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Abstract

This document contains auxiliary theorems and lemmata, with proofs, that are used
in the proofs in the main text.

1 Auxiliary theorems

Theorem S.1 (Uniform asymptotic expansion). Let Assumptions 1-6 hold. Then

1 L n
p— = Q_l 7 — Mnm nm
vnm(p — ) T E g nm“t"'w/mﬁ +e

i=1 t=1
where the three right-hand side terms are, respectively, Op(1), O(1), and op(1) uniformly
m e @1.

Proof. Let z; be generated with parameters g, ;0 and collect g and all 7,9 in the vector
fy. For notational simplicity we will presume throughout this proof that both ¢y and ;9
are scalars. The proof follows the same strategy as those in Hahn and Newey (2004) and
Hahn and Kuersteiner (2011), with the main difference being that we show the result to

hold uniformly in a neighborhood around 6.
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Let

(‘% , M| %4 ae , Mi|Zi
U(@ani‘zit) = %7 w(@:n’iyzit) = %7

and, with the projection coefficient p; ,,, defined in the main text,
u(p, nilzi) = w(@,nilzit) = pim v(©, MilZit)-

We will let vy == v(@o, Mio|zie) and uy = u(po, Mio|2i¢). We will use a similar shorthand for
derivatives, for example, v} = 9v(pomiolzit) fon, v = 9*v(vomiolzit)fan?, and so on. Let F be
the distribution of z;, write Fit for the corresponding empirical distribution, and consider

linear combinations of the form

Girlzle) = Fiu(2) + e Vm(Fy(2) — Fu(2)),

where 0 < € < m~™"2. For fixed values ¢ and ¢, let 1;(¢, €) satisfy

> [ vlomte. 0l dGulzle) =0 (1)

Similarly, for fixed e, let (€) satisfy

33 [ el ndete). 012) dalele) = 52)

i=1 t=1

Note that setting e = m™"/? gives the maximum-likelihood estimator, é, while setting e = 0

gives 6y. By an expansion around € = 0,

s 1 9p(0) 1/ 1 \>2%(0) 1/ 1 \°Pp
o) - p0) = =280 L (L) DA () Ta) 6w

for some 0 < € < m~"?>. We now investigate each of the three right-hand side terms, in

turn.
For the first term, to calculate 9¢(0)/ac, differentiate the expression in (S.2) with respect
to € to obtain

O—Zn:Z/au +Zn: / 8G“ 9Gu(zl9 (S.4)
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where u(e|z) == u(p(e), m;(p(€), €)|z). With a minor abuse of notation,
du(elz) _ dulp(e), mi(p(e), €)|z) p(e)

de Op Oe
du(p(e), mi((e), €)|z) (Omi(ple),€) dple) | IMmi(p(e),€)
+ an; ( dp  0c | oe )
and
0G(zle) .

De = \/E(th - Fit)-

Evaluating (S.4) at € = 0 and exploiting that

" ou(e(0), m; 0
;/ (@()%T(IZP() )|2) G ZEeO W) = pim Eg (07)

is zero by definition of p; ,, we may re-arrange (S.4) to obtain

0
(ge n\/_ Z Z L it

i=1 t=1

(S.5)

where we have used the definition of (2,,, given in the main text along with the fact that

Assumption 6 guarantees its inverse is well-defined, and we have exploited the observation

that Eg,(u;) = 0. By Markov’s inequality, the independence of the data over ¢, and a

strong-mixing inequality (Doukhan, 1994, pp. 25-30), we have

sup Py, (’\/ﬁag—U

2 n m
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-1
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me 1<i<n 60€O1

<1
~ e
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so that 9(0)/ac = Op(n~"?) uniformly over ©;. Here and later we use A < B to indicate

that there exists a finite constant ¢ such that A < ¢ B.



Before calculating 9°#(0)/ae2 we observe that differentiating (S.1) with respect to ¢ gives

Z/ 31} 90777z P, € dGzt _|_ Z/ 31} 9‘777;7;)07 )dG1t<Z‘€) 87718(@;7 6) = 0.

