
Online Appendix

A Extensions

A.1 Relaxing Assumption 1

To clarify the role of Assumption 1, we can restate our hypotheses using more general
notation:

H̃0 : Yi(Z) = Yi(Z
′) for all Z,Z ′ and for all i ∈ U

and

H̃w1,w2

0 : Yi(Z) = Yi(Z
′) for all Z,Z ′ such that wi(Z), wi(Z

′) ∈ {w1,w2} and for all i ∈ U.

If Assumption 1 holds, the null hypotheses H̃0 and H̃w1,w2

0 are equivalent to the null hy-
potheses H0 and Hw1,w2

0 ; if it does not hold, the null hypotheses H0 and Hw1,w2

0 are not well
defined, while H̃0 and H̃w1,w2

0 can still be tested. In fact, the procedures in Section 3 used for
testing H0 and Hw1,w2

0 can be used without any modification to test H̃0 and H̃w1,w2

0 regardless
of Assumption 1.

While Assumption 1 does not affect the mechanics of the test, it does impose restrictions on
the alternative hypothesis, which changes the interpretation of rejecting the null hypothesis.
In particular, Assumption 1 imposes two levels of exclusion restriction: one on the relevant
attribute and one on the relevant group. Without this assumption, a number of different
reasons could lead to rejecting the null hypotheses, H0 or Hw1,w2

0 . For instance, we would
reject these hypotheses if a unit’s outcome depends on the composition of attributes other
than A, or if A is the relevant attribute but a unit’s outcome depends on the composition
of groups other than its own. Assumption 1 rules out both of these alternative channels for
peer effects, narrowing the interpretation of rejecting the null hypotheses.

In summary, it is possible to test the null hypotheses H̃0 and H̃w1,w2

0 using the procedures
in Section 3, regardless of the validity of Assumption 1. The price paid for the additional
flexibility is that rejecting the null becomes less informative, since the alternative hypothesis
includes channels of interference that were otherwise ruled out by Assumption 1.

As we discuss in the main text, there is little guidance for applied researchers on specify-
ing exposure mappings, in part because these mappings can be highly context dependent.
Thus, developing recommendations for exposure mappings in practice, as well as assessing
sensitivity to those choices, is a necessary next step.

A.2 Testing weak null hypotheses

Our paper focuses on null hypotheses that impose a constant effect (usually zero) for all units.
A natural question is how to extend our approach to average (or weak) null hypotheses. In
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the no-interference setting, Wu and Ding (2020) propose permutation tests for weak null
hypotheses using studentized test statistics. The result in Wu and Ding (2020, section 5.1)
suggests that our permutation tests in Section 5 can also preserve the asymptotic type I
error under weak null hypotheses with appropriately chosen test statistics. For example, we
can test the following weak null hypothesis

Hw1,w2

0 : τ(w1,w2) = 0

where τ(w1,w2) = N−1
∑N

i=1 Yi(w1)−N−1
∑N

i=1 Yi(w2). Following the argument in Wu and
Ding (2020), Procedure 2c will deliver an asymptotically valid p-value for Hw1,w2

0 if we use
the studentized statistic

T (z;Y,U) =
∑

a∈A π[a](
ˆ̄Y[a]w1 − ˆ̄Y[a]w2)√∑

a∈A π
2
[a](Ŝ

2
[a]w1

/n[a]w1 + Ŝ2
[a]w2

/n[a]w2)
,

where π[a] is the proportion of Ai = a among all units i ∈ U, and (n, ˆ̄Y, Ŝ2) are the sample
size, mean and variance with subscripts denoting the attribute and exposure. As usual,
we can also construct an asymptotic confidence interval for the average treatment effect
τ(w1,w2) by inverting permutation tests.

