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Abstract

We show that Theorem 4 in Hansen (2022) applies to exactly the same class of estima-

tors as does the classical Aitken Theorem. We furthermore point out that Theorems 5-7

in Hansen (2022) contain extra assumptions not present in the classical Gauss-Markov or

Aitken Theorem, and thus the former theorems do not contain the latter ones as special

cases.

1 Introduction

Hansen (2022) contains several results from which he draws the conclusion that the linearity

condition can be dropped from the Aitken Theorem or from the Gauss-Markov Theorem. We

argue that this conclusion is unwarranted, as the results on which this conclusion rests either (i)

turn out to be equivalent to the classical Aitken or the classical Gauss-Markov Theorem, with

linearity being reintroduced indirectly, or (ii) add extra assumptions to the Aitken or Gauss-

Markov Theorem.

We thus argue that one should not follow Hansen�s advice to drop the linearity condition in

teaching the Gauss-Markov Theorem or the Aitken Theorem: Depending on which formulation

�This note is based on an earlier paper Pötscher and Preinerstorfer (2022) which contains a more extensive
discussion, including also a discussion of di¤erent versions of Hansen�s paper. We thank Abram Kagan for
answering an inquiry, Peter Phillips for helpful comments, and the editor Guido Imbens and the referees for their
feedback. We are also grateful to Stephen Portnoy for sending us his paper, and to Bruce Hansen for making the
page proofs available to us after we had sent him the �rst version of Pötscher and Preinerstorfer (2022). Address
correspondence to Benedikt Pötscher, Department of Statistics, University of Vienna, A-1090 Oskar-Morgenstern
Platz 1. E-Mail: benedikt.poetscher@univie.ac.at.
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of the Aitken Theorem one starts with (Theorem 3.1 or 3.2 given below), dropping linearity from

the formulation of that theorem either leads to a result that is equivalent to the classical Aitken

Theorem (if one starts from Theorem 3.2), or leads to an incorrect result (if one starts from

Theorem 3.1). The same goes for the Gauss-Markov Theorem.

After the �rst version of Pötscher and Preinerstorfer (2022), on which the current paper is

based, had been circulated, we learned about Portnoy (2022), which establishes, independently

and at the same time, a result closely related to our Theorem 3.4 using arguments di¤erent from

the ones we use; for more discussion see Remark 3.6 in Section 3.

2 The Framework

As in Hansen (2022) we consider throughout the paper the linear regression model

Y = X� + e (1)

where Y is of dimension n � 1 and X is a (non-random) n � k design matrix with full column
rank k satisfying 1 � k < n. It is assumed that

Ee = 0 (2)

and

Eee0 = �2�; (3)

where Ee0e < 1 (0 � �2 < 1 and � a real symmetric nonnegative de�nite n � n matrix).1

While Hansen (2022) does not explicitly assume �2 > 0 and positive de�niteness of �, both

properties are frequently used in his paper. For this reason, we shall in the sequel always assume

0 < �2 <1 and that � is a symmetric and positive de�nite n� n matrix.
This model implies a distribution F for Y , which, for the given X, depends on � and the

distribution of e, in particular on �2 and �. Now for every � de�ne F2(�) as the class of

all such distributions F when � varies through Rk and the distribution of e varies through all
distributions compatible with (2) and (3) for the given � (and arbitrary �2, 0 < �2 < 1). We
furthermore introduce the set F2 as the larger class where we also vary � through the set of all

symmetric and positive de�nite n� n matrices. In other words,

F2 =
S
�

F2(�);

where the union is taken over all symmetric and positive de�nite n � n matrices.2 [Of course,
1Writing the error covariance matrix as �2� is not essential, and we do so only to follow the pertinent literature.

Certainly, without a further assumption such as, e.g., �� is known (and nonzero)�the decomposition of Eee0 into
�2 and � is not unique.

2Note that F2(�1)\F2(�2) = ; i¤ �1 and �2 are not proportional. And F2(�1) = F2(�2) i¤ �1 and �2 are
proportional.
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F2(�) as well as F2 also depend on the givenX, but this dependence is not shown in the notation.]

In the following EF (V arF , respectively) will denote the expectation (variance-covariance matrix,

respectively) taken under the distribution F . A word on notation: Given F 2 F2, there is a
unique �, denoted by �(F ), and a unique �2�, denoted by (�2�)(F ), compatible with the

distribution F .

