned

in the main text, we impose two restriction on ρ0. The first is that ρ0 is supported

on a finite dimensional sub-space,

HI ≡
{

h ∈ T (P0) : h = 1
σ
⟨ψ,h⟩ ψ

σ
+

I−1∑
k=1

〈
ϕϱ(k),h

〉
ϕϱ(k)

}

of T (P0), or equivalently, on a subset of l2 of finite dimension I. Crucially, the

first component of h ∈ l2, corresponding to h0/σ, is always included in the support

of the prior. This important as h0 = ⟨ψ,h⟩ is exactly the mean reward (upto

a
√
n scaling). The second restriction is that it is possible to decompose ρ0 =

m0× λ, where m0 is a prior on h0 and λ is a prior on (hϱ(1), hϱ(2), . . . ). Recall that

µn(h) := µ(P1/
√
n,h) ≈ h0/

√
n. Thus m0 is effectively equivalent to a prior on the

scaled rewards
√
nµn, just as in Section 2.

F.0.2. Heuristics. We now provide an informal account of why the second compo-

nent, λ, of the product prior ρ0 := m0 × λ does not feature in asymptotics and it

is sufficient, asymptotically, to restrict the state variables to xnq, q, t.

By construction, the prior ρ0 is supported on a finite-dimensional subset of the

tangent space of the form
{
h⊺χ(Yi) : h ∈ RI

}
, where χ := (ψ/σ, ϕϱ(1), . . . , ϕϱ(I−1)).

In what follows, we drop the permutation ϱ for simplicity. Consider the posterior
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density, pn(·|Ft), of the vector h given Ft, where the filtration Ft is defined as in

Section 5. By Lemma 1,

pn(·|Ft) = pn(·|ynq(t)) ∝


⌊nq(t)⌋∏
i=1

dP1/
√
n,h⊺χ(Yi)

 · ρ0(h). (F.3)

Here, as before, q(t) = n−1∑⌊nt⌋
j=1 I(Aj = 1). Now, (F.2) suggests that the likelihood

term in (F.3) can be approximated by a new likelihood, the density of the ‘tilted’

measure Λnq,h(·) defined as

dΛnq,h(ynq) := exp

 1√
n

⌊nq⌋∑
i=1

h⊺χ(Yi)−
q

2 ∥h∥
2

 dP1/
√
n,0(ynq). (F.4)

Le χnq := n−1/2∑⌊nq⌋
i=1 χ(Yi). Then, taking p̃n(·|ynq) to be the corresponding ap-

proximate posterior density as in Section 5, we have:

p̃n(h|ynq) ∝ dΛnq,h(ynq) · ρ0(h)

∝ p̃q(χnq|h) · ρ0(h); where p̃q(·|h) ≡ N (·|qh, qI). (F.5)

The approximate posterior of h depends on the I dimensional quantity χnq.

However, it is possible to achieve achieve further dimension reduction for the mar-

ginal posterior density, p̃n(h0|ynq), of h0. Indeed, for any h ∈ T (P0),

1√
n

⌊nq⌋∑
i=1

h(Yi)−
q

2 ∥h∥
2 = h0

σ
√
n

⌊nq⌋∑
i=1

Yi −
q

2σ2h
2
0 + (terms independent of h0)

where the equality follows from the Hilbert space isometry which implies h =

(h0/σ)(ψ/σ) + ∑I
k=1 hkϕk, and ∥h∥2 = (h0/σ)2 + ∑I

k=1 h
2
k. So, defining xnq =

n−1/2∑⌊nq⌋
i=1 Yi, we obtain from (F.4) and (F.5) that

p̃n(h0|ynq) ∝ exp
{
h0

σ2xnq −
q

2σ2h
2
0

}
·m0(h0)

∝ p̃q(xnq|h0) ·m0(h0), where p̃q(·|h0) ≡ N (·|qh0, qσ
2). (F.6)

In other words, one can approximate the posterior distribution of h0 under Ft by

p̃n(h0|xnq(t), q(t)) ≡ p̃n(h0|ynq(t)) ∝ pq(t)(xnq(t)|h0) · m0(h0), just as in Section 5.