A.3 Connection with the classic stratified, multi-arm trial

Our paper helps to clarify the relationship between randomized group formation experiments
and traditional randomized stratified experiments in settings without interference or peer
effects. In particular, we show that the designs we consider are equivalent to classic stratified
randomized experiments with multiple arms. The non-sharp null hypotheses of interest
correspond to contrasts between different arms of a multi-arm trial, possibly for a subset of
units. Thus, at least with some reasonable simplifying assumptions, the otherwise complex
setting of randomized group formation experiments reduces to a more familiar setup. As a
byproduct, our proposed permutation tests are applicable to the classic designs as well.

B Additional analysis for Cai and Szeidl (2017)

This appendix section provides additional analysis and discussion of the re-analysis of Cai
and Szeidl (2017) in Section 6.2.

B.1 Discussion of Assumption 1 — Alternative definitions of ex-
posures

As discussed in Section 2.3, the interpretation of our test hinges on W being well-specified
in the sense of Assumption 1. For instance, our tests could reject, in principle, even if H0

was true but firm revenues differed across group assignments that produced the same peer
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Table A1: Testing the sharp null under alternative exposures. ‘one-sided’ indicates the one-
sided p-value (p) from Procedure 1b on a subpopulation; ‘two-sided’ is the corresponding
two-sided p-value, 2min(p, 1− p); ‘∗’ indicates a significant p-value at 5% level.

W
(1)
i W

(2)
i

one-sided two-sided one-sided two-sided

small service firms 0.004∗ 0.007∗ 0.001∗ 0.002∗

small manufacturing firms 0.980 0.041∗ 0.550 0.899

large service firms 0.607 0.785 0.262 0.523

large manufacturing firms 0.954 0.092 0.304 0.608

size exposure. Here, we explore the robustness of our results to two alternative specifications
of the exposure. In the next section, we consider an additional specification, which reflects
the type of peer group exposure that was actually randomized by Cai and Szeidl (2017).

In particular, we consider two additional definitions of exposures:

W
(1)
i =

1

|Zi|
∑
j∈Zi

binary sizej, or W
(2)
i =

1

|Zi|
∑
j∈Zi

sizej · revenuej,

where binary sizej = 1 if and only if firm j has size larger than the median size in j’s
region; and revenuej is the log-revenue of firm j at baseline. The definitions capture coarser
or finer versions, respectively, of our original exposure. For both these definitions, we run
Procedure 1b and report the results in Table A1.

From Table A1, we observe that our results remain largely robust to the alternative exposure
specifications we consider. For instance, across all specifications, we find a significant effect
on small service firms, as in the previous section. There is one notable difference, however.
Under the coarser exposure definition, W

(1)
i , we find evidence for a negative peer group effect

on small manufacturing firms (two-sided p-value=0.04). This effect likely averages out the
positive effect on small service firms (two-sided p-value=0.007), and produces a nonsignificant

overall effect under W
(1)
i .

B.2 Pairwise null hypotheses

We now turn to pairwise non-sharp null hypotheses, extending the analysis of heterogeneity
in the previous section. To that end, we focus on small manufacturing firms for which we
observed a negative peer group effect in the previous section. We also consider a definition of
treatment exposure that matches the type of exposure randomized in the actual experiment.

In particular, Cai and Szeidl (2017) randomized firms into 4 group types, namely, “small
firms in the same sector”, “large firms in the same sector”, “mixed-size firms in the same
sector”, and “mixed-size firms with mixed sectors”. We thus define the following discrete-
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Table A2: Two-sided p-values and inverted randomization-based confidence intervals (at 5%
level) for the pairwise weak nulls of Section B.2. ‘n’ indicates the number of units tested
under the respective null, Hw1,w2

0 ; ‘n1’ is the number of firms exposed to w1, and ‘n2 the
number of firms exposed to w2 (n = n1 + n2).

