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APPENDIX C: AN EXTRA RESULT

IT IS POSSIBLE to show the kink in the welfare function from our welfare bounding argu-
ments, without calculating σ (S). After Lemma A.3, we have the following.

LEMMA C.1: If Ŷ ≥ bX̄ , then h(Ŷ ) ≤ α∞bX̄e−λX̄ + α∞Ŷ (1 − e−λX̄).

PROOF: Repeating (47)–(48), observing that Ŷ ≥ bX̄ implies �(X̄) ≤ 1 ≤ Ŷ

bX̄
, and sub-

stituting α∞ = for αn, we have

h(Ŷ ) ≤
∫ X̄

0
λe−λxα∞Ŷ dx+

[
e−λX̄R−

∫ X̄

0
λe−λx

(
α∞bx+ c

λ

)
dx

]
� (69)

Using α∞ = λR

b(eλX̄−1)
− c

b
and rearranging yields the result. Q.E.D.

Since Lemma A.4 shows h(Ŷ ≤ bX̄) = α∞Ŷ , we have demonstrated the kink. The slope
of the bound in Lemma C.1 matches slope of σ (S) at S = X̄ from (26).

APPENDIX D: RELAXING COMMITMENT

In this Supplemental Appendix, we explore an extension of the baseline model that re-
laxes the commitment of the principal to use explicit probabilities of project cancellation.
First, we note that a fully renegotiation-proof contract is not feasible in our setting. As
discussed at the beginning of Section 4.2, termination is required for incentive compatibil-
ity. However, neither random nor deterministic termination are renegotiation-proof, as
is usual in dynamic contracts that use termination to provide incentives. The project has
positive expected value, so the principal would always prefer to grant an extension than
to cancel the project and the agent likewise always prefers extension over cancellation.
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It seems plausible (perhaps for reputational reasons) that the principal could commit
to cancel the project upon the occurrence of a verifiable event; for example, nondelivery
at St = 0. What seems less plausible is that the principal’s randomization procedure is
verifiable. Hence, we suppose that randomization is possible but commitment to explicit
randomization probabilities is not. In such a setting, either the contract must be canceled
deterministically or it must be incentive compatible for the principal to randomize between
extension and cancellation.

Thus, we seek contracts subject to a commitment constraint: when randomizing, the
principal must receive the same payoff from extension as from cancellation, which is zero.
To do so, we will look for contracts that respect the commitment constraint and are payoff-
equivalent to implementing our time-budget contract under that constraint.14

It is easy to see that the optimal contract with deterministic cancellation involves paying
the agent severance of Wt− = bSt− if he reports a setback with St < X̄ , which results in a
terminal payoff of −bSt− for the principal. She can, however, do better with a contract
under which it is incentive compatible to randomize. Formally, this involves a constraint
that the principal’s expected payoff when granting an extension is the same as from can-
cellation, namely 0.

D.1. Two Contracts

We demonstrate two such contracts. The first grants the agent a very large extension.
Given the structure of the problem, there is always a positive initial grant of utility and
an associated time budget S̄ that gives the principal zero utility.15 We modify the existing
time-budget contract (Definition 4) so that an extension to S̄ is granted with probability
St/S̄. This modification is incentive compatible for the agent and gives the principal zero
utility for both extension and cancellation, so it respects the commitment constraint.

The second contract uses mixed strategies. To construct such a contract, we need to
relax the concept of incentive compatibility given in Definition 2. Specifically, suppose
that a contract is IC if it is optimal for the agent to follow the principal’s recommended
action at each point in time and to honestly report setbacks. Now consider an altered
time-budget contract under which the principal recommends at = 1 unless and until a
setback with St < X̄ is reported. Then, if the agent is granted an extension (i.e., the clock
is reset to St = X̄), the recommended action is for him to randomize between quitting
while requesting a severance payment of bX̄ and continuing to work. Because the agent is
indifferent between these two alternatives, randomization with any probabilities is IC for
him. Moreover, the recommended probabilities can be calibrated such that the expected
payoff to the principal from granting an extension is 0. This would leave her indifferent
between cancellation and extension, and hence willing to randomize with the probabilities
given in Definition 4.

PROPOSITION D.1—Nonverifiable Randomization: The principal can implement a con-
tract that respects the commitment constraint with an altered time budget and the same prize
structure Kτ. If St < X̄ and a setback is reported, then the principal extends the schedule to X̄

14Notice that our time-budget contract has randomization as soon as the principal knows that randomization
will be required, but not earlier. Any delay would result in the principal receiving a negative payoff from the
flow cost c before randomizing and receiving zero.

15The principal’s payoff must be less than FFB − W0 and continuous in W0. If there is some level of W0 for
which the principal obtains positive value, then there is some higher level such that she obtains zero.
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with probability St−
X̄

and cancels the project with probability 1 − St−
X̄

. Upon receiving an exten-
sion, the agent randomizes between quitting and requesting severance of bX̄ with probability
q = F̂ (X̄�0)

F̂ (X̄�0)+bX̄
, and continuing to work with probability 1 − q, where

F̂ (S = X̄�0) ≡ Re−λX̄ − c + b

λ

(
1 − e−λX̄

)
� (70)

PROOF: This result holds because F̂ (S = X̄�0) is the principal’s payoff when the agent
works, so she is indifferent between cancellation and extension iff

0 = (1 − q)F̂ (X̄�0) − qbX̄� (71)

The two contracts grant the same payoff to the principal because they are both incentive
compatible for the agent and both grant the principal zero utility after the first setback
with St < X̄ . Q.E.D.