3 Aitken and Gauss-Markov Theorems

Let �̂GLS = �̂GLS(�) = (X 0��1X)�1X 0��1Y denote the generalized least-squares estimator

using the matrix � (of course, for �̂GLS to be feasible, � has to be known). Recall that linear

estimators are of the form �̂ = AY where A is a (nonrandom) k � n matrix. Aitken�s Theorem
in its usual form (see, e.g., Theil (1971), Section 6.1, Goldberger (1991), Sections 27.1&27.3,

Gourieroux and Monfort (1995), Section 6.4.1, Rao and Toutenburg (1995), Theorem 4.4, Hayashi

(2000), Proposition 1.7), expressed in the notation of the present paper, reads as follows.

Theorem 3.1. Let � be an arbitrary symmetric and positive de�nite n � n matrix. If �̂ is a
linear estimator that is unbiased under all F 2 F2(�) (meaning that EF �̂ = �(F ) for every

F 2 F2(�)), then
V arF (�̂) � V arF (�̂GLS(�))

for every F 2 F2(�). [Here � denotes Loewner order, i.e., for symmetric matrices 
1 and 
2
of the same dimension, 
1 � 
2 signi�es nonnegative de�niteness of 
1 � 
2. ]

The theorem can alternatively be reformulated in the following way.

Theorem 3.2. Let � be an arbitrary symmetric and positive de�nite n � n matrix. If �̂ is a
linear estimator that is unbiased under all F 2 F2 (meaning that EF �̂ = �(F ) for every F 2 F2),
then

V arF (�̂) � V arF (�̂GLS(�)) (4)

for every F 2 F2(�).

In the latter theorem the unbiasedness is requested to hold over the larger class F2 of distri-

butions rather than only over F2(�). Of course, this is immaterial here and the two theorems

are equivalent, because the estimators are required to be linear in both theorems and thus their

expectations depend only on the �rst moment of Y and not on the second moments at all.

We note that the preceding theorem is equivalent to Theorem 3 in Hansen (2022). To see the

equivalence, note that the (implicit) all-quantor over � in Theorem 3.2 can be "absorbed" by

replacing F2(�) in that theorem with F2, provided the quantity �2� appearing in the expression

V arF (�̂GLS(�)) = �
2(X 0��1X)�1 = (X 0(�2�)�1X)�1 in (4) above is understood as (�2�)(F ).

[Such an understanding is necessary in any case for Theorem 3 in Hansen (2022) to represent a

mathematically well-de�ned statement: Observe that the product �2�, on which the r.h.s. of the
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inequality in Theorem 3 in Hansen (2022) depends (note that �2 and � enter the expression only

via the product), is unspeci�ed, and needs to be interpreted as (�2�)(F ), the variance-covariance

matrix of the data under the relevant F w.r.t. which the variance-covariances in this inequality

are taken. The same comment applies to Theorems 4 and 5 in Hansen (2022).]

We next discuss what happens if one eliminates the linearity condition in the two equivalent

theorems given above. Dropping the linearity conditions leads to the following statements, which

will turn out to be no longer equivalent to each other:

Statement A: Let � be an arbitrary symmetric and positive de�nite n � n matrix. If �̂
is an estimator (i.e., a Borel-measurable function of Y ) that is unbiased under all F 2 F2(�)
(meaning that EF �̂ = �(F ) for every F 2 F2(�)), then

V arF (�̂) � V arF (�̂GLS(�)) (5)

for every F 2 F2(�).

Statement B: Let � be an arbitrary symmetric and positive de�nite n � n matrix. If �̂ is
an estimator that is unbiased under all F 2 F2 (meaning that EF �̂ = �(F ) for every F 2 F2),
then

V arF (�̂) � V arF (�̂GLS(�))

for every F 2 F2(�).

Before proceeding with the discussion of Statements A and B, we need to make a remark on

the interpretation of inequalities like (5).

