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APPENDIX A: EXTENSIONS

A.1. Relaxing Assumption 1

TO CLARIFY THE ROLE OF Assumption 1, we can restate our hypotheses using more gen-
eral notation:

H̃0 : Yi(Z) = Yi

(
Z′) for all Z�Z′ and for all i ∈ U

and

H̃
w1�w2
0 : Yi(Z) = Yi

(
Z′) for all Z�Z′ such that wi(Z)�wi

(
Z′) ∈{w1�w2} and for all i ∈ U�

If Assumption 1 holds, the null hypotheses H̃0 and H̃
w1�w2
0 are equivalent to the null hy-

potheses H0 and H
w1�w2
0 ; if it does not hold, the null hypotheses H0 and H

w1�w2
0 are not

well defined, while H̃0 and H̃
w1�w2
0 can still be tested. In fact, the procedures in Section 3

used for testing H0 and H
w1�w2
0 can be used without any modification to test H̃0 and H̃

w1�w2
0

regardless of Assumption 1.
While Assumption 1 does not affect the mechanics of the test, it does impose restric-

tions on the alternative hypothesis, which changes the interpretation of rejecting the null
hypothesis. In particular, Assumption 1 imposes two levels of exclusion restriction: one
on the relevant attribute and one on the relevant group. Without this assumption, a num-
ber of different reasons could lead to rejecting the null hypotheses, H0 or H

w1�w2
0 . For

instance, we would reject these hypotheses if a unit’s outcome depends on the compo-
sition of attributes other than A, or if A is the relevant attribute but a unit’s outcome
depends on the composition of groups other than its own. Assumption 1 rules out both of
these alternative channels for peer effects, narrowing the interpretation of rejecting the
null hypotheses.
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In summary, it is possible to test the null hypotheses H̃0 and H̃
w1�w2
0 using the procedures

in Section 3, regardless of the validity of Assumption 1. The price paid for the additional
flexibility is that rejecting the null becomes less informative, since the alternative hypoth-
esis includes channels of interference that were otherwise ruled out by Assumption 1.

As we discuss in the main text, there is little guidance for applied researchers on specify-
ing exposure mappings, in part because these mappings can be highly context dependent.
Thus, developing recommendations for exposure mappings in practice, as well as assess-
ing sensitivity to those choices, is a necessary next step.

A.2. Testing Weak Null Hypotheses

Our paper focuses on null hypotheses that impose a constant effect (usually zero) for
all units. A natural question is how to extend our approach to average (or weak) null
hypotheses. In the no-interference setting, Wu and Ding (2020) proposed permutation
tests for weak null hypotheses using studentized test statistics. The result in Wu and Ding
(2020, Section 5.1) suggests that our permutation tests in Section 5 can also preserve
the asymptotic type I error under weak null hypotheses with appropriately chosen test
statistics. For example, we can test the following weak null hypothesis:

H
w1�w2
0 : τ(w1�w2) = 0�

where τ(w1�w2) = N−1
∑N

i=1 Yi(w1) −N−1
∑N

i=1 Yi(w2). Following the argument in Wu and
Ding (2020), Procedure 2c will deliver an asymptotically valid p-value for Hw1�w2

0 if we use
the studentized statistic

T (z;Y�U) =

∑
a∈A

π[a]( ˆ̄Y[a]w1 − ˆ̄Y[a]w2)

√∑
a∈A

π2
[a]

(
Ŝ2

[a]w1
/n[a]w1 + Ŝ2

[a]w2
/n[a]w2

) �

where π[a] is the proportion of Ai = a among all units i ∈U, and (n� ˆ̄Y� Ŝ2) are the sample
size, mean, and variance with subscripts denoting the attribute and exposure. As usual,
we can also construct an asymptotic confidence interval for the average treatment effect
τ(w1�w2) by inverting permutation tests.