Re-arranging and evaluating at e = 0 yields

Onip,0) 1= o Lo
T:_Eeo E;% o E;Uit = —Pim-

In the same way, differentiating (S.1) with respect to € reveals that

oni(¢,0) 1 & 1 <
86 /—m ;:1 Vit 6o ;:1 (o wz,nﬁ

which is the asymptotically-linear representation of the maximum-likelihood estimator of

ni0. With these expressions at hand we turn to 9°#(0)/se2. Differentiating (S.4) again with

respect to € gives

0_22/ ULIPENE +zzz/ 2,00 g

=1 t=1 i=1 t=1

where the second derivative of u(e|z) follows from the chain rule and consists of many terms.
Evaluating each of these terms at € = 0, re-arranging, and recalling again the expression

for 9Git(210)/ac and the fact that Eg,(u)’) = 0 gives

(—ZZE90<UZ’2>> el :zz<mzuyg> Y+ (zm% ) 2 4
=1 t=1

i=1 t=1

with

S, (8(60))2

i=1 t=1
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Each term on the right-hand side of this expression will be asymptotically negligible for
our purposes. For example,

>3k ) (240)

=1 t=1

< Z;Z Eo, (ugz”) ‘(ag—g.)) ‘ = O(nm) Op(n™")

t=1

and, therefore, Op(m), uniformly over @; by the moment requirements in Assumption 3
and the convergence rate on 9#(0)/ge obtained above. Similarly, using the definition of 1 ,,
together with Assumptions 3 and 6 we obtain, by the same arguments as those employed

below (S.5), that

ZZE90 i wzm

=1 t=1

(i) (e (5)

t=1 t=1

is Op(y/nm) uniformly over ©;. Hence,

= Op(m)

uniformly over ©;. The remaining terms that make up r,,, can be dealt with in a similar

way. Consequently, letting

wnim () e () e

5% .
Qnm 862 Z Xz m + OP )7

we have shown that

where the order of the remainder term is unlformly over @;. We next establish that,

uniformly over Oy,

sup Py, Z Xim — Eoo(Xim))| > | =o(1) (S.7)



for any € > 0. By Markov’s inequality and independence of the observations across ¢ we

have
2 . 2
sup P im —E im >c| <-—sup E im — E im
sup Po };x oo (Xian) - sup o, §jx o0 (Xion)
1 n

- i _ . 2
< 2 22 328 B (O~ B i)))

1
< — E zm_E 7,m 2 )
= E%L;ggl 9o ((X7 60 (X, )))

and so it suffices to show that

max sup [Eg, ((Xi,m - EGQ(Xi,m))Q) = o(n).
1<i<n 00€O,

To begin we use the expression for 1; ,, to re-write x; ., as

m -1 m m
- (B XEen) (A3 )
t=1

t1=1ta=1
—2
1 1 . i 1 . 772771
S mn) (A5 S (A mwn),
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and introduce the shorthand notation

m -1 m
= (%;E%(UZZ)) ’ gi,m = % (%;E%(Ug)) ( Z]EGO mm ) 5

both of which are well-behaved under our assumptions. Then

Xim = i;m (% Z Z Uz‘tlvz‘t2> — Giym (% Z Z U%%@) )

t1=1t2=1 t1=1t2=1
and so
2
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Take the first term on the right-hand side. We have

B, (i, Vi, i, viey) — Eoo (uif, viey ) Eog (uif, vie,) = B (i, uf,) oy (vity vit, )
+ Eg, (u?tll Vit, ) Eg, (U?tlg Vity)
+ cumy (ugy, , Viey , gy, » Vit )
where cumy refers to the fourth-order cumulant of the joint distribution of its arguments.
As in Hahn and Kuersteiner (2011), Assumptions 2 and 3 allow us to apply Corollary A.2
of Hall and Heyde (1980) to obtain
Jsup e (B, (vievie)| S o sup ay(fo, [t — tal) = (=),
where 0 < r < 1, and, therefore,

sup max Z Z|E90(vit2vit4)| = O(m).

1<i<n
o€ == to=11t4=1

In the same way we obtain

sup max » N [Bg, (uff,uff,)| = O(m),

1<i<n
o€ == t1=1t3=1

sup max Z Z‘E%W%%tz)’ = 0(m),

1<i<n
fo€O1 *=t= t1=1t2=1

whereas, from Andrews (1991, Lemma 1),

sup max

} : i i — 2
¢ CuITly (uztll y Vit s uitzgv Uit4) - O(m )
00€6, 1<i<n

t1,...,t4

It follows that
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foco, 1sisn
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In the same way,

1
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which is more than enough to imply that

max sup [Eg, ((Xi,m - E@Q(Xi,m))Q) = o(n),
1<i<n 00€6

so that (S.7) holds. Thus,

9%p(0)
0€?

2 n
= =3 0 By (i) + 0p(1) = 2058 b + 0p(1) = 26um +0p(1)  (3:9)

uniformly over ©).