Since the expected reward depends only on h0 due to (6.1), this suggests that it is

sufficient, asymptotically, to restrict the state variables to xnq(t), q(t), t.
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F.0.3. Assumptions. Set Ẽ[·|s] to be the expectation under p̃n(h0|x, q), µ+(s) :=

Ẽ [h0I{h0 > 0}|s] and µ(s) := Ẽ[h0|s]. Note that by (F.6), these terms are the

same as in Section 2.2.2. Also, set h(χnq, q) := Ẽ [h|χnq, q] where Ẽ[·|χnq, q] is

the expectation under p̃n(h|χnq, q), defined in (F.5). We employ the following

assumptions for Theorem 6:

Assumption 2. (i) The sub-models {Pt,h;h ∈ T (P0)} satisfy (F.1). (ii) EP0 [|Y |3] <

∞. (iii) There exists δn → 0 such that
√
nµ(P1/

√
n,h)) = h0 +δn ∥h∥2 ∀ h ∈ T (P0).

(iv) ρ0(·) is supported on HI(Γ) ≡ {h ∈ HI : EP0 [exp |h|] ≤ Γ} for some Γ < ∞.

(v) µ(·) and µ+(·) are Hölder continuous and supsϖ(s) ≤ C < ∞. Furthermore,

h(χ, q) is also Hölder continuous.

Assumption 2(iii) is a stronger version of (6.1), but is satisfied for all commonly

used sub-models. For instance, if dP1/
√
n,h := (1 + n−1/2h)dP0 as in Van der Vaart

(2000, Example 25.16),
√
nµ(P1/

√
n,h) = ⟨ψ,h⟩ = h0. Assumption 2(iv) requires

the prior to be supported on score functions with finite exponential moments.

As with Assumptions 1(ii) & 1(iv), it ensures the tilt dΛnq,h(ynq)/dP1/
√
n,0(ynq) in

(F.4) is uniformly bounded. It is somewhat restrictive as it implies EP0 [exp |h0Y |] <

∞ for all h0 ∈ supp(m0). However, similar to Assumptions 1(ii) & 1(iv), we suspect

it can be relaxed at the expense of more intricate proofs. Finally, Assumption 2(v)

differs from Assumption 1(v) only in requiring continuity of h(χ, q). While h(χ, q)

is not present in PDE (2.8), it arises in the course of various PDE approximations

in the proof. The form of the posterior in (F.5) implies this should be satisfied

under mild assumptions on ρ0. It is certainly satisfied for Gaussian ρ0.

F.0.4. Proof of Theorem 6. The proof consists of two steps. First, we show that

V ∗
n (0) converges to the solution of a PDE with state variables (χ, q, t) where χ(t) :=

χnq(t) with χnq defined in Section 6. Recall that the first component of χ is x/σ.

Next, we show that the PDE derived in the first step can be reduced to one

involving just the state variables s = (x, q, t).

The first step follows the proof of Theorem 5 with straightforward modifications.

Indeed, the setup is equivalent to taking χ(Yi) to be the vector-valued score func-

tion in the parametric setting (see, Section 5.3). The upshot of these arguments is
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that V ∗
n (0) converges to V ∗(0), where V ∗(·) solves the PDE

∂tf(χ, q, t) + µ+(x, q) + min
{
−µ(x, q) + L̄[f ](χ, q, t), 0

}
= 0 if t < 1 (F.7)

f(χ, q, t) = 0 if t = 1,

with the infinitesimal generator (here △ denotes the Laplace operator)

L̄[f ](χ, q, t) := ∂qf + h(χ, q)⊺Dχf + 1
2△χf.

See Section 6 for the definition of h(χ, q). Note that µ+(·), µ(·) are functions only

of (x, q). This is because they depend only on the first component, h0/σ, of h and

its posterior distribution can be approximated by p̃n(h0|x, q), defined in (F.6).

