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A Model Details

A-1 Model Derivation

Utility is given by

uij = αvij + βXu
j︸ ︷︷ ︸

Initially Unknown

+αpj + θXk
j + εij︸ ︷︷ ︸

Known

(A-1)

and individuals have prior Gi and marginal cost of information acquisition λ.

As in Matějka and McKay (2015), initial choice probabilities before individuals

obtain information, P 0
1 , .., P

0
N , are determined by integrating over the prior given cost

of information λ:

max
P 0
i1,..,P

0
iJ

∫
ξi

λ log ΣJ
j=1P

0
ij exp

[
(ξij + αpj + θXk

j + εij)/λ
]
G(dξi)

s.t.
∑
j∈J

P 0
ij = 1, P 0

ij ≥ 0 ∀j (A-2)

We start by deriving a closed-form expression for P 0
1 , .., P

0
N . Note that λ log

∑
j e

vj/λ =

λEe [maxj(vj/λ+ ej)] − λγe where ej
iid∼ EV 1 and γe is Euler’s constant (Small and

Rosen 1981). Applying this we have∫
ξi

λ log Σje
(ξij+αpj+θX

k
j +εij)/λ+log(P 0

ij)G(dξi) (A-3)

= λEξ,e
[
max
j

((αpij + θXk
j + εij + ξij)/λ+ log(P 0

ij) + eij)

]
− λγe (A-4)

= λEξ,e
[
max
j

((αipij + θXk
j + εij)/λ+ log(P 0

ij) + ξij/λ+ eij)

]
− λγe (A-5)

= λEξ′,e
[
max
j

((αipij + θXk
j + εij)/λ+ log(P 0

ij) + ξ0ij/λ+ ξ′ij/λ+ eij)

]
− λγe

(A-6)

where ξ′ijt has mean zero and variance σ2
it. The last line follows from the fact that

E[ξij] = ξ0ij.

Note that the joint error is ξ′ij/λ+ej. Given that ej is distributed EV1, V ar[ej] =

1



π2

6
so

V arj[ξ
′
ij/λ+ ej] =

σ2
it

λ2
+
π2

6
.

We define the joint error as `(σi, λ)e
′
ij ≡ ξ′ij/λ+ ej where V arj[e

′
ij] = π2

6
. Therefore,

V arj[`(σi, λ)e
′

ij] =
σ2
i

λ2
+
π2

6

`(σi, λ)2 =
6σ2

i

π2λ2
+ 1

Then, equation (A-6) can be rewritten as

λEe′
[
max
j

((αpij + ξ0ij + θXk
j + εij)/λ+ log(P 0

ij) + ξ0ij/λ+ `(σi, λ)e
′

ij)

]
− λγe. (A-7)

Note E[e
′
ij] = γe

`(σi,λ)
. Let e′′ij ≡ e

′
ij + γe `(σi,λ)−1

`(σi,λ)
and assume e′′ij is distributed EV1 so

E[e
′′
ij] = γe and V ar[e

′′
ij] = π2

6
. This implies that the distribution of ξ′ij follows the

distribution as in Cardell (1997) and Galichon (2022). Equation (A-7) can then be

expressed as

λEe′
[
max
j

((αpij + ξ0ij + θXk
j + εij)/λ+ log(P 0

ij) + ξ0ij/λ+ `(σi, λ)e
′′

ij)

]
− λ`(σi, λ)γe.

(A-8)

Now we can again apply the formula from Small and Rosen (1981), this time in

reverse. In particular, note that Ee [maxj(vj + `ej)] = ` log
∑

j e
vj/` + `γe where ej is

EV1. This implies that equation (A-8) can be expressed as

λ`(σi, λ) log
∑
j

e(αpij+ξ
0
ij+θX

k
j +εij)/λ+log(P 0

ij)+ξ
0
ij/λ)/`(σi,λ). (A-9)

Now the maximization problem in equation (A-2) can be rewritten as

max
P 0
i1,..,P

0
iJ

Σj∈J exp[(αpij+ξ
0
ij+θX

k
j +εij)/`(σi, λ)λ+log(P 0

ij)/`(σi, λ)] s.t.
∑
j∈J

P 0
ij = 1, P 0

ij ≥ 0 ∀j

In the maximization problem we have ignored terms that do not affect the solution.
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From solving this maximization problem, we can derive a closed-form expression for

P 0
ijt as

P 0
ij =

exp
[
(αpj + ξ0ij + θXk

j + εij)/(λ`(σi, λ)− λ)
]∑

k∈J exp
[
(αpk + ξ0ik + θXk

k + εik)/(λ`(σi, λ)− λ)
] .