A.3. Connection With the Classic Stratified, Multi-Arm Trial

Our paper helps to clarify the relationship between randomized group formation ex-
periments and traditional randomized stratified experiments in settings without interfer-
ence or peer effects. In particular, we show that the designs we consider are equivalent
to classic stratified randomized experiments with multiple arms. The non-sharp null hy-
potheses of interest correspond to contrasts between different arms of a multi-arm trial,
possibly for a subset of units. Thus, at least with some reasonable simplifying assumptions,
the otherwise complex setting of randomized group formation experiments reduces to a
more familiar setup. As a byproduct, our proposed permutation tests are applicable to
the classic designs as well.
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APPENDIX B: ADDITIONAL ANALYSIS FOR CAI AND SZEIDL (2017)

This section provides additional analysis and discussion of the re-analysis of Cai and
Szeidl (2017) in Section 6.2.

B.1. Discussion of Assumption 1—Alternative Definitions of Exposures

As discussed in Section 2.3, the interpretation of our test hinges on W being well-
specified in the sense of Assumption 1. For instance, our tests could reject, in principle,
even if H0 was true but firm revenues differed across group assignments that produced the
same peer size exposure. Here, we explore the robustness of our results to two alternative
specifications of the exposure. In the next section, we consider an additional specification,
which reflects the type of peer group exposure that was actually randomized by Cai and
Szeidl (2017).

In particular, we consider two additional definitions of exposures:

W
(1)
i = 1

|Zi|
∑
j∈Zi

binary_sizej� or W
(2)
i = 1

|Zi|
∑
j∈Zi

sizej · revenuej�

where binary_sizej = 1 if and only if firm j has size larger than the median size in j’s re-
gion; and revenuej is the log-revenue of firm j at baseline. The definitions capture coarser
or finer versions, respectively, of our original exposure. For both these definitions, we run
Procedure 1b and report the results in Table A.I.

From Table A.I, we observe that our results remain largely robust to the alternative
exposure specifications we consider. For instance, across all specifications, we find a sig-
nificant effect on small service firms, as in the previous section. There is one notable
difference, however. Under the coarser exposure definition, W (1)

i , we find evidence for a
negative peer group effect on small manufacturing firms (two-sided p-value = 0.04). This
effect likely averages out the positive effect on small service firms (two-sided p-value =
0.007), and produces a nonsignificant overall effect under W (1)

i .

B.2. Pairwise Null Hypotheses

We now turn to pairwise non-sharp null hypotheses, extending the analysis of hetero-
geneity in the previous section. To that end, we focus on small manufacturing firms for
which we observed a negative peer group effect in the previous section. We also consider

TABLE A.I

TESTING THE SHARP NULL UNDER ALTERNATIVE EXPOSURES.

W
(1)
i W

(2)
i

One-sided Two-sided One-sided Two-sided

Small service firms 0�004∗ 0�007∗ 0�001∗ 0�002∗

Small manufacturing firms 0�980 0�041∗ 0�550 0�899
Large service firms 0�607 0�785 0�262 0�523
Large manufacturing firms 0�954 0�092 0�304 0�608

Note: ‘One-sided’ indicates the one-sided p-value (p) from Procedure 1b on a subpopulation; ‘two-sided’ is the corresponding
two-sided p-value, 2 min(p�1 −p); ‘∗’ indicates a significant p-value at 5% level.
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TABLE A.II

TWO-SIDED p-VALUES AND INVERTED RANDOMIZATION-BASED CONFIDENCE INTERVALS (AT 5% LEVEL) FOR
THE PAIRWISE WEAK NULLS OF SECTION B.2.

Null hypothesis n(n2/n1) p-value Point estimate Confidence interval

HS�SL
0 (small) 179 (84/95) 0.003 −0�449 (−1.062, −0.148)

HS�Sm
0 (small) 139 (44/95) 0.712 −0�549 (−1.084, 0.885)

HSL�SLm
0 (small) 188 (104/84) 0.903 0�017 (−0.445, 0.404)

HSm�SLm
0 (small) 148 (104/44) 0.306 0�116 (−1.236, 0.387)

Note: ‘n’ indicates the number of units tested under the respective null, H
w1�w2
0 ; ‘n1’ is the number of firms exposed to w1, and

‘n2’ the number of firms exposed to w2 (n= n1 + n2).

a definition of treatment exposure that matches the type of exposure randomized in the
actual experiment.

