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Example from Section 3 with Random Matching

We revisit the example from Section 3 in which n = 3, q = 2 and a1 = 4, a2 = 3, a3 = 1

in the context of the model with random matching introduced in Section 5. In the version

of the game in which the seller is matched to bargain with equal probability with one of the

remaining buyers in every state, there exist three classes of MPEs that are asymptotically

equivalent to those derived for the benchmark model.

For a given MPE of the game with random matching and discount factor δ, let αi(S)

denote the probability that the seller reaches an agreement with buyer i conditional on being

matched with buyer i in state S. We use the same notation for payoffs (and the convention to

write αi and ui for MPE variables corresponding to the initial state N) as in the benchmark

model. Note that δu0(S) + δui(S) > ai + δu0(S \ {i}) implies that αi(S) = 0, and the

opposite strict inequality implies that αi(S) = 1. If δu0(S)+ δui(S) = ai+ δu0(S \{i}), then

the seller and buyer i are indifferent between trading and not trading when matched in the

state S, and receive payoffs δu0(S) and δui(S), respectively, if they trade.

Payoffs in two-buyer subgames following the first trade have the same asymptotic values

for δ → 1 as in the benchmark model. Suppose buyers i and j with i < j are competing

in a subgame for the remaining unit. In this subgame there is a unique MPE, in which the

seller and buyer i trade with probability 1 conditional on being matched (αi({i, j}) = 1).

If aj < ai/2, then for δ ∈ [4aj/(ai + 2aj), 1) the outside option of trading with buyer j is

not binding in the MPE (αj({i, j}) = 0): the seller trades exclusively with buyer i, and

u0({i, j}) = ui({i, j}) = ai/(2(2 − δ)), uj({i, j}) = 0. If aj ≥ ai/2, then for any δ ∈ (0, 1),

the outside option is binding: the seller trades with buyer j with positive but vanishing

probability as δ → 1 (αj({i, j}) > 0 but limδ→1 αj({i, j}) = 0). In this case, for sufficiently

high δ, we have that αj({i, j}) ∈ (0, 1), implying that δu0({i, j}) + δuj({i, j}) = aj. Then,

uj({i, j}) = αj({i, j})δuj({i, j})/2 leads to uj({i, j}) = 0. Hence, u0({i, j}) = aj/δ, and

ui({i, j}) solves

u0({i, j}) =
1

4
(ai − δui({i, j})) +

3

4
δu0({i, j})),
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so ui({i, j}) = ai/δ − aj(4− 3δ)/δ2.

As in the analysis of this example in the benchmark model, it is convenient to define

Ak := ak + δu0(N \ {k}) for k ∈ N , with u0(N \ {k}) derived above for δ close to 1.

We now prove the existence of the counterpart of the first class of MPEs discussed in

Section 3. In this class, we have α1 = 1 and α2 ∈ (0, 1) and α3 ∈ (0, 1) for high δ. Then, the

MPE variables must satisfy

u0 =
1

6
(A1 − δu1) +

5

6
δu0(1)

A2 = δu0 + δu2(2)

A3 = δu0 + δu3.(3)

The payoff equations for buyers reduce to

u1 =
1

6
(A1 − δu0) +

α2

3
δu1({1, 3}) +

α3

3
δu1({1, 2}) +

5− 2α2 − 2α3

6
δu1(4)

u2 =
1

3
δu2({2, 3}) +

α3

3
δu2({1, 2}) +

2− α3

3
δu2(5)

u3 =
1

3
δu3({2, 3}) +

α2

3
δu3({1, 3}) +

2− α2

3
δu3.(6)

Conversely, any solution (u0, u1, u2, u3, α2, α3) to the above system of equations with

α2, α3 ∈ [0, 1] for which A1 − δu1 ≥ δu0 (or equivalently, u0 ≥ 0) satisfies ui ≥ 0 for all

players i, and characterizes payoffs and behavior in the initial state of an MPE for the game

with discount factor δ.

