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This document contains auxiliary theorems and lemmata, with proofs, that are used
in the proofs in the main text.

S.1. AUXILIARY THEOREMS
THEOREM S.1—Uniform Asymptotic Expansion: Let Assumptions 1-6 hold. Then

R 1 n m B 7
«/I’lm((P — QD) = ﬁzznnnzuit +‘/ Eﬁnm+enma

i=1 t=1

where the three right-hand side terms are, respectively, Op(1), O(1), and op(1) uniformly in
0cO,.

PROOF: Let z;, be generated with parameters ¢y, n;0 and collect ¢, and all 71, in the
vector 6. For notational simplicity, we will presume throughout this proof that both ¢,
and 7, are scalars. The proof follows the same strategy as those in Hahn and Newey
(2004) and Hahn and Kuersteiner (2011), with the main difference being that we show
the result to hold uniformly in a neighborhood around 6.

Let

(e, nilz; (e, nilz;
9. milzu) ’), w(e, Milzi) = 9t milzu) ’),
In; de

and, with the projection coefficient p; ,, defined in the main text,

v(e, milzi) =

u(e, nilzi) == w(e, nilzi) — pim (@, Nilzi).

We will let v, := v(¢o, ni0lz:) and u;, := u(g, niolzi). We will use a similar shorthand for
derivatives, for example, v} 1= #(@0-m0lzi) /gy, V1™ 1= Pv(eomiolzi) /52, and so on. Let F;, be

it i
the distribution of z;,, write F;, for the corresponding empirical distribution, and consider
linear combinations of the form
Gu(zl€) == Fi(2) + e Ym(Fi(2) — Fi(2)),

where 0 < e < m~"2. For fixed values ¢ and e, let n,(¢, €) satisfy
Z/ v(@, ni(¢, €)12) dGi(z]€) = 0. (S.1)
=1
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2 A. HIGGINS AND K. JOCHMANS

Similarly, for fixed e, let ¢(€) satisfy
ZZ/LL(@(E), ni(¢(€), €)1z) dG,.(z]€) = 0. (S.2)
i=1 =1

Note that setting € = m~"2 gives the maximum-likelihood estimator, 6, while setting € = 0
gives 6. By an expansion around € =0,

(p(m_l/Z) _ ¢(0) = M Je 2!

,]/2

1 ap(0) 1/ 1 \@e0) 1/ 1 \'Poe(e
1 qo()+_(_) 90(2)+_<_) 40(3) (3)
vm de 3\ Vm Je
for some 0 < € < m~">. We now investigate each of the three right-hand-side terms, in
turn.

For the first term, to calculate 7¢(9)/s, differentiate the expression in (S.2) with respect

to € to obtain

i=1 t=1 i=1 t=1

where u(e|z) = u(¢p(€), n:(¢(€), €)|z). With a minor abuse of notation,

di(elz) _ du(e(e) m(¢(e). €)1z) dp(e)

Je 20) Je
du(e(€), ni(e(€), €)1z) (Imi(e(€). €) dp(e)  Ini(e(e), €)
+ an; ( e de T Je )
and
(9(;”&722'6) = \/n_'l(ﬁ,-, _Fit)'

Evaluating (S.4) at € = 0 and exploiting that

” 5”(@(0)’ T’i(
X

n

0,0 - - '
GD( ) )|Z) dG,(z]0) = ZE"U(UJZI) — Pim Eq, (vi?)
i t=1

is zero by definition of p;,, we may rearrange (S.4) to obtain

de(0) 1 X~
‘g(___ = ﬂZZnnmui,, (S.5)

i=1 t=1

where we have used the definition of (2, given in the main text along with the fact that
Assumption 6 guarantees its inverse is well-defined, and we have exploited the observa-
tion that Ey, (u;;) = 0. By Markov’s inequality, the independence of the data over i, and a
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2

> s)
2)
2)
so that 7¢(0/se = Op(n="?) uniformly over ©,. Here and later, we use A < B to indicate

that there exists a finite constant ¢ such that 4 < ¢ B.
Before calculating #¢()/se2, we observe that differentiating (S.1) with respect to ¢ gives