Null hypothesis n (n2/n1) p-value point estimate confidence interval

HS,SL
0 (small) 179 (84/95) 0.003 -0.449 (-1.062, -0.148)

HS,Sm
0 (small) 139 (44/95) 0.712 -0.549 (-1.084, 0.885)

HSL,SLm
0 (small) 188 (104/84) 0.903 0.017 (-0.445, 0.404)

HSm,SLm
0 (small) 148 (104/44) 0.306 0.116 (-1.236, 0.387)

valued exposure for a small manufacturing firm i:

W
(3)
i =


S, if firm i’s peer group is all small manufacturing firms;

Sm, if firm i’s peer group is all small firms of various sectors;

SL, if firm i’s peer group is mixed-size manufacturing firms;

SLm, if firm i’s peer group is mixed-size firms of various sectors.

(B.1)

We consider four (weak) pairwise null hypotheses each comparing whether small manu-
facturing firms benefit from having a certain exposure level over another. For instance,
HS,SL

0 (small) denotes a null hypothesis to test whether there are benefits of having a mix of
large and small manufacturing peers as opposed to having only small manufacturing peers;
HS,Sm

0 (small) denotes whether there are benefits of having a mix of small service or small
manufacturing peers as opposed to having only small manufacturing peers; and so on.

Table A2 summarizes the results from using Procedure 2b on these pairwise null hypotheses.
These results adds nuance to the negative peer group effect that we observed on small
manufacturing firms in Table A1. In particular, we find that this negative peer group effect
on small manufacturing firms is mainly due to their exposure to other large manufacturing
firms. The relevant null, HS,SL

0 , is strongly rejected (two-sided p-value= 0.003), and the
inverted confidence interval from this test indicates a range of 15% to 65% in revenue loss
from such exposure. In contrast, no negative effects are observed when the exposure of small
manufacturing firms is to small or large firms from a different sector (service).

C Simulation studies

This appendix section describes simulation studies that demonstrate the failure of asymptotic
approximations in our applications and highlight the importance of using exact tests.
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C.1 Simulation study calibrated to Li et al. (2019)

Our first simulation study illustrates the failure of asymptotics of the regression-based (“Ney-
manian”) approach proposed by Li et al. (2019), in a setting calibrated to the roommates
application in Section 6.1. Specifically, consider the following setup:

• N = 156 students allocated at random in rooms of size 4, indexed by i.

• A random a% of students (a is a free parameter) has A = 1 and the rest has A = 0.

• Sample Xi ∼ N(0, 1) iid; or Xi = SiWeibull(0.3), where Si is random sign; or Xi ∼
mixture where mixture = (1−B)δ−k +BU [1− ϵ, 1 + ϵ], where δ is the delta function,
k, ϵ are constants and B is a Bernoulli random variable such that the mean is 0. All
distributions are also normalized to have variance 1.

• Sample εi iid using the distributions described above.

• Define the exposure model, Wi =
∑

j∈roomi,j ̸=i Aj, where roomi is the set of students
in the same room as i.

• Define outcome Yi = 1 + 0 · 1(Wi = 2) +Xi + (0.01 + Ai)εi.

Note that, under this data-generating process, Y ω(0) = Y ω(2) in distribution, and so our
randomization tests remain finite-sample valid.

In this model, even though room allocation is completely randomized and there is no imbal-
ance in room size, the joint distribution of (A,W ) has a complex correlation structure due to
the group formation design. In particular, roughly 3-5% of the units are exposed to W = 2,
which results in a highly leveraged exposure assignment. Moreover, conditional on Wi = 2,
unit i is more likely to be Ai = 0. Thus, under a mixture error distribution the outcomes Yi

of such units tend to be smaller than the outcomes under other exposures. This difference
becomes negligible in the limit with more samples, but it is substantial in finite-samples, and
cannot be easily captured by a regression model even under a robust specification.

To illustrate this point, we regress Yi ∼ 1(Wi = 2)+Xi and use conservative heteroskedasticity-
robust errors (“HC0”). We then test (at 5% level) the hypothesis that the regression coef-
ficient of the exposure dummy variable is zero. A partial set of our results is shown in the
table below. Here, we want only to show the pathological cases for the regression approach,
and so we exclude the normal error setting for which regression performs well and near the
nominal level.

