
Algorithmic Mechanism Design with Investment∗

Mohammad Akbarpour† Scott Duke Kominers‡

Kevin Michael Li§ Shengwu Li¶ Paul Milgrom‖

First posted: February 25, 2020
This version: May 12, 2023

Abstract

We study the investment incentives created by truthful mechanisms that allocate
resources using approximation algorithms. Some approximation algorithms guarantee
nearly 100% of the optimal welfare in the allocation problem but guarantee only 0%
when accounting for investment incentives. An algorithm’s allocative and investment
guarantees coincide if and only if its confirming negative externalities are sufficiently
small. We introduce fast approximation algorithms for the knapsack problem that have
no confirming negative externalities and guarantees close to 100% for both allocation
and investment.

Keywords: Combinatorial optimization, Knapsack problem, Investment, Auctions,
Approximation, Algorithms

JEL classification: D44, D47, D82

∗An extended abstract of this work appeared in the Proceedings of the 22nd ACM Conference on
Economics and Computation. We thank Eric Tang for fantastic research assistance, and thank Moshe
Babaioff, Ben Brooks, Peter Cramton, Michal Feldman, Matthew Gentzkow, Paul Goldsmith-Pinkham,
Yannai Gonczarowski, Nima Haghpanah, Andy Haupt, John William Hatfield, Nicole Immorlica, Matthew
Jackson, Emir Kamenica, Zi Yang Kang, Eric Maskin, Ellen Muir, Rad Niazadeh, Noam Nisan, Amin Saberi,
Roberto Saitto, Mitchell Watt, numerous seminar audiences, the editor (Bart Lipman), and several referees
for helpful comments. We thank Broadsheet Cafe for inspiration and coffee. Akbarpour and Kominers
gratefully acknowledge the support of the Washington Center for Equitable Growth. Additionally, Kominers
gratefully acknowledges the support the National Science Foundation (grant SES-1459912) and both the Ng
Fund and the Mathematics in Economics Research Fund of the Harvard Center of Mathematical Sciences
and Applications. Milgrom gratefully acknowledges support from the National Science Foundation (grant
SES-1947514). All errors remain our own.
†Stanford University. Email: mohamwad@stanford.edu
‡Harvard University and a16z crypto. Email: kominers@fas.harvard.edu
§Stanford University. Email: kli317@stanford.edu
¶Harvard University. Email: shengwu_li@fas.harvard.edu
‖Stanford University and Auctionomics. Email: milgrom@stanford.edu

1

mohamwad@stanford.edu
kominers@fas.harvard.edu
kli317@stanford.edu
shengwu_li@fas.harvard.edu
milgrom@stanford.edu

1 Introduction

Many real-world allocation problems are too complex for exact optimization. For ex-

ample, it is computationally difficult—even under full information—to optimally pack indi-

visible cargo for transport (Dantzig, 1957; Karp, 1972), to coordinate electricity generation

and transmission (Lavaei and Low, 2011; Bienstock and Verma, 2019), to assign radio spec-

trum broadcast rights subject to legally-mandated interference constraints (Leyton-Brown

et al., 2017), or to find welfare-maximizing allocations in combinatorial auctions (Sandholm,

2002; Lehmann et al., 2006). Rising to the challenge for these and many other problems,

researchers have developed fast approximation algorithms.

Approximation algorithms can be combined with pricing rules to produce truthful mech-

anisms, provided that the algorithm is “monotone” (Lavi et al., 2003). In this paper, we

study the ex ante investment incentives created by such mechanisms.

Suppose that one bidder can make a costly investment to change its value before partic-

ipating in a truthful mechanism. As an initial result, we show that all truthful mechanisms

using the same allocation algorithm entail the same investment incentives, so we can regard

the investment incentives as properties of the algorithm itself.

If the allocation algorithm exactly maximizes total welfare, then the corresponding truth-

ful mechanism is a Vickrey-Clarke-Groves (VCG) mechanism. For VCG mechanisms, any

single bidder’s investment is profitable if and only it improves total welfare (Rogerson, 1992).

In this respect, the VCG mechanisms are essentially unique. We find that a truthful mecha-

nism aligns a bidder’s investment incentives with welfare maximization only if there is some

set of allocations such that, for generic valuation profiles, its allocation algorithm exactly

maximizes welfare over that set. Many practical approximation algorithms do not have this

structure and, as a result, lack efficient investment incentives.

One might also hope that if an allocation algorithm approximately maximizes total wel-

fare, then it generates approximately efficient investment incentives—but we show to the

contrary that arbitrarily good approximations can have arbitrarily bad investment guar-

antees. To make this statement precise, we evaluate an algorithm’s performance on any

particular instance by the welfare it achieves divided by the maximum welfare. We refer to

the worst-case ratio over all instances when values are exogenous as the allocative guarantee,

and the worst-case ratio when one bidder’s ex ante investment endogenously determines its

value as the investment guarantee.1 (The investment guarantee measures welfare net of in-

vestment costs.) Because the investment guarantee is a worst-case over instances and over

1Our results partially extend to the case of multiple bidders who make simultaneous investments, as we
discuss in Section 2.4.6.

2

investment technologies, it is never more than the allocative guarantee. We characterize the

algorithms for which the allocative and investment guarantees are equal, and apply those

results to evaluate and improve upon standard approximation algorithms.

1.1 The knapsack example

We use the knapsack problem (Dantzig, 1957) to introduce the investment problem and

our general results. An instance of the knapsack problem is described by a list of indivisible

items, each having a positive size and value, and a capacity constraint. Each item’s size is

no more than the capacity constraint. The problem is to select (“pack”) a set of items to

maximize the total value, subject to the sum of the item sizes not exceeding the capacity

constraint. Finding an exact optimal solution to the knapsack problem is computationally

difficult—it is NP-hard.

Suppose that each item is associated with a different bidder and that all the item sizes

are publicly observed, but the value of being packed is the bidder’s private information.

An algorithm for the knapsack problem is monotone if when any packed bidder’s value is

increased, the algorithm still selects that bidder to be packed. Any monotone algorithm can

be paired with a payment rule to create a truthful mechanism. One such payment rule—the

threshold rule—charges zero to each unpacked bidder and charges each packed bidder its

threshold price, which is the infimum of the set of values that would result in the bidder

being packed.

A packing algorithm that is careless about packing low-value items can have a good

allocative guarantee but a poor investment guarantee. For an extreme but simple example,

consider a satisficing algorithm that packs only the most valuable item when its value is

at least 99% of the sum of all values, and otherwise optimizes exactly. This algorithm

is monotone, so its threshold auction is truthful, and its allocative guarantee is 99%. Its

investment guarantee, however, is 0, as shown by the example in Table 1. In this example,

suppose that bidder A can invest at a cost of 200 to raise its value from ε to 200 + 2ε. This

investment is profitable and causes the satisficing algorithm to pack just A, for net welfare

of 200 + 2ε− 200 = 2ε. But the social optimum is to invest and pack both A and B, for net

welfare 1 + 2ε. Thus, despite the 99% allocative guarantee, the investment guarantee of this

algorithm is no more than infε>0

{
2ε

1+2ε

}
= 0.

While the preceding example is extreme, it contains the seed of a general lesson. In

the example, increasing the value of a packed item worsens the packing of other items. We

show that a monotone algorithm’s investment performance can be worse than its alloca-

tive performance only if an investment that “confirms” the investor’s allocation can reduce

3

bidder A B C
value ε 1 .5
size .4 .6 .5

Table 1: A knapsack instance, with capacity 1. Assume 0 < ε < .2.

the total value of other participants’ allocations—an effect that we call a confirming nega-

tive externality. An algorithm that excludes confirming negative externalities—an XCONE

algorithm—always has an investment guarantee equal to its allocative guarantee.

1.2 Summary of main results

For our general treatment, we assume a finite set of outcomes. Each bidder’s value is a

vector vn, with element vn,o capturing bidder n’s value for outcome o. The bidder’s possible

values are a product of intervals, one for each outcome. An allocation assigns one outcome

to each bidder; there is an arbitrary set of feasible allocations. An algorithm selects an

allocation given the value profile v and the set of feasible allocations.

We allow that investments may be made under uncertainty about all the inputs to the

algorithm, including the values resulting from the bidder’s investment, the values reported

by the other bidders, and the set of feasible allocations. Each input is a random variable

described by a function from a finite state space S. We allow any probability distribution

on S; our only restriction is that in every state, the realization is an allowable instance of

the deterministic problem. We assume that the investor selects an investment from some

finite set to maximize the investor’s own expected payoff, net of its investment cost and

the price it pays in the truthful mechanism. We compare the resulting expected welfare to

that of the optimum, which results from the ex ante efficient investment and the ex post

efficient allocation. An algorithm is a β-approximation for investment if for any instance

of the investment problem, the expected welfare of the mechanism is at least β times the

optimum welfare.

We prove that the worst case is always deterministic, so introducing uncertainty does not

affect the investment guarantee: if x is a β-approximation for investment for all singleton

state spaces, then it is also a β-approximation for investment for any finite state space.

To study algorithm performance under certainty, we introduce two new concepts, algo-

rithmic externalities and confirming changes.

When a bidder invests under a truthful mechanism, that bidder changes its reported

value. We define the algorithmic externality from that change to be the increase (positive,

negative or zero) in the sum of other bidders’ values for the resulting allocation, plus the

increase in the price the bidder pays. For example, if the bidder’s change in value reduces

4

the welfare of other bidders but also increases the bidder’s payment to the auctioneer by a

larger absolute amount, we count that as a positive externality because it increases the total

welfare of the other bidders plus the auctioneer. As we show, any two truthful mechanisms

that use the same underlying allocation algorithm result in identical externalities.

Suppose that at some value profile (vn, v−n), the algorithm allocates outcome o to bidder

n. A change in bidder n’s values from vn to ṽn is confirming if for any other outcome ô, we

have ṽn,o − vn,o ≥ ṽn,ô − vn,ô; that is, n’s value for the original outcome increases at least as

much as its value for any other outcome. If the inequalities were all strict, then monotonicity

of the algorithm would imply that such a value change must leave n’s outcome unchanged,

but others’ outcomes may change. With weak inequalities, it is possible that n’s outcome

changes as well, with a compensating change to n’s payments. If given a confirming change

to n’s value, the algorithm’s allocation changes in a way that results in a negative externality,

we call that a confirming negative externality.

Our first main result establishes a necessary and sufficient condition for the investment

and allocative guarantees to coincide, in the form of a bound on the magnitude of confirming

negative externalities. Suppose we start at value profile (vn, v−n) and make a confirming

change to ṽn; our condition requires that any resulting negative externality must not exceed

the slack in the allocative guarantee β∗ at the original value profile. This bound can be

hard to assess, however, because the slack depends on the optimal welfare, which is hard

to compute or characterize for many problems of interest. The second result is a corollary

of the first that may be more useful because it is easier to check: if an algorithm excludes

confirming negative externalities (XCONE), then its investment and allocative guarantees

coincide.

To explore the intuition for our results, we limit attention here to packing problems,

in which bidder n faces only two outcomes—winning (being “packed”) or losing—when its

price for being packed is p.2 A preliminary observation is that the worst-case investment

performance must occur when a bidder who chooses to invest c makes zero additional profit,

because reducing c leaves the investment decision unchanged while increasing the ratio of

the algorithm’s welfare net of costs to the optimal net welfare.

Consider a bidder n who would not be packed without investment, but by investing at

cost c > 0 can increase its value to p + c, resulting in a net profit of zero. The intuitive

argument hinges on decomposing this investment into two parts. Suppose that the bidder

first has the option of investing at zero cost to raise its value just to the threshold price p.

This is a zero-profit investment, since the result is that the bidder is packed but pays its

2Under the assumptions listed below, the same arguments and intuition can be extended to the case with
multiple outcomes.

5

full value p for that. Because the investment cost is zero, this results in the same welfare

as if the bidder’s value were fixed at p, so the allocative guarantee implies that welfare is at

least β∗ times the optimum. In the actual problem, bidder n can invest c > 0 to increase its

value above the threshold to p+ c. Compared to raising value to the threshold, adding this

option changes neither the investor’s net payoff nor the total net welfare under the optimal

benchmark. Thus, this investment, which confirms n’s packing, reduces the algorithm’s

performance for that instance if and only if it leads to a confirming negative externality. If

that externality is large enough, it may drag total welfare below β∗ times the optimum. For

an XCONE algorithm, there are no confirming negative externalities, so there is no instance

in which total net welfare is less than when the investor’s value is equal to the threshold,

which is at least β∗ times the optimal welfare for that problem. So, for an XCONE algorithm,

investment performance is as good as allocation performance.