" ov(e, (e, €)|z " v(e, ni(e,€)|z ani(ep, €
Z;/ (¢ T’():’ )dGit(Z|€)+;/ (e Zn‘; )dGil(zle)%ﬂ-

strong-mixing inequality (Doukhan (1994, pp. 25-30)), we have

dp(0
g0

000

2 n m
> s> = sup IP’(,()(‘ﬁ ZZQ;; u;

B0 i=1 =1

DM

i=1 t=1

m
2 : -1

Qnm Uit
t=1

1
< sup Ey,
nme g,co,

1
< — max sup IEGU(

me 1<i<n 600

<

o | =

2

Rearranging and evaluating at € = 0 yields

Ini(¢,0) (1 - 1 & o
m mt:I

(9@ t=1

In the same way, differentiating (S.1) with respect to € reveals that

(e, 0) 1 & / 1,
—_— = — — E it E — E Zl = Uim,
Je Vm = v “\'m — Vi v

which is the asymptotically-linear representation of the maximum-likelihood estimator of
nio. With these expressions at hand, we turn to ¢(©)/;2. Differentiating (S.4) again with
respect to € gives

ozzzf%d@(m)uzz/a’ngE'Z)d&Gf;(j'E), (5.6)

i=1 t=1 i=1 t=1

where the second derivative of ii(e|z) follows from the chain rule and consists of many
terms. Evaluating each of these terms at € = 0, rearranging, and recalling again the ex-
pression for “Gi(219/sc and the fact that Eq (u;;') = 0, gives

n m 2 n m m
OB ENTINEEES o{ 02 o) IBRRT 0 wENT ) LI e
i=1 t=1 t=1

i=1 t=1
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with

£Eun(:2)

i=1 t=1

- ZZZE% £ 9¢(0) (¢,m - 33—(60) pl,m>

i=1 t=1

0 199(0
— ZZ Z]Eeo nlm ( ) (l//z,m - E% pi,m) Pi,m

i=1 t=1

+2ZZ Uj; Eeo n —PimlU iti) (9¢(0) «/%

de
i=1 t=1

Each term on the right-hand side of this expression will be asymptotically negligible for
our purposes. For example,

S % (w(@)

i=1 t=1

ZZ“E@O |‘<a¢(0)>

i=1 t=1

=O0(nm) Op(n™"),

and, therefore, Op(m), uniformly over @, by the moment requirements in Assumption 3
and the convergence rate on ?¢(0)/sc obtained above. Similarly, using the definition of ; ,,
together with Assumptions 3 and 6, we obtain, by the same arguments as those employed
below (S.5), that

ZZEBO <P7h djtm

i=1 t=1

iEGO (% Z ‘Pm) (Eﬁo (% évgl>) \/n_’lé Vit

t=1

is Op(4/nm) uniformly over ;. Hence,

ZZE’ (™) s, f7€0(0)

i=1 t=1

= Op(m)

uniformly over ®;. The remaining terms that make up r,,, can be dealt with in a similar
way. Consequently, letting

oo e o)

(0 2
Qnm go( ) Zle+0P _1 ;

we have shown that

where the order of the remainder term is uniformly over @,. We next establish that, uni-
formly over 0,

1 < 1 <
- im=bnm 1> bnm:=_ E ism)s
ni:Z]X, +0P() nl:Z] 90(/\/, )
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that is, we demonstrate

2

1 n
]P - im_E i,m
sup 90< - ;(x, o0 (Xim))

for any & > 0. By Markov’s inequality and independence of the observations across i, we

have
2)

> s) =o0(1) (S.7)

2
1 1¢
> s) < — sup Ey, <| p Z(X,;m —Eg(Xim))

€ g0, P

1 n
P - im_E im
sup oo< - ;(x, o (Xim)

n

1
<—5 > sup By ((xim — By, (Xen))

En i=1 00O

1
< — max sup Eq ((xim — Eeu()(i,m))2),

EN lsizn 00O

and so it suffices to show that

max sup Eg ((xim — Eqg, (Xi,m))z) = o(n).