Based on the results reported in Table A4, we observe that with Weibull errors (heavy tailed),
the regression-based test has a size distortion and tends to under-reject. Under a mixture
distribution for the errors, regression severely over-rejects. For instance, even with N(0, 1)
covariates, we observe rejection rates up to roughly 61%. In general, the regression-based
test deteriorates under imbalanced designs.

In contrast, the randomization test is finite-sample valid as expected. Table A4 shows a

S5



Table A3: Rejection rates from robust regression based on a simulation motivated by Li et
al. (2019).

a (%A = 1) X ε Rejection rate%
10.00 N(0, 1) Weibull 1.63
30.00 1.20
50.00 1.40
10.00 Weibull Weibull 1.54
30.00 1.50
50.00 1.50
10.00 mixture Weibull 1.33
30.00 1.00
50.00 2.00
10.00 N(0, 1) mixture 61.98
30.00 11.40
50.00 10.10
10.00 Weibull mixture 64.74
30.00 9.70
50.00 10.50
10.00 mixture mixture 66.05
30.00 12.40
50.00 11.40
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Table A4: Rejection rates (%) from robust regression and the group formation randomization
test of Procedure 2b.

a (%A = 1) X ε regression randomization test
10.00 N(0, 1) mixture 61.1 5.9
30.00 9.9 4.1
50.00 9.2 4.3

partial set of results relating to the pathological cases. We see that the randomization
test achieves near-nominal level performance, with deviations from the nominal level due to
Monte Carlo error.

C.2 Simulation study calibrated to Cai and Szeidl (2017)

We now consider the following simulation setup inspired by the analysis of Cai and Szeidl
(2017) in Section 6.2. Here we focus on a subset of the data to illustrate the key intuition.
We have 13 firms in the same sector and subregion, 2 of the firms are “large” and the
remainder are “small.” In particular, their sizes in terms of log number of employees are
A = (5, 5, Z1, . . . Z11) where Zi ∼ Unif[1, 3] are iid uniform. Following Cai and Szeidl (2017)
we randomize the firms into two groups, one of type “mixed-size” (SL) and another of type
“small-size” (S). Since Zi are iid we can simply set as L = (1, 1, 1, 2, 2, . . . , 2), such that
group 1 is of type (SL) with two large firms and one small firm, and group 2 is of type (S)
with all firms being small. The exposure of firm i is defined as the average group size of
other firms in i’s group:

Wi =
1

|groupi|
∑

j∈groupi

Aj.

We sample ϵi = N(0, σ2
i ) where σ2

i = 1/|groupi| is the reciprocal of i’s group size, and set
the outcome model as Yi = 0 ·Wi + ϵi.

A conventional econometric approach would be to regress Y ∼ W +A and test whether the
coefficient on W is zero, either through regular OLS errors or ‘robust OLS’. However, both
approaches are severely biased even when we condition on the same sector, subregion and
firm sizes. In a simulated study with 10,000 replications based on this model, the nominal
5% rejection rate from regular OLS is 18.48%; and the rejection rate from robust OLS is
60.82%. For the same simulated data, the rejection rate of our randomization test is 4.8%.

The problem here is that OLS errors do not take into account the true correlation structure
in W . For instance, in this model, both large firms have the exact same exposure regardless
of the particular treatment assignment. Due to the problem structure, with high probability
the errors in these two large groups can both be extreme leading to a spurious correlation
between Y and W . Conditioning on firm characteristics in a regression model cannot fix
this issue. In contrast, a randomization test can leverage the true correlation structure in
W and has the correct level in finite-samples.
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D Proofs

D.1 Proof of Theorem 1

Theorem 1. Let P (L) denote a distribution of the group labels with support L = {1, . . . , K}N .
Let W = wℓ(L) ∈ WN be the corresponding exposures, and let U = uℓ(L) ∈ {0, 1}N
be the focal indicator vector, for some wℓ(·), uℓ(·) defined by the analyst. Define SA,U =
SN(A)∩SN(U), which is the permutation subgroup of SN that leaves A (the attribute vector)
and U (the focal unit vector) unchanged. Suppose that the following conditions hold.