Some familiar approximation algorithms are XCONE; these include greedy algorithms

for the knapsack problem and the clock auction algorithm used for the 2016 Federal Com-

munication Commission’s broadcast incentive auction (with a perfect feasibility checker)

(Leyton-Brown et al. (2017), Milgrom and Segal (2020)).

XCONE is also closely related to non-bossiness. An algorithm is non-bossy if a change

in one bidder’s report that does not affect that bidder’s outcome cannot change any other

bidder’s outcome. For allocation problems with two outcomes, such as the knapsack problem,

every non-bossy algorithm is XCONE. Moreover, we show that any algorithm that takes the

best output from a family of non-bossy algorithms is XCONE.3

We use our results to illuminate and repair the bad investment performance of a certain

“fully polynomial time approximation scheme” (FPTAS), that is, an indexed collection of

algorithms with parameter ε > 0 that have allocative guarantees of 1 − ε and maximum

run-times bounded by a polynomial function of ε−1 and the input length. The Briest et al.

(2005) (henceforth BKV) FPTAS for the knapsack problem consists of algorithms that are

monotone but not XCONE. Each of the BKV algorithms fails XCONE because, like the

satisficing algorithm described earlier, they pack low value items poorly when one item

has a very high value. Just as in our earlier example, this results in the BKV algorithms

having investment guarantees of zero. We show how to modify the BKV algorithms to be

XCONE—creating a FPTAS for which the allocative and investment guarantees coincide.

3This result extends to problems with more than two outcomes under a tie-breaking condition.

6

1.3 Related work

Economists have studied ex ante investment in mechanism design at least since the work

of Rogerson (1992), who demonstrated that Vickrey mechanisms induce efficient investment.

Bergemann and Välimäki (2002) extended Rogerson’s finding in a setting with uncertainty, in

which bidders invest in information before participating in an auction. Relatedly, Arozamena

and Cantillon (2004), studied pre-market investment in procurement auctions, showing that

while second-price auctions induce efficient investment, first-price auctions do not. Hatfield

et al. (2014, 2019) extended these findings to characterize a relationship between the degree

to which a mechanism fails to be truthful and/or efficient and the degree to which it fails to

induce efficient investment. While like us, Hatfield et al. (2014, 2019) dealt with the connec-

tion between (near-)efficiency at the allocation stage and (near-)efficiency at the investment

stage, they used additive error bounds, rather than the multiplicative worst-case bounds that

are standard for the analysis of computationally hard problems. Gershkov et al. (2021) stud-

ied the construction of revenue-maximizing mechanisms with ex ante investment. Tomoeda

(2019) studied full implementation of exactly-efficient social choice rules with investment.

Our paper is not the first to study investment incentives in an NP-hard allocation setting.

Milgrom (2017) introduced a “knapsack problem with investment” in which the items to

be packed are owned by individuals, and owners may invest to make their items either

more valuable or smaller (and thus easier to fit into the knapsack). In the present paper,

we reformulate the investment question in terms of worst-case guarantees and broaden the

formulation to study truthful mechanisms for a wide class of resource allocation problems.

Our paper is naturally connected to the large literature on algorithmic mechanism design,

started by the seminal paper of Nisan and Ronen (1999). This literature considers compu-

tational complexity in mechanism design, and explores properties of approximately optimal

mechanisms. Among these works are those of Nisan and Ronen (2007) and Lehmann et al.

(2002). Nisan and Ronen (2007) showed that VCG-based mechanisms with nearly-optimal

allocation algorithms are generically non-truthful, while Lehmann et al. (2002) introduced

a truthful mechanism for the knapsack problem in which the allocation is determined by a

greedy algorithm. In addition, Hartline and Lucier (2015) developed a method for converting

a (non-optimal) algorithm for optimization into a Bayesian incentive compatible mechanism

with weakly higher social welfare or revenue; Dughmi et al. (2017) generalized this result

to multidimensional types. For a more comprehensive review of results on approximation in

mechanism design, see Hartline (2016).

There is also a literature on greedy algorithms, all of which are XCONE, which sort bid-

ders based on some criterion and choose them for packing in an irreversible way; see Pardalos

et al. (2013) for a review. Lehmann et al. (2002) studied the problem of constructing truthful

7

mechanisms from greedy algorithms; similarly, Bikhchandani et al. (2011) and Milgrom and

Segal (2020) proposed clock auction implementations of greedy allocation algorithms.

Finally, our concept of an XCONE algorithm is closely related to the definition of a

“bitonic” algorithm, introduced by Mu’Alem and Nisan (2008) to construct truthful mecha-

nisms in combinatorial auctions. Bitonicity is defined for binary outcomes; with the restric-

tion to binary outcomes, every XCONE algorithm is bitonic, but not vice versa.

2 The model and results

2.1 Approximation algorithms

Consider a set of bidders N and a set of outcomes O, both finite. For instance, in

the knapsack problem, the set of outcomes is {packed, unpacked}. The value of bidder n

for outcome o is vn,o ∈ R≥0. We write vn ≡ (vn,o)o∈O to denote n’s values, and we write

v ≡ (vn)n∈N to denote a full value profile. An allocation a ∈ ON assigns one outcome to

each bidder; an denotes the outcome of bidder n.

An allocation instance (N,O, v, A) consists of a set of bidders N , a set of outcomes

O, a value profile v, and a set of feasible allocations A ⊆ ON . To simplify notation, we

often write instances as a pair (v, A), leaving N and O implicit.

The standard approach in computer science is to assess an algorithm’s worst-case per-

formance over a domain of instances. Hence, we define an allocation problem Ω to be a

collection of instances.

Assumption 2.1. We assume that the value profiles in Ω have a product structure. That is,

let Vn,o be a closed interval of R≥0 capturing the possible values that bidder n might have for

outcome o. We define Vn ≡
∏

o∈O Vn,o and require that {v : (N,O, v, A) ∈ Ω} =
∏

n∈N Vn.

In some settings, one outcome o ∈ O is an outside option known to be valued at 0; we

capture this with Vn,o = {0}.
Assumption 2.1 is restrictive. For instance, suppose that each outcome is a bundle of

goods. If a bidder has additive valuations, then their value for a bundle is equal to the sum

of their values for the individual goods. Thus, the allocation problem comprised of all and

only the instances with additive valuations does not satisfy Assumption 2.1.

An allocation algorithm is a computational procedure that takes as input the value profile

and the set of feasible allocations and then outputs an allocation. Each algorithm induces

an allocation rule, that is, a function from inputs to outputs. Practical algorithms must

run quickly, but most of our results do not depend on running time, so we often use the

8

term “algorithm” to refer both to the computational procedure and to the function that it

induces.

We restrict attention to deterministic allocation algorithms. Formally, an algorithm x is

a function that selects a feasible allocation for each instance (v,A) ∈ Ω; that is, x(v,A) ∈ A.4

We denote the outcome assigned to bidder n under x by xn(v, A). We abuse notation and

identify outcomes o ∈ O with binary vectors of length |O|, with one element equal to 1 and

all others equal to 0, which allows us to write the welfare of algorithm x on instance (v, A)

as

Wx(v,A) ≡
∑
n

[vn · xn(v, A)] .

The optimal welfare at instance (v,A) is

W ∗(v, A) ≡ max
a∈A

{∑
n

[vn · an]

}
.

Given some β ∈ [0, 1], algorithm x is a β-approximation for allocation if for all

(v, A) ∈ Ω, we have that Wx(v, A) ≥ βW ∗(v, A). We refer to the largest such β as the

algorithm’s allocative guarantee.

2.2 Truthful mechanisms

Suppose that the bidders’ values are private information, so that the algorithm cannot

directly input each bidder n’s value vn but must instead rely on each bidder’s reported value

v̂n. To elicit these reports, we use a mechanism (x, p), which is a pair consisting of an

algorithm x and a payment rule p that maps any reported instance (v̂, A) into an allocation

x(v̂, A) ∈ A and a profile of payments p(v̂, A) ∈ RN . We adopt the sign convention that

payments are made by the participants and to the auctioneer. A mechanism is truthful if

for all instances (v, A) ∈ Ω and all v̂n ∈ Vn, we have that

vn · xn(v,A)− pn(v,A) ≥ vn · xn(v̂n, v−n, A)− pn(v̂n, v−n, A).

When can an algorithm be paired with a pricing rule to produce a truthful mechanism?

4In complexity theory, we often are not given the feasible allocations A directly, but instead only a de-
scription that implies which allocations are feasible. For instance, a description could specify the bidders’
sizes and the capacity of the knapsack. In principle, algorithms for the knapsack problem could output
different allocations for two instances with different item sizes but the same feasible allocations. Our for-
mulation ignores this description-dependence, but we could easily accommodate it by specifying a function
from descriptions to feasible allocations, and defining an instance as consisting of a value profile v and a
description d; none of our results would materially change with this adjustment.

9

Algorithm x is weakly monotone (W-Mon) if for any two instances (v,A) and (ṽn, v−n, A),

we have

[ṽn − vn] · [xn(ṽn, v−n, A)− xn(v,A)] ≥ 0. (1)

For packing problems, we have O = {packed, unpacked}, a value for being “packed”

vn,packed ≥ 0, and an outside option with vn,unpacked = 0. In this special case, (1) reduces to

the requirement that, under x, if n is packed at (vn, v−n, A) and ṽn,packed ≥ vn,packed, then n

is packed at (ṽn, v−n, A).

A necessary condition for the existence of a pricing rule p such that (x, p) is truthful is

that the algorithm is weakly monotone—and since Vn is convex by Assumption 2.1, this is

also sufficient.5

Lemma 2.2 (Lavi et al. (2003); Saks and Yu (2005)). An algorithm x is weakly monotone

if and only if there exists a payment rule p such that (x, p) is truthful.

Pricing rules in truthful mechanisms can be defined in terms of threshold prices, one for

each outcome. The least value for bidder n to achieve outcome o is denoted by

τ̂n,o(v−n, A, x) = inf
vn∈Vn

{vn,o : xn(vn, v−n, A) = o}

and the threshold price is

τn,o(v−n, A, x) ≡ min {τ̂n,o(v−n, A, x), supVn,o} .

Our results hold trivially if τn,o(v−n, A, x) = ∞ for some o.6 To focus on the non-

trivial case, we assume that τn,o(v−n, A, x) < ∞; since Vn,o is closed, it then follows that

τn,o(v−n, A, x) ∈ Vn,o. We denote the threshold vector by τn(v−n, A, x) ≡ (τn,o(v−n, A, x))o∈O.

The set of possible values Vn has a product structure, so we have τn(v−n, A, x) ∈ Vn.

Now, Vn is path-connected, so a standard argument using the envelope theorem yields

the following lemma (Milgrom and Segal, 2002).

Lemma 2.3. If (x, p) is a truthful mechanism, then for each n, there exists a real-valued

function fn(v−n, A) such that

pn(v, A) = τn(v−n, A, x) · xn(v, A) + fn(v−n, A).

5Bikhchandani et al. (2006) provided other domain assumptions such that weak monotonicity is sufficient.
6Observe that if τn,o(v−n, A, x) =∞, then τ̂n,o(v−n, A, x) =∞ and supVn,o =∞, i.e., bidder n is never

allocated outcome o and can have arbitrarily large values for o, which in turn implies that x has an allocative
guarantee of 0.

10

Lemma 2.3 states that in a truthful mechanism, each bidder pays the threshold price to

achieve its assigned outcome plus a strategically irrelevant term that does not depend on the

bidder’s own report. Truthfulness of (x, p) implies that x assigns each bidder an outcome

that maximizes its value minus its threshold price.