Remark 3.3. (i) In Theorems 3.1 and 3.2 the objects V arF (�̂) as well as V arF (�̂GLS(�)) are
well-de�ned as real matrices because all estimators considered are linear, and hence EF (k �̂ k2) <
1, EF (k �̂GLS(�) k2) <1 holds for every F 2 F2(�) where k : k denotes the Euclidean norm.
In contrast, in Statements A and B estimators �̂ with EF (k �̂ k2) =1 for some F 2 F2(�) are
permissible. [Note that EF (k �̂ k2) = 1 for some F 2 F2(�) and EF (k �̂ k2) < 1 for some

other F 2 F2(�) may occur.] This necessitates some discussion how Statements A and B are

then to be read. For the subsequent discussion note that in both statements EF (�̂) is well-de�ned

and �nite for every F 2 F2(�) as a consequence of the respective unbiasedness assumption (and
because F2(�) � F2).
(ii) In the scalar case (i.e., k = 1), there is no problem as the object V arF (�̂) is well-de�ned for

every F 2 F2(�) as an element of the extended real line, regardless of whether EF (k �̂ k2) <1
or not. Hence, inequality (5) always makes sense in case k = 1.

(iii) For general k, in case the estimator �̂ satis�es EF (k �̂ k2) < 1 for a given F 2 F2(�),
the object V arF (�̂) is well-de�ned as a real matrix. Note that the inequality (5) can then

equivalently be expressed as V arF (c0�̂) � V arF (c0�̂GLS(�)) for every c 2 Rk.
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(iv) In the case k > 1, the object V arF (�̂) is not well-de�ned if EF (k �̂ k2) = 1 (F 2
F2(�)), and hence it is not immediately clear how (5) should then be understood. However, the

inequalities V arF (c0�̂) � V arF (c0�̂GLS(�)) for every c 2 Rk still make sense in view of (ii) above.
We hence may and will interpret (5) (with F 2 F2(�)) as a symbolic shorthand notation for
V arF (c

0�̂) � V arF (c0�̂GLS(�)) for every c 2 Rk (which works both in the case EF (k �̂ k2) <1
and in the case EF (k �̂ k2) = 1). We have chosen to write inequality (5) as given (abusing
notation), rather than the more conventional and more precise V arF (c0�̂) � V arF (c0�̂GLS(�))
for every c 2 Rk, in order for our discussion to be easily comparable with the presentation in
Hansen�s paper, which is silent on this issue.

(v) The above discussion would become moot, if one would introduce the extra assumption

EF (k �̂ k2) < 1 for every F 2 F2(�) into Statements A and B. However, such an additional

assumption, which has little justi�cation, would (potentially) narrow down the class of estimators

competing with �̂GLS(�). As we shall see later on, such an extra assumption actually would

have no e¤ect on Statement B (and thus on the corresponding Theorem 4 in Hansen (2022)) at

all in view of our Theorem 3.4. The e¤ect it would have on Statement A (and some other results)

is discussed in Appendix B of Pötscher and Preinerstorfer (2022).

We now turn to discussing Statements A and B. Not unexpectedly, Statement A is incorrect

in general.3 This is known, see, e.g., Gnot et al. (1992), Knautz (1993, 1999), and references

therein. For the bene�t of the reader we provide a counterexample and attending discussion

in Appendix A. In particular, we see that in the Aitken Theorem as it is usually formulated

(Theorem 3.1) one can not eliminate the linearity condition in general.

Concerning Statement B, observe �rst that it is equivalent to Theorem 4 in Hansen (2022);

this is seen in the same way as the equivalence of Theorem 3.2 above with Theorem 3 in Hansen

(2022). A natural question now is why Statement B (i.e., Theorem 4 in Hansen (2022)) would

be correct while Statement A is incorrect in general, given that both statements are obtained by

dropping one and the same condition (i.e., linearity) from the two equivalent theorems (Theorems

3.1 and 3.2) given above. The answer lies in the fact that Statement B is requiring a stricter

unbiasedness condition, namely unbiasedness over F2 rather than only unbiasedness over F2(�).

While the two unbiasedness conditions e¤ectively coincide for linear estimators as discussed

before, this is no longer the case once we leave the realm of linear estimators. Hence, the

correctness of Statement B (i.e., of Theorem 4 in Hansen (2022)) crucially rests on imposing the

stricter unbiasedness condition, a condition not used in the Aitken Theorem as presented in the

references given prior to Theorem 3.1. Note that the class of competitors to �̂GLS(�) �guring

in Statement A is, in general, larger than the class of competitors appearing in Statement B.