By the arguments leading to (F.6), the first component of the vector h(χ, q)

is σ−1Ẽ[h0|χ, q] = σ−1Ẽ[h0|x, q] = σ−1µ(x, q). Let χc, hc(χ, q) denote χ, h(χ, q)

without their first components χ1 = x/σ and h1(χ, q) = σ−1µ(x, q). Then, defining

L[f ](x, q, t) := ∂qf + µ(x, q)∂xf + 1
2σ

2∂2
xf,

we see that L̄[f ] = L[f ] + hc(χ, q)⊺Dχcf + 1
2△χcf . Note that in defining L[f ](·),

we made use of the change of variables ∂χ1f = σ∂xf and ∂2
χ1f = σ2∂2

xf . We now

claim that the solution of PDE (F.7) is the same as that of PDE (2.8), reproduced

here:

∂tf(x, q, t) + µ+(x, q) + min {−µ(x, q) + L[f ](x, q, t), 0} = 0 if t < 1 (F.8)

f(x, q, t) = 0 if t = 1.

Intuitively, this is because the state variables in χc do not affect instantaneous pay-

offs µ+(x, q)−µ(x, q), µ+(x, q), nor do they affect the boundary condition, so these

state variables are superfluous. The formal proof makes use of the theory of vis-

cosity solutions: Under Assumption 2(v), Theorem 1 implies there exists a unique

viscosity solution to (F.7), denoted by V ∗(χ, q, t). Then, it is straightforward to

show that V̄ ∗(x, q, t) = supχc V ∗(χ, q, t) is a viscosity sub-solution to (F.8).20 In a

20See Crandall et al. (1992) for the definition of viscosity sub- and super-solutions using test
functions. To show V̄ ∗ is a sub-solution one can argue as follows: First, V̄ ∗(x, q, t) is upper-
semicontinuous because of the continuity of the solution V ∗(χ, q, t) to PDE (F.7). Second, V̄ ∗

satisfies the boundary condition in PDE (F.8) by construction. Third, let ϕ ∈ C∞(X ,Q, T )
denote a test function such that ϕ ≥ V̄ ∗ everywhere. By the definition of V̄ ∗ we also have
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similar fashion, V ∗(x, q, t) = infχc V ∗(χ, q, t) is a viscosity super-solution to (F.8).

Under Assumption 2(v), a comparison principle (see, Crandall et al., 1992) holds

for (F.8) implying any super-solution is larger than a solution, which is in turn

larger than a sub-solution. But V̄ ∗(x, q, t) ≥ V ∗(x, q, t) by definition, so it must

be the case V̄ ∗(x, q, t) = V ∗(x, q, t) = V ∗(x, q, t), where V ∗(x, q, t) is the unique

viscosity solution to (F.8). This proves V ∗(χ, q, t) = V ∗(x, q, t), as claimed.

Appendix G. Theory for MAB and its generalizations

G.1. Multi-armed bandits.

Existence of a solution to PDE (2.7). By Barles and Jakobsen (2007, Theorem

A.1), there exists a unique viscosity solution to PDE (2.7) if µmax(·) and µk(·) are

Hölder continuous for all k.

Convergence to the PDE. Let V ∗
n (·) denote the minimal Bayes risk function in the

Gaussian setting. The following analogue of Theorem 2 can then be shown with a

straightforward modification to the proof:

Theorem 7. Suppose µ(·) and µmax(·) are Hölder continuous and the prior m0

is such that E[|µ|3|s] < ∞ at each s. Then, as n → ∞, V ∗
n (·) converges locally

uniformly to V ∗(·), the unique viscosity solution of PDE (2.7).

Piece-wise constant policies. The construction of piece-wise constant policies in the

multi-armed setting is analogous to Section 3.3. Following Barles and Jakobsen

(2007, Theorem 3.1), Theorems 3 and 4 can be shown to hold under Lipschitz

continuity of µmax(·), µk(s) and sups {µmax(s)−maxk µ(s)} <∞.

Parametric and non-parametric distributions. Let P (k)
θ denote the probability dis-

tribution over the rewards from arm k. It is without loss of generality to assume

the distributions across arms are independent of each other as we only ever observe

the outcomes from a single arm. The parameter θ ∈ Rd may have some compo-

nents that are shared across all the arms. As in the one-armed bandit setting, we

ϕ(x, q, t) ≥ V ∗(χ, q, t) everywhere. Since V ∗(χ, q, t) is a solution to PDE (F.7), ϕ must satisfy
the viscosity requirement for a sub-solution to PDE (F.7). But because ϕ is constant in χc,
this implies it also satisfies the viscosity requirement for a sub-solution to PDE (F.8). These
three facts suffice to show V̄ ∗ is a sub-solution.
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choose a reference θ0 such that E
P

(k)
θ0

[Yk] = 0, and focus on local perturbations of

the form {θn,h ≡ θ0 + h/
√
n : h ∈ Rd}. We then place a non-negligible prior M0

on the local parameter h.