With an expression for P 0
ij in hand, we can now derive an expression for choice

probabilities after information acquisition. Based on Theorem 1 in Matějka and

McKay (2015), choice probabilities can be written as

Pij =

∫
εi

exp
[
(αvij + βXu

j + αipj + θXk
j + εij)/λ+ log(P 0

ij)
]∑

k∈J exp
[
(αvik + βXu

k + αpkt + θXk
k + εik)/λ+ log(P 0

ik)
]Gi(εi)

where Gi(εi) is the CDF of the taste shock. Therefore, the problem is now as if

individuals maximize utility given by

E[uij] = (αvij + βXu
j + αpj + θXk

j + εij)/λ+ log(P 0
ij) + eij

where εij is an iid taste shock and eijt is an iid EV1 error causes by incorrect beliefs

(with variance π2/6). Substituting the expression for P 0
ij, this becomes

E[uj] = (αvij+βX
u
j +αpj+θX

k
j +εij)/λ+(αpj+ξ

0
ij+θX

k
j +εij)/(λ`(σi, λ)−λ)+eij

(A-10)

where log
[∑N

k=1 exp
[
(αpk + ξ0ik + θXk

k + εik)/(λ`(σi, λ)− λ)
]]

is a constant that is
the same for every option, and therefore does not affect choice probabilities. We can
simplify equation (A-10) to

E[uij ] = (αvij + βXu
j + αpj + θXk

j )/λ+ (αpj + ξ0ij + θXk
j )/(λ`(σi, λ)− λ) + εij/(λ`(σi, λ)− λ) + εij/λ+ eij

=
αvij + βXu

j + αpj + θXk
j

λ
+
αpj + ξ0ij + θXk

j

λ(`(σi, λ)− 1)
+

`(σi, λ)

λ(`(σi, λ)− 1)
εij + eij

=
αvij + βXu

j

λ
+

(`(σi, λ)− 1)
(
αpj + θXk

j

)
λ(li − 1)

+
αpj + ξ0ij + θXk

j

λ(`(σi, λ)− 1)
+

`(σi, λ)

λ(li − 1)
εij + eij

=
αvij + βXu

j

λ
+
α`(σi, λ)pj + ξ0ij + θ`(σi, λ)Xk

j

λ(`(σi, λ)− 1)
+

`(σi, λ)

λ(`(σi, λ)− 1)
εij + eij (A-11)
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Define the joint error as kie
′
ij ≡

`(σi,λ)
λ(`(σi,λ)−1)εij + eij where V ar[e

′
ij ] = π2

6 . Again, we assume

that the distribution of the taste shock is such that the joint error is distributed extreme

value type 1. Therefore,

V ar[kie
′
ij ] =

`(σi, λ)2

λ2(`(σi, λ)− 1)2
π2

6
+
π2

6

⇒ k2i =
`(σi, λ)2

λ2(`(σi, λ)− 1)2
+ 1

The expected utility in equation (A-11) can be then be rewritten as

αvij + βXu
j

kiλ
+
α`(σi, λ)pj + ξ0ij + θ`(σi, λ)Xk

j

kiλ(`(σi, λ)− 1)
+ e′ij .

Note that the error has been renormalized. Therefore, the choice probabilities are

Pij =

exp

[
αvij+βX

u
j

kiλ
+

α`(σi,λ)pj+ξ
0
ij+θ`itX

k
j

kiλ(`(σi,λ)−1)

]
∑

k∈J exp

[
αvik+βX

u
k

kiλ
+

α`(σi,λ)pk+ξ
0
ij+θ`(σi,λ)X

k
k

kiλ(`(σi,λ)−1)

] .
The elasticity of demand with respect to the known component of cost, pj , is then given

by

ep =
∂Pij
∂pj

pj + vij
Pij

=
∂Vij
∂pj

Pij(1− Pij)
pj + vij
Pij

= αi
`it

kitλ(`it − 1)
(1− Pij)(pj + vij), (A-12)

while the elasticity of demand with respect to initially unknown component of cost, vij , is

given by

ev =
∂Pij
∂vij

pj + vij
Pij

=
∂Vij
∂vij

Pij(1− Pij)
pj + vij
Pij

= αi
1

kitλ
(1− Pij)(pj + vij) (A-13)

The above elasticities can be interpreted as the percent change in demand due to a one
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percent change in cost due to pj and vij respectively. In the context of insurance choice,

this implies individuals will be more sensitive to premiums then out-of-pocket cost when

information is costly.