Hansen (2022) is quiet on the use of this stricter unbiasedness condition, and no discussion of or

motivation for this salient feature of his Theorem 4 is provided.

Having understood what distinguishes Statement B (i.e., Theorem 4 in Hansen (2022)) from

(the incorrect) Statement A, the question remains what the scope of the former statement is, i.e.,

3 I.e., there exist design matrices X such that the statement is false.
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how much larger than the class of linear (unbiased) estimators the class of estimators covered by

Statement B (i.e., Theorem 4 in Hansen (2022)) really is. We answer this now: As we shall show

in the subsequent Theorem 3.4, the only estimators �̂ satisfying the unbiasedness condition of

Statement B (i.e., Theorem 4 in Hansen (2022)) are linear estimators. Consequently, Statement

B (i.e., Theorem 4 in Hansen (2022)) is equivalent to the Aitken Theorem (i.e., Theorem 3.1

above), as both results give optimality in exactly the same class of estimators.4 [While the

word �linear�does not appear in the formulation of Theorem 4 in Hansen (2022), linearity of the

estimators is introduced indirectly through the stricter unbiasedness condition.]5

We quickly comment on the case where � = In. In this case, Theorem 3.1 reduces to the clas-

sical Gauss-Markov Theorem, while Theorem 3.2 represents an unusual equivalent reformulation

of the Gauss-Markov Theorem. Again, Statement A (with � = In) is incorrect in general, see

Appendix A. Similar as in the case of general �, the correctness of Statement B (with � = In)

is bought by imposing the stricter unbiasedness condition on the estimators that requires the

estimators not only to be unbiased in the model with uncorrelated and homoskedastic errors

(which is the model one is studying in the context of the Gauss-Markov Theorem) but also

under correlated and/or heteroskedastic errors (i.e., under structures that are �outside�of the

model that is being studied). Why one would want to impose such a requirement seems to be

debatable. As already mentioned, the stricter unbiasedness condition employed in Statement B

in fact eliminates all nonlinear estimators from consideration (cf. our Theorem 3.4).

What has been said so far also serves as a reminder that one has to be careful with statements

such as �best unbiased equals best linear unbiased�. While this statement is incorrect in the

context of Statement A in general, it is certainly correct in the context of Statement B (i.e., of

Theorem 4 in Hansen (2022)) as a consequence of the subsequent Theorem 3.4.

An upshot of the discussion in this section seems to be that � despite an advice to the

contrary in Hansen (2022) �one should not drop �linearity� from the pedagogy of the Aitken

or Gauss-Markov Theorem: It will lead to an incorrect statement, if one starts from the usual

formulation of the classical Aitken Theorem (i.e., from Theorem 3.1); otherwise, if one starts

from Theorem 3.2, it will lead to a correct statement which actually is equivalent to the classical

Aitken Theorem. The same comment applies to the Gauss-Markov Theorem.

We now provide the theorem alluded to above.

Theorem 3.4. If �̂ is an estimator (i.e., a Borel-measurable function of Y ) that is unbiased
under all F 2 F2 (meaning that EF �̂ = �(F ) for every F 2 F2), then �̂ is a linear estimator
(i.e., �̂ = AY for some k � n matrix A).6

Proof: It su¢ ces to establish �̂(y + z) = �̂(y) + �̂(z) as well as �̂(cz) = c�̂(z) for every y

4Recall from before that for linear estimators the unbiasedness conditions in Theorems 3.1 and 3.2 are equiv-
alent.

5Adding the extra condition EF (k �̂ k2) < 1 for every F 2 F2(�) would have no e¤ect on Statement B in
view of our Theorem 3.4. The e¤ect this extra condition would have on Statement A is discussed in Appendix B
of Pötscher and Preinerstorfer (2022).

