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Abstract

This note makes a brief response to Portnoy (2022) and Pötscher and Preinerstorfer (2024), and dis-

cusses what instructors should teach about best unbiased estimation.

1 Joint Dependence

Hansen (2022a) establishes a set of finite-sample efficiency lower bounds for the linear regression

model Y = Xβ+e with fixed regressors and finite variance matrix var[e] = σ2Σ. These results cover the

cases of joint dependence with unrestricted Σ, and independent sampling with diagonal Σ.

One of these results (Theorem 4) demonstrates that in the context of joint dependence with unre-

stricted Σ that an unbiased estimator of β cannot have a lower variance than σ2
(

X ′Σ−1X
)−1

. As this is

the variance of the generalized least squares (GLS) estimator, it follows that the latter is the best unbiased

estimator (BUE) of β. No explicit restriction to linear estimators is necessary.

In a pair of insightful papers, Portnoy (2022) and Pötscher and Preinerstorfer (2024) show that in

the specific context of Theorem 4, all unbiased estimators of β are linear estimators. Since the lowest

variance among unbiased linear estimators is σ2
(

X ′Σ−1X
)−1

, this can be viewed as an alternative proof

that the GLS estimator is the BUE. The fact, however, that an unbiased estimator must be linear severely

limits the relevance of Theorem 4.

2 Independent Sampling

Another set of results (Theorems 5-7) in Hansen (2022a) examine the case of independent sampling.

Neither Portnoy (2022) nor Pötscher and Preinerstorfer (2024) examine this case. For clarity, it is useful

to review and explain the main result.

In this setting the variables Yi are mutually independent across i and satisfy the linear regression

Yi = X ′
iβ+ ei with Xi fixed, E [ei ] = 0, and E

[
e2

i

] = σ2
i . The variances satisfy 0 < σ2

i < ∞ but are other-

wise unrestricted. Let F denote the joint distribution of (Y1, ...,Yn). The class of joint distributions F
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satisfying these conditions is denoted as F∗
2 . This is the class of linear regression models with possibly

heteroskedastic variances. The class F∗
2 fixes the regressors Xi , but includes all possible regression co-

efficients β, error variances σ2
i , and error distributions. The variables Yi are mutually independent and

satisfy a linear regression Yi = X ′
iβ+ei , but otherwise their distributions are unrestricted.

Now consider unbiased estimation of the regression coefficient β. An estimator β̂ is unbiased in the

class F∗
2 if E

[
β̂

] = β for all distributions F ∈ F∗
2 . This means that β̂ is unbiased for β whenever the joint

distribution satisfies a linear regression model. An example is GLS:

β̂gls =
(

n∑
i=1

σ−2
i Xi X ′

i

)−1 (
n∑

i=1
σ−2

i Xi Yi

)
. (1)

(The GLS estimator is infeasible in practice, but is a useful theoretical benchmark.) The estimator β̂gls is

called a linear estimator as it is a linear function of the dependent variables (Y1, ...,Yn).

Given the Portnoy-Pötscher-Preinerstorfer result, it is reasonable to ask if there exist unbiased non-

linear estimators. The answer is yes. For example, take the location model Xi = 1 and consider

β̂1 = β̂gls +Y1Y2 −Y3Y4, (2)

which is a nonlinear function of (Y1, ...,Yn). A simple calculation reveals that E
[
β̂1

] = β for all F ∈ F∗
2 , so

β̃ is unbiased. Another calculation reveals that var
[
β̂1

] > var
[
β̂gls

]
for any F ∈ F∗

2 . Thus the addition of

nonlinearity increases estimation variance.

Theorem 5 of Hansen (2022a) shows that this holds for all unbiased estimators.

Theorem 5 If β̂ is unbiased for all F ∈ F∗
2 , then var

[
β̂

]≥ var
[
β̂gls

]
for all F ∈ F∗

2 .

No unbiased estimator has lower variance than GLS, and therefore GLS is the best (lowest variance)

unbiased estimator. Theorem 5 makes no restriction to linear estimators; there is no restriction other

than unbiasedness. However, Theorem 5 is not a strict improvement on the classical Gauss-Markov

theorem as the latter only requires uncorrelated samples, while F∗
2 restricts attention to independent

samples.

Another sharp result can be obtained in the location model with i.i.d. sampling. Let Yi be i.i.d. with

distribution F , population mean E [Yi ] =β and variance var[Yi ] =σ2 <∞. Let F0
2 be the class of distribu-

tions F with a finite variance. An estimator β̂ is unbiased in the class F0
2 if E

[
β̂

] = β for all distributions

F ∈ F0
2. An example is the sample mean Y . Theorem 11.1 of Hansen (2022b) shows that no unbiased

estimator has a lower variance.