To simplifty notation, suppose that θ is scalar. Let ν := ν1 × ν2, where ν1 is a

dominating measure for {P (k)
θ : θ ∈ R, k = 0, . . . , K − 1} and ν2 is a dominating

measure for the prior M0 on h. Define p(k)
θ = dP

(k)
θ /dν, m0 = dM0/dν (in the

sequel, we shorten the Radon-Nikodym derivative dP/dν to just dP ). As in Section

5, we require the class {P (k)
θ } to be quadratic mean differentiable (q.m.d) around

θ0 for each k. This in turn implies the SLAN property that, for each k,

⌊nqk⌋∑
i=1

ln
dp

(k)
θ0+h/

√
n

dp
(k)
θ0

= 1
σ2
k

hxk,nqk
− qk

2σ2
k

h2 + o
P

(k)
n,θ0

(1), uniformly over qk, (G.1)

where

xk,nq := σ2
k

1√
n

⌊nq⌋∑
i=1

ψk(Y (k)
i ),

ψk(·) is the score function corresponding to P
(k)
θ0 , and σ2

k is the corresponding

inverse information matrix, i.e., σ2
k =

(
E
P

(k)
θ0

[ψ2
k]
)−1

.

Recall that y(k)
n := (Y (k)

1 , . . . , Y (k)
n ) denotes the vector of stacked outcomes for

each arm k. Then, in the fixed n setting, the posterior distribution of h is (compare

the equation below with (5.3))

pn(h|Ft) = pn
(
h|
{
y(k)
nqk(t)

}
k

)
∝

K−1∏
k=0

⌊nqk(t)⌋∏
i=1

p
(k)
θ0+h/

√
n(Y (k)

i )
 ·m0(h).

As in Section 5, we approximate the likelihood (the bracketed term in the above

expression) with an approximation implied by (G.1). So, the approximate posterior

is

p̃n(h|s) ∝
[
K−1∏
k=0

p̃qk
(xk|h)

]
·m0(h); where p̃qk

(·|h) ≡ N (·|qkh, qkσ2
k). (G.2)

The above suggests Theorem 5 can be extended to the K armed case. This is done

under the following assumptions: Define µ(k)
n (h) = E

P
(k)
θ0+h/

√
n

[
Y

(k)
i

]
.

Assumption 3. (i) The class {P (k)
θ } is q.m.d around θ0 for each k. (ii) E

P
(k)
θ0

[exp |ψk(Y )|] <

∞ for each k. (iii) For each k, there exists µ̇(k)
0 <∞ such that

√
nµ(k)

n (h) = µ̇
(k)
0 h+

o(|h|2). (iv) The support of m0(·) is a compact set {h : |h| ≤ Γ} for some Γ <∞.
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(v) µ(·) and µmax(·) are Hölder continuous. Additionally, sups {µmax(s)−maxk µ(s)} ≤

C <∞.

Let Vπ,n(·) denote the Bayes risk of policy π and V ∗
n (·) the minimal Bayes risk,

both under fixed n. Define ΠS as the class of all sequentially measurable policies

that are functions only of s = {{xk, qk}k, t}, and V S∗
n (0) the fixed n minimal Bayes

risk when the policies are restricted to ΠS . Also, take π∗
∆t to be the optimal piece-

wise constant policy with ∆t increments. Finally, denote by Lk[·] the infinitesimal

generator

Lk[f ] := ∂qk
f + h(s)∂xk

f + 1
2σ

2
k∂

2
xk
f, (G.3)

where h(s) := Ẽ[h|s] and Ẽ[·|s] is the expectation under p̃n(·|s), defined in (G.2).

Theorem 8. Suppose that Assumption 3 holds. Then: (i) limn→∞

∣∣∣V ∗
n (0)− V S∗

n (0)
∣∣∣ =

0. (ii) limn→∞V
∗
n (0) = V ∗(0), where V ∗(·) solves PDE (2.7) with the infinitesimal

generators given by (G.3). (iii) If, further, µ(·), µmax(·) are Lipschitz continuous,

limn→∞ |Vπ∗
∆t
,n(0)− V ∗(0)| ≲ ∆t1/4 for any fixed ∆t.