6By unbiasedness, such an A must then also satisfy AX = Ik.
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and z in Rn and every c 2 R. For every m 2 N with m � 2, every V = (v1; : : : ; vm) 2 Rn�m and
� 2 (0; 1)m such that

Pm
i=1 �i = 1, de�ne a probability measure (distribution) via

�V;� :=
mX
i=1

�i�vi ;

where �z denotes unit point mass at z 2 Rn. The expectation of �V;� equals V �, and its variance-
covariance matrix equals V diag(�)V 0� (V �)(V �)0. Denote the expectation operator w.r.t. �V;�
by EV;�. Note that in case V � = 0 and rank(V ) = n the measure �V;� has expectation zero and

a positive de�nite variance-covariance matrix; thus, �V;� corresponds to an F 2 F2 which has
�(F ) = 0. From the unbiasedness assumption imposed on �̂ we obtain that

V � = 0 and rank(V ) = n implies 0 = EV;�(�̂) =
mX
i=1

�i�̂(vi): (6)

Step 1: Fix z 2 Rn and de�ne �(1) = 2�1(n�1; : : : ; n�1)0 2 R2n, �(2) = 2�1((n +

1)�1; : : : ; (n + 1)�1)0 2 R2(n+1), V1 = (In;�In) and V2 = (In;�In; z;�z). Clearly V1�(1) =
V2�

(2) = 0 and rank(V1) = rank(V2) = n. Furthermore,

�V2;�(2) =
n

n+ 1
�V1;�(1) +

1

2(n+ 1)
(�z + ��z); (7)

which implies

EV2;�(2)(�̂) =
n

n+ 1
EV1;�(1)(�̂) +

1

2(n+ 1)
(�̂(z) + �̂(�z)):

Applying (6) to EV2;�(2)(�̂) and EV1;�(1)(�̂) now yields 0 = �̂(z) + �̂(�z), i.e., we have shown
that

�̂(�z) = ��̂(z) for every z 2 Rn; (8)

in particular �̂(0) = 0 follows.

Step 2: Let y and z be elements of Rn. De�ne the matrix

A(y; z) = ((y1 + z1)e1(n); : : : ; (yn + zn)en(n));

where ei(n) denotes the i-th standard basis vector in Rn, and set

V = (A(y; z);�y;�z; In;�In) and � = (3n+ 2)�1(1; : : : ; 1)0 2 R3n+2:

Then, we obtain V � = 0 and rank(V ) = n. Using (6) and (8) it follows that

0 =
nX
i=1

�̂((yi + zi)ei(n)) + �̂(�y) + �̂(�z);
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which by (8) is equivalent to

�̂(y) + �̂(z) =
nX
i=1

�̂((yi + zi)ei(n)): (9)

Using (9) with y replaced by y + z and z replaced by 0 yields

�̂(y + z) + �̂(0) =
nX
i=1

�̂((yi + zi)ei(n)):

Since �̂(0) = 0 as shown before, we obtain

�̂(y) + �̂(z) = �̂(y + z) for every y and z in Rn: (10)

That is, we have shown that �̂ is additive, i.e., is a group homomorphism between the additive

groups Rn and Rk. By assumption it is also Borel-measurable. It then follows by a result due to
Banach and Pettis (e.g., Theorem 2.2 in Rosendal (2009)) that �̂ is also continuous. Homogeneity

of �̂ now follows from a standard argument, dating back to Cauchy, so that �̂ is in fact linear.

We give the details for the convenience of the reader: Relation (10) (which contains (8) as a

special case) implies �̂(lz) = l�̂(z) for every integer l. Replacing z by z=l (l 6= 0) in the latter
relation gives �̂(z)=l = �̂(z=l) for integer l 6= 0. It immediately follows that �̂(pz=q) = (p=q)�̂(z)
for every pair of integers p and q (q 6= 0). Let c 2 R be arbitrary. Choose a sequence of rational
numbers cs that converges to c. Then by continuity of �̂

�̂(cz) = lim
s!1

�̂(csz) = lim
s!1

�
cs�̂(z)

�
=
�
lim
s!1

cs

�
�̂(z) = c�̂(z):

This concludes the proof. �

Remark 3.5. Inspection of the proof above shows that it does not make use of the full force
of the unbiasedness condition (EF �̂ = �(F ) for every F 2 F2), but only exploits unbiasedness
for certain strategically chosen discrete distributions F , each with �nite support and satisfying

�(F ) = 0.