A-2 Basic Model for Simulation

We can consider the simple case with no idiosyncratic taste shock in which utility is given by

uij = −pj − vij where vij requires costly information acquisition. Given the distributional

assumption on the prior, P 0
ij is then given by

P 0
ij =

e−pj/(λ`(σi,λ)−λ)∑
k e
−pk/(λ`(σi,λ)−λ)

where

`(σi, λ) ≡
(

6σ2i
π2λ2

+ 1

) 1
2

.

It is as if the agent maximizes expected utility

E[uij ] = (−pj − vij)/λ+ log(P 0
ij) + eij

where eij is an iid EV1 error causes by incorrect beliefs. Substituting the expression for P 0
ij ,

expected utility is

E[uij ] = (−pj − vij)/λ+ pj/(λ`(σi, λ)− λ) + log(
∑
k

e−pk/(λ`(σi,λ)−λ)) + eij

where log(
∑

k e
−pk/(λ`(σi,λ)−λ)) is the same for every option, and therefore can be ignored.

This yields closed-form choice probabilities given by

Pij =
e(−pj`(σi,λ)/(`(σi,λ)−1)−vij)/λ∑
k e

(−pk`(σi,λ)/(`(σi,λ)−1)−vik)/λ
. (A-14)

The above expression implies that individuals respond differentially to an equivalent

change in pj and vij . In particular, the elasticity of demand with respect to a change in cost

due to pj is given by

ep =
`(σi, λ)

λ(`(σi, λ)− 1)
(1− Pij)(pj + vij), (A-15)
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while the elasticity of demand with respect to a change in cost due to vj is given by

ev =
1

λ
(1− Pij)(pj + vij). (A-16)

A-3 Empirical Model Likelihood function

Given the empirical model presented in section 4, choice probabilities are given by

Pijt =
exp

[
a(σit, λit)

(
αivijt + β1X

u
jt + β2σ̃

2
ijt

)
+ b(σit, λit)

(
αipjt + β3X

k
jt + ζb(j)d(it)

)]
∑

k∈J exp
[
a(σit, λit)

(
αivikt + β1Xu

kt + β2σ̃2ikt
)

+ b(σit, λit)
(
αipkt + β3Xk

kt + ζb(k)d(it)
)]

(A-17)

Let the set of parameters by Φ = {α, λ, β, ζ}. The log-likelihood function is given by

L(Φ) =
∑
i

∑
t

∑
j∈Jit

I(yit = j)ν̃ijt(Φ)− log

∑
j∈Jit

exp ν̃ijt(Φ)

 (A-18)

where

ν̃ijt(Φ) = a(σit(Φ), λit)
(
αivijt + β1X

u
jt + β2σ̃

2
ijt

)
+ b(σit(Φ), λit)

(
αipjt + β3X

k
jt + ζb(j)d(it)

)
.

(A-19)

Note that σit(Φ) = V ar [αvi1t + βXu
1t, αvi2t + βXu

2t, . . . , αviJt + βXu
Jt] is a function of model

parameters.

A-4 Derivation of Welfare

We denote individual i’s expected utility from alternative j given beliefs after information

acquisition as ũijt. The difference between the realized utility and the expected utility given

information acquisition is denoted dijt. Then, the realized utility can be written as

uijt = ũijt + dijt

Denoting j∗ as the option in J that maximizes the individual’s belief utility, consumer

surplus under rational inattention can be expressed as

CSRI =
1

−αi
E[ũij∗t + dij∗t]
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=
1

−αi
E[max

j
ũijt] +

1

−αi

∑
j

Pijtdijt

=
1

−αi
log
∑
j

exp[ν̃ijt] +
1

−αi

∑
j

Pijt[νijt − ν̃ijt]

where νijt and ν̃ijt are given by equation (17) and equation (18).

The cost function can be expressed in terms of the initial choice probabilities before

individuals acquire information and the final choice probabilities

Ĉit =
λit
−αi

∫
ε

−∑
j∈Jit

P 0
ijt(ε) logP 0

ijt(ε) +

∫
ξ

∑
j∈Jit

Pijt(ξ, ε) logPijt(ξ, ε)

Gi(dξ)

M(dε)

(A-20)

where P 0
ijt(ε) is the initial choice probability before information acquisition given ε, Pijt(ξ, ε)

is the choice probability after information acquisition given (ξ, ε), Gi(ξ) is the distribution

of the prior, and M(ε) is the distribution of the taste shock. In practice, the entropy of

posterior beliefs can be evaluated using simulation methods by drawing from distribution

Gi(ξ) and M(ε) and averaging over the draws.