Fix a discount factor δ close to 1. Since u3({2, 3}) = u3({1, 3}) = 0, equation (6) requires

that u3 = 0. Solving for u0 in (3), we get u0 = A3/δ. We then obtain u1 and u2 from

(1) and (2), respectively: u1 = A1/δ − A3(6 − 5δ)/δ2 and u2 = (A2 − A3)/δ. Noting

that u2({1, 2}) = 0 and plugging in the computed value of u2 in (5), we obtain α3 =

2 − 3/δ + δu2({2, 3})/(A2 − A3). Finally, given the values of u0, u1 and α3, we can solve

for α2 in (4) as long as its coefficient δ(u1({1, 3}) − u1)/3 is not zero. As δ goes to 1, this

coefficient converges to 1/6, so the computation is feasible for δ close to 1. Both α2 and α3

converge to 1/2 for δ → 1. It follows that for δ close to 1, the computed values solve the

system of equations (1)-(6) and belong to the range required to define an MPE.

Payoffs in this class of MPEs have the same asymptotic values as in the first class of MPEs

discussed in Section 3. Since both α2 and α3 converge to 1/2 as δ goes to 1, the probabilities

with which buyers 1, 2 and 3 trade first in the game with random matching converge to

(1/2, 1/4, 1/4) like in the benchmark model (e.g., the limit probability of trading with buyer

1 first is given by Bayes’ rule: (1 × 1/3)/(1 × 1/3 + 1/2 × 1/3 + 1/2 × 1/3)). These limit

values can also be characterized by high level arguments using analogues of equations (3)

and (4) from Section 3.

We next describe the equilibria corresponding to the second class of MPEs from Section

3. In this class, we have α1 = 0, α2 = 1, α3 ∈ (0, 1). Like in the first class, it must be that
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u3 = 0 and u0 = A3/δ. Then,

u0 =
1

6
(A2 − δu2) +

5

6
δu0

leads to u2 = A2/δ − A3(6− 5δ)/δ2. We substitute this value of u2 to solve for α3 in

u2 =
1

6
(A2 − δu0) +

(
5

6
− α3

3

)
δu2 +

α3

3
δu2({1, 2}),

where we know that u2({1, 2}) = 0. We obtain

α3 =
3(1− δ)((6− 4δ)A3 − δA2)

δ(δA2 − (6− 5δ)A3)
,

which converges to 0 as δ goes to 1, and is positive for δ near 1 because limδ→1A2 = 5 and

limδ→1A3 = 4. It follows that α3 ∈ (0, 1) for δ near 1. It can be immediately checked that

for δ sufficiently close to 1, the computed variables characterize an MPE for the game with

random matching in which payoffs have the same limits for δ → 1 as in the second class of

MPEs for the benchmark model and α1 = 0 is consistent with the MPE constraints.

The existence proof for the third class of MPEs is analogous to that for the second class.

Applying Proposition 1 to the Example from Section 3

We illustrate how Proposition 1 (along with Theorem 1) can be used to quickly derive

buyers’ limit payoffs and trading probabilities in the example from Section 3. In that ex-

ample, there are three classes of MPEs for high δ. In the first class, the seller mixes with

full support over the three buyers in the initial state, and Proposition 1 pins down the limit

payoffs for every buyer i: ūi = ai + ū0(N \ {i}) − ū0(N), where ū0(N \ {i}) and ū0(N) are

given by Theorem 1. As explained in Section 3, one can substitute these values in the limit

payoff equations for buyers 1 and 2 to solve for the seller’s limit mixing probabilities in the

initial state. In the second class of MPEs, the support of the seller’s mixing in the initial

state is formed by buyers 2 and 3, and Proposition 1 immediately determines ū2 and ū3.

This information can be plugged in the limit payoff equation of buyer 2 to infer that π̄2 = 1.

Hence, θ̄1({1, 3}) = 1, and Proposition 1 leads to ū1 = a1 + ū0({3}) − ū0({1, 3}), where

ū0({1, 3}) = a1/2 and, by definition, ū0({3}) = 0. Similarly, limit buyer payoffs and trading

probabilities in the third class of MPEs can be directly derived via Proposition 1 and the

limit buyer payoff equations.

Analysis of the Example in Footnote 13

Consider the benchmark game with supply q = 2 in which the seller bargains with n = 3

buyers who have values a1 = 5, a2 = 4, a3 = 3. We derive MPEs for high δ that are

differentiated by the subsets of buyers over which the seller randomizes in the initial state.