The proof is analogous to that of Theorem 5, with the key difference being that

the relevant likelihood is
K−1∏
k=0

⌊nqk(t)⌋∏
i=1

p
(k)
θ0+h/

√
n(Y (k)

i )

instead of ∏⌊nq(t)⌋
i=1 pθ0+h/

√
n(Yi). The independence of the reward distributions

across arms is convenient here, and helps simplify the proof.21 See Adusumilli

(2022b) for an example of the formal argument.

Similar adaptations can be made for the results in Section 6.

G.2. Best arm identification. Best arm identification describes a class of se-

quential experiments in which the DM is allowed to experiment among K arms

of a bandit until a set time t = 1 (corresponding to n time periods). At the end

of the experimentation phase, an arm is selected for final implementation. Sta-

tistical loss is determined by expected payoffs during the implementation phase,

21For instance, it implies that the joint probability
∏K−1

k=0 P
(k)
nqnk,h is contiguous to

∏K−1
k=0 P

(k)
nqk,0

for any (qn0, . . . , qn(K−1))→ (q0, . . . , qK) as n→∞, as long as P
(k)
nqnk,h is contiguous to P

(k)
nqk,0

for each k. This enables us to prove an analogue to Lemma 3, which is a key step in the proof.
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but not on payoffs generated during experimentation, i.e., there is no exploitation

motive. In the Gaussian setting, it is sufficient to use the same state variables

s = {{xk, qk}k, t} as in K armed bandits.

Let µ := (µ0, . . . , µK−1) denote the mean rewards of each arm, and π(I) ∈

{0, . . . , K − 1} the action of the DM in the implementation phase. Following the

best arm identification literature, see, e.g., Kasy and Sautmann (2021), we take

the loss function to be expected regret in the implementation phase (also known

as “simple regret”)

L(π(I),µ) = max
k

µk −
∑
k

µkI(π(I) = k).

Suppose that the state variable at the end of experimentation is s. The Bayes risk

of policy π(I) given the terminal state s is

Vπ(I)(s) = E
[
L(π(I),µ)|s

]
= µmax(s)−

∑
k

µk(s)I(π(I) = k).

Hence, the optimal Bayes policy is π(I) = arg maxk µk(s) and the minimal Bayes

risk at the end of experimentation, i.e., when t = 1, is V ∗(s) = µmax(s) −

maxk µk(s). This determines the boundary condition at t = 1.

We can obtain a PDE characterization of V ∗(·) through similar heuristics as in

Section 2.2. By (2.1), the change to qk and xk in a short time period ∆t following

state s is approximately

∆qk ≈ πk∆t; ∆xk ≈ πkµk∆t+ σk
√
πk∆W (t).

Now, for ‘interior states’ with t < 1, the recursion

V ∗(s) = inf
π∈[0,1]K

E [V ∗ ({xk + ∆xk, qk + ∆qk}k , t+ ∆t)| s]

must hold for any small time increment ∆t. Thus, by similar (heuristic) arguments

as in Section 2.2, V ∗(·) satisfies

∂tV
∗ + min

k
Lk[V ∗](s) = 0 if t < 1; (G.4)

V ∗(s) = ϖ(s) if t = 1,

where ϖ(s) := µmax(s)−maxk µk(s).
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As we show below, all previous theoretical results (including for parametric

and non-parametric models) continue to apply with minor modifications to the

statements and the proofs. See also Adusumilli (2022a) for the derivation of the

minimax optimal policy in the two arm case. The assumptions required are the

same as that for multi-armed bandits.

Existence of a solution to PDE (G.4). This is again a direct consequence of Barles

and Jakobsen (2007, Theorem A.1).

Convergence to the PDE. Recall that the relevant state variables are s = {{xk, qk}k, t}.

In analogy with (3.1), the Bayes risk in the fixed n setting is given by

V ∗
n (x1, q1, . . . , xK , qK , t) = Icn ·ϖ(s) + . . .