B Details on Data Construction

The sample selection criteria follows Abaluck and Gruber (2016). We drop individuals that

are eligible for low-income subsidies, those with employer coverage, individuals who move

during the year, those with enrolled in multiple plans, those that are enrolled for less than a

full year, and those enrolled in plans with less than 100 enrollees in the state. Furthermore,

we limit the sample to active switchers. Active switchers are defined as new enrollees in

addition to individuals that were previously enrolled in a plan that is no longer available.

In order to construct expected out-of-pocket costs, we employ the Medicare Part D

calculator from Abaluck and Gruber (2016). The calculator uses observed claims for an

individual to construct out-of-pocket costs for all plans in the individual’s choice set. While

we follow the approach of Abaluck and Gruber (2016) closely, one difference is that our

sample allows us to use data on plan formularies rather than reconstruct formularies from

observed claims. The formulary data, which is provided by CMS, provides information about

the tier of each drug and if the drug is covered at all. We combine this with information on

plan characteristics that are constant for all plans in a given year such as the catastrophic
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threshold.

For each plan, an individual’s claims are put into the calculator in chronological order

and the copay and coinsurance are calculated given the plan formulary and Medicare Part D

benefit design. Following Abaluck and Gruber (2016) we allow individuals to substitute to

lower cost drugs, where drugs are defined by their ingredients, strength, dosage, and route

of administration. To construct the rational expectations measure of expected out-of-pocket

costs, the calculator defines 1,000 groups based on prior year’s total expenditure, quantity

of branded drugs in days, and quantity of generic drugs in days as in Abaluck and Gruber

(2011). When prior year claims are not available, the calculator uses the beginning of the

current year. We then consider the average and variance of individuals in the same group to

get expected out-of-pocket costs and plan variance respectively. Abaluck and Gruber (2016)

find that their calculator is able to accurately predict out-of-pocket costs for individuals’

chosen plans and is robust to alternative specifications.

C Details of Alternative Models without Endoge-

nous Information

In order to examine the implications of the endogenous information model, it is useful to

compare the results to alternative empirical models of insurance demand that do not have

endogenous information. In this section, we present that details of these alternative models.

Standard logit model

Canonical models of insurance often assume that individuals have full information about

the distribution of out-of-pocket cost.46 We start by estimating a standard logit model

assuming that individuals have full information about both premiums and expected out-of-

pocket cost. Therefore, individuals treat both premium and expected out-of-pocket cost in

the same way, i.e. they have the same coefficient. The endogenous information model nests

this model when the marginal cost of information is zero. In this case, utility takes the form

uijt = αi (vijt + pjt)︸ ︷︷ ︸
Total Cost

+β1σ̃
2
ijt + β2Xjt + ζb(j)d(it) + εijt. (A-21)

46See, for instance, review by Einav et al. (2010).
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As in the baseline endogenous information model, σ̃2ijt is the riskiness of the plan, i.e.

variance of out-of-pocket costs, Xjt is plan quality, and ζb(j)d(it) are plan fixed effects. In all

of the above models, the coefficient on cost, αi, is assumed to be a function of individual

observable characteristics (income, education, age, age squared, female, and an indicator for

rural). The idiosycratic error, εijt, is assumed to follow a EV1 distribution.

Coverage characteristics model

A common approach in the empirical literature on insurance demand is to assume that

utility is a function of premium and coverage characteristics rather than expected out-of-

pocket cost. See, for instance, Bundorf et al. (2012), Handel (2013), and Polyakova (2016).

Decarolis et al. (2020), Polyakova (2016), Ericson and Starc (2016), and Tebaldi (2017). A

related approach uses plan fixed effects to absorb differences in deductible, coinsurance, or

other coverage characteristics. In particular, we assume utility takes the form

uijt = αipjt + β1Cjt + β2σ̃
2
ijt + β3Xjt + ζb(j)d(it) + εijt (A-22)

where Cjt are coverage characteristics including deductible, cost sharing, generic coverage,

and coverage in the gap. Assumptions about σ̃2ijt, Xjt, αi, ζb(j)d(it), and εijt are the same as

the previous model.

Differential weight model

Finally, we consider a model in which there is a different coefficient on premium and ex-

pected out-of-pocket cost. This approach, used by Abaluck and Gruber (2011) and Abaluck

and Gruber (2016), assumes that the coefficients are fixed when considering counterfactual

policies. Ho et al. (2017) and Heiss et al. (2016) use a similar approach. For this model, we

assume utility is given by

uijt = αipjt + β1vijt + β2σ̃
2
ijt + β3Xjt + ζb(j)d(it) + εijt. (A-23)

We maintain assumptions regarding σ̃2ijt, Xjt, αi, ζb(j)d(it), and εijt. One interpretation of

this model is that the difference between αi and β1 reflects exogenous information frictions.