(a) P (L) = P (πL), for all π ∈ SA,U and L ∈ L.

(b) wℓ(·) is equivariant with respect to SA,U .

(c) uℓ(·) is equivariant with respect to SA,U .

Then, W is uniformly distributed conditional on the event {W ∈ B}, where B ∈ O(WN ;SA,U).

Proof. We start with two lemmas.

Lemma D.1. Suppose that Conditions (a)–(c) of Theorem 1 hold. Let B ∈ O(WN ;SA,U) be
an orbit such that P (B) > 0. Then, for any π ∈ SA,U , we have

P (πL | W ∈ B, U) = P (L | W ∈ B, U).

Proof of Lemma D.1. L determines both U and W , and so

P (W ∈ B, U | L) = 1{wℓ(L) ∈ B} · 1{U = uℓ(L)}. (D.1)

Similarly,

P (W ∈ B, U | πL) = 1{wℓ(πL) ∈ B} · 1{U = uℓ(πL)} from (D.1)

= 1{πwℓ(L) ∈ B} · 1{U = πuℓ(L)} from Conditions (b)-(c)

= 1{wℓ(L) ∈ B} · 1{π−1U = uℓ(L)} from orbit property of B

= 1{wℓ(L) ∈ B} · 1{U = uℓ(L)} πU = U since π ∈ SA,U

= P (W ∈ B, U | L). from (D.1) (D.2)

It follows that

P (W ∈ B, U | πL)P (πL) = P (W ∈ B, U | L)P (L), From (D.2) and Condition (a)

⇒P (W ∈ B, U | πL)P (πL)

P (B)
=

P (W ∈ B, U | L)P (L)

P (B)
, From P (B) > 0

⇒P (πL | W ∈ B, U) = P (L | W ∈ B, U).
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Lemma D.1 shows that L retains its symmetry even conditionally on W beloning to some
orbit B and conditional on focal selection U . The subspace where its symmetry holds is
exactly the permutation subgroup SA,U , which leaves A and U fixed.

Lemma D.2. Let w ∈ WN be a fixed exposure vector, and define

L(w) = {L ∈ L : wℓ(L) = w}.

Then, for any π ∈ SA,U , we have that

L(πw) = {πL : L ∈ L(w)}.

Proof of Lemma D.2. The result follows from the equivariance property of wℓ in Condition
(b). Specifically, equivariance implies that for any L ∈ L(w) then πL ∈ L(πw). Conversely,
for any L′ ∈ L(πw) then π−1L′ ∈ L(w).

The crucial result in Lemma D.2 is that there exists a 1-1 mapping between the sets L(w)
and L(πw) for any π ∈ SA,U .

We are now ready to prove the main result of Theorem 1. For a fixed w ∈ WN :

P (W = w | W ∈ B, U) =
∑
L∈L

1
{
wℓ(L) = w

}
P (L | W ∈ B, U) =

∑
L∈L(w)

P (L | W ∈ B, U).