2.3 Algorithmic externalities

Given mechanism (x, p) and instance (v,A), the externality of changing n’s value from

vn to ṽn is

Ex,p(ṽn, (v, A)) ≡ pn(ṽn, v−n, A)− pn(v,A)︸ ︷︷ ︸
change in n’s payment

+
∑
m 6=n

vm · [xm(ṽn, v−n, A)− xm(v,A)]︸ ︷︷ ︸
effect on others’ welfare

. (2)

Expression (2) is the portion of n’s effect on other participants’ welfare that is not fully

reflected by n’s price.7 Equivalently, if we treat the auctioneer as the residual claimant to

any surplus or deficit of the mechanism, then (2) is the change in the sum of the payoffs of

other participants, including the auctioneer.

Lemma 2.3 implies that any two truthful mechanisms that use the same allocation algo-

rithm x have the same externalities. Consequently, we henceforth suppress the dependence

of Ex,p on p, writing Ex and calling this an algorithmic externality. VCG mechanisms have

zero externalities, so it follows that if x is exactly maximizing, then x has no algorithmic

externalities.

For an algorithm to yield efficient investment incentives, it must have zero externalities.

Suppose that bidder n changes its value from vn to ṽn. If Ex(ṽn, (v, A)) 6= 0, then the change

in n’s payment does not fully capture the effect on others’ welfare. Thus, we can find cost

c ∈ R such that paying c to change n’s value from vn to ṽn is privately profitable but not

socially optimal, or socially optimal but not privately profitable.

We characterize the zero-externality algorithms. An algorithm x is maximal-in-range

if for each set of feasible allocations A, there exists an R ⊆ A such that for all v we have

x(v, A) ∈ argmax
a∈R

{∑
n

[vn · an]

}
.

We say that algorithm x is welfare-equivalent to algorithm x′ if for every instance (v, A)

we have Wx(v, A) = Wx′(v, A). Note that if two algorithms are welfare-equivalent, then they

7In some parts of the economics and mechanism design literatures, the word “externality” is used to refer
just to the second term, but our definition here is faithful to the traditional Pigouvian concept of externality.

11

yield identical allocations except when two allocations yield exactly the same welfare.

Theorem 2.4. Suppose that algorithm x is weakly monotone. Then x has no algorithmic

externalities (Ex ≡ 0) if and only if x is welfare-equivalent to a maximal-in-range algorithm.

Theorem 2.4 implies that it is (essentially) only VCG mechanisms that have no external-

ities, since any truthful mechanism based on a maximal-in-range algorithm is just a VCG

mechanism with restricted range.8 Some allocation problems have fast maximal-in-range al-

gorithms with meaningful allocative guarantees (Holzman et al., 2004; Dobzinski and Nisan,

2007).

Theorem 2.4 is substantially the same as Theorem 3.2 of Nisan and Ronen (2007), except

that the Nisan and Ronen (2007) version requires the possible values Vn to be unbounded

above, whereas ours allows Vn to be any product of closed intervals.

2.4 Performance under investment

In mechanisms with algorithmic externalities, selfish investment decisions do not always

maximize social welfare. Thus, we study the connection between algorithmic externalities

and performance guarantees under investment.

Given a truthful mechanism (x, p), we assess whether the mechanism’s allocative guaran-

tee also applies to investment problems in which a single bidder, denoted ι ∈ N , can decide

ex ante whether to invest and/or what investment to make. In our formulation, the bidder

may be uncertain about what the situation will be when the mechanism is run, including

potential uncertainty as to the values that would result from each of its possible investments,

the values of the other bidders, and the feasible set that will apply. We compare the ex-

pected social welfare from the bidder’s selfish investment choice and the given mechanism’s

allocation to the expected welfare from making the ex ante efficient investment and using

the ex post efficient allocation.

We model the investor’s uncertainty using a probability space with a finite number of

states S. Each uncertain investment opportunity is a pair (νι, c) consisting of a function

νι : S → Vι and a cost c ∈ R. An investment instance specifies the set of possible

investments as well as the other bidders’ values as a function ν−ι : S → V−ι and the feasible

set as a correspondence A : S ⇒ A.9

8Here is an example of a weakly monotone, zero-externality algorithm that is not maximal-in-range, which
applies to the problem of selecting two auction winners from among four bidders: If all four bidders have the
same value of winning, then the algorithm selects bidders 1 and 2; otherwise, it selects a pair of bidders to
maximize welfare from the set Φ consisting of the other five bidder pairs. This algorithm is welfare-equivalent
to the algorithm that always selects the welfare-maximizing allocation from Φ.

9We do not restrict the correlations among these uncertain elements.

12

Formally, an investment instance (N,O, S, g, ι, I, ν−ι,A) consists of:

1. Sets of bidders N and outcomes O.

2. A finite set of states S and a probability distribution g ∈ ∆S.

3. A distinguished bidder—the investor—which we denote by the Greek letter ι.

4. A finite set of investments I for ι. To represent the status quo, we require that this

set includes at least one pair (νι, c) with c = 0.10

5. A function from states to the other bidders’ values, ν−ι : S → V−ι.

6. A correspondence from states to feasible allocations, A : S ⇒ ON .

We require that each state s ∈ S and investment (νι, c) ∈ I together result in an instance of

the original allocation problem, i.e., that (N,O, ν(s),A(s)) ∈ Ω. To simplify our notation,

we write each investment instance in the form ω = (g, I, ν−ι,A), suppressing N , O, S, and ι.

(We use an overline to distinguish functions or variables related to an investment problem.)

Suppose that the investor participates in some truthful mechanism (x, p). After an in-

vestment is chosen and the state is realized, the investor can do no better than to report the

resulting value to the mechanism truthfully. Hence, its best response investment choice at

instance ω = (g, I, ν−ι,A) is

BR(x, p, ω) ≡ argmax
(νι,c)∈I

{(∑
s∈S

g(s) [νι(s) · xι(νι(s), ν−ι(s),A(s))− pι(νι(s), ν−ι(s),A(s))]

)
− c

}
.

By Lemma 2.3, the price pι(v, A) paid by the investor ι consists of a term entirely pinned

down by the algorithm x, plus a term that does not depend on ι’s own report. Thus, for

any two truthful mechanisms that use the same algorithm, (x, p) and (x, p′), the investor ι

has the same privately optimal investments—BR(x, p, ω) = BR(x, p′, ω)—so we henceforth

suppress the payment rule argument p from BR(·).11

The welfare of algorithm x at investment instance ω = (g, I, ν−ι,A) is

W x(ω) ≡ min
(νι,c)∈BR(x,ω)

{(∑
s∈S

g(s)Wx(νι(s), ν−ι(s),A(s))

)
− c

}
.

10Negative costs c < 0 represent disinvestments compared to the status quo.
11By assuming that the investor best-responds, we are abstracting from any computational limitations

that the investor might face when there are many states.

13

We benchmark performance relative to the net welfare delivered by ex ante efficient invest-

ment and ex post efficient allocations. That is, the optimal welfare at investment instance

ω = (g, I, ν−ι, A) is

W
∗
(ω) ≡ max

(νι,c)∈I

{(∑
s∈S

g(s)W ∗(νι(s), ν−ι(s),A(s))

)
− c

}
.

The benchmark W
∗
(ω) is equal to the net welfare from selfish investment under a VCG

mechanism. Given some β ∈ [0, 1], algorithm x is a β-approximation for investment

if for every investment instance ω, we have that W x(ω) ≥ βW
∗
(ω). Notably, since we are

quantifying over ι ∈ N and I, this requires the inequality to hold regardless of which bidder

is the investor and which investments are available.12 We refer to the largest such β as the

algorithm’s investment guarantee.

Adding investment opportunities cannot improve an algorithm’s performance.

Proposition 2.5. If x is a β-approximation for investment, then x is a β-approximation

for allocation.

Proof. Any instance of the allocation problem (v,A) is equivalent to the instance of the

investment problem (g, I, ν−ι,A) with the singleton investment technology I = {(νι, 0)},
νι ≡ vι, ν−ι ≡ v−ι, and A ≡ A; the result then follows.

The converse of Proposition 2.5 does not hold in general—investment opportunities may

strictly reduce the algorithm’s performance guarantee. But when is an algorithm’s allocative

guarantee equal to its investment guarantee? We now determine the answer.

2.4.1 Reduction to the case without uncertainty

First, we simplify the problem by observing that, for our purposes, it is without loss

of generality to focus on the case without uncertainty. That is, a certain investment

instance ω is an investment instance with just one state, so |S| = 1, and we abuse notation

by writing such an instance as (I, v−ι, A). An algorithm is a β-approximation for certain

investment if W x(ω) ≥ βW
∗
(ω) for any certain investment instance ω.

The next theorem states that an algorithm’s investment guarantee is unaffected by un-

certainty.

12Our results extend naturally to the case in which some bidders are known in advance to be unable to
make investments; in that case, our necessary conditions weaken to pertain only to those bidders who can
make investments.

14

Theorem 2.6. For any weakly monotone algorithm x and any β ∈ [0, 1], x is a β-approximation

for investment if and only if x is a β-approximation for certain investment.

The intuition for Theorem 2.6 is as follows: Suppose we start from some investment

instance with uncertainty. We can construct a related generalized investment instance where

each investment is replaced by a generalized investment with the same values in every state

but a state-dependent cost that makes the realized profit in each state equal to the original

ex ante expected profit. This leaves the expected profits and expected costs from investing

unchanged, so selfish investment in the original instance yields the same expected welfare as

selfish investment in the new instance. If the algorithm x is a β-approximation for certain

investment, then in the new instance, in every state, selfish investment achieves at least

a fraction β of the welfare from the ex post efficient investment and the ex post efficient

allocation. In turn, this is an upper bound for the expected welfare from the ex ante efficient

investment and the ex post efficient allocation in the new instance, which is the same as in

the original instance. It follows that x is a β-approximation for investment.

2.4.2 Performance under certain investment

Having reduced the problem with uncertain investment to the problem with certain

investment, we now derive a necessary and sufficient condition for an algorithm x to be

a β-approximation for certain investment.

We show a link between investment guarantees and algorithmic externalities. We can

simplify the problem by focusing on the externalities that result from value changes in

particular directions. Changing from vn to ṽn confirms outcome õ if

[ṽn − vn] · [õ− o] ≥ 0 for all outcomes o. (3)

Intuitively, (3) means that changing n’s value from vn to ṽn raises n’s value for õ at least

as much as it raises n’s value for any other outcome—equivalently, n’s marginal gain from

switching from o to õ does not fall. The system of inequalities (3) defines a convex cone with

vertex at vn. If x is weakly monotone, then any change from vn to ṽn that confirms xn(v, A)

implies that

[ṽn − vn] · [xn(ṽn, v−n, A)− xn(v,A)] = 0; (4)

this follows by combining (1) and (3), with õ = xn(v,A) and o = xn(ṽn, v−n, A). For any

truthful (x, p), type vn cannot profitably imitate ṽn and vice versa, so

vn·[xn(ṽn, v−n, A)−xn(v,A)] ≤ pn(ṽn, v−n, A)−pn(v, A) ≤ ṽn·[xn(ṽn, v−n, A)−xn(v,A)]. (5)

15

From (4) and (5), it follows that

pn(ṽn, v−n, A)− pn(v, A) = vn · [xn(ṽn, v−n, A)− xn(v, A)] ; (6)

that is, the bidder with value vn is indifferent between reporting vn and reporting the con-

firming change ṽn when facing (v−n, A).

The externalities from confirming changes reduce to a simple expression. In particular,

they are equal to the difference between the welfare yielded by the new allocation at the old

values and the welfare yielded by the old allocation at the old values.

Proposition 2.7. For any weakly monotone x, any instance (v, A), and any change from

vn to ṽn that confirms xn(v, A), we have

Ex(ṽn, (v, A)) =
∑
m

[vm · [xm(ṽn, v−n, A)− xm(v, A)]] . (7)

Proof. Substituting (6) into (2) yields (7).

The key condition for our characterization is a lower bound on the externalities resulting

from confirming value changes.

Definition 2.8. For some β ∈ [0, 1], algorithm x has β-bounded confirming external-

ities if given any instance (v, A) and any change from vn to ṽn that confirms xn(v,A), we

have

Ex(ṽn, (v,A)) ≥ βW ∗(v, A)−Wx(v, A). (8)

The inequality (8) requires the algorithmic externality of the confirming change to exceed

the lower bound, which is the negative of the slack in the allocative guarantee at instance

(v, A). Definition 2.8 is a necessary condition for an algorithm to be a β-approximation for

certain investment, as we now prove.