· · ·+ min
π1,...,πK∈[0,1]

E

In · V ∗
n

xk +
πkY

(k)
nqk+1√
n

, qk + πk
n


k

, t+ 1
n

∣∣∣∣∣∣ s
 (G.5)

where In := I{t ≥ 1/n}. The solution, V ∗
n (·), of the above converges locally

uniformly to the viscosity solution, V ∗(·), of PDE (G.4). We can show this by

modifying the proof of Theorem 2 to account for the non-zero boundary condition.

As in that proof, after a change of variables τ = 1 − t, we can characterize V ∗
n (·)

as the solution to Sn(s, ϕ(s), [ϕ]) = 0, where for any u ∈ R and ϕ : S → R, and

In := I{τ > 1/n},

Sn(s, u, [ϕ]) := −Icn ·
(ϖ(s)− u)

n
− · · ·

· · · − In · min
π1,...,πK∈[0,1]

E

ϕ
xk +

πkY
(k)
nqk+1√
n

, qk + πk
n


k

, τ − 1
n

− u
∣∣∣∣∣∣ s
 .

Define F (D2ϕ,Dϕ, s) = ∂τϕ−mink Lk[ϕ](s).

We need to verify monotonicity, stability and consistency of Sn(·). Monotonic-

ity of Sn(s, u, [ϕ]) is clearly satisfied. Stability is also straightforward under the

assumption supsϖ(s) < ∞. The consistency requirement is more subtle. For in-

terior values, i.e., when s := (x, q, τ) is such that τ > 0, the usual conditions (A.3)

and (A.4) are required to hold with the definitions of Sn(·), F (·) above. These can

be shown using the same Taylor expansion arguments as in the proof of Theorem

2. For boundary values, s ∈ ∂S ≡ {(x, q, 0) : x ∈ X , q ∈ [0, 1]}, the consistency

64



requirements are (see, Barles and Souganidis, 1991)

lim sup
n→∞
ρ→0

z→s∈∂S

nSn(z, ϕ(z) + ρ, [ϕ+ ρ]) ≤ max
{
F (D2ϕ(s), Dϕ(s), s), ϕ(s)−ϖ(s)

}
,

(G.6)

lim inf
n→∞
ρ→0

z→s∈∂S

nSn(z, ϕ(z) + ρ, [ϕ+ ρ]) ≥ min
{
F (D2ϕ(s), Dϕ(s), s), ϕ(s)−ϖ(s)

}
.

(G.7)

We can show (G.6) as follows (the proof of (G.7) is similar): By the definition of

Sn(·), for every sequence (n→∞, ρ→ 0, z → s ∈ ∂S), there exists a sub-sequence

such that either nSn(z, ϕ(z) + ρ, [ϕ+ ρ]) = ϕ+ ρ−ϖ(z) or

nSn(z, ϕ(z)+ρ, [ϕ+ρ]) = − min
π1,...,πK∈[0,1]

E

ϕ
xk +

πkY
(k)
nqk+1√
n

, qk + πk
n


k

, τ − 1
n

− u
∣∣∣∣∣∣ s
 .

In the first instance, nSn(z, ϕ(z) + ρ, [ϕ + ρ]) → ϕ(s) − ϖ(s) by the continuity

of ϖ(·), while the second instance gives rise to the same expression for Sn(·) as

being in the interior, so that nSn(z, ϕ(z) + ρ, [ϕ + ρ]) → F (D2ϕ(s), Dϕ(s), s) by

similar arguments as in the proof of Theorem 2. Thus, in all cases, the limit along

subsequences is smaller than the right hand side of (G.6).

Piecewise-constant policies. The results on piece-wise constant policies continue to

apply since Barles and Jakobsen (2007, Theorem 3.1) holds under any continuous

boundary condition.

Parametric and non-parametric distributions. The analogues of Theorems 5 and 6

follow by the same reasoning as that employed for multi-armed bandits in Appendix

G.1. In fact, the proofs are even simpler since the loss function is just the regret

payoff at t = 1.