In this example, it turns out that the seller and buyer 3 trade with positive limit probability

in all MPEs for δ → 1. Hence, all MPEs are asymptotically inefficient.
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In the first class of MPEs, we have π1 = 0 and π2, π3 > 0. The corresponding MPE

variables must solve the following system of equations

u0 =
1

2
(a2 + δu0({1, 3})− δu2) +

1

2
δu0

ui = πi

(
1

2
(ai + δu0(N \ {i})− δu0) +

1

2
δui

)
+

∑
k∈N\{i}

πkδui(N \ {k}) for i = 1, 2, 3

a2 + δu0({1, 3})− δu2 = a3 + δu0({1, 2})− δu3
π2 + π3 = 1,

and additionally obey the constraint a2 + δu0({1, 3}) − δu2 ≥ a1 + δu0({2, 3}) − δu1. Any

solution satisfies equation (5) in the paper, which for i = 2, 3 yields

ui =
2πi(1− δ)
2− δ − δπi

ai + δu0({1, j})
2

+
πj(2− δ)

2− δ − δπi
δui({1, i}),

where j = 5 − i. Plugging the expressions for u2 and u3 above in the constraint a2 +

δu0({1, 3})− δu2 = a3 + δu0({1, 2})− δu3, multiplying out the two denominators 2− δ− δπ2
and 2−δ−δπ3, and substituting π3 = 1−π2 leads to a quadratic equation in π2. Coefficients

in this quadratic involve functions of δ, including the cumbersome payoff formulae for two-

buyer subgames from the Appendix (in this example, the outside option is binding in all

such subgames). With the help of Mathematica, we solved the quadratic analytically and

obtained the two roots as functions of δ. We then computed the limits of the roots for δ → 1:

−3− 5/
√

2 and −3 + 5/
√

2; only the latter limit belongs to [0, 1]. Hence, an MPE with this

structure exists for sufficiently high δ, and limit mixing probabilities for δ → 1 in this family

of MPEs are given by π̄2 = −3+5/
√

2 ≈ 0.5355 and π̄3 = 1−π̄2. Limit buyer payoffs can then

be derived via Proposition 1 taking into account that θ̄1({1, 2}) = π̄3, θ̄1({1, 3}) = π̄2 and

θ̄2(N) = θ̄3(N) = 1. We obtain ū1 = π̄2×2+(1−π̄2)×1 = 1+π̄2, ū2 = a2+ū0({1, 3})−ū0 = 0

and ū3 = a3 + ū0({1, 2})− ū0 = 0. The condition necessary for the optimality of the seller’s

choice of π1 = 0 for δ close to 1 is immediately verified.

A similar exercise characterizes the second class of MPEs, in which π2 = 0. For this class,

we find that π̄1 = (−11 +
√

177)/4 ≈ 0.5760, leading to ū1 = 1, ū2 = π̄1 × 1 + π̄3 × 0 = π̄1

and ū3 = 0.

In a possible third class of MPEs, the seller mixes with positive probability between all

three buyers. Then, Proposition 1 pins down all limit buyer payoffs: ū1 = 1, ū2 = ū3 = 0.

The seller’s limit mixing probabilities in the initial state can then be computed like in the

Section 3 example. We obtain π̄1 = π̄2 = 0, π̄3 = 1.

In the first and second classes of MPEs—unlike in the third class—the limit buyer payoff

equations do not pin down the corresponding limit mixing probabilities in the initial state.

For instance, for the family of MPEs with π1 = 0 and π2, π3 > 0, equation (3) in the paper

leads to ū2 = π̄2ū2 + π̄3ū2({1, 2}), which does not impose constraints on π̄2 and π̄3 because
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ū2 = ū2({1, 2}) = 0. The exact values of π2 and π3 for high δ are determined by small

differences between u2 and u2({1, 2}).
As in the example from Section 3, we can rule out other possibilities for the support of

the seller’s mixing in the initial state of any MPE for sufficiently high δ. We conclude that

under any convergent family of MPEs for δ → 1, the seller inefficiently trades with the set

of buyers {1, 3} with positive limit probability.