Theorem 2.9. For any weakly monotone algorithm x and any β ∈ [0, 1], if x is a β-

approximation for certain investment, then x has β-bounded confirming externalities.

Proof. We prove the contrapositive. Suppose that x does not have β-bounded confirming

externalities. Take any allocation instance (v, A), bidder n, and value change ṽn such that

(8) does not hold, so

Ex(ṽn, (v, A)) < βW ∗(v, A)−Wx(v, A). (9)

We construct an investment instance with n as the investor by choosing an investment cost

c so that n is indifferent between vn at cost 0 and ṽn at cost c, and denote the resulting

16

investment instance by ω. By construction, it is a best response for n to choose ṽn at cost

c, so we have

W x(ω) ≤ Wx(ṽn, v−n, A)− c. (10)

Moreover, the welfare of the best allocation when n chooses vn at cost 0 is no more than the

optimal benchmark at ω, so we have

W ∗(v,A) ≤ W
∗
(ω). (11)

Combining the inequalities (10), (9), and (11) yields

W x(ω) ≤ Wx(ṽn, v−n, A)− c

= Wx(v, A) + ṽn · xn(ṽn, v−n, A)− vn · xn(v, A)− c︸ ︷︷ ︸
=pn(ṽn,v−n,A)−pn(v,A) by construction of c

+
∑
m 6=n

vm · [xm(ṽn, v−n, A)− xm(v,A)]

= Wx(v, A) + Ex(ṽn, (v,A))

< βW ∗(v,A)

≤ βW
∗
(ω),

showing that x is not a β-approximation for certain investment.

We now state the converse of Theorem 2.9, i.e., that Definition 2.8 is a sufficient condition.

Theorem 2.10. For any weakly monotone algorithm x and any β ∈ [0, 1], if x has β-bounded

confirming externalities, then x is a β-approximation for certain investment.

The intuition for Theorem 2.10 is as follows: Algorithm x being a β-approximation for

investment means the welfare of x at value profile v must not be too low. We characterize

the exact bound, which depends on the optimal welfare only at the bidder’s threshold value.

Therefore x is a β-approximation for investment as long as a change from the threshold

value to vn has externalities that are not too negative. Since for any value vn, there is

value v′n arbitrarily close to the threshold value such that the change from v′n to vn confirms

xn(v′n, v−n, A), having β-bounded confirming externalities is also sufficient.

We summarize the preceding results in a corollary.

Corollary 2.11. For any weakly monotone algorithm x and any β ∈ [0, 1], the following

statements are equivalent:

1. x is a β-approximation for investment.

2. x is a β-approximation for certain investment.

17

3. x has β-bounded confirming externalities.

2.4.3 A tractable sufficient condition

Corollary 2.11 characterizes the allocation algorithms that attain performance guaran-

tee β under investment. However, to check expression (8) in the definition of β-bounded

confirming externalities, we must assess the optimal welfare W ∗ at some instance. Given

that our main interest is in problems for which optimal allocations are hard to compute,

verification of that condition may be intractable, so next we introduce the following more

tractable sufficient condition.

Definition 2.12. Algorithm x excludes confirming negative externalities (“is XCONE”)

if given any instance (v, A) and any change from vn to ṽn that confirms xn(v, A), we have

Ex(ṽn, (v, A)) ≥ 0.

Theorem 2.13. For any weakly monotone algorithm x and any β ∈ [0, 1], if x is XCONE

and a β-approximation for allocation, then x is a β-approximation for investment.

Proof. Take any (v, A) and any change from vn to ṽn that confirms xn(v, A). We have

Ex(ṽn, (v, A)) ≥ 0 ≥ βW ∗(v, A)−Wx(v,A);

the first inequality follows because x is XCONE and the second inequality follows because

x is a β-approximation for allocation. Thus, we see that x has β-bounded confirming exter-

nalities. By Corollary 2.11, x is a β-approximation for investment.

Note that our results do not apply to non-deterministic algorithms, which randomize

over multiple feasible allocations and have guarantees that hold only in expectation, nor to

algorithms that apply to restricted value profiles, as our next example shows.

Example 2.14. Consider the randomized algorithm that packs a knapsack optimally or

leaves it empty, each with probability 1/2. This algorithm is a 1/2-approximation for al-

location and has no externalities, so it is XCONE. Suppose there is just one bidder who

can choose value 0 at cost 0 or value 3 at cost 2. In the threshold auction based on this

approximation algorithm, the bidder will find that it is not profitable to invest, so the net

welfare will be 0. But it is socially optimal for the bidder to invest and be packed, for net

welfare 1. Thus, the randomized algorithm’s investment guarantee is 0. If we treat this as a

deterministic algorithm that can choose between packing an item or half the item with half

18

the value, the same analysis shows that our result does not apply to problems with restricted

value domains.

2.4.4 Relating XCONE to non-bossiness

Our XCONE condition is related to the standard mechanism design concept of non-

bossiness. Algorithm x is non-bossy if xn(ṽn, v−n, A) = xn(v, A) implies that x(ṽn, v−n, A) =

x(v, A), that is, if changing n’s value does not change n’s outcome, then it must not change

others’ outcomes, either. Algorithm x is consistent if (4) implies that xn(ṽn, v−n, A) =

xn(v,A); this holds, for instance, if whenever bidder n is indifferent between several out-

comes at the threshold prices, the algorithm breaks ties according to some fixed order on

outcomes.

Proposition 2.15. In packing problems, every algorithm is consistent.

Proof. We prove the contrapositive. Suppose xn(ṽn, v−n, A) 6= xn(v, A); in a packing prob-

lem, this implies that ṽn,packed 6= vn,packed. Without loss of generality, suppose n is packed

under xn(ṽn, v−n, A) and not packed under xn(v, A). Then the expression in the left-hand

side of (4) is equal to ṽn,packed−vn,packed, which is non-zero (and hence (4) does not hold).

Proposition 2.16. If x is weakly monotone, consistent, and non-bossy, then x is XCONE.

Proof. Because x is weakly monotone, any change from vn to ṽn that confirms xn(v, A)

implies (4). Next, because x consistent and non-bossy, (4) implies that x(ṽn, v−n, A) =

x(v, A). Thus, we have

0 =
∑
m

vm · [xm(ṽn, v−n, A)− xm(v, A)] = Ex(ṽn, (v, A)),

where the final equality follows from Proposition 2.7.

2.4.5 Combinations of XCONE algorithms

A standard technique for addressing computationally difficult allocation problems is to

run several candidate algorithms and select the best of their solutions; this can yield a better

allocative guarantee than for each algorithm individually. However, the resulting algorithm

may be bossy, even if the candidate algorithms are non-bossy.13 By contrast, if the candidate

13To see this, consider an allocation problem with three bidders; bidder n’s value for being packed is
vn,packed and its value for not being packed is vn,unpacked = 0. Algorithm x packs bidders 1 and 2 if

vpacked2 + 3 > vpacked3 and packs bidders 1 and 3 otherwise. Algorithm x′ always packs just bidder 3. Let x′′

select the best solution from x and x′. When vpacked1 = 1, vpacked2 = 2, vpacked3 = 4, x′′ packs bidder 3, but if

we raise vpacked3 to 8, then x′′ packs bidders 1 and 3. Thus, while x and x′ are non-bossy, x′′ is bossy—yet
all three algorithms are XCONE.

19

algorithms are XCONE, then the resulting algorithm is XCONE.

Proposition 2.17. Let X be a collection of weakly monotone XCONE algorithms. If y is

a weakly monotone algorithm that at each instance (v,A) ∈ Ω outputs a welfare-maximizing

allocation from the collection {x(v,A)}x∈X , then y is XCONE.14

Proof. Consider any instance (v, A) and any ṽn that confirms y(v, A). Let x ∈ X be such

that y(v,A) = x(v, A). Because x is weakly monotone and XCONE, Proposition 2.7 implies

that

0 ≤ Ex(ṽn, (v,A)) =
∑
m

vm · [xm(ṽn, v−n, A)− xm(v,A)] ; (12)

hence, we have ∑
m

vm · ym(v,A) =
∑
m

vm · xm(v,A)

≤
∑
m

vm · xm(ṽn, v−n, A)

≤
∑
m

vm · ym(ṽn, v−n, A), (13)

where the first inequality follows from (12), and the second uses the definition of y. Rear-

ranging (13) yields

0 ≤
∑
m

vm · [ym(ṽn, v−n, A)− ym(v,A)]

= Ey(ṽn, (v, A)),

where the equality follows from Proposition 2.7 because y is weakly monotone.

Proposition 2.17 assumes that y is weakly monotone. Yet weak monotonicity of every

algorithm in X does not necessarily imply weak monotonicity of y, even though y is a welfare-

maximizing selection from X (see Example 2.19 below). One other advantage of XCONE

algorithms is that such a y does inherit weak monotonicity from X when there are only two

outcomes.

Proposition 2.18. Suppose that |O| = 2, and let X be a collection of weakly monotone

XCONE algorithms. If y is an algorithm that at each instance (v, A) ∈ Ω outputs a welfare-

maximizing allocation from the collection {x(v, A)}x∈X , then y is weakly monotone.

14Our necessary and sufficient condition, Definition 2.8, also has this property. That is, if we replace the
supposition that every algorithm in X is XCONE with the supposition that every algorithm in X has β-
bounded confirming externalities, then a parallel proof yields the conclusion that y has β-bounded confirming
externalities.

20

Proposition 2.18 does not generalize to |O| > 2. Indeed, there exist pairs of candidate

algorithms, both weakly monotone and XCONE, such that the resulting y is not weakly

monotone—as the following example illustrates.

Example 2.19. Consider an allocation problem with two bidders and three outcomes, and

suppose that V1 = [0, 4] × [0, 4] × {0} and V2 = {(5, 0, 0)}. We suppose that algorithm

x always allocates outcome 2 to bidder 1 and outcome 3 to bidder 2, while algorithm x̃

allocates outcome 1 to both bidders if v1 ≥ 1 and allocates outcome 3 to both bidders

otherwise. Both x and x̃ are weakly monotone and XCONE. Let y be an algorithm that

outputs a welfare-maximizing allocation from the set {x(v1, v2), x̃(v1, v2)}. Under algorithm

y, bidder 1 gets outcome 2 when v1 = (0, 1, 0) and outcome 1 when v1 = (2, 4, 0), so y is not

weakly monotone.

2.4.6 Allowing multiple investors

Suppose that each bidder n has a finite set of feasible investments In and, as before, an

investment consists of a function νn : S → Vn and a cost c ∈ R. Suppose that all bidders

simultaneously choose investments, knowing that in each state s ∈ S, the resulting allocation

and payments will be x(ν(s), A(s)) and p(ν(s), A(s)), for truthful mechanism (x, p). The

resulting investment game has a Nash equilibrium, possibly in mixed strategies.

Even for VCG mechanisms, not every Nash equilibrium of the investment game is effi-

cient. Complementarities between the bidders can result in inefficient Nash equilibria, as the

following example illustrates.

Example 2.20. Consider a packing problem with three bidders. It is feasible to pack any

single bidder, or to pack bidder 2 and bidder 3 simultaneously. There is only one state

and so no uncertainty: |S| = 1. Bidder 1 has a status quo value 10 for being packed,

that is, its technology is the singleton I1 = {(10, 0)}. Bidders 2 and 3 have the technology

I2 = I3 = {(0, 0), (9, 1)}. Total welfare is maximized if both bidders 2 and 3 choose the

investment (9, 1), which leads to both being packed. However, if only one of them invests,

then it is optimal to pack just Bidder 1. Under the VCG auction, there are two pure strategy

Nash equilibrium investment profiles. In one Nash equilibrium, no bidder invests and Bidder

1 is packed, for net welfare 10. In the efficient Nash equilibrium, both Bidders 2 and 3 invest

and both are packed, for net welfare 16.

Nevertheless, VCG mechanisms satisfy a different efficiency criterion: Conditional on any

belief about the strategies of the other bidders, every best response for bidder n maximizes

interim social welfare net of bidder n’s investment costs.

21

Our results extend this observation to include approximate efficiency. Any best response

of bidder n to its belief about the other bidders’ investments yields social welfare (net of

n’s investment costs) that is at least a fraction β of what would be achieved by the interim

efficient investment for bidder n and the ex post efficient allocation.