D.2. Payoffs and the Initial Time Budget

The inability to commit to exact probabilities obviously harms the principal. In partic-
ular, F̂ (S = X̄�0) is the value she derives from a short-leash contract when she cannot
commit and

F̂ (S = X̄�0) = F (S = X̄�0)
(

1 − e−λX̄

λX̄

)
� (72)

The fraction on the right side of this equation is less than 1 since λX̄ > 0. A setback
during the course of a short-leash contract under full commitment still leaves the princi-
pal with a positive expected payoff as shown in Proposition 6, whereas a setback in the
randomization region absent commitment results in an expected payoff of zero. Perhaps
surprisingly, the lack of commitment to randomize leads the principal to grant the agent
more initial time.

PROPOSITION D.2—Optimal Initial Time Budget: Define S∗ to be the principal’s optimal
initial time budget when randomization is verifiable, and Ŝ∗ to be the principal’s optimal initial
time budget when randomization is not verifiable (randomization implies the principal’s value
must be zero). Then S∗ ≤ Ŝ∗.

PROOF: Define τR = inf{t > 0 : Xt = 0� St < X̄} as the first time a setback occurs that
requires randomization and τ to be contract completion, both in economies with verifiable
randomization. Define τ̂ ≡ min{τ�τR}, and define F̂ (S�0) and σ̂ (S) analogously as (7)
and (18) with τ̂ replacing τ. Then, by the optional stopping theorem, E0[Wτ̂] = W0 = bS0.
Because the principal’s payoff at τ̂ is either R − Wτ̂ or 0, which is identical to her payoff
at τ in the baseline model, the same arguments in Section 5.1 applies, which yields

F̂ (S�0) =
(

λR

eλX̄ − 1
− c

)
σ̂ (S) − bS� (73)
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Since τ̂ ≤ τ, we have σ̂ (S) ≤ σ (S). Equation (63) implies that

σ ′(S) − σ̂ ′(S) = λeλX̄
(
σ̂ (S − X̄) − σ (S − X̄)

) ≤ 0� (74)

Thus, F̂ (S�0) ≤ F (S�0) and F̂S(S�0) ≥ FS(S�0). Standard increasing differences logic
thus implies that Ŝ∗ ≥ S∗. Q.E.D.

Because the inability to commit to explicit randomization harms the principal (i.e.,
F̂ (S�0) < F (S�0)), a reasonable conjecture is that she would prefer to grant the agent
less time. After all, for any given value of S, lack of commitment implies a lower proba-
bility of project completion and reduces the initial value of the project to the principal.
It is, therefore, somewhat surprising that she responds by devoting more time and money
to the less valuable enterprise. In addition, the agent benefits from the principal’s lack of
commitment because his expected payoff is proportional to schedule length.

The intuition is actually straightforward. Lack of commitment power only harms the
principal if a setback occurs with St < X̄ . By granting the agent a longer initial time bud-
get, the principal raises the probability that the project will be completed before the lack
of commitment becomes a problem. That is, she reduces the likelihood that her inability
to commit will even come into play. In a sense, the principal doubles down on the part of
the contract to which she can commit (the length of the schedule) in order to reduce the
impact of the part to which she cannot (explicit probabilities of project cancellation and
extension).

APPENDIX E: EXPLICIT PROBABILITIES

A nice feature of a short-leash contract is that it allows straightforward calculation of
the probabilities of extensions, cancellations, and overruns. Figure E.1 plots the probabil-
ities of these events. Define μ ≡ λX̄ to be the expected number of setbacks experienced
while the project is in operation. Then:

1. POT(μ) = e−μ is the probability that the project is completed on time (left panel, red
dotted curve). The value of this function decreases from 1 to 0 because as the ex-
pected number of setbacks rises, the probability that none occur falls. When setbacks
are a virtual certainty, the project cannot be completed on time.

FIGURE E.1.—Probability of an Overrun Under a Short-leash Contract. The left panel of this figure plots the
probability of early cancellation (PEC, blue solid curve) and the probability of on-time completion (POT, red
dash-dot curve). The right panel of this figure plots the probability of an overrun (POR) μ≡ λX̄ is the expected
number of setbacks experienced while the project is in operation.
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2. PEC(μ) is the probability that the project is canceled early, before its initial expected
duration of X̄ (left panel, blue solid curve).16 This function increases from 0 because
as the expected number of setbacks rises, it becomes ever more likely that the project
will not survive the requisite randomizations before time X̄ has elapsed. Indeed,
limμ→∞ PEC(μ) = 1 because a constant stream of setbacks must result in early project
cancellation for any X̄ > 0.

3. POR(μ) = 1−PEC(μ) −POT(μ) is the probability of an overrun, Pr{τ > X̄}: the prob-
ability that the project ends, either from completion or cancellation, after the initial
expected duration X̄ (right panel, black solid curve). It is low for small values of μ
because the project will most likely be completed on time. It rises until achieving a
maximum of approximately 0.39 when μ = 3�34 and then decreases as the probabil-
ity of early cancellation becomes ever more likely. We break this into two subpos-
sibilities: efficient overruns for which the project is eventually completed PORC, and
inefficient overruns followed by eventual cancellation PORF.17
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16This can be obtained analytically from PEC(μ) = p(x = 1;μ), where p(x;μ) is the solution to the second-
order ODE p′′(x;μ) +μp′(x;μ) +μp(x;μ) = μ with boundary conditions p(x= 0;μ) = p′(x= 0;μ) = 0.

17A project that is completed is either completed on time or completed after an overrun, so we can solve
from the probability of success of any kind, π(X̄) = λX̄

eλX̄−1
= μ

eμ−1 = POT(μ) + PORC(μ). Then PORF = POR −
PORC because an overrun will result in either cancellation or completion.
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