Unlike the endogenous information model presented in the previous section, there is no scope

for the stakes to affect information acquisition.
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Results from Alternative Models

We estimate the models via MLE and present the parameter estimates in Table A-1.

To evaluate the fit of the alternative models, we simulate baseline choice probabilities

from each model and use the simulated data to estimate the probability of choosing the

lowest-cost option based on equation (12) and weights on premium and expected out-of-

pocket cost based on equation (11). Figure A-1 Panel c and d show the fit of the alternative

models.

Table A-2 shows results from counterfactual experiments under the alternative models.

Table A-1
Estimates for Alternative Models of Insurance Demand

without Endogenous Information

Standard Logit Coverage Characteristics Differential Weight

Total cost −0.0773∗∗∗ (0.0034)
Total cost × Income 0.0003∗∗∗ (0.0000)
Risk 0.0027∗∗ (0.0011) −0.0009 (0.0011) 0.0007 (0.0011)
Premium −0.1705∗∗∗ (0.0052) −0.1130∗∗∗ (0.0042)
Premium × Income 0.0004∗∗∗ (0.0000) 0.0000 (0.0000)
Deductible −0.0051∗∗∗ (0.0001)
Generic coverage −0.8841∗∗∗ (0.0266)
Coverage in gap 0.3227∗∗∗ (0.0266)
Cost sharing 0.5176∗∗∗ (0.0734)
OOP −0.0211∗∗∗ (0.0015)

Other controls for plan characteristic Yes Yes Yes
Insurer Fixed Effects × Chronic Conditions Yes Yes Yes

Log Likelihood -51,940 -96,649 -50,772

Notes: The details of each model are presented in Appendix C. Premium and out-of-pocket cost are in hundreds of dollars.
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A-1
Fit of Endogenous Information Model and Alternative Models
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Table A-2
Counterfactual Spending and Welfare for Restricted Choice Set and Out-of-Pocket

Cap from Alternative Demand Models

Restricted Choice Set Out-of-Pocket Cap

10th Percentile 25th Percentile $5,000 $15,000
Cutoff Cutoff Cap Cap

Standard logit model
∆ Premium -0.2 -0.3 -21.2 -13.0
∆ Out-of-pocket cost -0.2 -0.9 -318.1 -137.7
∆ Spending -0.4 -1.2 -339.3 -150.6
∆ Welfare -4.3 -18.8 350.7 166.5

Coverage characteristics model
∆ Premium 0.1 0.2 0.0 0.0
∆ Out-of-pocket cost -0.2 -0.7 -410.5 -215.7
∆ Spending -0.1 -0.5 -410.5 -215.7
∆ Welfare -2.1 -8.2 0.0 0.0

Differential weight model
∆ Premium -0.1 -0.2 -7.5 -4.7
∆ Out-of-pocket cost -0.1 -0.5 -379.6 -186.4
∆ Spending -0.2 -0.7 -387.1 -191.1
∆ Welfare -1.5 -6.8 73.0 36.9

Notes: Counterfactual simulations from alternative models described in Appendix C. Restricted
choice counterfactual removes plans with average utility below cutoff based on estimates from
endogenous information model. Out-of-pocket cap counterfactual imposes limit on out-of-pocket
cost of all plans and then simulates plan choice.
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D Robustness Results for Motivating Evidence

In this section, we present detailed results from robustness checks for our analysis in Sec-

tion 3.2. In Table A-3, we examine the relationship between the stakes and the probability

of choosing the lowest cost plan while using the perfect-foresight measure of out-of-pocket

costs. This measure is constructed based on each individual’s realized utilization of out-of-

pocket costs to address the concern that there can be measurement error with our baseline

measure based on rational expectations. Table A-4 shows the relationship between the stakes

and choice quality remains even more stronger when using the restricted sample of new en-

rollees. In Figure A-2, we explore two alternative measures of choice quality: the fraction

of individuals choosing a plan in the lowest decile and quintile of out-of-pocket costs among

the plans in their choice set. We also consider quality measures based on plan riskiness and

quality in Figure A-3. To the extent that these plan characteristics are also initially hard

to observe, we would expect a similar relationship. Across all of these alternative outcomes,

we find the evidence of a U-shaped relationship between the stakes and choice quality.