Proposition 2.21. Let h ∈ ∆(I−n), with h(ν−n) denoting the marginal distribution. Let

(νn, c) ∈ In be a best response for bidder n to the belief h given algorithm x. If x has

β-bounded confirming externalities, then(∑
ν−n

h(ν−n)
∑
s∈S

g(s)Wx(νn(s), ν−n(s),A(s))

)
− c

≥ β max
(ν′n,c

′)∈In

{(∑
ν−n

h(ν−n)
∑
s∈S

g(s)W ∗(ν ′n(s), ν−n(s),A(s))

)
− c′

}
.

Proof. Let us define a new single-investor instance that is payoff-equivalent for n, incorpo-

rating n’s belief h using an expanded state space S × S ′ and functions ν̂−n : S × S ′ → V−n.

For each of bidder n’s investments (νn, c) ∈ In, we define a corresponding investment (ν̂n, c)

with ν̂n(s, s′) ≡ νn(s), and similarly define Â(s, s′) ≡ A(s). By Corollary 2.11, if x has

β-bounded confirming externalities, then the desired inequality follows.

3 Application: Knapsack algorithms

The knapsack problem is a special case of the packing problem, in which each bidder

n has possible values Vn,packed = [0,∞) and Vn,unpacked = {0}, each bidder has size qn ≥ 0,

and the “knapsack” has capacity Q.

For knapsack problems, we abuse notation and use vn to denote vn,packed, bidder n’s value

for being packed, since vn,unpacked ≡ 0 uniformly. Without loss of generality, we also suppose

that no bidder’s size is more than Q.15 The set of feasible allocations is any subset of bidders

K ⊆ N such that
∑

n∈K qn ≤ Q. As before, let A denote the set of feasible allocations and

let a be an element of A.

The knapsack problem is NP-Hard (Karp, 1972); there is no known polynomial-time

algorithm that outputs optimal allocations (Cook, 2006; Fortnow, 2009).

3.1 Greedy algorithms

Dantzig (1957) suggested applying a greedy algorithm to the knapsack problem. For-

15Bidders with qn > Q can be deleted with no substantial change in an algorithm’s runtime.

22

mally:

Algorithm (Greedy). Sort bidders by the ratio of their values to their sizes so that

v1

q1

≥ v2

q2

· · · ≥
v|N |
q|N |

. (14)

Add bidders to the knapsack one by one in the sorted order, so long as the sum of the sizes

does not exceed the knapsack’s capacity. When encountering the first bidder that would

violate the capacity constraint, stop.

Although the Greedy algorithm performs well on some instances—including ones for

which all bidders are small in relation to the capacity of the knapsack—its allocative guar-

antee is 0, as illustrated by the following example.

Example 3.1. Consider a knapsack with capacity 1 and two bidders. For some arbitrarily

small ε > 0, let v1 = ε, q1 = ε
2
, v2 = 1, and q2 = 1. The Greedy algorithm picks bidder 1

and stops, whereas the optimal algorithm picks bidder 2. Thus, the worst-case performance

of Greedy is no better than ε of the optimum.

There is a standard modification of the Greedy algorithm that improves the allocative

guarantee for the knapsack problem (Williamson and Shmoys, 2011, p. 77). Let us define

the “smart greedy” algorithm as follows.

Algorithm (SmartGreedy). Run the Greedy algorithm. Compare the Greedy algo-

rithm’s packing to the packing that just packs the most valuable individual bidder, and

output whichever has higher welfare.

SmartGreedy’s allocative guarantee is much better than Greedy’s.

Proposition 3.2. SmartGreedy is a 1
2
-approximation for allocation in the Knapsack prob-

lem.

Proof. For any instance ω, order the bidders by value/size as in (14). If Greedy packs all

bidders, then trivially W ∗(ω) = WSmartGreedy(ω). Otherwise, let k be the lowest index of a

bidder not packed by Greedy and let K be the index of a bidder with maximum value.

Optimal welfare W ∗(ω) is no more than the best solution to the linear program in which

we can pack fractional bidders, which—given that we have sorted the bidders in descending

23

order of value-to-size—in turn is no more than
∑k

n=1 vn. It follows that

W ∗(ω) ≤
k∑

n=1

vn

= WGreedy(ω) + vk

≤ WGreedy(ω) + vK

≤ 2 max {WGreedy(ω), vK}

= 2WSmartGreedy(ω);

hence, we see that SmartGreedy is a 1
2
-approximation for allocation, as desired.

SmartGreedy is bossy, as our next example shows.

Example 3.3. Consider the knapsack instance with capacity 10 and three bidders; v1 = 2,

v2 = 1, v3 = 8, q1 = q2 = 1, and q3 = 9. At this instance, SmartGreedy packs just

bidder 3. If bidder 3 instead reports v3 = 10, then SmartGreedy instead packs bidder 1

and bidder 3. Thus, we see that SmartGreedy is bossy. However, the adjustment just

described is a confirming positive externality; raising the value of a packed bidder has strictly

increased the welfare of other bidders.

The Greedy and SmartGreedy algorithms are XCONE.

Proposition 3.4. For the knapsack problem, the Greedy algorithm and the Smart-

Greedy algorithm are both XCONE.

Proof. Consider the bidders sorted by the Greedy algorithm as in (14), and suppose the

Greedy algorithm packs bidders 1 through k. If we raise the value of a packed bidder

(without changing sizes), then the Greedy algorithm again packs bidders 1 through k. If

we lower the value of an unpacked bidder, then the Greedy algorithm terminates no earlier

than before, packing at least bidders 1 through k. The only confirming externalities are

positive ones; hence the Greedy algorithm is XCONE.

Meanwhile, the algorithm that selects the most valuable single bidder is monotone and

non-bossy and so is XCONE by Proposition 2.16, as well. Thus, by Proposition 2.18, the

SmartGreedy algorithm is monotone, and so by Proposition 2.17 it is XCONE.

Proposition 3.2, Proposition 3.4, and Theorem 2.13 yield the following corollary.

Corollary 3.5. The SmartGreedy algorithm is a 1
2
-approximation for investment.

24

The SmartGreedy algorithm has both confirming externalities (Example 3.3) and nega-

tive externalities, as the next example demonstrates. Crucially, it has no confirming negative

externalities.

Example 3.6. Suppose we have three bidders with sizes (.5, .5, .6) and values (1, 1, 0), and

a knapsack with capacity 1. The SmartGreedy algorithm packs the first two bidders.

Raising the third bidder’s value to 2 raises its payment by 1.2 but reduces the welfare of the

other bidders by 2. However, this value change is not confirming.

3.2 Fully polynomial-time approximation schemes

State-of-the-art knapsack algorithms that run in polynomial time have stronger allocative

guarantees than the SmartGreedy algorithm. Can fast XCONE algorithms be constructed

that match their performance? Or does restricting attention to XCONE algorithms force

us to accept slower speeds or poorer allocative guarantees? We will answer these questions

shortly.

Our construction in the sequel can be read at two different levels. To follow in full

detail, readers should be acquainted with the theory of computation—in particular with

how instances are represented as input strings and how running time is defined as a function

of input size.16 Alternatively, readers can follow the proofs that our new algorithms are

XCONE while observing that that they inherit their allocative guarantees and polynomial

runtimes from the other algorithms used in the construction.

As is standard for computational running-time analyses, we now assume that the bidders’

values are non-negative integers.17 Under this assumption, the input size is polynomial in

the logarithm of the highest value log(maxn{vn}) and the number of bidders |N |.18

We have used the SmartGreedy algorithm for illustration, but there are fast knapsack

algorithms that do better. In particular, there exist families of algorithms indexed by param-

eter ε > 0, that yield (1− ε)-approximations for allocation, with running time polynomial in

ε−1 and the input size. Such a family is called a fully polynomial-time approximation

scheme (FPTAS).

Briest et al. (2005) (henceforth BKV) constructed a weakly monotone FPTAS for the

knapsack problem. Our construction modifies two steps in theirs to ensure that the algo-

rithms have the XCONE property in addition to being a weakly monotone FPTAS.

16These formalisms can be reviewed in the Arora and Barak (2009, pp. 9–37) textbook.
17Real numbers can take infinitely many bits to represent, complicating statements about input size. But

note that the restriction to non-negative integers is only needed for our running-time analysis—the algorithm
works fine for non-integral values, which is crucial for satisfying our product structure assumption.

18It is conventional to take the logarithm with base 2, but this statement is true for any base.

25

Suppose we have some allocation instance with value profile v, and our desired allocative

guarantee is (1 − ε). The first step of the BKV construction is to round each value to a

grid. We define a family of modified value profiles, one for each non-negative integer ` ∈ N,

essentially, censoring values above 2`+1 and then rounding the values to a grid with step size

γε,` := ε2`

|N | . Formally, for given ε > 0 and `, let us define a modified value profile vε,` as

follows:

1. v′n := min{vn, 2`+1} (for all n).

2. vε,`n := bv′n/γε,`c · γε,` (for all n).

An exact optimum for the modified values vε,` can be computed in polynomial time (for

the textbook algorithm, see Williamson and Shmoys (2011, pp. 65–68)).

Let x∗(ṽ) be any selection from the set of optimal allocations at value profile ṽ (implicitly,

given the feasible allocations A), that is x∗(ṽ) ∈ argmaxa∈A {
∑

n[ṽn · an]}. Given parameter

ε > 0, the BKV allocation rule (henceforth the BKV rule) selects an allocation in the

infinite set {
x∗
(
vε,`
)}

`∈N

that maximizes performance according to the modified values, i.e., max`
{∑

n

[
vε,`n · x∗n

(
vε,`
)]}

.

One needs to search only a finite number of non-negative integers ` to find the desired maxi-

mum, because for large enough ` all the modified values round to 0. Combining the preceding

steps, we obtain an algorithm that computes the BKV rule in polynomial time.

Proposition 3.7 (Briest et al. (2005)). The BKV rule is weakly monotone, a (1 − ε)-

approximation for allocation, and can be computed in poly (ε−1, |N |, log(maxn{vn})) time.

Despite the appealing properties described in Proposition 3.7, the BKV rule has con-

firming negative externalities because a large investment can make only large values of `

relevant in the preceding computation, reducing the total welfare of the other bidders. For

sufficiently large investments, this negative confirming externality can be arbitrarily bad, as

we now state formally.

Proposition 3.8. For all δ > 0, there exists ε < δ such that the BKV rule with parameter ε

has an investment guarantee of 0.

The proof of Proposition 3.8 uses an example that mimics the satisficing example from

the Introduction, but using the more complicated FPTAS algorithm. The two examples

share these key properties:

26

1. When bidder 1 does not invest, its value is very low so that nearly the entire value is

derived from the packing of other bidders.

2. When bidder 1 does invest, its value becomes very high but it incurs an equally high

cost, so the investment is barely profitable. The algorithm then packs bidder 1 but

obtains almost no value from the other bidders, so the value of the packing net of

investment cost falls to zero.

Nevertheless, we can construct a XCONE FPTAS by modifying the BKV rule in two

ways. First, instead of defining x∗ to be an arbitrary maximizer when there are multiple

maximizers, we limit the selection so that we never pack any bidders whose values are exactly

0, and we break ties among maximizers using a strict ordering. The resulting x∗ is non-bossy.

Second, where BKV selects an allocation in the family
{
x∗
(
vε,`
)}

`∈N that maximizes welfare

using the modified values
∑

n[vε,`n · an], our modification selects an allocation in the same

family that maximizes welfare using the actual values
∑

n[vn · an]. For any parameter ε > 0,

we use x̆ε to denote the resulting allocation rule.

Proposition 3.9. The allocation rule x̆ε is XCONE, weakly monotone, and a (1 − ε)-

approximation for allocation.

Proof. Let us define the allocation rule

x̆ε,`(v) ≡ x∗
(
vε,`
)
.

The allocation rule x∗ as modified is weakly monotone, and the censoring and rounding

operations are monotone transformations, so x̆ε,` is weakly monotone. Moreover, x∗ is non-

bossy, so x̆ε,` is non-bossy. Thus, x̆ε,` is XCONE by Proposition 2.15 and Proposition 2.16.