Theorem 11.1 If β̂ is unbiased for all F ∈ F0
2, then var

[
β̂

]≥ var
[

Y
]

for all F ∈ F0
2.

Theorem 11.1 shows that the sample mean Y is the best unbiased estimator of the population mean

under i.i.d. sampling. No restriction to linear estimators is necessary. Theorem 11.1 is also a strict im-

provement over the Cramér-Rao theorem (e.g., Theorem 2 of Hansen (2022a)), as Theorem 11.1 holds for

all distributions, while the Cramér-Rao theorem requires normality.
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Appendix A of Pötscher and Preinerstorfer (2024) presents a related but distinct example which pro-

vides additional insights. Take the location model Xi = 1, assume homoskedastic variances σ2
i = 1, and

consider the nonlinear estimator

β̂2 = Y + Y 2
1 −Y 2

2

n
. (3)

A simple calculation reveals that under the stated assumptions, E
[
β̂2

]=β, so β̂2 is unbiased in this class.

To calculate the variance of β̂2, for simplicity assume β= 0, e1 has the Rademacher distribution, and e2

the Mammen (1993) distribution1. A straightforward calculation shows that under these conditions,

var
[
β̂2

]= 1

n
− 1

n2 < var
[

Y
]

, (4)

showing that β̂2 has a lower variance than the sample mean. At first glance this may appear to contra-

dict Theorem 5 and/or Theorem 11.1, but it does not. First, while β̂2 is unbiased under the assumption

of homoskedastic variances, it is biased under heteroskedastic variances. Therefore, it is not unbiased

in the class of models F∗
2 , and hence falls outside the scope of Theorem 5, so is not a counterexample

to Theorem 5. The estimator β̂2 is able to achieve improved efficiency only by sacrificing unbiasedness

under heteroskedasticity. Second, the calculation (4) exploits the assumption that the observations Y1

and Y2 have different third moments; when they are identically distributed then var
[
β̂2

]≥ var
[

Y
]

. Con-

sequently, this example falls outside the scope of Theorem 11.1, so is not a counterexample to Theorem

11.1.

Together, the examples (2) and (3) illustrate the powerful role of unbiasedness in Theorems 5 and

11.1, and the role of identical distributions in Theorem 11.1.

3 What Should We Teach?

The reason why instruction includes the BLUE and Gauss-Markov Theorems is because we want

simple justifications for standard estimators. The BLUE and Gauss-Markov Theorems are awkward for

this purpose because of the unnatural restriction to linear estimators.

This material is typically taught in the context of independent sampling, where Theorems 5 and 11.1

are relevant. However, the phrasing of these theorems as presented in the previous section, while precise,

may be overly technical for instruction. Instead, I believe that the following simplified re-statements can

be constructively used.

First, take estimation of the population mean under i.i.d. sampling, which is typically discussed in

introductory classes.

Theorem 11.1’ Let Yi be i.i.d. with a finite variance. Then, the sample mean Y is the best unbiased

estimator of the population mean E [Y ].

When taught, it should be explained that “best” refers to “minimum variance”, and “unbiased” refers

to “unbiased under i.i.d. sampling from any distribution with a finite variance”. Theorem 11.1’ can be

1Which satisfy E
[
e3

1

]= 0, E
[
e4

1

]= 1, E
[
e3

2

]= 1, and E
[
e4

2

]= 2.
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presented to students to justify why the sample mean is the standard estimator of the population mean.

We can replace the BLUE acronym with BUE.

Second, take the case of linear regression with independent but not necessarily identically-distributed

observations, which is typically discussed in intermediate econometrics classes.

Theorem 5’ Let {(Y1, X1) , ..., (Yn , Xn)} be an independent sample satisfying a linear regression Yi = X ′
iβ+ei

with E [ei ] = 0, E
[
e2

i

]=σ2
i , and 0 <σ2

i <∞. Then, the best unbiased estimator of β is GLS (1).

When taught, it should be explained that “unbiased” refers to “unbiased under independent sam-

pling from any linear regression with possibly heteroskedastic variances”. It is important to understand

that this unbiased property must hold under any form of heteroskedasticity. Theorem 5’ can be used in

instruction to demonstrate why we focus on GLS estimators. Theorem 5’ can also be used to deduce that

when the error variances are homoskedastic, then the BUE is ordinary least squares.

A reasonable question is whether or not instructors will want to discuss the proofs of Theorems 5 and

11.1. The most accessible presentation of Theorem 11.1 can be found in Section 11.6 of Hansen (2022b),

and that of Theorem 5 in Sections 4.8-4.9 of Hansen (2022c). While these textbook treatments focus on

the independent sampling case, they are still quite advanced. For many levels of instruction, therefore, it

may be prudent to skip the proof, assert that the BUE is linear, and then proceed with the conventional

derivation of the best unbiased estimator among linear estimators.
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