Finally, following the same arguments as those in the supplementary appendices to
Hahn and Newey (2004) (using suitably uniform versions of Lemmas 5 to 11 of Hahn and
Kuersteiner 2011, which may be shown by relying on our Lemmas S.1 and S.2) we obtain
3

*p(e)
Oe3

sup Py ( max > cm35> =o(m™)

6O, 0<e<m~—1/2

for some finite ¢ > 0 and 0 < s < /10. This implies that 9°¢(9)/oe2 = Op(m>®) uniformly in

(F55) =ont

Then, combining the expansion in (S.3) with the expressions obtained in (S.5) and (S.8)

1 "L n
= Q_l 7 —— Mnm nm
i 2 2 o €

where (uniformly over ©;) the first term on the right-hand side has been shown to be

0<e<m "2 and so

uniformly in 0y € O.

we find that

W(S@ — o)

Op(1), the second term satisfies

< Iy
Sup |ﬂnm| = (GSUP 1@?};@ ml) <9 o fg?g;m |E60 Uztlvztg )

906@1 0691 ti=1ta=1
+ (sup Igax|§2m|) p max — g E |Eq, ( uztlvm =0(1)
0@, 1Sisn 9e@ antl Ll

under our assumptions by another application of Hall and Heyde (1980, Corollary A.2),

and the remainder term is op(1). This completes the proof. O]



Theorem S.2 (Uniform asymptotic normality). Let Assumptions 1-6 hold. Then
esuep ‘Pg(\/nm(gé —¢) <a)—Py(vy < &)| =o(1)
€0y

for any a.

Proof. From Theorem S.1,

n

1 - In
V p— = Qil i — Mnm nm;

i=1 t=1

f

where

sup Py(lenmllz > 2) = o(1).
0cO;

We first show that

1 n m B I
WZZQW}L uy = N(0, Xp) (S.9)
i=1 t=1

uniformly in # € @;. To do so, by the Cramer-Wold device, it suffices to show that, for any
(non-random) vector ¢ of conformable dimension, 1/vam o | > i, 20} wy LN (0, Xy c)
holds uniformly in # € @;. Let

P D Uit

vnooy/m

\/:L_m z”: f: A0y = z”: dw;.

i=1 t=1 i=1

w; ‘=

so that

By the mean-zero property of the efficient score and the information equality, respectively,

Eo(c'w;) = 0, ol = ZEg(c’wiwgc) =cd0 1 e=0(1),

i=1

uniformly in § € ©;. The Berry-Esseen inequality gives

Py (i cwy < a) — P (a)

o
i=1

n

n n _3/2
< S E(Cu ) (2E9<|awi\2>) S S E(cuf)
=1 =1 =1

The mixing condition in Assumption 2 and the moment requirements in Assumption 3

sup
a

guarantee that

3 Eo(lcw) = O(n~),
=1
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uniformly in 6 € ©;. Therefore,

P, (zn:dwi Sa) _Qi( )

i=1 Onm

sup sup
PO a

< sup (ZEQ (|¢w;] )) = o(1). (S.10)

6co, i=1

Next, the continuous-mapping theorem, together with the fact that, under our assumptions,

yields

sup Sup
0e®1 a

dw;
0] =
(3 e <o) -0t
from which (S.9) follows.

As this result is uniform in a, and \/?/mSB,m = 7B + o(1) uniformly in § € Oy, we find

PG (Z: \/Clqg,—lc a — Mcﬁnm> - (I - 70,69)

which accounts for the asymptotic bias in the limit distribution.

sup sup
e, a

= o(1), (S.11)

Finally, an application of Lemma S.4 with

Tnm nm uzt + H Bnmv Ynm = Tnm + €nm
=1 t=1

and z ~ N (5, Xy) yields the result of the theorem. O

Theorem S.3 (Uniform consistency of the plug-in estimator of the information matrix).

Let Assumptions 1-6 hold. Then

sup PG (HQnm,G - Qnmﬂ” > 5) = 0<1)
0€O, 2

for any € > 0.

Proof. We introduce the notational shorthand

11 12 0%(omilzie)  0%L(pymilzit)
V, — ‘/z't V;t _ OOy’ Ao,
i V2l 22 U (pmilzie)  PLemilza) |
it it I O¢’ ;O
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where the derivatives are evaluated at the parameter values that were used to generate the

A~

data. In the same manner, we write the plug-in estimator constructed using ¢, 7; as V.