Now, x̆ε chooses the best output from the collection
{
x̆ε,`(v)

}
`∈N , so x̆ε is weakly mono-

tone by Proposition 2.18. Next, applying Proposition 2.17 yields the conclusion that x̆ε is

XCONE.

The BKV rule is a (1− ε)-approximation for allocation and chooses the allocation from

the collection {x̆ε,`(v)}`∈N that maximizes welfare under the modified values. The allocation

x̆ε(v) is selected from the same collection to maximize welfare under the actual values, so it

achieves a weakly higher welfare than the BKV rule. Hence x̆ε is a (1 − ε)-approximation

for allocation.

Corollary 3.10. The allocation rule x̆ε is a (1− ε)-approximation for investment.

Moreover, since x̆ε is computed by tweaking the BKV algorithm, it inherits BKV’s poly-

nomial time property, resulting in a FPTAS.

27

Proposition 3.11. The allocation rule x̆ε can be computed in poly (ε−1, |N |, log(maxn{vn}))
time.

Proposition 3.9 and Proposition 3.11 demonstrate that good investment guarantees and

efficient computations are sometimes compatible: there is a FPTAS that achieves both.

Although the BKV FPTAS and our modification both run in polynomial time, ours requires

additional steps: our FPTAS is slower than the BKV FPTAS. Further details are in the

proof of Proposition 3.11.

We have focused on the knapsack problem for ease of exposition, but BKV showed how

to construct a monotone FPTAS for a range of weakly NP-complete problems, such as job

scheduling with deadlines and the constrained shortest-path problem.19 Our method adapts

easily to convert the BKV FPTAS to a XCONE FPTAS for those problems as well.

4 Discussion

Mechanism design analysis in economics has traditionally focused on mechanisms that

exactly optimize some objective like welfare, revenue, or consumer surplus, neglecting issues

of computational hardness. Yet exact optimization is tractable only for small problems or

problems with special structure.

Practical mechanisms without optimization can be created by using the large corpus of

fast approximation algorithms developed by computer scientists, but doing so raises new

questions. Approximation algorithms have heretofore been designed for short-run problems

in which participants’ values are fixed exogenously, but in practice, participants can often

make ex ante investments that alter their values. In this paper, we study investment in-

centives in a class of environments in which there is a finite number of outcomes for each

bidder and the bidder’s possible values lie in a product of intervals. We asked three general

questions:

1. Can mechanisms based on (deterministic) approximation algorithms avoid distorting

participants’ investment incentives as VCG mechanisms, based on optimization, do?

2. When do such mechanisms have the same allocative and investment guarantees?

3. Is there a trade-off between an algorithm’s speed, its allocative guarantee, and the re-

quirement that its performance extends to the case when an agent can invest?

19If an allocation problem is NP-complete, but one can find an optimal allocation with running time
polynomial in the numeric value of the largest integer in the input, then it is called “weakly NP-complete.”
Note that such an algorithm might still run in time exponential in the length of the input.

28

To frame the first question, we began by showing that the externalities from any truthful

mechanism depend only on the algorithm, and not on which prices are used to promote

truthful reporting. For that reason, we call these “algorithmic externalities.” Then, for the

first question, we find a negative answer: unless the algorithm mimics welfare maximization

on some possibly limited set of allocations, there are necessarily non-zero externalities that

can cause privately profitable investments to reduce welfare or welfare-increasing investments

to be privately unprofitable.

Our analysis of investment guarantees hinges on a new category of externalities that we

dub “confirming” algorithmic externalities. These arise when a change in a bidder’s report

that raises the relative value of its outcome results in an externality to other bidders. We

show that an algorithm’s worst-case allocative guarantee extends to become an investment

guarantee if and only if its confirming negative externalities are not too large. That condition,

however, can be hard to verify, so we also offer a sufficient condition—XCONE—that can be

easier to check. An XCONE algorithm is one that excludes confirming negative externalities,

but may have confirming positive externalities. We show that for some algorithms for the

knapsack problem including Greedy and SmartGreedy, the XCONE condition can be

checked and verified without much difficulty. However, the XCONE condition also fails

for some algorithms with very good—even arbitrarily good—performance for the short-run

allocation problem.

Towards the third question, we study one particular FPTAS for the knapsack problem,

modifying it with investment incentives in mind. The result is a new XCONE FPTAS—a

collection of algorithms that, for every ε, is XCONE, always achieves at least a 1−ε fraction

of the optimum, and runs in time that is polynomial in the size of the input and ε−1.

More broadly, there is a long tradition in economics of studying the performance of

a competitive equilibrium, which assumes that all decisions, short-run and long-run, are

guided by optimization. Because some problems are too complex for optimization, it can

be valuable to study economies in which approximation algorithms replace optimization. As

we have shown, investment incentives in economies based on approximation algorithms can

differ sharply from economies with full optimization, and approximations can also affect how

participants understand mechanisms in practice, create new opportunities for coordination

or collusion, and influence post-auction resale markets. Given the close connection between

weakly monotone algorithms and truthful mechanisms, it seems possible—and important—

to analyze how these and other economic properties of mechanisms reflect properties of their

underlying algorithms.

29

References

Arora, S. and B. Barak (2009): Computational Complexity: A Modern Approach, Cam-

bridge University Press.

Arozamena, L. and E. Cantillon (2004): “Investment incentives in procurement auc-

tions,” Review of Economic Studies, 71, 1–18.

Bergemann, D. and J. Välimäki (2002): “Information Acquisition and Efficient Mech-

anism Design,” Econometrica, 70, 1007–1033.

Bienstock, D. and A. Verma (2019): “Strong NP-hardness of AC power flows feasibil-

ity,” Operations Research Letters, 47, 494–501.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen

(2006): “Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implemen-

tation,” Econometrica, 74, 1109–1132.

Bikhchandani, S., S. De Vries, J. Schummer, and R. V. Vohra (2011): “An

ascending vickrey auction for selling bases of a matroid,” Operations Research, 59, 400–

413.

Briest, P., P. Krysta, and B. Vöcking (2005): “Approximation techniques for utili-

tarian mechanism design,” in Proceedings of the Thirty-Seventh Annual ACM Symposium

on Theory of Computing, 39–48.

Cook, S. (2006): “The P versus NP problem,” in The Millennium Prize Problems, ed. by

J. A. Carlson, A. Jaffe, and A. Wiles, American Mathematical Society Providence, 87–104.

Dantzig, G. B. (1957): “Discrete-variable extremum problems,” Operations Research, 5,

266–288.

Dobzinski, S. and N. Nisan (2007): “Mechanisms for multi-unit auctions,” in Proceedings

of the 8th ACM Conference on Electronic Commerce, 346–351.

Dughmi, S., J. D. Hartline, R. Kleinberg, and R. Niazadeh (2017): “Bernoulli

factories and black-box reductions in mechanism design,” in Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, 158–169.

Fortnow, L. (2009): “The status of the P versus NP problem,” Communications of the

ACM, 52, 78–86.

30

Gershkov, A., B. Moldovanu, P. Strack, and M. Zhang (2021): “A Theory of

Auctions with Endogenous Valuations,” Journal of Political Economy, 129, 1011–1051.

Hartline, J. D. (2016): Mechanism Design and Approximation, mimeo.

Hartline, J. D. and B. Lucier (2015): “Non-optimal mechanism design,” American

Economic Review, 105, 3102–24.

Hatfield, J. W., F. Kojima, and S. D. Kominers (2014): “Investment Incentives in

Labor Market Matching,” American Economic Review Papers & Proceedings, 104, 436–

441.

——— (2019): “Strategy-Proofness, Investment Efficiency, and Marginal Returns: An

Equivalence,” Becker Friedman Institute Working Paper.

Holzman, R., N. Kfir-Dahav, D. Monderer, and M. Tennenholtz (2004):

“Bundling equilibrium in combinatorial auctions,” Games and Economic Behavior, 47,

104–123.

Karp, R. M. (1972): “Reducibility among combinatorial problems,” in Complexity of Com-

puter Computations, ed. by R. E. Miller and J. W. Thatcher, Springer, 85–103.

Lavaei, J. and S. H. Low (2011): “Zero duality gap in optimal power flow problem,”

IEEE Transactions on Power Systems, 27, 92–107.

Lavi, R., A. Mu’Alem, and N. Nisan (2003): “Towards a characterization of truthful

combinatorial auctions,” in Proceedings of the 44th Annual IEEE Symposium on Founda-

tions of Computer Science, 574–583.

Lehmann, D., R. Müller, and T. Sandholm (2006): “The Winner Determination

Problem,” in Combinatorial Auctions, ed. by P. Cramton, Y. Shoham, and R. Steinberg,

MIT Press, 297–318.

Lehmann, D., L. I. Oćallaghan, and Y. Shoham (2002): “Truth revelation in ap-

proximately efficient combinatorial auctions,” Journal of the ACM, 49, 577–602.

Leyton-Brown, K., P. Milgrom, and I. Segal (2017): “Economics and computer

science of a radio spectrum reallocation,” Proceedings of the National Academy of Sciences,

114, 7202–7209.

Milgrom, P. (2017): Discovering Prices, Columbia University Press.

31

Milgrom, P. and I. Segal (2002): “Envelope theorems for arbitrary choice sets,” Econo-

metrica, 70, 583–601.

——— (2020): “Clock auctions and radio spectrum reallocation,” Journal of Political Econ-

omy, 128, 1–31.

Mu’Alem, A. and N. Nisan (2008): “Truthful approximation mechanisms for restricted

combinatorial auctions,” Games and Economic Behavior, 64, 612–631.

Nisan, N. and A. Ronen (1999): “Algorithmic mechanism design,” in Proceedings of the

Thirty-First Annual ACM Symposium on Theory of Computing, 129–140.

——— (2007): “Computationally feasible VCG mechanisms,” Journal of Artificial Intelli-

gence Research, 29, 19–47.

Pardalos, P. M., D.-Z. Du, and R. L. Graham (2013): Handbook of Combinatorial

Optimization, Springer.

Rogerson, W. P. (1992): “Contractual solutions to the hold-up problem,” Review of

Economic Studies, 59, 777–793.

Saks, M. and L. Yu (2005): “Weak monotonicity suffices for truthfulness on convex

domains,” in Proceedings of the 6th ACM Conference on Electronic Commerce, 286–293.

Sandholm, T. (2002): “Algorithm for optimal winner determination in combinatorial auc-

tions,” Artificial Intelligence, 135, 1–54.

Tomoeda, K. (2019): “Efficient investments in the implementation problem,” Journal of

Economic Theory, 182, 247–278.

Vickrey, W. (1961): “Counterspeculation, auctions, and competitive sealed tenders,” The

Journal of Finance, 16, 8–37.

Williamson, D. P. and D. B. Shmoys (2011): The Design of Approximation Algorithms,

Cambridge University Press.

32

A Proofs omitted from the main text

Preliminaries and notation

Before getting into the proofs, we introduce a few notations and conventions. The value

profile for bidders other than n, v−n; the set of possible allocations, A; the algorithm, x; and

the probability distribution, g, usually do not change within a given proof. Therefore, we

often suppress the dependence on these parameters to ease notation (see Table 2).

Meanwhile, truthfulness of the mechanism (x, p) implies that for every allocation instance

(v, A), x assigns each bidder n an outcome that maximizes its value minus its threshold price.

We call this maximum the bidder’s normalized utility and denote it as follows:

un(v,A, x) ≡ [vn − τn(v−n, A, x)] · xn(v, A) = max
o∈O
{vn,o − τn,o(v−n, A, x)} .

The normalized utility corresponds to the bidder’s utility in the mechanism with prices

pn(v,A) = τn(v−n, A, x) · xn(v,A); other truthful mechanisms may shift prices and utility by

a strategically irrelevant additive term. By construction, we have un(v, A, x) ≥ 0.

We extend the normalized utility notation u to the case of investment as follows:

uι((vι, c), v−ι, A, x) ≡ max
o∈O
{vι,o − τι,o(v−ι, A, x)} − c,

uι(I, v−ι, A, x) ≡ max
(vι,c)∈I

{uι((vι, c), v−ι, A, x)} .

This allows us to talk about normalized utility for an investor facing a cost or set of invest-

ment opportunities.