L<isn 0061
To begin, we use the expression for i; , to rewrite y;,, as

(i) ()

=1 =

(1) (EE)tEne)

=1 6=

and introduce the shorthand notation

-1
(FEm) - emi( ) (3 Eee)

both of which are well-behaved under our assumptions. Then

g,m( 22> ;,m( ZZ)

1 tp=1 1 =1
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and so

B, (Xim — By (Xim)))

= ,;Z? Z (Ef)o(”givﬂzuzviu) Ef)o(utt1vlf2)E90(utt3v”4))
Hyeesly

2

L Z EHO (Ultl vltz Ult3 Ult4) E90 (vltl Ultz) EO{) (Ult3 vlt4))

2§ g .
imGim Z Eg, u,,lv,,zv,hv,m) Ego(uZ’lv,-,z)Ego(v,»,3v,«,4)).

-
Take the first term on the right-hand side. We have
E90 (uzq Vir, uzt; vll4) E90 (uzq Ultz)Eﬁn (uzt3 U,,4)
= Bg, (i ) By (Vi vir,) + Eo, (4]} viy) By (11 vie, ) + cumy (u), viey, e, vit, )5

where cum, refers to the fourth-order cumulant of the joint distribution of its arguments.
As in Hahn and Kuersteiner (2011), Assumptions 2 and 3 allow us to apply Corollary A.2
of Hall and Heyde (1980) to obtain

< _ \12*14I
sup max|Ey, (v, vin)| S n(lgesggla(eo,ltz ty]) = O(r'>™4),

where 0 < r < 1, and, therefore,

Ssup max Z Z|E90 (vit2 Uit4)| = O(m)'

1<i<n
€01 H=1 13=1

In the same way, we obtain

sup max Y 3 [, ()| = O(m)

1<i<n
W n=1 =1

sup maxz > [Eo, (wiivi)| = O(m),

1<i<n
O9<Oy =1 =1

whereas, from Andrews (1991, Lemma 1),

ni ni 2
sup max E cumy (7)), Vi, U3y, Vi, ) | = O(m?).

fpe0, 1=i=n 4

It follows that

sup max =0(1).

000 I=sisn

Z ]E90 u:t] v”2ult'5 Ult4) E(fo (uttl vltz)E90 (u1t3 Ulf4)
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In the same way,

sup max| - Z Eo, (Vie, Vi, Vi Vit ) — Eg, (Viey Vit ) B, (Viry i, )| = O(1),
00O Haoly

sup max|—; Z g, (U7 iy Vity Vie, ) — By (157 vigy ) By (Vi Vi, ) | = O(1),
0ge0; 1==n|m

Hyesly

which is more than enough to imply that

max sup ]Efoo(()(lm Eoo(Xi,m))z) =o(n),

I=i=ng)co,
so that (S.7) holds. Thus,

J 90(0) 2

Z Q) By (Xim) +0p(1) =20, b, + 0p(1) =28, +0p(1)  (S.8)

uniformly over 6.

Finally, following the same arguments as those in the supplementary appendices to
Hahn and Newey (2004) (using suitably uniform versions of Lemmas 5 to 11 of Hahn
and Kuersteiner (2011), which may be shown by relying on our Lemmas S.1 and S.2), we
obtain

Fe(e)
de

c m35) =o(m™)

for some finite ¢ > 0 and 0 < s < !/10. This implies that #¢(€)/s& = Op(m*) uniformly in
0<e<m™"2, and so

sup IP’9< max

00<6, 0<e<m=12

gL

uniformly in 6, € 6.
Then, combining the expansion in (S.3) with the expressions obtained in (S.5) and (S.8),
we find that

nm(¢ — ¢o)—rzzﬂnmu,t [Bnm+enm,

i=1 t=1

where (uniformly over @) the first term on the right-hand side has been shown to be
Op(1), the second term satisfies

sup |Bn < ( sup max|§,m|)<su max — ZZ|Egn(vmv,,z)|)

0p<01 000 00O l<isnm 16

(sup max|§,m|) (sup max — ZZ|E"0 U Vi) ) =0(1)

000, l<izn 0ycO, 1sisn M
0 =1 p=

under our assumptions by another application of Hall and Heyde (1980, Corollary A.2),
and the remainder term is op(1). This completes the proof. Q.E.D.
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THEOREM S.2—Uniform Asymptotic Normality: Let Assumptions 1-6 hold. Then

sup|Py(vVnm(¢ — ¢) < a) —Py(vy < a)| = 0(1)

00
forany a.