Then

n m

-1
1 1 « 1 «

Dumo ==~ > | Bo(Vt") = (EZEM%?)) (a ZEM?)) Eo(Vii') |
t=1 t=1

=1 t=1

and its plug-in estimator is
I~ 1 & 1 & 1 & T
Dumg = —— Z — Z Vil - (a Z Vf) (a Z V) — Z Vit
To show Theorem S.3 it suffices to establish that, for all € > 0,

(Vi =Eo(Vih))|| >¢ ] = o(1),

1 2

S|~
NE

sup Py | max
e 1<i<n

-
Il

(Vi = Eo(Vi)))|| >¢ ] = o(1),

1 2

S|~
NE

-
Il

sup Py | max
0eO; 1<ign

(Vi = Eg(Vi®))|| >¢ | = o(1).

1 2

S|~
NE

sup Py | max
0€6, l<sisn

o+
I

The proof for each of the four terms is similar and so we only provide details for the first

>5>
2

of them.

To begin we note that

> Vit —Eg(Vi)

t=1

1
sup Py (max —
m

0€6, lsisn

is bounded from above by

1 mo - 1 m .
su P max |[|— Vll —_ V11 > — |+su ]P) max Vll _ E Vll > = )
9€@p1 o <1<i<n m tzl( i it ) ) 2 96@% 0 1<i<n ||m tzl:( it 9( it )) , 9

To deal with the first of these terms let V,!'' be the vector that collects all third-order
derivatives with respect to ¢ and let V2 denote derivatives with respect to ¢ (twice) and

n;. The tilde is used to indicate that these derivatives are evaluated at values (,7;) that

11



(elementwise) lie between (¢, 7;) and (¢, n;). A mean-value expansion around (p, ;) yields

IA
S|~
NE

1 -
—> (V' =vih)

t=1

711 11
v -va|

o~
Il
—

2

. 1 &
it ||, | — ¢ll2 + - E

o= olla+— Z\

t=1

v i = mll

IA
S|
NE

I
A

<oy i

s = mil.

S|~
Ms

o~
Il
—

The uniform bound on the derivatives in Assumption 3(ii) implies that

. 1 &
7 =3 b,
1 m —1

t=1
m
>3
m
t=1

- 1 <&
vz < 37 (2.
it ) mtzz; (Zt)
Therefore,
1 = - R .
max || — ;(Vi? — V") (gggg;azb %t ) (Hw — ¢llo + max|i; - mllz> -
= 2

Now, the mixing conditions in Assumption 2 and the moment conditions on the bounding

> 5) = o(1)

by an application of Lemma S.1. Also, 1/m > 1" Eg(b(z;)) converges to its limit uniformly

function b in Assumption 3(iii) imply that

m

% Z(b(zlt) — Eg(b(zit>))

t=1

sup Py <max

06, lsisn

over ©1 by Assumption 3(iv). At the same time, by Theorem 1 in Kim and Sun (2016) we
have that

sup Py (|6 — glla > ) = o(1),  sup Py (m.axum il > ) — o(1).
0co, 0co, 1<i<n

Taken together these results yield

1 < .
—> (Vi =V
m t=1

> g) = o(1)

sup Pp [ max
0€6, lsisn
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follows. Next, again by Assumptions 2 and 3, an application of S.2 gives

1 & €
sup Py (fgfg; EZ (Vi —=Eo(Vi"))|| > 5) =o(1).

0O 9
Hence,
IR
sup Pp | max ||— Vit — Eg(V,/! >e | =o(1),
s s |30 )| ) = o)
and the proof is complete. O]

Theorem S.4 (Distribution of the likelihood-ratio statistic). Let Assumptions 1-6 hold.
Suppose that the true parameter value lies in the interior of the set ON{p € V,, : ¢(p) = 0}
and that ¢ is five times continuously-differentiable on V, with bounded derivatives and
Jacobian matriz with mazimal row rank. Then

sup |Pyg(w < a) — Pp(wy < a)| = o(1)

0O
for any a, where wg has a non-central x?-distribution with dim ¢ degrees of freedom and

non-centrality parameter -y 53@;@%029@;)_1@@59.