G.3. Discounting. Our methods also apply to bandit problems without a definite

end point. Suppose the rewards in successive periods are discounted by e−β/n for

some β > 0. Here, n is to be interpreted as a scaling of the discount factor; it is the

number of periods of experimentation in unit time when the DM experiments in

regular time increments and intends to discount rewards by the fraction e−β after

∆t = 1. Discounting ensures the cumulative regret is finite. It also changes the
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considerations of the DM, who will now be impatient to start ‘exploitation’ sooner

as future rewards are discounted. Popular bandit algorithms such as Thompson

sampling do not admit discounting and will therefore be substantially sub-optimal.

In the Gaussian setting with one arm, the relevant state variables under dis-

counting are s := (x, q), where x, q are defined in the same manner as before, but

q can now take values above 1 (it is the number of times the arm is pulled divided

by n). The counterpart of PDE (2.8) for discounted rewards is

βV ∗ − µ+(s)−min {−µ(s) + L[V ∗](s), 0} = 0. (G.8)

Note that PDE (G.8) does not require a boundary condition.

All the previous theoretical results continue to apply to discounted bandits, as

we demonstrate below. The assumptions required are the same as in Theorems 1-6

in the main text, along with β > 0.

Existence of a solution to PDE (G.8). By Barles and Jakobsen (2007, p. 29), there

exists a unique viscosity solution to PDE (G.8).

Convergence to the PDE. The analogue to (3.1) under discounting is

V ∗
n (x, q) = min

π∈[0,1]
E
[
µ+(s)− πµ(s)

n
+ e−β/nV ∗

n

(
x+ AπYnq+1√

n
, q + Aπ

n

)∣∣∣∣∣ s
]
.

(G.9)

A straightforward modification of the proof of Theorem 2 then shows V ∗
n (·) con-

verges locally uniformly to V ∗(·), the viscosity solution of PDE (G.8). There is no

analogue to piece-wise constant policies in the discounted setting.

Parametric and non-parametric distributions. The proofs of Theorems 5 and 6 are

slightly complicated by the fact q is now unbounded. While the SLAN property

(5.2) applies even if q > 1, it does require q <∞. We can circumvent this issue by

exploiting the fact that the infinite horizon problem is equivalent to a finite horizon

problem with a very large time limit. In other words, we prove the relevant results

for the PDE

∂tV
∗ − βV ∗ + µ+(s) + min {−µ(s) + L[V ∗](s), 0} = 0 if t < 1,

V ∗(s) = 0 if t = T, (G.10)
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with the boundary condition set at t = T , and then let T →∞.

Let V ∗(0), V ∗(0;T ) denote the viscosity solutions to PDEs (G.8) and (G.10),

evaluated at s0. Following the first step in Appendix (A.3), the Bayes risk under

a policy π in the fixed n setting with discounting can be shown to be

Vπ,n(0) = E(yn,h)

 1
n

∞∑
j=1

e−βj/nRn(h, πj)
 . (G.11)

Analogously, if we terminate the experiment at a suitably large T , we have

Vπ,n(0;T ) = E(yn,h)

 1
n

nT∑
j=1

e−βj/nRn(h, πj)
 .

Under Assumption 1, Rn(h, π) ≤ C <∞ (due to the compactness of the prior m0),

so supπ∈Π |Vπ,n(0)−Vπ,n(0;T )| > e−βT . Now, a straightforward modification of the

proof of Theorem 5 implies limn→∞ infπ∈Π Vπ,n(0;T ) = V ∗(0;T ), where V ∗(0;T ) is

the viscosity solution to PDE (G.10) evaluated at s0. Finally, it can be shown, e.g.,

by approximating the PDEs with dynamic programming problems as in Theorem

2, that |V ∗(0;T ) − V ∗(0)| > e−βT . Since we can choose T as large as we want, it

follows limn→∞ infπ∈Π Vπ,n(0) = V ∗
n (0). The proof of Theorem 6 can be modified

in a similar manner.

Appendix H. Computation using finite-difference methods

As mentioned in the main text, PDE (2.8) also be solved using ‘upwind’ finite-

difference methods. The method is more accurate than the Monte-Carlo algorithm

(Algorithm 1) but scales less favorably with increasing number of arms. To im-

plement this method we first discretize both the spatial (i.e., X and Q) and time

domains. Let i, j index the grid points for x, q respectively, with the grid lengths

being ∆x,∆q. PDEs of the form (2.8) are always solved backward in time, so,

for this section, we switch the direction of time (i.e., t = 1 earlier is now t = 0)

and discretize it as 0,∆t, . . . ,m∆t, . . . , 1. Denote V m
i,j as the approximation to the

PDE solution V ∗ at grid points i, j and time period m∆t.