Remark 3.6. Portnoy (2022) uses a somewhat weaker unbiasedness condition than the one used
in our Theorem 3.4 (but see Remark 3.5), and then establishes only Lebesgue almost everywhere

linearity of the estimators rather than linearity. This is a distinction worth noting for the

following reason: The results in Hansen (2022) allow also for discrete distributions. For such

distributions positive probability mass can fall into the exceptional Lebesgue null set, showing

that any attempt to enforce linearity by appropriately rede�ning the estimator on the exceptional

null set will in general not preserve the statistical properties of the estimator. In particular, the

claim in Comment (a) in Section 3 of Portnoy (2022) that his result �implies Hansen�s result�is

not warranted. Furthermore, at several instances in the discussion in Portnoy (2022) linearity is
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incorrectly claimed although only linearity Lebesgue almost everywhere is actually established

in his paper. For a discussion of other aspects of Portnoy (2022) see Remark 3.6(ii) in Pötscher

and Preinerstorfer (2022).

Remark 3.7. In Appendix B we give a "proof" of our Theorem 3.4 above based on Theorem 4.3
in Koopmann (1982) (also reported as Theorem 2.1 in Gnot et al. (1992)), but see the discussion

in Appendix B for a caveat.

4 Conclusion

We have shown that the stricter unbiasedness condition employed in Theorem 4 in Hansen

(2022) implies linearity of the estimators. It follows that Theorem 4 in Hansen (2022) applies to

exactly the same class of estimators as the Aitken Theorem. Thus Theorem 4 in Hansen (2022),

although in its formulation new to the literature, is equivalent to the Aitken Theorem. Theorems

5-7 (as well as Theorem 1) in Hansen (2022) are results modelled on the Gauss-Markov or Aitken

Theorem but employ extra conditions such as, e.g., independence assumptions. (A more detailed

discussion of these results and their scope can be found in Section 5 of Pötscher and Preinerstorfer

(2022).) As a consequence, the conclusion drawn in Hansen (2022), that his theorems show that

the label "linear estimator" can be dropped from the Gauss-Markov or Aitken Theorem seems

to be debatable. We thus repeat our warning against dropping the linearity assumption from

the pedagogy of the Gauss-Markov or Aitken Theorem.

A Appendix: Counterexamples

Here we provide a counterexample to Statement A. Further counterexamples can be found in

Appendix A of Pötscher and Preinerstorfer (2022). They all rest on the following lemma which

certainly is not original as similar computations can be found in the literature, see, e.g., Gnot

et al. (1992), Knautz (1993, 1999), and references therein. Counterexamples can also be easily

derived from results in the before mentioned papers. In this appendix we always maintain the

model from Section 2 and assume that � = In holds. Counterexamples for � 6= In can then easily
be obtained by a standard transformation argument. In the following �̂OLS = (X

0X)�1X 0Y .

Lemma A.1. Consider the model as in Section 2, additionally satisfying � = In.
(a) De�ne estimators via

�̂� = �̂OLS + �(Y
0H1Y; : : : ; Y

0HkY )
0 (11)

where the Hi�s are symmetric n � n matrices and � is a real number. Suppose tr(Hi) = 0 and
X 0HiX = 0 for i = 1; : : : ; k. Then EF (�̂�) = �(F ) for all F 2 F2(In).
(b) Suppose the Hi�s are as in Part (a). If CovF (c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0) 6= 0 for

some c 2 Rk and for some F 2 F2(In) with �nite fourth moments, then there exists an � 2 R
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such that

V arF (c
0�̂�) < V arF (c

0�̂OLS); (12)

in particular, �̂OLS then does not have smallest variance-covariance matrix (w.r.t. Loewner or-

der) over F2(In) in the class of all estimators that are unbiased under all F 2 F2(In).7

(c) Suppose the Hi�s are as in Part (a). For every c 2 Rk and for every F 2 F2(In) (with
�nite fourth moments) under which �(F ) = 0 we have

CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
=

nP
j=1

nP
l=1

nP
m=1

dj

�
kP
i=1

cihlm(i)

�
EF (ejelem); (13)

where d = (d1; : : : ; dn)0 = X(X 0X)�1c and hlm(i) denotes the (l;m)-th element of Hi.