PROOF: From Theorem S.1,

— 1 e o In
nm((p—go): Zznniuit"'_ Zﬁnm"f_enm’

nm i=1 t=1

where

sup Py(lleun 2 > £) = o(1).

0c0O
We first show that
1

nm

S0 5 N, 5)) (5.9)

i=1 t=1
uniformly in 6 € ©,. To do so, by the Cramer—Wold device, it suffices to show that,

for any (non-random) vector ¢ of conformable dimension, V/yam " Y ¢ L u;,
N(0, ¢’ ¢) holds uniformly in 6 € 0. Let

m
BT

nm t=1

0

w; :

b

S
3

so that
1

n m n
r)—1 /
E E Q) u, = E c'w;.
Jnm =

i=1 t=1

By the mean-zero property of the efficient score and the information equality, respec-
tively,

Eo(cw) =0, o, := ZE" (Cwwic) =12, c=0(1),
i=1

uniformly in 6 € @,. The Berry-Esseen inequality gives

n , n n =32 n
Cwi / / /
m(z - ) - ®(@)| S Y E(|cw]) (chwﬁ) S Y E(|cw).
mn i=1 i=1 i=1

i=1 "
The mixing condition in Assumption 2 and the moment requirements in Assumption 3
guarantee that

sup
a

c/w,-|3) =0(n""),

o
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uniformly in 6 € @,. Therefore,
- c/w
P 6}
0 (; P ) (a)

Next, the continuous-mapping theorem, together with the fact that, under our assump-
tions,

sup sup
0O a

< S sup (Z Eo(|c'w,|’ )) =o(1). (S.10)

i=1

lim Q! =3,
yields
supsup|P D(a)|=o0(1
supsup 0(2\/— ) (a)| =o(1),
from which (S.9) follows.

As this result is uniform in a, and /"*/mB,,,» = yBs + 0(1) uniformly in 6 € @, we find

P, (Z

sup sup
= V3¢

0O, a

=o(1), (S.11)

=a-— \/n/_mc,Bnm> - (p(a - ’yC,,BH)

which accounts for the asymptotic bias in the limit distribution.
Finally, an application of Lemma S.4 with

\/_ Z Z"(znm u; + \/7ﬁnm; Yom = Xnm Cum>

i=1 t=1

xnm

and z ~ N (B, ) yields the result of the theorem. Q.E.D.

THEOREM S.3—Uniform consistency of the plug-in estimator of the information ma-
trix: Let Assumptions 1-6 hold. Then

SupIP’{,(”_(A)nm,e =l > 8) =o(1)

0O
forany ¢ > 0.
PROOF: We introduce the notational shorthand

(@, milzi) (@, milzir)

Voo (V11 V12> dpdg’ d@dn;
RN 7 2 P @, nilzi) (@, milzir)
amde’ amidm;

where the derivatives are evaluated at the parameter values that were used to generate
the data. In the same manner, we write the plug-in estimator constructed using ¢, 7; as

I},»,. Then

Da=—L 3 i(m(v,&l) - (% ém(nﬂ)) (% ém(mfZ))lEa(Vifl)),

i=1 t=1
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and its plug-in estimator is

1 & n 1S 13-
nmb‘ ___Z< ZI/”U (EZI/UH)(%ZI/UZZ) EZK?)
To show Theorem S.3, it suffices to establish that, for all £ > 0,

supIP’o(max ; Z(I}”” —Eo(V,"))| > s) =o(1),
2

<0, l=izn P
l = 12 12 _
PP(m = E7) )=

sup P, (rnax % Z(Vlfz —E(V,2)| > e) =o0(1).
2

0c0O, l=isn

The proof for each of the four terms is similar and so we only provide details for the first

of them.
To begin, we note that

sup Py (max

00, lsisn|i m

is bounded from above by

m

S E()

t=1

1 A
D ANAY

t=1

e
sup Py | max —].
2 2) " GE(E 9<1<l<" 2 - 2)