Proof. Recall the profile likelihood

n m

ZZK o, Ni(¢)|zit), n;i(¢) = arg maxZE(go,m|zit).

i=1 t=1 i t=1
By a standard expansion,

m n m

33 @@ - (@ @) = 36— oy 3 Y. TP

i=1 t=1 i=1 t=1

where @ lies (elementwise) between ¢ and ¢. It is straightforward to adapt the proof
of Theorem 1 of Kim and Sun (2016) to yield a consistency result for the constrained
estimator. Moreover,

sup Bolllp — el > &) = o(m ™), sup Po (s~ il > =) = ofm ™)
for any ¢ > 0. Combined with (A.3) this then equally yields

sup Po([l = ¢lla > ) = o(m™1),  sup Py (maxum il > ) — o(m),
0c6; 0cO; I<isn
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for any € > 0. Proceeding in the same manner as in the proof of Theorem S.2 readily gives

822 i i
_ZZ 9077] |Zt) _ _Qnm+0P<1)
nm &~ 8(,08g0

uniformly on @;. Consequently, by rearranging terms we obtain the conventional quadratic

approximation
W = V(g — ) Lumv/nm(p — ) + op(1)

uniformly on @;. By Theorem S.6,

V(¢ — @) = 0 @@, 0n )8, v/nm(@ — ¢) + op(1)

uniformly on @;. Further, by the uniform asymptotic-normality result of Theorem S.2,
Dy /nm(p—¢) = P, vp+op(1) uniformly in § € ©1. Also, P, vg ~ N(y Dy, P, Y P),) and
limy, 00 £2,,,5 = Xy, Hence, 1 converges in distribution to a non-central x>-distribution
with non-centrality parameter -y ﬂg@;(@cpﬂgsb;)*l@w Bp uniformly in 6 € ©;. This completes
the proof of the theorem. O

Theorem S.5 (Distribution of the score statistic). Let Assumptions 1-6 hold. Suppose
that the true parameter value lies in the interior of the set © N{p € V,, : ¢(¢) = 0} and
that ¢ is five times continuously-differentiable on V,, with bounded derivatives and Jacobian
matriz with mazimal row rank. Let

o (\/_ZZW%?% \zzt> (Fzzawm ]zlt)>’

1 t=1 1 t=1

for X the plug-in estimator of X based on the constrained mazimum-likelihood estimator.

Then

sup |Pp(s < a) — Py(wy < a)| = o(1)
UGN

for any a, where wyg has a non-central x?-distribution with dim ¢ degrees of freedom and

non-centrality parameter -y 55@;(@¢29@;)_1@@59.

Proof. The Lagrangian problem associated with the constraint ¢(¢) = 0 has first-order

condition




where @, is the Jacobian of the constraint evaluated at ¢. Combining this with (S.14)
gives

n m

1 ag 907772 |Z’Lt) / / / 1 ~
= PN = (D210 ) D, /nm(¢ — @) + op(1).
/mm, ZZ:;; 8@ /_ © ( © ap) © (()0 90) P( )

The uniform asymptotic normality of y/nm($ — ¢) obtained in Theorem S.2 then readily

yields that (nm)~'N®2-Ld X has a non-central x? limit distribution with non-centrality
parameter v Fp®/, ((PWEQ@;)*(PWK?(;.. The uniform consistency of X implied by Theorem S.3

and the consistency of the constrained estimator then give the result of the theorem. [

Theorem S.6 (Uniform asymptotic expansion). Let Assumptions 1-6 hold. Suppose that
the true parameter value lies in the interior of the set ON{p € V,, : ¢(p) = 0} and that ¢ is
five times continuously-differentiable on V,, with bounded derivatives and Jacobian matrix

with mazximal row rank. Then

uniformly in 0 € O.

Proof. The proof of the theorem proceeds in a similar manner as the proof of Theorem S.1
and we use the same notation wherever possible. In particular, for 0 < e < m™"2, let o(¢)

and A(e) satisfy

n

/ 2(6), O)|2) dGinl2]e) — B A(€) = 0 (5.12)

and ¢(p(e)) = 0. Here, n;(p, €) satisfies (S.1) for fixed ¢ and e and A(e) is the Lagrange
multiplier. Setting e = m~"* gives the constrained maximum-likelihood estimator while

setting € = 0 gives the true parameter value. By a third-order expansion around € = 0 we

have
2 - 3 4
poe | (% (L) N (L) e
\ NZD c’»a(ef)) vVm 82;6(20) 3 \v/m 62:(5)



for some 0 < € < m~"2. Like before, the first of the right-hand side terms will satisfy a
central limit theorem, the second will introduce bias, and the third will be asymptotically
negligible.