(d) Suppose the Hi�s are as in Part (a). For every c 2 Rk and for every F 2 F2(In) (with
�nite fourth moments) under which (i) �(F ) = 0 and under which (ii) the coordinates of Y are

independent (equivalently, the errors ei are independent)

CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
=

nP
j=1

dj

�
kP
i=1

cihjj(i)

�
EF (e

3
j ): (14)

Proof: The proof of Parts (a), (c), and (d) is by straightforward computation. Since

V arF (c
0�̂�) = V arF (c

0�̂OLS) + 2�CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�

+�2V arF (c
0(Y 0H1Y; : : : ; Y

0HkY )
0); (15)

the claim in (b) follows immediately as the �rst derivative of V arF (c0�̂�) w.r.t. � and evaluated

at � = 0 equals 2CovF
�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
. Note that all terms in (15) are well-

de�ned and �nite because of our fourth moment assumption. Hence, whenever this covariance

is non-zero, we may choose � 6= 0 small enough such that (12) holds. �
We now provide a counterexample that makes use of the preceding lemma.

Example A.1. Consider the location model, i.e., the case where k = 1 and X = (1; : : : ; 1)0.

Choose H1 as the n � n matrix which has h11(1) = �h22(1) = 1 and hij(1) = 0 else. Then the
conditions on H1 in Part (a) of Lemma A.1 are satis�ed, and hence �̂� is unbiased under all

F 2 F2(In). Setting c = 1, we �nd for the covariance in (14)

n�1(EF (e
3
1)� EF (e32)) 6= 0

for every F 2 F2(In) (with �nite fourth moments) under which �(F ) = 0, the errors ei are

independent, and EF (e31) 6= EF (e
3
2) hold. Such distributions F obviously exist.8 As a conse-

quence, �̂OLS is not best (over F2(In)) in the class of all estimators �̂ that are unbiased under

7Recall the convention discussed in Remark 3.3.
8E.g., choose e2; : : : ; en i.i.d. N(0; �2) and e1 independent from e2; : : : ; en with mean zero, variance �2, third

moment not equal to zero, and �nite fourth moment.
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all F 2 F2(In). In particular, Statement A (with � = In) is false for this design matrix.

For the argument underlying the preceding example it is key that the errors are not i.i.d. un-

der the relevant F . In fact, in the location model (i.e., X = (1; : : : ; 1)0) we have V arF (�̂OLS) �
V arF (�̂�) for every real �, for every choice of H1 as in Part (a) of Lemma A.1, and for

every F 2 F2(In) (with �nite fourth moments) under which the errors ei are i.i.d., since then
CovF (�̂OLS ; Y

0H1Y ) = 0 as is easily seen. [This is in line with a result of Halmos (1946) dis-

cussed in Section 6 of Pötscher and Preinerstorfer (2022).] For other design matrices X the

argument, however, works even for i.i.d. errors as we show in Example A.2 in Pötscher and

Preinerstorfer (2022). Cf. Section 4.1 of Gnot et al. (1992) for related results and more.

Many more counterexamples can be generated with the help of Lemma A.1 as discussed in

Remark A.2 of Pötscher and Preinerstorfer (2022).

B Appendix: An Alternative "Proof"

We here give a "proof" based on Theorem 4.3 in Koopmann (1982) (also reported as Theorem

2.1 in Gnot et al. (1992)). There is a caveat, however: Theorem 4.3 in Koopmann (1982) is

proved by reducing it to Theorem 3.1 (via Theorems 3.2, 4.1, and 4.2) in the same reference.

Unfortunately, a full proof of Theorem 3.1 is not provided in Koopmann (1982), only a very

rough outline is given. Thus the status of Theorem 4.3 in Koopmann (1982) is not entirely clear.

For this reason we have given a direct proof of our Theorem 3.4 in the main text which does not

rely on any result in Koopmann (1982).9

"Proof": The unbiasedness assumption of the theorem obviously translates into

EF �̂ = �(F ) for every F 2 F2(�); (16)

for every symmetric and positive de�nite � of dimension n� n; specializing to the case � = In,
we, in particular, obtain10

EF �̂ = �(F ) for every F 2 F2(In): (17)

Condition (17), together with Theorem 4.3 in Koopmann (1982) (see also Theorem 2.1 in Gnot

9Alternatively, one could try to provide a complete proof of the result in Koopmann (1982). We have not
pursued this, but have chosen the route via a direct proof of our Theorem 3.4.
10 Instead of In we could have chosen any other symmetric and positive de�nite n� n matrix �0 instead.
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et al. (1992)11 ,12), implies that �̂ is of the form