In particular, Cai and Szeidl (2017) randomized firms into four group types, namely,
“small firms in the same sector,” “large firms in the same sector,” “mixed-size firms in
the same sector,” and “mixed-size firms with mixed sectors.” We thus define the following
discrete-valued exposure for a small manufacturing firm i:

W
(3)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S� if firm i’s peer group is all small manufacturing firms;
Sm� if firm i’s peer group is all small firms of various sectors;
SL� if firm i’s peer group is mixed-size manufacturing firms;
SLm� if firm i’s peer group is mixed-size firms of various sectors.

(B.1)

We consider four (weak) pairwise null hypotheses each comparing whether small man-
ufacturing firms benefit from having a certain exposure level over another. For instance,
HS�SL

0 (small) denotes a null hypothesis to test whether there are benefits of having a mix
of large and small manufacturing peers as opposed to having only small manufacturing
peers; HS�Sm

0 (small) denotes whether there are benefits of having a mix of small service or
small manufacturing peers as opposed to having only small manufacturing peers; and so
on.

Table A.II summarizes the results from using Procedure 2b on these pairwise null hy-
potheses. These results add nuance to the negative peer group effect that we observed
on small manufacturing firms in Table A.I. In particular, we find that this negative peer
group effect on small manufacturing firms is mainly due to their exposure to other large
manufacturing firms. The relevant null, HS�SL

0 , is strongly rejected (two-sided p-value =
0.003), and the inverted confidence interval from this test indicates a range of 15% to
65% in revenue loss from such exposure. In contrast, no negative effects are observed
when the exposure of small manufacturing firms is to small or large firms from a different
sector (service).

APPENDIX C: SIMULATION STUDIES

This section describes simulation studies that demonstrate the failure of asymptotic
approximations in our applications and highlight the importance of using exact tests.
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C.1. Simulation Study Calibrated to Li, Ding, Lin, Yang, and Liu (2019)

Our first simulation study illustrates the failure of asymptotics of the regression-based
(“Neymanian”) approach proposed by Li et al. (2019), in a setting calibrated to the room-
mates application in Section 6.1. Specifically, consider the following setup:

• N = 156 students allocated at random in rooms of size 4, indexed by i.
• A random a% of students (a is a free parameter) has A = 1 and the rest has A = 0.
• Sample Xi ∼ N(0�1) i.i.d.; or Xi = Si Weibull(0�3), where Si is random sign; or Xi ∼

mixture where mixture = (1−B)δ−k +BU[1−ε�1+ε], where δ is the delta function,
k, ε are constants, and B is a Bernoulli random variable such that the mean is 0. All
distributions are also normalized to have variance 1.

• Sample εi i.i.d. using the distributions described above.
• Define the exposure model, Wi = ∑

j∈roomi�j �=i Aj , where roomi is the set of students in
the same room as i.

• Define outcome Yi = 1 + 0 · 1(Wi = 2) +Xi + (0�01 +Ai)εi.
Note that, under this data-generating process, Yω(0) = Yω(2) in distribution, and so

our randomization tests remain finite-sample valid.
In this model, even though room allocation is completely randomized and there is no

imbalance in room size, the joint distribution of (A�W ) has a complex correlation struc-
ture due to the group formation design. In particular, roughly 3–5% of the units are
exposed to W = 2, which results in a highly leveraged exposure assignment. Moreover,
conditional on Wi = 2, unit i is more likely to be Ai = 0. Thus, under a mixture error
distribution, the outcomes Yi of such units tend to be smaller than the outcomes under
other exposures. This difference becomes negligible in the limit with more samples, but it
is substantial in finite samples, and cannot be easily captured by a regression model even
under a robust specification.