Notation Description Suppressed Notation
x(vn, v−n, A) allocation of algorithm x x(vn)
Wx(vn, v−n, A) welfare of algorithm x Wx(vn)
W ∗(vn, v−n, A) welfare of the optimal algorithm W ∗(vn)
BR(x, g, I, v−n, A) best response for the investor BR(x, I)
τn(v−n, A, x) threshold price τn
un(vn, v−n, A, x) normalized utility of bidder n un(vn)
uι((vι, c), v−ι, A, x) normalized utility of bidder ι uι(vι, c)
uι(I, v−ι, A, x) normalized utility of bidder ι uι(I)
pn(vn, v−n, A) price paid by bidder n pn(vn)
Ex(ṽn, (v, A)) externality from changing vn to ṽn Ex(ṽn, vn)

Table 2: Correspondence table for the simplified notation we often use in this section

33

Proof of Theorem 2.4

Theorem 2.4. Suppose that algorithm x is weakly monotone. Then x has no algorithmic

externalities (Ex ≡ 0) if and only if x is welfare-equivalent to a maximal-in-range algorithm.

If x is welfare-equivalent to a maximal-in-range algorithm with some range R, then the

welfare coincides with that of the VCG mechanism restricted to R. Since a VCG mechanism

has zero externalities, x also has zero externalities because of the following lemma.

Lemma A.1. If algorithms x and x′ are weakly monotone and welfare-equivalent, then they

have the same threshold prices and externalities.

Proof. Assume x and x′ are welfare-equivalent and have different threshold prices, say

τn,o(x) < τn,o(x
′). Then there exists some value vn with vn,o < τn,o(x

′) and xn(vn) = o.

Let us define v′n with v′n,o ∈ [vn,o, τn,o(x
′)), and v′n,o′ = vn,o′ for o′ 6= o. By (weak) monotonic-

ity, xn(v′n) = o—but by the definition of the threshold price, x′n(v′n) 6= o. However, while

there are infinitely many such v′n,o ∈ [vn,o, τn,o(x
′)), there are only a finite set of values v′n,o

where an allocation a with an = o can have the same welfare as an allocation a′ with a′n 6= o.

Thus, we obtain a contradiction to the hypothesis that x and x′ are welfare-equivalent.

Therefore x and x′ must have the same threshold prices. Now,

Ex,p(ṽn, vn) ≡ pn(ṽn)− pn(vn)︸ ︷︷ ︸
change in n’s threshold payment

+
∑
m 6=n

[vm · [xm(ṽn)− xm(vn)]]︸ ︷︷ ︸
effect on others’ welfare

= Wx(ṽn)− un(ṽn)−Wx(vn) + un(vn)

= Wx(ṽn)−max
o∈O
{ṽn,o − τn,o} −Wx(vn) + max

o∈O
{vn,o − τn,o} ,

so the externalities of x only depend on the welfare and threshold price functions—and

similarly for x′.20 Thus, since x and x′ welfare-equivalent (by hypothesis) and have the

same threshold prices (by the first part of the lemma), we see that they have the same

externalities.

Let W (v, a) ≡
∑

n[vn · an] denote the welfare of allocation a at a value profile v. We

write a ' a′ if W (v, a) = W (v, a′) for every value profile v. Define the modified domain

as D = {v ∈ V : W (v, a) = W (v, a′) =⇒ a ' a′} and the modified range as R = x(D).

We now fix a weekly monotone algorithm x with no algorithmic externalities. In outline,

our proof of the forward direction of Theorem 2.4 constructs a maximal-in-range algorithm

20Here we use the normalized utility notation introduced in the Preliminaries & Notation section at the
start of the appendix.

34

x′ welfare-equivalent to x as follows. We have just defined a subdomain of values D ⊆ V

on which no two essentially different allocations have the same welfare. Any algorithm x′

that is welfare-equivalent to x must satisfy x′(v) = x(v) for v ∈ D. For v /∈ D, we use the

monotonicity and zero-externality properties of x to show that there exists a ∈ R such that

W (v, a) = W (v, x(v)) and set x′(v) = a. This ensures that x and x′ are welfare-equivalent.

We then use the same properties to establish that x′ is a maximal-in-range algorithm with

range R, which finishes the proof.

Claim A.2. Algorithm x is welfare-equivalent to a maximal-in-range algorithm with range

R.

Proof. The proof relies on the following two lemmatta. The first characterizes properties of

the welfare function for an algorithm that has no externalities. The second shows that the

modified domain D is dense.

Lemma A.3. If algorithm x has no externalities, then Wx is

• non-decreasing in vn and

• 1-Lipschitz in vn

in the sup norm.

Proof. Recall that the formula for externalities is

Ex,p(ṽn, (v, A)) ≡ pn(ṽn, v−n, A)− pn(v, A)︸ ︷︷ ︸
change in n’s threshold payment

+
∑
m6=n

[vm · [xm(ṽn, v−n, A)− xm(v,A)]]︸ ︷︷ ︸
effect on others’ welfare

= Wx(ṽn)− un(ṽn)−Wx(vn) + un(vn).

Since x has no externalities, Ex,p(ṽn, (v,A)) = 0, so Wx(vn) − un(vn) = Wx(ṽn) − un(ṽn).

Therefore, Wx(·) is a constant plus un(·). It is clear that un(·) is nondecreasing and 1-

Lipschitz; hence we see that Wx is nondecreasing and 1-Lipschitz, as well.

Lemma A.4. The modified domain D is non-empty. In addition, for all v ∈ V , d ∈ D, and

ε > 0, there exists v′ ∈ D such that

• ‖v′ − v‖ < ε, and

•
∏

n,o{v′n,o, dn,o} ⊆ D.

35

Proof. To show D is non-empty, we construct a value profile d ∈ D. We describe its com-

ponents dn,o by ordering the pairs (n, o), beginning with the pairs (n, o) for which Vn,o is a

singleton and listing the rest in arbitrary order, indexed by k. In step k = 0, for each pair

(n, o) such that Vn,o is a singleton, we fix dn,o to be equal to the sole element of Vn,o. Set

B0 := {dn,o ∈ Vn,o : Vn,o is a singleton} (and B0 = ∅ if no Vn,o is a singleton). For each step

k ≥ 1, given a finite set Bk−1 and any two subsets B′, B′′ ⊆ Bk−1, consider these equations:

dn,o +
∑
b∈B′

b =
∑
b∈B′′

b.

There are finitely many such equations and, for k ≥ 1, the interval Vn,o has non-empty

interior, so there exists some dn,o ∈ Vn,o that satisfies none of the equations (15). We set

Bk := Bk−1 ∪ {dn,o} and iterate until d has been constructed. Suppose that allocations a

and a′ satisfy W (d, a) = W (d, a′). Then, for all n, either an = a′n or Vn,an and Vn,a′n are both

singletons, so a ' a′ and hence d ∈ D.

The second half of the lemma is proved by constructing v′ in a similar way. Call a value

v′ generic (with respect to d) if
∏

n,o{v′n,o, dn,o} ⊆ D. Start with v′ = d. If Vn,o is a

singleton, then v′n,o = vn,o. Otherwise, Vn,o is an interval with non-empty interior, so there

exists some value v′n,o within ε
|N |·|O| of vn,o that keeps v′ generic (because only a finite number

of choices for v′n,o would result in v′ being non-generic).

First we show that at any value profile v, the welfare of x is less than or equal to the

welfare of some allocation in the modified range R. Because the welfare W (v, a) is continuous

in v and the set D is dense in V , the welfare of x at any value profile (even outside of D)

must be equal to the welfare of some allocation in R at that value profile.

Formally, for any ε > 0 and v ∈ V , by Lemma A.4, we can find v′ ∈ D so that ‖v′−v‖ < ε.

By Lemma A.3, we get

|Wx(v)−Wx(v
′)| < ε

and we have

|Wx(v
′)−W (v, x(v′))| < ε.

By the triangle inequality, we then have

Wx(v) < W (v, x(v′)) + 2ε ≤
(

max
r∈R
{W (v, r)}

)
+ 2ε.

Thus, we have

Wx(v) ≤ max
r∈R
{W (v, r)}. (15)

36

Now we show that the welfare of x at a value profile v is bounded below by the welfare

of any allocation r ∈ R at that value profile. This is because if we start at a value profile

d where the allocation is r and look at the welfare as we change the value profile to v,

weak monotonicity ensures certain changes do not change the allocation r, and the welfare

function being 1-Lipschitz ensures that the other changes weakly increase the algorithm’s

welfare compared to the welfare of allocation r.

Formally, for any r ∈ R, let d ∈ D be a value profile where r = x(d). For any v ∈ V and

ε > 0, we can construct v′ as in Lemma A.4. Consider the profile v′′ where

v′′n,o =

max{v′n,o, dn,o} xn(d) = o

min{v′n,o, dn,o} xn(d) 6= o.

We now prove that x(v′′) ' r. Consider changing the value profile from d to v′′ one

element at a time, and let vk denote the value profile in step k; we show that at each step

we have x(vk) ' r. We argue by contradiction; suppose at some step we are at value profile

vk and x(vk) ' r, but x(vk+1) 6' r. We define α̃ ≡ inf{α ∈ [0, 1] : x(αvk+1 + (1−α)vk) 6' r},
and ṽ ≡ α̃vk+1 + (1− α̃)vk. We can find an allocation a 6' r and a sequence of value profiles

(vl)∞l=1 such that x(vl) = a, vl is a convex combination of vk and vk+1, and liml→∞ v
l = ṽ.

By continuity of Wx (from Lemma A.3), we have

W (ṽ, a) = lim
l→∞

Wx(v
l) = Wx(ṽ) = lim

l→∞
Wx((1/l)v

k + (1− 1/l)ṽ) = W (ṽ, r). (16)

Moreover because x is weakly monotone, we have an,o = rn,o for the n, o pertaining to step

k. The value profiles vk and ṽ are identical except for the element pertaining to n, o, so (16)

implies that W (vk, a) = W (vk, r). But since the value profile vk is in D (by construction of

v′ and v′′), it must be that a ' r, a contradiction. We have proven that x(v′′) ' r, so

Wx(v
′′) = W (v′′, r).

By Lemma A.3, the welfare function is nondecreasing and 1-Lipschitz, so21

Wx(v
′) ≥ Wx(v

′′)−
∑

xn(d)=o

[
v′′n,o − v′n,o

]
= W (v′, r).

Since we could construct v′ for any ε > 0 (by Lemma A.4) and the welfare function Wx(·) is

21By construction, v′′n,o ≥ v′n,o if xn(d) = o and v′′n,o ≤ v′n,o if xn(d) 6= o. We use the fact that the welfare
is 1-Lipschitz in the first case and nondecreasing in the second case.

37

continuous, we have

Wx(v) ≥ W (v, r);

since this is true for all r ∈ R, we have

Wx(v) ≥ max
r∈R
{W (v, r)}. (17)

Combining (15) and (17), we get

Wx(v) = max
r∈R
{W (v, r)},

so x is welfare-equivalent to a maximal-in-range algorithm with range R.

Proof of Theorem 2.6

Theorem 2.6. For any weakly monotone algorithm x and any β ∈ [0, 1], x is a β-approximation

for investment if and only if x is a β-approximation for certain investment.

The certain investment instances are a subset of the investment instances. Thus, if x is

a β-approximation for investment, then x is a β-approximation for certain investment.

We now prove the other direction. Suppose we have some investment instance (g, I, ν−ι,A)

and some algorithm x that is a β-approximation for certain investment. Going off the in-

tuition described in the main text, we seek to construct state-dependent cost functions

c̃ : S → R to make the ex post normalized utility from the investment constant (and equal

to the ex ante normalized expected utility from that investment).

Now, the state-dependent cost function c̃ : S → R that gives constant utility in each

state for investment (νι, c) is given by

c̃(s) ≡ uι(ν(s),A(s), x)−

([∑
s′

g(s′)uι(ν(s′),A(s′), x)

]
− c

)
︸ ︷︷ ︸

ex ante normalized utility from (νι,c)

.22

Observe that
∑

s g(s)c̃(s) = c. By construction, the ex post normalized utility of choosing

the investment with state-dependent-cost (νι, c̃), i.e., uι(ν(s),A(s), x)− c̃(s), is in every state

equal to the ex ante normalized utility of the original investment (νι, c).

However, we need a status quo alternative so that the realization in each state is a valid

investment instance, so we introduce a new investment option with 0 normalized utility and

22Here we use the normalized utility notation introduced in the Preliminaries & Notation section at the
start of the appendix.