Table A-3
Non-Monotonic Effect of Stakes on Insurance Choice
Robustness Check with Perfect Foresight Assumption

(1) (2) (3) (4) (5) (6)

Stakes (100s) −0.0220∗∗∗ −0.0213∗∗∗ −0.0016 −0.0204∗∗∗

(0.0023) (0.0025) (0.0017) (0.0025)

Stakes Squared 0.0019∗∗∗ 0.0018∗∗∗ 0.0003∗ 0.0018∗∗∗

(0.0002) (0.0002) (0.0001) (0.0002)

Stakes quintile 2 −0.0444∗∗∗ −0.0015
(0.0034) (0.0027)

Stakes quintile 3 −0.0536∗∗∗ −0.0065∗

(0.0042) (0.0034)

Stakes quintile 4 −0.0539∗∗∗ −0.0089∗∗∗

(0.0036) (0.0030)

Stakes quintile 5 −0.0474∗∗∗ 0.0017
(0.0033) (0.0036)

Individual FEs No No Yes No No Yes
Year FEs No No Yes Yes No Yes
Market FEs No No No Yes No No
Controls for Plan Characteristics
& Number of Plans No Yes Yes Yes Yes Yes

Implied minimum 573.5 582.7 300.9 581.9
Adjusted R2 0.007 0.009 0.269 0.011 0.016 0.269
Observations 199,783 193,745 183,402 193,745 193,745 183,402

Notes: Estimates from linear probability model where dependent variable is the indicator variable for whether
the individual chooses the lowest cost plan, where lowest cost plan is defined using a perfect foresight assump-
tion. Standard errors clustered at the market level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A-4
Non-Monotonic Effect of Stakes on Choice of Lowest Cost Insurance Plan

Robustness Check with First-Time Enrollees

(1) (2) (3) (4)

Stakes (100s) −0.0728∗∗∗ −0.0724∗∗∗ −0.0726∗∗∗ −0.0719∗∗∗

(0.0060) (0.0076) (0.0076) (0.0076)

Stakes Squared 0.0060∗∗∗ 0.0061∗∗∗ 0.0061∗∗∗ 0.0060∗∗∗

(0.0006) (0.0008) (0.0008) (0.0008)

Year FEs No No Yes Yes
Market FEs No No No Yes
Controls for Plan Characteristics & Number of Plans No Yes Yes Yes

Implied minimum 605.2 592.9 592.7 594.1
Adjusted R2 0.044 0.066 0.070 0.074
Observations 99,031 95,271 95,271 95,271

Notes: Estimates from linear probability model where dependent variable is the indicator variable for whether
the individual chooses the lowest cost plan. Standard errors clustered at the market level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01.

Table A-5
Interaction of Stakes and Price Coefficient in Standard Logit Model

Robustness Check with Perfect Foresight Assumption

(1) (2) (3) (4) (5) (6)

Premium (100s) −0.234∗∗∗ −0.279∗∗∗ −0.492∗∗∗ −0.294∗∗∗ −0.489∗∗∗ −0.486∗∗∗

(0.003) (0.003) (0.021) (0.003) (0.021) (0.022)
Premium × Indiv. avg stakes 0.019∗∗∗ 0.018∗∗∗ 0.017∗∗∗

(0.001) (0.001) (0.001)
Premium × Stakes 0.020∗∗∗ 0.018∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.001)
Premium × Stakes × 1(Stakes > 0) 0.005∗∗∗

(0.001)
Premium × Stakes × 1(Stakes < 0) 0.013∗∗∗

(0.001)
Out-of-Pocket Cost (100s) −0.023∗∗∗ −0.020∗∗∗ −0.057∗∗∗ −0.013∗∗∗ −0.049∗∗ −0.046∗∗

(0.002) (0.005) (0.019) (0.005) (0.019) (0.019)
OOP × Indiv. avg stakes 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001)
OOP × Stakes 0.003∗∗∗ 0.003∗∗∗ 0.001∗∗ 0.001∗

(0.000) (0.000) (0.000) (0.000)
OOP × Stakes × 1(Stakes > 0) 0.000

(0.000)
OOP × Stakes × 1(Stakes < 0) 0.001∗∗∗

(0.000)

Premium × Xi No No Yes No Yes Yes
OOP × Xi No No Yes No Yes Yes

Log Likelihood -114,144 -113,804 -113,329 -113,652 -113,196 -113,179
Observations 1,025,674 1,025,674 1,025,674 1,025,674 1,025,674 1,025,674

Notes: Stakes in hundreds of dollars. All specifications include controls for risk aversion (OOP variance), plan
quality rating, deductible, generic coverage, coverage in the donut hole, and cost sharing. Standard errors in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A-2
Alternative Measures of Probability of Choosing Low Cost

Plan by Stakes
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Notes: For average percentile rank, higher percentile rank indicates lower cost
choice. Standard error bars show 95% confidence interval for the mean.