To illustrate this point, we regress Yi ∼ 1(Wi = 2) + Xi and use conservative
heteroscedasticity-robust errors (“HC0”). We then test (at 5% level) the hypothesis that
the regression coefficient of the exposure dummy variable is zero. The results are shown
in Table A.III below. Here, we want only to show the pathological cases for the regression
approach, and so we exclude the normal error setting for which regression performs well
and near the nominal level.

Based on the results reported in Table A.III, we observe that with Weibull errors (heavy
tailed), the regression-based test has a size distortion and tends to under-reject. Under a
mixture distribution for the errors, regression severely over-rejects. For instance, even
with N(0�1) covariates, we observe rejection rates up to roughly 61%. In general, the
regression-based test deteriorates under imbalanced designs.

In contrast, the randomization test is finite-sample valid as expected. Table A.IV shows
a partial set of results relating to the pathological cases. We see that the randomization
test achieves near-nominal level performance, with deviations from the nominal level due
to Monte Carlo error.

C.2. Simulation Study Calibrated to Cai and Szeidl (2017)

We now consider the following simulation setup inspired by the analysis of Cai and
Szeidl (2017) in Section 6.2. Here, we focus on a subset of the data to illustrate the
key intuition. We have 13 firms in the same sector and subregion; two of the firms are
“large” and the remainder are “small.” In particular, their sizes in terms of log-number
of employees are A = (5�5�Z1� � � � �Z11), where Zi ∼ Unif[1�3] are i.i.d. uniform. Follow-
ing Cai and Szeidl (2017), we randomize the firms into two groups, one of type “mixed-
size” (SL) and another of type “small-size” (S). Since Zi are i.i.d., we can simply set as
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TABLE A.III

REJECTION RATES FROM ROBUST REGRESSION BASED ON A SIMULATION MOTIVATED BY LI ET AL. (2019).

a (%A= 1) X ε Rejection rate%

10.00 N(0�1) Weibull 1�63
30.00 1�20
50.00 1�40

10.00 Weibull Weibull 1�54
30.00 1�50
50.00 1�50

10.00 mixture Weibull 1�33
30.00 1�00
50.00 2�00

10.00 N(0�1) mixture 61�98
30.00 11�40
50.00 10�10

10.00 Weibull mixture 64�74
30.00 9�70
50.00 10�50

10.00 mixture mixture 66�05
30.00 12�40
50.00 11�40

L = (1�1�1�2�2� � � � �2), such that group 1 is of type (SL) with two large firms and one
small firm, and group 2 is of type (S) with all firms being small. The exposure of firm i is
defined as the average group size of other firms in i’s group:

Wi = 1
|groupi|

∑
j∈groupi

Aj�

We sample εi = N(0�σ2
i ), where σ2

i = 1/|groupi| is the reciprocal of i’s group size, and
set the outcome model as Yi = 0 ·Wi + εi.

A conventional econometric approach would be to regress Y ∼ W +A and test whether
the coefficient on W is zero, either through regular OLS errors or ‘robust OLS’. However,
both approaches are severely biased even when we condition on the same sector, subre-
gion, and firm sizes. In a simulated study with 10,000 replications based on this model, the
nominal 5% rejection rate from regular OLS is 18.48%; and the rejection rate from ro-
bust OLS is 60.82%. For the same simulated data, the rejection rate of our randomization
test is 4.8%.

TABLE A.IV

REJECTION RATES (%) FROM ROBUST REGRESSION AND THE GROUP FORMATION RANDOMIZATION TEST OF
PROCEDURE 2B.

a (%A= 1) X ε Regression Randomization test

10.00 N(0�1) mixture 61�1 5.9
30.00 9�9 4.1
50.00 9�2 4.3
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The problem here is that OLS errors do not take into account the true correlation
structure in W . For instance, in this model, both large firms have the exact same exposure
regardless of the particular treatment assignment. Due to the problem structure, with high
probability the errors in these two large groups can both be extreme, leading to a spurious
correlation between Y and W . Conditioning on firm characteristics in a regression model
cannot fix this issue. In contrast, a randomization test can leverage the true correlation
structure in W and has the correct level in finite samples.