For the first term we again begin by differentiating (S.12) with respect to e. This yields

SR dalelz) 0Gn (zl)  9%u ;0N _
ZZ e +ZZ e /\<E)_¢<p(e) Oe = 0.

i=1 t=1 =1 t=1

The first two terms coincide with those in (S.4). Evaluating at ¢ = 0 and using that
A(0) = 0 gives

9(0) ~\ , 9A0)
—nm Qnm? + \/EZ Z Uit — ﬁpcp(o) De =0.

i=1 t=1
Next, differentiate the constraint ¢(p(e)) = 0 with respect to € and evaluate at zero to

obtain

Combining both equations and using the shorthand notation @ = @, yields the system

nm Qnm 4 B%(EO) _ \/m Z?:l Z;zl Wit
b7 0 20O 0

By a block-inversion formula,
—1
nm Ly (nm) ™ (2 — 250 @ (P02, P) 1OQ) QP (P12, )7
P 0 (@021 1oL nm (G2 1P 7!

and so

890(0) _ -1 _ n-1s -1 51\—1
e - (“Qnm “Qnmgzj (@Qnm@) @Qnm n\/_zzult’

i=1 t=1

and, similarly,
0A(0)
Oe

= (P02, P) T D02 Z f} Uit

i=1 t=1
The same argument as used in the proof of Theorem S.1 yields that 9¢(0)/ac = Op(n="?)
and 920)/sc = Op(y/nm) uniformly over O,
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Moving on to the second term in the expansion we differentiate (S.12) twice with respect

to e.

U 2u(elz " & u(elz a(zle 82@;6)\6
D) DY KA S MENENEE) ) Bl KA GNP R

i=1 t=1 i=1 t=1

All but the last term previously appeared in the proof of Theorem S.1. Using that A(0) = 0,
that 9¢(0)/ac = Op(n~"?) and 9\0)/oc = Op(y/nm) uniformly on Oy, and that the first two

derivatives of ¢ are bounded gives

PP A0) (V)

Oe? Oe? +Op(m)

uniformly on ©;. Combining this with the analysis of the first two terms at ¢ = 0 in the

proof of Theorem S.1 implies that (S.13) at € = 0 equals

. 02\(0
+ 2nm by, — w(o)A +Op(m) =0

9%¢(0)
0

Oe?

uniformly on ©;. Next, differentiate the constraint ¢(p(e)) = 0 with respect to € twice and

evaluate at zero to obtain

9%(0
D (0) 5’;(2 ) + Op(n_l) =0

uniformly on @;. Combining both equations gives the system

nm Qnm ' 825’;9) 2nm bnm Op(m)
a0 | + .
¢ 0 7o 0 Op(n™")
So,
2
’ g (20) = (2 — 2o @ (D2 D ) D2, ) 2y + Op(n 1),
€
and, similarly,
2\
aa (20) = (902, 9) " P02, 20m by + Op(m),
€

uniformly on ©;.

For the third term in the expansion, finally, the same arguments as in the supplementary
materials to Hahn and Newey (2004) can be used to establish that it is asymptotically
negligible.
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Combining results yields that, up to op(1),

nm
=1 t=1

< _ -1 =15 —1 5\ —1 -1 1 ~ ‘ n
V(G — ) = (23} - Q0@ 0 ) mnm)( Sk yn bm)

uniformly on @;. From Theorem S.1,

Vnm(¢ — o) = 2, ( im Z > un + \/gbnm> +op(1)

i=1 t=1
uniformly on @;. Taking differences between these equations and again using Theorem S.1

then yields

Vam(g — @) = —$2 0 & (D 2,0 &) 7D /nm(p — ) + op(1),

uniformly on @y, which is the result of the theorem.
The calculations above also imply that

1 n

. 1 " n
_ —1 5\ —1 -1 /
\/ﬁ)\ = (@Qnm@) @Qnm (\/m E E Ui + Ebnm> + op(l),
i=1 t=1

=1

uniformly on @; and so, again by Theorem S.1,

1
vnm

uniformly on ©;. From this it readily follows that the Lagrange-multiplier statistic and the

A= (02,0 )"' D /nm(¢ — ¢) + op(1) (S.14)

likelihood-ratio statistic share the same limit distribution (under the null). O

2 Auxiliary lemmata

Lemma S.1 (A uniform version of Lemma 1 of Hahn and Kuersteiner (2011)). For
i=1,...,n, let {&,t = 1,2,...m} be a vector-valued sequence generated through a data

generating process indexed by parameter i; € P. Let

a;(¢i, h) := sup  sup sup |Py, (AN B) —Py (A) Py, (B),
1<t<m AeA;; (v;) BEBir1n (i)