�̂ = A0Y + (Y 0H0
1Y; : : : ; Y

0H0
kY )

0; (18)

where A0 satis�es A0X = Ik and H0
i are matrices satisfying tr(H

0
i ) = 0 and X 0H0

iX = 0 for

i = 1; : : : ; k. It is easy to see that we may without loss of generality assume that the matrices

H0
i are symmetric (otherwise replace H

0
i by (H

0
i +H

00
i )=2). Inserting (18) into (16) yields

EF
�
A0Y + (Y 0H0

1Y; : : : ; Y
0H0

kY )
0� = �(F ) for every F 2 F2(�);

and this has to hold for every symmetric and positive de�nite �. Standard calculations involving

the trace operator and division by �2 now give

(tr(H0
1�); : : : ; tr(H

0
k�))

0 = 0 for every symmetric and positive de�nite �: (19)

For every j = 1; : : : ; n, choose now a sequence of symmetric and positive de�nite matrices �(j)m
(each of dimension n�n) that converges to ej(n)ej(n)0 as m!1, where ej(n) denotes the j-th
standard basis vector in Rn (such sequences obviously exist). Plugging this sequence into (19),
letting m go to in�nity, and exploiting properties of the trace-operator, we obtain

(ej(n)
0H0

1ej(n); : : : ; ej(n)
0H0

kej(n))
0 = 0 for every j = 1; : : : ; n.

In other words, all the diagonal elements of H0
i are zero for every i = 1; : : : ; k. Next, for every

j; l = 1; : : : ; n, j 6= l, choose a sequence of symmetric and positive de�nite matrices �fj;lgm (each

of dimension n� n) that converges to (ej(n) + el(n))(ej(n) + el(n))0 as m!1 (such sequences

obviously exist). Then exactly the same argument as before delivers

((ej(n) + el(n))
0H0

1 (ej(n) + el(n)); : : : ; (ej(n) + el(n))
0H0

k(ej(n) + el(n)))
0 = 0 for every j 6= l.

Recall that the matrices H0
i are symmetric. Together with the already established fact that the

diagonal elements are all zero, we obtain that also all the o¤-diagonal elements in any of the

matrices H0
i are zero; i.e., H

0
i = 0 for every i = 1; : : : ; k. This completes the proof. �

Remark B.1. A slightly di¤erent version of this "proof" can be obtained as follows. Theorem
4.3 in Koopmann (1982) (together with Footnote 12) shows for every given (�xed) � that any

�̂ satisfying (16) is of the form AY + (Y 0H1Y; : : : ; Y
0HkY )

0 where AX = Ik, the Hi�s satisfy

tr(Hi�) = 0, and X 0HiX = 0 for i = 1; : : : ; k. Again it is easy to see that we may assume

11Note that X� in that reference runs through all possible g-inverses of X.
12Gnot et al. (1992) assume �2 > 0 whereas Koopmann (1982) allows also �2 = 0. However, both theorems

are equivalent as unbiasedness under every F 2 F2(In) also implies unbiasedness under the point distributions
at X� (i.e., the distributions corresponding to �2 = 0). This is easily seen by considering those distributions in
F2(In) that correspond to X� + e with the components of e being independent identically distributed according
to "m(��1 + �1)=2 + (1� "m)�0. Here "m, 0 < "m < 1, converges to zero for m!1 and �x denotes point mass
at x 2 R. A similar argument applies in the case of F2(�).
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the matrices Hi to be symmetric. Note that the matrices A and Hi �owing from Theorem

4.3 in Koopmann (1982) in principle could depend on �. The following argument shows that

this is, however, not the case (after symmetrization of the Hi�s) in the present situation: If �̂

had two distinct linear-quadratic representations with symmetric Hi�s, then the di¤erence of

these two representations would be a vector of multivariate polynomials (at least one of which

is nontrivial) that would have to vanish everywhere, which is impossible since the zero-set of a

nontrivial multivariate polynomial is a Lebesgue null-set. Given now the independence (from �)

of the matrices Hi, one can then exploit the before mentioned relations tr(Hi�) = 0 in the same

way as is done following (19) above.
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