To deal with the first of these terms, let /! be the vector that collects all third-order
derivatives with respect to ¢ and let I denote derivatives with respect to ¢ (twice) and
;. The tilde is used to indicate that these derivatives are evaluated at values (&, 7;) that
(elementwise) lie between (¢, 7;) and (¢, 1;). A mean-value expansion around (¢, 7;)
yields

sup Py | max
9601 l=sizn

j 1
H; S0 = 0,

1 &K~ . 1M X
5EZ\|V,-}“||2||¢—<,D||2+E§||V,}“H2un,~—n,-nz

t=1

1 m B 1 m _ )
< 20V o 217 =
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The uniform bound on the derivatives in Assumption 3(ii) implies that

1 m
— 2 IVt S = )bz,
Z 1 m; ¢
1 m
— 2 Vil < — 3 b(a).
Z 1 m; t

Therefore,
1 ¢ 11 11 ~ ~
max| ZI(VI-, =V < | max— Zb(z,t) (16 = @l + max i = mil.).
= 2

Now, the mixing conditions in Assumption 2 and the moment conditions on the bounding
function b in Assumption 3(iii) imply that

sup P, <1n<11225|% Z(b(zi,) —Eo(b(zi))) > s) =o(1)

00 =1
by an application of Lemma S.1. Also, !/m Y- E4(b(z;)) converges to its limit uniformly
over @, by Assumption 3(iv). At the same time, by Theorem 1 in Kim and Sun (2016), we
have that

supPi(l¢ — ¢l > &) =0(1),  supPy(max|f — mill: > 2) = o(1).

0O 0O,
§: —v)| =Z) =00
2 2 > 2) o(1)

follows. Next, again by Assumptions 2 and 3, an application of S.2 gives

Taken together, these results yield

sup P, (max

0e6, 1<i<n

supP, <m SR > g) ~o().
2

00 =1
Hence,
1 &
supPy  max| — S (71 —E,(1)| > &) =0(D),
00, L =1 2
and the proof is complete. Q.E.D.

THEOREM S.4—Distribution of the likelihood-ratio statistic: Let Assumptions 1-6 hold.
Suppose that the true parameter value lies in the interior of the set @N{p €V, : ¢(¢) = 0} and
that ¢ is five times continuously differentiable on V, with bounded derivatives and Jacobian
matrix with maximal row rank. Then

sup|Py( < a) — Py(wy < a)| = 0(1)

00,



12 A. HIGGINS AND K. JOCHMANS

for any a, where w, has a non-central x*-distribution with dim ¢ degrees of freedom and
non-centrality parameter vy B, @, (9, 2,P,) "' @, B,.

PrROOF: Recall the profile likelihood

ZZZ(GD’ ﬁi(¢)|ziz), Ni(p) := argmaxzﬁ(qo, il Zit).

i=1 =1 i =1

By a standard expansion,

S5 (0 @) — (6 1@)zi) = 5(5 by Y TUE D) (o)

i=1 t=1 i=1 t=1 (990(990
where ¢ lies (elementwise) between ¢ and ¢. It is straightforward to adapt the proof

of Theorem 1 of Kim and Sun (2016) to yield a consistency result for the constrained
estimator. Moreover,

sup o6 — ell2 > &) = o(m™"),  supy(maxiiii = mills > &) = o(m),
0O, 0O

for any ¢ > 0. Combined with (6) in the main text, this then equally yields

sup Py (16 — ell2 > &) = o(m™"),  supPy(maxiiii = mills > &) = o),
0O 00 !

for any € > 0. Proceeding in the same manner as in the proof of Theorem S.2 readily gives

%ZZ e(@, n:(®)lzi) 0+ op(1)

i=1 t=1 ORD&QO

uniformly on ;. Consequently, by rearranging terms, we obtain the conventional
quadratic approximation

W= v nm(QB - (»E’),‘Qnm\/ nm(QB - 45) + OP(l)
uniformly on @,. By Theorem S.6,

Jam(p — @) = (2;,1,@; (2, _Q;;,@;)_leﬁp nm(p — @)+ op(1)

uniformly on @;. Further, by the uniform asymptotic-normality result of Theorem S.2,
D, /nm(¢ — @) = D, v, + 0p(1) uniformly in € O;. Also, D, vy ~ N(y P, By, P, 3 P,)
and lim,, , ., ;! = 3,. Hence, W converges in distribution to a non-central y*-distribu-
tion with non-centrality parameter y 8;®, (®,2,®,)~'®,B, uniformly in 6 € @,. This
completes the proof of the theorem. Q.E.D.