APPENDIX D: PROOFS

D.1. Proof of Theorem 1

THEOREM 1: Let P(L) denote a distribution of the group labels with support L =
{1� � � � �K}N . Let W = w�(L) ∈ W

N be the corresponding exposures, and let U = u�(L) ∈
{0�1}N be the focal indicator vector, for some w�(·), u�(·) defined by the analyst. Define
SA�U = SN (A) ∩SN (U), which is the permutation subgroup of SN that leaves A (the attribute
vector) and U (the focal unit vector) unchanged. Suppose that the following conditions hold.

(a) P(L) = P(πL), for all π ∈ SA�U and L ∈ L.
(b) w�(·) is equivariant with respect to SA�U .
(c) u�(·) is equivariant with respect to SA�U .

Then, W is uniformly distributed conditional on the event {W ∈ B}, where B ∈O(WN;SA�U).

PROOF: We start with two lemmas.

LEMMA D.1: Suppose that Conditions (a)–(c) of Theorem 1 hold. Let B ∈ O(WN;SA�U)
be an orbit such that P(B) > 0. Then, for any π ∈ SA�U , we have

P(πL|W ∈ B�U) = P(L|W ∈ B�U)�

PROOF OF LEMMA D.1: L determines both U and W , and so

P(W ∈ B�U|L) = 1
{
w�(L) ∈ B

} · 1{
U = u�(L)

}
� (D.1)

Similarly,

P(W ∈ B�U|πL) = 1
{
w�(πL) ∈ B

} · 1{
U = u�(πL)

}
from (D.1)

= 1
{
πw�(L) ∈ B

} · 1{
U = πu�(L)

}
from Conditions (b)–(c)

= 1
{
w�(L) ∈ B

} · 1{
π−1U = u�(L)

}
from orbit property of B

= 1
{
w�(L) ∈ B

} · 1{
U = u�(L)

}
πU = U since π ∈ SA�U

= P(W ∈ B�U|L) from (D.1)� (D.2)

It follows that

P(W ∈ B�U|πL)P(πL) = P(W ∈ B�U|L)P(L)from (D.2) and Condition (a)

⇒ P(W ∈ B�U|πL)P(πL)
P(B)

= P(W ∈ B�U|L)P(L)
P(B)

from P(B) > 0

⇒ P(πL|W ∈ B�U) = P(L|W ∈ B�U)� Q.E.D.
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Lemma D.1 shows that L retains its symmetry even conditionally on W beloning to
some orbit B and conditional on focal selection U . The subspace where its symmetry
holds is exactly the permutation subgroup SA�U , which leaves A and U fixed.

LEMMA D.2: Let w ∈ W
N be a fixed exposure vector, and define

L(w) = {
L ∈ L :w�(L) = w

}
�

Then, for any π ∈ SA�U , we have that

L(πw) = {
πL :L ∈ L(w)

}
�

PROOF OF LEMMA D.2: The result follows from the equivariance property of w� in
Condition (b). Specifically, equivariance implies that, for any L ∈ L(w), then πL ∈
L(πw). Conversely, for any L′ ∈ L(πw), then π−1L′ ∈ L(w). Q.E.D.

The crucial result in Lemma D.2 is that there exists a 1-1 mapping between the sets
L(w) and L(πw) for any π ∈ SA�U .

We are now ready to prove the main result of Theorem 1. For a fixed w ∈W
N ,

P(W = w|W ∈ B�U) =
∑
L∈L

1
{
w�(L) = w

}
P(L|W ∈ B�U)

=
∑

L∈L(w)

P(L|W ∈ B�U)� (D.3)

Moreover, for any π ∈ SA�U ,

P(W = πw|W ∈ B�U) =
∑
L∈L

1
{
w�(L) = πw

}
P(L|W ∈ B�U) from (D.3)

=
∑

L∈L(πw)

P(L|W ∈ B�U)

=
∑

L∈L(w)

P(πL|W ∈ B�U) from Lemma D.2

=
∑

L∈L(w)

P(L|W ∈ B�U) from Lemma D.1

= P(W = w|W ∈ B�U)� (D.4)

B is an orbit, and so it can be generated by any of its elements. Since W ∈ B, the orbit can
be generated by W , and so B = {πW : π ∈ SA�U}. Therefore, conditional on {W ∈ B} and
focals U , the orbit B is the entire domain of W . The result in (D.4) now implies that W is
conditionally uniform given B and U . Q.E.D.