We approximate the second derivative ∂2
xV

∗ using

∂2
xV

∗ ≈
V m
i+1,j + V m

i−1,j − 2V m
i,j

(∆x)2 .

67



As for the first order derivatives, we approximate by either V m
i+1,j−V m

i,j

∆x or V m
i,j−V m

i−1,j

∆x

depending on whether the associated drift, i.e., the coefficient multiplying ∂xV
∗

is positive or negative. This is known as up-winding and is crucial for ensuring

the resulting approximation procedure is ‘monotone’ (see Appendix A.1, and also

Achdou et al. (2022) for a discussion of monotonicity, and its necessity for showing

convergence of the approximation procedures). In our setting, this implies

∂xV
∗ ≈

V m
i+1,j − V m

i,j

∆x I(µ(s) ≥ 0) +
V m
i,j − V m

i−1,j

∆x I(µ(s) < 0)

:=
(
V m
i+1,j − V m

i,j

∆x

)
+
,

while ∂qV ∗, which is associated with the coefficient 1, is approximated as

∂qV
∗ ≈

V m
i,j+1 − V m

i,j

∆q .

Finally, let µ+
i,j, µi,j denote the values of µ+(·), µ(·) evaluated at the grid points i, j.

Following the derivative approximations, the PDE can be solved using explicit,

implicit or hybrid schemes. The previous version of this manuscript discussed these

different approaches and their convergence properties.22 Our recommendation is

to use the hybrid scheme. It is faster than the standard implicit scheme as it

does not require policy iteration. At the same time, it is more numerically stable

than the explicit scheme as it does not require the CFL condition that ∆t ≤

0.5 min {(∆x)2, (∆q)2}; instead, we only need ∆t→ 0.

The algorithm is based on a recursion whereby V 0
i,j = 0, and an estimate of the

action-value function, Ṽ m+1,1
i,j , corresponding to the case where the arm was pulled

in step m+ 1, is computed in terms of V m
i,j := min

{
Ṽ m,1
i,j , Ṽ m,0

i,j

}
as the solution to

Ṽ m+1,1
i,j = V m

i,j + µ+
i,j − µi,j +

Ṽ m+1,1
i,j+1 − Ṽ

m+1,1
i,j

∆q

+ µi,j

(
Ṽ m+1,1
i+1,j − Ṽ

m+1,1
i,j

∆x

)
+

+ 1
2σ

2 Ṽ
m+1,1
i+1,j + Ṽ m+1,1

i−1,j − 2Ṽ m+1,1
i,j

(∆x)2 = 0. (H.1)

As for the action-value function corresponding to the case where the arm was not

pulled, we have

Ṽ m+1,0
i,j := V m

i,j + µ+
i,j.

22This version can be accessed at arXiv:2112.06363v14.
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We then set V m+1
i,j := min

{
Ṽ m+1,1
i,j , Ṽ m+1,0

i,j

}
and continue the iterations until m =

M − 1. The pseudo-code for the hybrid FD scheme is described in Algorithm 2.

Algorithm 2 Hybrid FD
Require: M (number of time periods)
1: initialize V 0

i,j = 0
2: for m = 0, . . . , M − 1: do
3: Write (H.1) as AṼ1

m+1 −Vm + X = 0 where Ṽ(1)
m = vec(Ṽ m,1

i,j ; i, j)
4: Ṽ1

m+1 = A−1 (Vm −X)
5: Ṽ0

m+1 = Vm + µ+ where µ+ = vec(µ+
i,j ; i, j)

6: Vm+1 = min
{

Ṽ1
m+1, Ṽ0

m+1

}
where the minimum is computed element-wise

7: end for

H.0.1. Implementation details for Section 4.2. For the empirical illustration in

Section 4.2, we used ∆x = 1/1500, ∆q = 1/600 and ∆t = 1/1000. Since x is

unbounded, for the purposes of computation we set its upper and lower bounds to

l−3σ and u+3σ, where l and u are the support points of the least favorable prior.
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