18



where Ay (;) and By (v;) are the sigma algebras generated by the sequences &y, g1, - - .

and &, Eipay - - .. Assume that
(1) Ey, (&) = 0 for all (i,t) and ; € P,

(i) the mixing coefficients satisfy

sup sup|a;(¢;, h)| = O(r")
1<i<n ¢, €P

for some constant 0 < r < 1,

(1) SUP)<j<pp SUP << SUDy,ep By, ([|Eie]|3) < ¢ for some ¢ > 2 and constant 0 < ¢ < 0o,

> 5) =o(m™1)

Then, as n,m — 0o so that "/m — > with 0 < v < oo,
if g >4,

1 m
~ Z_;a

1<i<n

sup Py, . (max
for all e > 0; while

ifq>2 and s > 0,

"7[}17"'7/111’”6?” 1§Z§n

sup Py, (max > m55> = O(m'~%)

1 m
—— > &
\/ﬁ t=1 2
for all e > 0.

Proof. 1t suffices to prove the second part of the theorem. Consider a fixed value ¢ > 0.

We have
Py, on (1111?3; \/% Zm:&t > ms5) < i Py, ( % igit > m‘*s) .
o t=1 2 i=1 t=1 2

By and application of Markov’s inequality and a strong-mixing moment inequality of

Doukhan (1994, Theorem 2 and Remark 2, pp. 25-30), we have that

1 1
(H\/_Z&t >m 5) < =4 (25+1)9/2 (

1
m(2s+1)a/2
1

mds

N

mq/2

A
T




for all 1 < ¢ < n, with the upper bound being independent of both 7 and ;. Consequently,

we obtain that

= n 1
E s < 2 (1—gs)
Pwly---ﬂﬁn (1121?%); \/_ Slt = m E) ~ m mq&?71 O(m )
This completes the proof. O

Lemma S.2 (A uniform version of Lemma 2 of Hahn and Kuersteiner (2011)). For i =
1,...,m, let {&(zi, ¢i),t = 1,2,...m} be a vector-valued sequence of functions of data zy
and a parameter ¢; € Q, for Q compact. The zy are generated through a data generating

process indexed by parameter 1; € P. Let

a;(¢;,h) == sup  sup sup [Py, (AN B) — Py, (A) Py, (B)],
1<t<m AeA;; (v;) BEBir1n (i)

where A (1;) and By (v;) are the sigma algebras generated by the sequences zi, Zit—1, - - .

and Zi, Zigi1, - - .. Assume that

(1) By, (§(2i, ¢:)) = 0 for all (i,t), ; € P and ¢; € Q,

(ii) the mizing coefficients satisfy

sup sup |a;(¢;, h)| = O(Th)
1<i<n ;P

for some constant 0 <r <1,

(i) there exists a function b such that supy,coll€(zit, )|z < b(zi), for all 1,92 € Q,

1€ (zit, 91) — E(2ir, D2) ]2 < b(2it) ||d1 — P2]]2,

and SUP;<;<,, SUP| << SUPy,ep By, (b(2it)?) < ¢ for some ¢ > 2 and 0 < ¢ < oo.
Then, as n,m — oo so that "/m — v* with 0 < v < 00,

if ¢ > 6,

m

Z Zzt 9 (bz

V1o hn €PR lsisn

sup Py, e (max > 8) = o(m’l)
2
for all € > 0; while
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If ¢ > 2 and s > 0 are such that gs > 3 + dim(¢)/2,

m

\/%Zf(zit,@)

t=1

> ms»s) =o(m™)
2
for all e > 0.

Proof. Fix ¢ > 0. We begin by noting that

S Z Sup I[D’wi ( ; Z&-(zzta ¢z) > 8> .

Because Q is compact we can divide it into a finite number k; of subsets Qy,... Q, such

that ||¢1 — ¢2||a < § whenever ¢ and ¢ lie in the same subset. With this covering in hand,
1 & 1 &
D i di)|| >e| < sup Py [sup | =D €(z )| >e
2 szP ¢€Q m t=1 2

sup Py, | [|—
vi€P U
1 m
< Z sup Py, (sup EZS(Z”,QS) > 5) :
t=1 2

k=1 wZE,P ¢€Qk

foreachi =1, ..., n. Further, for each subset 9y, letting ¢y € Q) we can invoke Condition
(iii) to obtain
1

_Z (2 b)) || + — Z sup [|€(zit, @) — E(2it, ) ||

=1 9€%

3

2

<

§(Zm ¢(k )

3=
||M3 i

+— Z\b Zit) = By, (b(zir))| + 20 By, (b(2ir))-

Set d so that 20 Ey, (b(zi¢)) < E/3. Then7 combining the last two bounding inequalities yields

m ks
Z£<Zita¢i) > 6) < Z S.up Pwi ( — S %)
- 2

1
sup Py, | || —
Y, EP m i—1




Here, each of the right-hand side terms satisfies the conditions of Lemma S.1 and are,
therefore, both o(m™!) by an application of the first result given there. The first statement
in the theorem then follows from the fact that ks = O(1) and that /m = O(1).