THEOREM S.5—Distribution of the score statistic: Let Assumptions 1-6 hold. Suppose
that the true parameter value lies in the interior of the set ©@ N{¢p € V,, : ¢ (¢) = 0} and that ¢
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is five times continuously differentiable on V,, with bounded derivatives and Jacobian matrix
with maximal row rank. Let

sZ(J_ " Z qo,n(qv)lzlz)) V(J—ZZ (¢, n(qo)m))

i=1 =1 QD

for 3 the plug-in estimator of 3 based on the constrained maximume-likelihood estimator.
Then

sup|P,(§ < a) — Py(wy < a)| = 0(1)
96(")1

for any a, where wy has a non-central x*-distribution with dim ¢ degrees of freedom and
non-centrality parameter <y B, @, (P, 3y P,,) "' @, By.

PROOF: The Lagrangian problem associated with the constraint ¢(¢) = 0 has first-
order condition

> ()|Zzz X
ZZ (¢ n ¢ )_%/\:0’
i=1 t=1

where @ is the Jacobian of the constraint evaluated at ¢. Combining this with (S.14)
gives

§0,77 ¢)lzi L oiee LD ) D, nm($
ZZ ( )zi) _ nm@@)\:(p¢(@¢gn}}1(p¢) "D, m($ — )+ 0p(1).
v i=1 t=1

The uniform asymptotic normality of \/nm($ — ¢) obtained in Theorem S.2 then readily
yields that (nm)~'AN'®Q;! @'} has a non-central x? limit distribution with non-centrality
parameter y B, @, (P,3,P,)"'®,By.. The uniform consistency of 3 implied by Theo-
rem S.3 and the consistency of the constrained estimator then give the result of the theo-
rem. Q.E.D.

THEOREM S.6—Uniform asymptotic expansion: Let Assumptions 1-6 hold. Suppose
that the true parameter value lies in the interior of the set @ N{¢p €V, : ¢(¢) =0} and that ¢
is five times continuously differentiable on V,, with bounded derivatives and Jacobian matrix
with maximal row rank. Then

Jm(é = §) =00 P, (B, 2,0 D,) " D, /nm(é — ¢) + 0p(1)
uniformly in 6 € 0.

PROOF: The proof of the theorem proceeds in a similar manner as the proof of Theo-
rem S.1 and we use the same notation wherever possible. In particular, for 0 < e <m™"?,
let ¢(e) and A(e) satisfy

ZZ / (e(e), ni(e(€), €)1z) dGi(zl€) — D, A(€) =0 (S.12)

i=1 t=1

and ¢ (¢(€)) =0. Here, n;(¢, e) satisfies (S.1) for fixed ¢ and € and A(e€) is the Lagrange
multiplier. Setting € = m~"? gives the constrained maximum-likelihood estimator while
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setting € = 0 gives the true parameter value. By a third-order expansion around € = 0, we
have

) ) I¢(0) L1 #¢(0) N P ()
e—e\_ L | oe N de (- Je
( A )‘m IA(0) +2l<ﬂ> #M(0) +3!<m) P A(E)

Jde Je? e

for some 0 < € < m~"2. Like before, the first of the right-hand-side terms will satisfy a
central limit theorem, the second will introduce bias, and the third will be asymptotically
negligible.

For the first term, we again begin by differentiating (S.12) with respect to e. This yields

"\ (el z) N - IGi(zle) 9Py @
3 P dGu(zle)+ Y ) u(elz)d e T e Me =P

i=1 =1 i=1 t=1

dA(e)
Je

=0.

The first two terms coincide with those in (S.4). Evaluating at € = 0 and using that A(0) =
0 gives

720 o MO
- +/m Z Z i = Py —

i=1 t=1

=0.