D.2. Proof of Lemma 1

Equivariance of w�

The exposure is defined in Equation (3) as wi(Z) = {Aj : j ∈ Zi}. On the domain of
group levels, this can be rewritten as

w�
i (L) ={Aj :Lj = Li� j �= i}�
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Now, let π ∈ SN (A) be any transposition acting on L, that is, a single swap between labels
Li, Lj of units i and j, respectively. After the swap, i is in the “room” that j was, and
j is in the “room” that i was. From the definition of w� above, the exposures are only
a function of other units’ attributes in the room, and so units i and j swap exposures.
The exposures of all units other than i, j are unaffected because i and j have the same
attribute (Ai = Aj) due to π ∈ SN (A).

Thus, we proved that w�(πL) = πw�(L) whenever π is a transposition. Since every
permutation is a composition of transpositions, the result holds for any permutation in
SN (A). Moreover, the result holds for π ∈ SA�U as well since SA�U is a subgroup of SN (A).

Equivariance of u�

Recall the definition of focal selection in our setting, as defined in Equation (9),
ui(Z) = 1 if and only if wi(Z) ∈ {w1�w2}. With a slight abuse of notation, this can be
rewritten as u�(L) = 1{w�(L) ∈ {w1�w2}}, where the operation on the right-hand side is
understood element-wise. Thus,

u�(πL) = 1
{
w�(πL) ∈{w1�w2}

} = 1
{
πw�(L) ∈{w1�w2}

} = π1
{
w�(L) ∈{w1�w2}

}
�

Here, the second equality follows from equivariance of w� and the last equality follows
from the element-wise operation.

D.3. Proof of Lemma 2

In the stratified randomized design, define ms : LN → N
|A|×|L| as

ms(L)a�k =
∑
i∈U

1(Li = k)1(Ai = a)�

which counts how many units with attribute Ai = a are assigned to group label k. Then,
a stratified randomized design satisfies P(L) ∝ 1{ms(L) = nA}, where nA is fixed. For any
permutation π ∈ SN (A), and any pair (a�k), we have

ms(πL)a�k

=
∑
i∈U

1
{

(πL)i = k
}
1(Ai = a)

=
∑
i∈U

1(Li = k)1
{

(πA)i = a
}

from identity� (πx)′y = x′(πy)� for any x� y ∈ R
N

=
∑
i∈U

1(Li = k)1(Ai = a) πA =A since π ∈ SN (A)

= ms(L)a�k� (D.5)

This result immediately implies that P(πL) = P(L) for any π ∈ SN (A). This holds also
in the focal selection setting. That is, P(πL) = P(L) for any π ∈ SA�U since SA�U is a
subgroup of SN (A). Thus, Condition (a) holds.
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D.4. Proof of Lemma 3

In the completely randomized design, define mc : LN →N
|L| as

mc(L)k =
∑
i∈U

1(Li = k)�

which counts how many units are assigned to group label k. Then, P(L) ∝ 1{mc(L) = n},
where n = (n1� � � � � nK) denotes how many units are to be assigned to each label, and is
fixed. For any permutation π ∈ SN and label k, we have

mc(πL)k =
∑
i∈U

1
{

(πL)i = k
} =

∑
i∈U

1{Li = k}= (L)k� (D.6)

This result immediately implies that P(πL) = P(L) for any π ∈ SN . This holds also for
any subgroup of SN , including SN (A) and SA�U . Both of these subgroups keep the at-
tributes fixed, and so Procedures 1c and 2c in the completely randomized design are
equivalent to the stratified randomized design with parameter nA = ms(L). Thus, Con-
dition (a) holds.
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