To show the second part we proceed in the same manner, only now partitioning Q into
subsets such that ||¢; — ¢|l2 < ¢/ym for some § > 0. The number of sets needed to do so

dim(¢)/2

is of the order m , and each of them yields terms to which the second part of Lemma

S.1 can be applied, showing them to be at most of order m!~% uniformly. This then yields

1 & —gstdim(e)/2 -1
sup Py, [ max —E E(zi, &) >mPe | =O(n) O(m! et =o(m ),
»i€P v <1§i§n vm p— (i 1) ) ) (n) O( ) ( )
using that O("/m) = O(1) and that gs > 3 + dim(#)/2. This completes the proof of the

lemma. L]

Lemma S.3. Let x and y be two random vectors of length k. Write v for the k-vector of
ones. Then

Py < a) <Pz < a+ )+ Py — x| > Vke)

for all a and any € > 0.

Proof. Fix ¢ > 0. We have
Ply<a)=Ply<a,rz<a+we)+Ply<a,z>a+e).

Now, P(y <a,x <a+ i) <Pz <a+ ) while

Ply<a,z>a+w)=Ply—zr<a—xz,a—1z < —8)

IN

y—x < —e)+Ply—xz>e)
ly — fly > ke)

(
(
(
(ly = zll2 > Vke).

IA
g 9 =

IN

Combining results completes the proof of the lemma. O

Lemma S.4. Let yum, Tnm, and z be random vectors of size k whose probability functions

are indexed by the parameter 0 € ©. Assume that
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(i) The function Py(z < a) is continuous in a for all 6 € O,

(11) as n,m — 00, suPyeg Po(||Ynm — Tnmll2 > €) = o(1) for all ¢ > 0,
(111) as n,m — 00, supye|Po(Tnm < a) —Py(z < a)| = o(1) for all a.
Then,

sup|Py(ynm < a) —Py(z < a)| = o(1)
0cO

as n,m — o0.

Proof. For any € € © and € > 0, an application of Lemma S.3 gives
Po(Ynm < @) < Po(@nm < a+ 1) + Po([|yam — Tamlls > Vke)
and so, for any a, > a + €,
Po(Yrim < @) < Po(Znm < a1) + Po(|Ynm — Znmll2 > VEe). (S.15)
By an application of the same lemma, for any a_ < a — €,
Po(Tm < a—) < Po(Ym < @) + Po(|[Yum — Tamll2 > Vke). (S.16)

Taken together, (S.15) and (S.16) imply that

]P)G(xnm S CL_) - ]P)G(Hynm - $nm||2 > \/EE)

S IP)@ (ynm S CL)

S]P)G(xnm S a+) + ]P)G(Hynm - xanQ > \/E&‘)

Subtracting Py(z < a) from each of the terms in the above inequalities and re-arranging

shows that

‘]P0<ynm < a) - ]P)O(Z < CL)‘ < 2P9<“ynm - xnm”Q > \/Es)

+ |Py(zrm < a-) —Po(z < a)| + [Py(znm < ay) —Py(z < a)l.
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Applying an adding and substracting stategy to the terms on the right-hand side now gives

Sup“P@(ynm < CL) - ]P@(Z < a)’ < 28upP9<||ynm - l'anQ > \/EE)
(JSC) 0co

+ Sup’PB(xnm < CL_) - Pg(Z < CL_)|
0co

+ sup|Py(z < a-) —Po(z < a)|
0o

+ Sup“P)G(xnm < a+) - P9<Z < @+)|
(JSC)

+ sup[Py(z < ay) — Py(z < a)|.
0co

Here, as n,m — oo, the first right-hand side term is o(1) by Condition (ii); the second and
fourth term are both o(1) by Condition (iii); and, due to the fact that a_ and a; can be
chosen to be arbitrarily close, the third and fifth term can be made arbitrarily small by
Condition (i). The result has thus been shown and the proof of the lemma is, therefore,

complete. O
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