Figure A-3
Alternative Measures of Choice Quality by Stakes
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E Results from Alternative Specifications and Addi-

tional Counterfactuals

Table A-6 presents results from alternative specifications to our baseline version. In the first

column of the table, we consider excluding insurer fixed effects. In the second column, we

consider include outliers with extreme values of the stakes to our main sample.

Table A-6
Estimates for Demand Model with Endogenous Information Acquisition

Alternative Specifications

(1) (2)

No Insurer
Fixed Effects Including Outliers

Estimate SE Estimate SE

Price Sensitivity (βα)
Constant −2.1185 (0.0186) −2.1560 (0.0209)
Income −0.0008 (0.0005) −0.0011 (0.0005)

Other Plan Characteristics
Previous insurer 6.2254 (0.0506) 6.5487 (0.0707)
Risk −0.0436 (0.0024) −0.0542 (0.0032)
Star rating 1.5402 (0.0849) 1.9178 (0.1294)

Marginal cost of information (βλ)
Constant 2.9757 (0.1636) 2.9856 (0.1437)
Zip Income −0.0002 (0.0011) 0.0000 (0.0009)
Zip Education −0.0007 (0.0023) −0.0012 (0.0020)
Age 0.6377 (0.0957) 0.4214 (0.0714)
Age2 −0.0038 (0.0006) −0.0025 (0.0004)
Female −0.0113 (0.0447) 0.0119 (0.0393)
Part D Experience −0.4511 (0.0338) −0.3762 (0.0282)
Rural 0.2124 (0.0588) 0.2103 (0.0514)
Has alzheimers 0.0935 (0.0732) 0.0630 (0.0644)
Has lung disease 0.1712 (0.0704) 0.1058 (0.0616)
Has kidney disease −0.0694 (0.0571) −0.0958 (0.0512)
Has heart failure 0.0851 (0.0624) 0.0769 (0.0564)
Has depression 0.0244 (0.0659) −0.0002 (0.0579)
Has diabetes 0.0957 (0.0504) 0.0510 (0.0449)
Has other chronic condition 0.0304 (0.0511) −0.0349 (0.0441)

Mean price sensitivity −0.1203 −0.1159
Mean marginal cost of information 2.2975 3.1415

LL -54,452.83 -50,850.09
Observations 1,035,319 1,021,782

Notes: Specification 1 does not include insurer fixed effects. Specification 2 includes
individuals with outlier stakes, which are not included in the baseline specification.
Premium and out-of-pocket cost are in hundreds of dollars. Continuous individual char-
acteristics (income, education, age, and age squared) are demeaned. Standard errors in
parentheses.

We conduct a counterfactual that restricts the choice set by offering the personalized list

of plans optimal to each individual. This contrast with our baseline specification in which
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the choice set is personalized by age bins. The welfare gains are even larger in this case as

shown in Figure A-4.

Figure A-4
Counterfactual Welfare Effects of Restricted Choice Set
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Notes: Chart shows counterfactual average change in welfare per enrollee from removing
plans with mean utility below a given percentile where average utlity is computed for each
individual. Counterfactual estimates from model with endogenous information acquisition
are contrasted with counterfactual welfare estimates from commonly used models of plan
demand.

17



Figure A-5
Counterfactual Welfare Effects of Out-of-Pocket Cost Cap
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Notes: Chart shows counterfactual change in welfare from capping out-of-pocket cost at dif-
ferent levels. Counterfactual estimates from model with endogenous information acquisition
is contrasted with counterfactual estimates from alternative models without endogenous infor-
mation.

Figure A-6
Counterfactual Welfare for Out-of-Pocket Cost Cap

When Adjusting Premiums so Policy is Revenue Neutral
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Notes: Chart shows counterfactual change in welfare from capping out-of-pocket cost at differ-
ent levels while increasing premiums such that the policy is revenue neutral. Counterfactual
estimates from model with endogenous information acquisition is contrasted with counterfac-
tual estimates from alternative demand models without endogenous information.
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F Identification

For simplicity, consider the baseline model we estimate in which individuals hold common

priors for all options. Furthermore, we abstract from the product fixed effects, ζb(j)d(it). The

choice probabilities are given by

Pijt =
exp

[
a(σit, λit)

(
αivijt + β1X

u
jt + β2σ̃

2
ijt

)
+ b(σit, λit)

(
αipjt + β3X

k
jt

)]
∑

k∈J exp
[
a(σit, λit)

(
αivikt + β1Xu

kt + β2σ̃2ikt
)

+ b(σit, λit)
(
αipkt + β3Xk

kt

)] .
(A-24)

where a(σit, λit) and b(σit, λit) are defined in Section 2. The key assumptions that lead to

these choice probabilities are a) individuals have risk preferences approximated by CARA

utility with normally distributed out-of-pocket costs; and b) there is an additive taste shock

with distribution M(εijt) and c) the distribution of the priors is Gi(ξij).