38

0 cost. Formally, we define an investment option that yields a value in each state equal to

the investor’s threshold prices

ν ′ι(s) ≡ τι(ν−ι(s),A(s), x).

Let I ′ consist of the investments modified to have state-dependent costs, as well as the

status quo alternative, that is I ′ ≡ {(νι, c̃) : ((νι, c) ∈ I} ∪ {(ν ′ι, 0)}. For each state s, the

tuple (I ′(s), ν−ι(s),A(s)) is a certain investment instance. Since x is a β-approximation for

certain investment, for any (νι, c) ∈ BR(x, g, I, ν−ι,A) and any state s, we have

Wx(ν(s),A(s))− c̃(s) ≥ βW
∗
(I ′(s), ν−ι(s),A(s)).

Thus, for any (νι, c) ∈ BR(x, g, I, ν−ι,A) such thatW x(I,A) = [
∑

s g(s)Wx(νι(s),A(s))]−
c, we conclude that

W x(I, ν−ι,A) =

[∑
s

g(s)Wx(ν(s),A(s))

]
− c

=
∑
s

g(s) [Wx(ν(s),A(s))− c̃(s)]

≥
∑
s

g(s)βW
∗
(I ′(s), ν−ι(s),A(s))

≥ βW
∗
(I ′, ν−ι,A) ≥ βW

∗
(I, ν−ι,A),

where the penultimate inequality holds because the expectation of the maximum is no less

than the maximum of the expectation, and the final inequality holds because for all (νι, c) ∈ I,

we have (νι, c̃) ∈ I ′ with
∑

s g(s)c̃(s) = c.

Proof of Theorem 2.10

Theorem 2.10. For any weakly monotone algorithm x and any β ∈ [0, 1], if x has β-bounded

confirming externalities, then x is a β-approximation for certain investment.

We start with the following technical lemma.

Lemma A.5. The optimal welfare function W ∗(vn) is

• non-decreasing in vn and

• 1-Lipschitz in vn

in the sup norm.

39

Proof. This follows from Lemma A.3 because the optimal welfare function has zero exter-

nalities.

Next we state a technical condition that we will prove is equivalent to β-approximation

for certain investment. The condition compares Wx(v, A) minus one bidder’s normalized

utility to the optimal welfare when that bidder’s value is set to the threshold vector.23

Definition A.6. For some β ∈ [0, 1], algorithm x is β-pivotal if for any allocation instance

(v, A) and any bidder n, we have

Wx(v,A)− un(v,A, x) ≥ β W ∗(τn(v−n, A, x), v−n, A)︸ ︷︷ ︸
optimal welfare at n’s threshold vector

.

Lemma A.7. For any weakly monotone algorithm x and any β ∈ [0, 1], x is a β-approximation

for certain investment if and only if x is β-pivotal.

Proof. Being a β-approximation for certain investment means the welfare for algorithm x

must be lower bounded by β times the optimal welfare for any investment instance. However,

many of these lower bounds turn out to be redundant, and our argument shows that the

only relevant bounds are those in the β-pivotality condition.

Algorithm x is a β-approximation for certain investment if and only if for every set of

investments I, any (vι, c) ∈ BR(x, I), and any (v′ι, c
′) ∈ I,

Wx(vι)− c ≥ β(W ∗(v′ι)− c′). (18)

If we restrict attention to investment sets of the form

I = {(vι, c), (v′ι, c′), (τι, 0)},

then we still obtain the bounds (18); however, we can rewrite the requirement that (vι, c) ∈
BR(x, I) as uι(vι, c) ≥ max{uι(v′ι, c′), 0}. By formulating (18) as

Wx(vι)− uι(vι) ≥ β(W ∗(v′ι)− uι(v′ι))− uι(vι, c) + βuι(v
′
ι, c
′),

we notice that the tightest bound occurs when uι(vι, c) = uι(v
′
ι, c
′) = 0. Therefore algorithm

x is a β-approximation for certain investment if and only if for any vι, where

Wx(vι)− uι(vι) ≥ max
v′ι
{β(W ∗(v′ι)− uι(v′ι))}. (19)

23Here we use the normalized utility notation introduced in the Preliminaries & Notation section at the
start of the appendix.

40

Since by Lemma A.5 we have

W ∗(v′ι)− uι(v′ι) = W ∗(v′ι − uι(v′ι)) ≤ W ∗(v′ι − (v′ι − τι)) = W ∗(τι),

we know the maximum in (19) occurs at v′ι = τι; plugging this in, (19) becomes

Wx(vι)− uι(vι) ≥ βW ∗(τι),

which is exactly the β-pivotality condition. Therefore algorithm x is a β-approximation for

certain investment if and only if x is β-pivotal.

We are now ready to prove Theorem 2.10. Suppose that x has β-bounded confirming

externalities. If the change from the threshold price τn to any value vn is a confirming change,

then x having β-bounded confirming changes would immediately imply that x is β-pivotal.

Now, while it is not the case that the change from the threshold price τn to any value vn is

confirming, we show that it is true that for any value vn, there exists a value vεn arbitrarily

close to τ such that the change from vεn to vn is a confirming change.

Formally, for any vn and ε ∈ (0, 1], we let

vεn ≡ εvn + (1− ε)τn.

Now, because x is truthful, we have

xn(vεn) ∈ argmax
o
{vεn,o − τn,o} = argmax

o
{(εvn,o + (1− ε)τn,o)− τn,o]}

= argmax
o
{ε[vn,o − τn,o]}

= argmax
o
{vn,o − τn,o}.

It follows that for any outcome o′ ∈ O,

vn,xn(vεn) − τn,xn(vεn) ≥ vn,o′ − τn,o′ . (20)

Thus, we see that the change from vεn to vn confirms xn(vεn) because

vn,xn(vεn) − vn,o′ = [(vn,xn(vεn) − τn,xn(vεn))− (vn,o′ − τn,o′)] + τn,xn(vεn) − τn,o′

≥ ε[(vn,xn(vεn) − τn,xn(vεn))− (vn,o′ − τn,o′)] + τn,xn(vεn) − τn,o′

= vεn,xn(vεn) − vεn,o′ ,

41

where the inequality follows from (20).

Since the change from vεn to vn confirms xn(vεn) and x has β-bounded confirming exter-

nalities, we have

pn(vn)− pn(vεn) +
∑
m6=n

[vm · [xm(vn)− xm(vεn)]] = Ex(vn, vεn) ≥ βW ∗(vεn)−Wx(v
ε
n). (21)

Using the definition of normalized utility un, the inequality (21) becomes

Wx(vn)−Wx(v
ε
n)− un(vn) + un(vεn) ≥ βW ∗(vεn)−Wx(v

ε
n). (22)

Canceling Wx(v
ε
n) from both sides of (22) and taking the limit as ε→ 0, we get

Wx(vn)− un(vn) ≥ βW ∗(τn).

Thus, we see that x is β-pivotal, and by Lemma A.7, x is a β-approximation for certain

investment.

Proof of Proposition 2.18

Proposition 2.18. Suppose that |O| = 2, and let X be a collection of weakly monotone

XCONE algorithms. If y is an algorithm that at each instance (v, A) ∈ Ω outputs a welfare-

maximizing allocation from the collection {x(v, A)}x∈X , then y is weakly monotone.

Suppose that y and X satisfy the assumptions of Proposition 2.18. We want to prove

that for any (v,A) and ṽn,

0 ≤ [ṽn − vn] · [yn(ṽn)− yn(vn)]. (23)

If yn(ṽn) = yn(vn) then (23) follows immediately. Suppose yn(ṽn) 6= yn(vn). If the change

from vn to ṽn confirms yn(ṽn) then (23) follows immediately. Suppose it does not confirm

yn(ṽn). Then by yn(ṽn) 6= yn(vn) and |O| = 2, the change from vn to ṽn confirms yn(vn), and

the change from ṽn to vn confirms yn(ṽn).

Let us pick x, x̃ ∈ X such that x(vn) = y(vn) and x̃(ṽn) = y(ṽn). We have

vn · x̃n(vn) +
∑
m 6=n

[vm · x̃(vn)] ≤ vn · xn(vn) +
∑
m6=n

[vm · xm(vn)]

≤ vn · xn(ṽn) +
∑
m6=n

[vm · xm(ṽn)] , (24)

42

where the first inequality is by construction and the second inequality is by x XCONE and

weakly monotone and Proposition 2.7. A symmetric argument yields

ṽn · xn(ṽn) +
∑
m6=n

[vm · xm(ṽn)] ≤ ṽn · x̃n(ṽn) +
∑
m 6=n

[vm · x̃m(ṽn)]

≤ ṽn · x̃n(vn) +
∑
m 6=n

[vm · x̃m(vn)] . (25)

Adding inequalities (24) and (25) and canceling terms yields

0 ≤ [ṽn − vn] · [x̃n(vn)− xn(ṽn)]. (26)

Since the change from vn to ṽn confirms yn(vn) = xn(vn), and xn is weakly monotone, we

have

0 = [ṽn − vn] · [xn(ṽn)− xn(vn)]. (27)

Similarly, since the change from ṽn to vn confirms yn(ṽn) = x̃n(ṽn), and x̃n is weakly mono-

tone, we have

0 = [ṽn − vn] · [x̃n(ṽn)− x̃n(vn)]. (28)

Adding (26), (27), and (28) yields

0 ≤ [ṽn − vn] · [x̃n(ṽn)− xn(vn)] = [ṽn − vn] · [yn(ṽn)− yn(vn)],

as desired.

Proof of Proposition 3.8

Proposition 3.8. For all δ > 0, there exists ε < δ such that the BKV rule with parameter ε

has an investment guarantee of 0.

In the following family of examples, we consider ε = 1
2i

for i ∈ N.

Let there be |N | = 2j bidders where the first bidder is the investor, the second bidder

has a value of 2, and the remaining |N | − 2 bidders have a value of 1. The knapsack can fit

either the first two bidders or everyone except for the second bidder.

Consider what happens when the investor has value 0. For the BKV rule, the allocation

that maximizes the rounded values will have ` ≤ i+ j. For ` ≤ i+ j, the BKV rule will pack

everyone except for the second bidder. If ` > i + j, the last |N | − 2 bidders’ values will be

rounded to 0.

If the investor increases its value to 2i+j+2, the allocation that maximizes the rounded

43

values will be for ` = i+ j + 1. If ` is smaller, the investor’s value will be truncated and if `

is larger, the second bidder’s value will be rounded down to 0. For ` = i+ j + 1, γε,` = 1
2

so

all values will be rounded down to the nearest even integer. Since the last |N | − 2 bidders’

values are rounded down to 0, the BKV rule will pack the first two bidders.

As shown above, the investor increasing its value from 0 to 2i+j+2 results in a confirming

negative externality and therefore the BKV rule is not XCONE. If the set of investments is

{(0, 0), (2i+j+2, 2i+j+2)}, then the performance under investment is 2
|N |−2

which goes to 0 as

|N | goes to ∞.

Proof of Proposition 3.11

Proposition 3.11. The allocation rule x̆ε can be computed in poly (ε−1, |N |, log(maxn{vn}))
time.

If ε2`

|N | > maxn{vn}, then every value rounds to 0, and by construction x∗(vε,`) packs

no bidders and thus yields 0 welfare. Consequently, it suffices to compute x∗
(
vε,`
)

from

` = 0 to ` = blog(ε−1|N |maxn{vn})c + 1 in order to find the best output from the col-

lection
(
x̆ε,`
)
`∈N. Briest et al. (2005) proved that computing x∗

(
vε,`
)

in each step takes

poly (ε−1, |N |, log(maxn{vn})) time. Thus, we can compute x̆ε in poly (ε−1, |N |, log(maxn{vn}))
time, which completes the proof of Proposition 3.11.

As an aside, we note that our proposal runs more slowly than the BKV FPTAS. The

BKV FPTAS searches ` from blog(maxn{vn})c−dlog((1−ε)−1|N |)e−1 to blog(maxn{vn})c.
Our FPTAS searches a larger range, from 0 to blog(ε−1|N |maxn{vn})c+ 1. This is because

we are choosing the maximal allocation according to v instead of vε,`, and must search a

larger range to find the relevant maximum.

44