Next, differentiate the constraint ¢(¢(€)) = 0 with respect to € and evaluate at zero to
obtain

de(0)

b =0.
¢(0) Je
Combining both equations and using the shorthand notation @ = @, yields the system
9¢(0) noom
nm{),, D Jde _ \/mz Z Ui
P 0)1ar0) | e
Jde

By a block-inversion formula,

q') O m nm

(nm(),,m @/)1_ (nm)~" (2} — 1@/@9 L) o0l 0]\ d (00, 1cb)
B (@0, )" ‘o0t nm (cmn;,cp) ’

and so

de(0)
Je

= (2, — 0 (00, @) D0 anZu,[,

i=1 =1
and, similarly,
&)\(0)
Je

= (00, 00} Jm ZZ Ui

i=1 t=1

The same argument as used in the proof of Theorem S.1 yields that %¢©)/se = Op(n="?)
and 74/se = Op(4/nm) uniformly over O),.
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Moving on to the second term in the expansion, we differentiate (S.12) twice with re-
spect to e:

>3 [P i el

i=1 t=1

" & [ da(elz) | IG(zle) | FPgA(e)
2 =0. 1
+ ZZ/ Je d de + Je? 0 (S 3)

i=1 t=1

All but the last term previously appeared in the proof of Theorem S.1. Using that A(0) =
0, that %©/se = Op(n="?) and *©)/se = Op(4/nm) uniformly on @, and that the first two
derivatives of ¢ are bounded gives

Je? Je?

+ Op(m)

uniformly on @;. Combining this with the analysis of the first two terms at € = 0 in the
proof of Theorem S.1 implies that (S.13) at e = 0 equals

P ¢(0) #*A(0)

—nmQ,,, P +2nmb,,, — @;(0)7 +Op(m)=0

uniformly on @,. Next, differentiate the constraint ¢(¢(e)) = 0 with respect to e twice
and evaluate at zero to obtain

Pe(0
(1>¢(0) %2) + Op (f’lil) =0

uniformly on @,. Combining both equations gives the system

#¢(0)
nm{2,, P Je? _(2nmb,, n Op(m)
VA E2YON R Op(n))
Je?
So,
2
- ;D(ZO) = (20 = Q0 & (P @) DO ) 2, + Op(n7),
€
and, similarly,
A0 _
A0 (@0 @) B0 20mb, + O(m),
€

uniformly on 6.

For the third term in the expansion, finally, the same arguments as in the supplementary
materials to Hahn and Newey (2004) can be used to establish that it is asymptotically
negligible.

Combining results yields that, up to op(1),

] 1 -y "
W(‘P ¢) ( nm nm ( mm ) nm) < nm ;;u + m )
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uniformly on ®;. From Theorem S.1,
1 . n
Sam(e— @) =07 | — Uy + | —bym | +o0p(1

uniformly on @,. Taking differences between these equations and again using Theo-
rem S.1 then yields

JAm(§ — ) = Q10 (6 0,10 D num (¢ — @) + 0p(1),

uniformly on @, which is the result of the theorem.
The calculations above also imply that

1 -1 1 — n
A= (90D ®O ! Wi+ ./ —bum | +0p(1),
Vnm (0, #) "m< nm ;; ' m r(1)
uniformly on @, and so, again by Theorem S.1,
1 -1

A= (D0, ®) @ /nm($ — @)+ op(1 S.14
A= (P0,0) D6~ 9) + 0r(1) (5.14)
uniformly on @;. From this it readily follows that the Lagrange-multiplier statistic and the
likelihood-ratio statistic share the same limit distribution (under the null). Q.E.D.

S.2. AUXILIARY LEMMATA

LEMMA S.1—A Uniform Version of Lemma 1 of Hahn and Kuersteiner (2011): For
i=1,....,nlet {&,t=1,2,...,m} be a vector-valued sequence generated through a data
generating process indexed by parameter s; € P. Let

ai((pi’ h) ‘= Sup sup sup |Pllfi(A N B) - ]P’//i(A) Pllfi(B)

I<t<m AeA;(¥;) BEBjsyp (¥;)

b

where A;, () and B,,(,) are the sigma algebras generated by the sequences &, €1, . .. and
&it, Eitt1s - - . . Assume that

(i) Ey,(éi) =0forall (i,t) and ¢; € P,

(ii) the mixing coefficients satisfy

sup sup ]ai(a,b,», h)| = O(rh)

1<i<n yjeP

for some constant 0 <r < 1,
(iii) sup,_;., Sup; - -, Sup, .p Ey,(1:ll3) < c for some q > 2 and constant 0 < ¢ < oo.
Then, as n, m — oo so that "/m — y* with 0 < y < 00,

if g >4,

forall € > 0; while
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ifg>2and s >0,

sup Py, ({Efgf fZ§zt >ms> O(m'~)

forall € > 0.