We can redefine the coefficients in equation (A-24) and rewrite the choice probabilities

as:

Pijt =
exp

[
ρ0itvijt + ρ1itX

u
jt + ρ2itσ̃

2
ijt + ρ3itpjt + ρ4itX

k
jt

]
∑

k∈J exp
[
ρ0itvikt + ρ1itX

u
kt + ρ2itσ̃

2
ikt + ρ3itpkt + ρ4itX

k
kt

]
where ρ0it = αia(σit, λit), ρ1it = β1a(σit, λit), ρ2it = β2a(σit, λit), ρ3it = αib(σit, λit), and

ρ4it = β3b(σit, λit). Identification of parameters ρi = {ρ0it, ρ1it, ρ2it, ρ3it, ρ4it} is then standard

and comes from variation in individuals’ choice sets across markets.47 If individuals are more

sensitive to premiums than out-of-pocket cost, the coefficient on the premium, ρ3it, will differ

from the coefficient on the out-of-pocket cost, ρ0it. Dividing the coefficient on the premium

by the coefficient on out-of-pocket cost, we obtain

ρ3it
ρ0it

=
`it(σit, λit)

`it(σit, λit)− 1
=

(
6σ2it + π2λ2it

) 1
2(

6σ2it + π2λ2it
) 1

2 − πλit
(A-25)

Hence, given the variance of the prior belief, σ2it, the ratio ρ3it
ρ0it

pins down the information

cost parameter λit. Based on the estimates of λit and ρit, we can then obtain the price

coefficient αi and other preference parameters (β1, β2, β3).

Alternatively, one could estimate ρi = {ρ0it, ρ1it, ρ2it, ρ3it, ρ4it} directly by estimating a logit

model, ideally including interactions to allow the coefficients to vary by individual charac-

teristics and stakes. In this case, λit can be recovered from the “reduced-form” parameters

47For example, Abaluck and Gruber (2011) estimates these parameters in a standard logit model.
The same identification argument applies.
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using

λit =

√
6(
ρ3it
ρ0it
− 1)σit

π(2
ρ3it
ρ0it
− 1)

1
2

.

G Monte Carlo Analysis to Assess Sensitivity to Dis-

tributional Assumptions

We conduct a Monte Carlo exercise as part of our robustness analysis. In particular, we

examine whether estimates are sensitive to the distributional assumption on the prior of out-

of-pocket costs that is used in deriving the closed-form expression of choice probabilities.

Using the model presented in appendix A-2, we simulate premiums and out-of-pocket costs

by drawing from a normal distribution. Table A-7 lists parameter values chosen for the

simulation.

Table A-7
Parameter Values for a Monte Carlo Simulation

Number of choice situations (N) {1000,5000}
Number of options 3
Cost of information (λ) 10
Variance of out-of-pocket costs 15
Variance of premiums 10

We compute choice probabilities based on two different assumptions about the prior. In

the first case, we assume a normally distributed prior that coincides with the true distri-

bution of out-of-pocket costs. In this case, we can compute initial choice probabilities by

numerically solving equation (A-2) based on simulated maximum likelihood. In the second

case, we assume that a non-standard prior that gives rise to a closed-form expression for

choice probabilities as described in Online Appendix A. Then, we can compute initial choice

probabilities based on equation (A-14). We draw choices based on these two sets of choice

probabilities and estimate the cost of information using maximum likelihood.

We simulate 1000 and 5000 choice situations under the two sets of assumptions and

repeat each simulation 50 times. Table A-8 shows results from the simulations. The distri-

butional assumption on the prior does not have a significant effect on the estimate of the

information cost (λ). The mean squared error is 0.016 under the normal prior and 0.037

under the alternative non-standard distribution for the sample size of 5000. Given that
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Table A-8
Monte Carlo Results

N = 1000

Estimate MSE

True value Normal Non-standard Normal Non-standard

10 10.087 9.973 0.104 0.243
(0.314) (0.497)

N = 5000

Estimate MSE

True value Normal Non-standard Normal Non-standard

10 9.990 9.990 0.016 0.037
(0.129) (0.193)

Notes: Standard errors are in parentheses.

the misspecified model is quite accurate, this implies that the distributional assumption is

relatively innocuous. At the same time, the use of the closed-form expression dramatically

reduces the computational burden. When using simulated MLE with the normal prior, the

Monte Carlo exercise with the sample size of 5000 takes nearly 6 hours on 56 cores. With

the closed-form expression, the computational time is reduced to 5 seconds.
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