(D.3)

Moreover, for any π ∈ SA,U :

P (W = πw | W ∈ B, U) =
∑
L∈L

1
{
wℓ(L) = πw

}
P (L | W ∈ B, U) From (D.3)

=
∑

L∈L(πw)

P (L | W ∈ B, U)

=
∑

L∈L(w)

P (πL | W ∈ B, U) From Lemma D.2

=
∑

L∈L(w)

P (L | W ∈ B, U) From Lemma D.1

= P (W = w | W ∈ B, U). (D.4)

B is an orbit, and so it can be generated by any of its elements. Since W ∈ B, the orbit can
be generated by W , and so B = {πW : π ∈ SA,U}. Therefore, conditional on {W ∈ B} and
focals U , the orbit B is the entire domain of W . The result in (D.4) now implies that W is
conditionally uniform given B and U .
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D.2 Proof of Lemma 1

Equivariance of wℓ. The exposure is defined in Eq. (3) as wi(Z) = {Aj : j ∈ Zi}. On the
domain of group levels, this can be re-written as:

wℓ
i (L) = {Aj : Lj = Li, j ̸= i}.

Now, let π ∈ SN(A) be any transposition acting on L, i.e., a single swap between labels
Li, Lj of units i and j, respectively. After the swap, i is in the “room” that j was, and j is
in the “room” that i was. From the definition of wℓ above, the exposures are only a function
of other units’ attributes in the room, and so units i and j swap exposures. The exposures
of all units other than i, j are unaffected because i and j have the same attribute (Ai = Aj)
due to π ∈ SN(A).

Thus, we proved that wℓ(πL) = πwℓ(L) whenever π is a transposition. Since every permu-
tation is a composition of transpositions, the result holds for any permutation in SN(A).
Moreover, the result holds for π ∈ SA,U as well since SA,U is a subgroup of SN(A).

Equivariance of uℓ. Recall the definition of focal selection in our setting, as defined in
Eq. (9), ui(Z) = 1 if and only if wi(Z) ∈ {w1,w2}. With a slight abuse of notation, this can
be re-written as uℓ(L) = 1{wℓ(L) ∈ {w1,w2}}, where the operation on the right-hand side
is understood element-wise. Thus,

uℓ(πL) = 1{wℓ(πL) ∈ {w1,w2}} = 1{πwℓ(L) ∈ {w1,w2}} = π1{wℓ(L) ∈ {w1,w2}}.

Here, the second equality follows from equivariance of wℓ and the last equality follows from
the element-wise operation.

D.3 Proof of Lemma 2

In the stratified randomized design, define ms : LN → N|A|×|L| as

ms(L)a,k =
∑
i∈U

1(Li = k)1(Ai = a),

which counts how many units with attribute Ai = a are assigned to group label k. Then,
a stratified randomized satisfies P (L) ∝ 1{ms(L) = nA}, where nA is fixed. For any
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permutation π ∈ SN(A), and any pair (a, k), we have

ms(πL)a,k =
∑
i∈U

1{(πL)i = k}1(Ai = a)

=
∑
i∈U

1(Li = k)1{(πA)i = a} From identity, (πx)′y = x′(πy), for any x, y ∈ RN

=
∑
i∈U

1(Li = k)1(Ai = a) πA = A since π ∈ SN (A)

= ms(L)a,k. (D.5)

This results immediately implies that P (πL) = P (L) for any π ∈ SN(A). This holds also in
the focal selection setting. That is, P (πL) = P (L) for any π ∈ SA,U since SA,U is a subgroup
of SN(A). Thus, Condition (a) holds.

D.4 Proof of Lemma 3

In the completely randomized design, define mc : LN → N|L| as

mc(L)k =
∑
i∈U

1(Li = k),

which counts how many units are assigned to group label k. Then, P (L) ∝ 1{mc(L) = n},
where n = (n1, . . . , nK) denotes how many units are to be assigned to each label, and is
fixed. For any permutation π ∈ SN and label k, we have

mc(πL)k =
∑
i∈U

1{(πL)i = k} =
∑
i∈U

1{Li = k} = (L)k. (D.6)

This results immediately implies that P (πL) = P (L) for any π ∈ SN . This holds also for
any subgroup of SN , including SN(A) and SA,U . Both of these subgroups keep the attributes
fixed, and so Procedures 1c and 2c in the completely randomized design are equivalent to
the stratified randomized design with parameter nA = ms(L). Thus, Condition (a) holds.
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