PROOF: It suffices to prove the second part of the theorem. Consider a fixed value

e > 0. We have
) ).

By an application of Markov’s inequality and a strong-mixing moment inequality of
Doukhan (1994, Theorem 2 and Remark 2, pp. 25-30), we have that

1
( Zg,, )_ m@m)m ( Zg,,

1 1

~ E @t

<11

~ et m?

J_Zflt J—tht

q/2

for all 1 < i < n, with the upper bound being independent of both i and ¢;. Consequently,
we obtain that

Z 5,,

This completes the proof. Q.E.D.

>m 8) < _— 1 — O(m(]qu))'

mqs—l

LEMMA S.2—A Uniform Version of Lemma 2 of Hahn and Kuersteiner (2011): For
i=1,...,nlet {£(ziy, d1), t=1,2,...,m} be a vector-valued sequence of functions of data
z;; and a parameter ¢; € Q, for Q compact. The z;, are generated through a data generating
process indexed by parameter s; € P. Let

a(yi,h):=sup sup sup [P, (ANB)—Py, (AP,

I<t=m Ae Aji(¥;) BEBjrypn(¥i)

where A;, () and B, (i;) are the sigma algebras generated by the sequences z;,, zi_1, . . . and
Zity Zity1s - - - - ASSume that

(i) Ey,(£(zie, ¢:)) =0 forall (i, 1), y: € P,and $; € Q,

(ii) the mixing coefficients satisfy

sup sup|ai(¢i, h)| = O(rh)

1<i<n;eP

for some constant 0 <r < 1,



18 A. HIGGINS AND K. JOCHMANS

(iii) there exists a function b such that sup,, . |€(zii, bi)ll2 < b(zi), for all ¢, ¢, € Q,

||§(Zn, 1) — &(zins ¢2) ||2 <b(zi) lld1 — P2l

and sup,_;_, Sup, ., Sup, . By, (b(zi))?) < ¢ for some g >2 and 0 < ¢ < oco.
Then, as n, m — 00 so that "/m — y* with 0 < y < 00,
if g > 6,
~e) oo

Zf(z,,, <¢>)

sup Py,....4, | max
Ylseenshn €PN 1<i<n

for all & > 0; while
if =2 and s > 0 are such that gs > 3 + dim(®)/5,

Z &(zi

>m a) o(m™)
forall e > 0.

PROOF: Fix ¢ > 0. We begin by noting that

)

sup Py, .. max
Yisens YpePh l<i=n

Y15 Yn€P” (

<Zsupm, (H Zf(zn,cz))

Z &z

)

)

Because Q is compact, we can divide it into a finite number k; of subsets Q;, ..., Oy,
such that ||¢; — ¢,|, < 6 whenever ¢; and ¢, lie in the same subset. With this covering

in hand,
> s) <sup P, ( 8)
2 YieP

< Z sup Py, <sup

k=1 YieP [510)%

sup P"”(H Z&(zn, )

yieP

%gm;g(zita(vﬁ) >

Z f(zzt, d))

t=1

o)
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for each i =1, ..., n. Further, for each subset Oy, letting ¢, € O, we can invoke Con-
dition (iii) to obtain

1 m
- Zf(zita d)) =
t=1 2

sup
beQy

1 m
” Z §Gzidw)| +—= Z sup || &(zir, ¢) — €(zar, d’(k))”z
t=1

PeQ
2 k

IA

1 m
Z Z §(Zn, ¢(k))

2

23 [bz) ~ B (b)) | + 25, (b(21)

t=1

Set & so that 26E,,(b(z;)) < ¢/3. Then, combining the last two bounding inequalities

yields
£
3

([
+ Z sup IP’.,,I< Z]b(zl,) Ey, (b(zi))| > —)

P
ieP

yieP

> a) < Z sup Py, (H Zf(z,—,, b))l >

Here, each of the right-hand-side terms satisfies the conditions of Lemma S.1 and are,
therefore, both o(m~") by an application of the first result given there. The first statement
in the theorem then follows from the fact that k5 = O(1) and that */m = O(1).

To show the second part, we proceed in the same manner, only now partitioning Q into
subsets such that ||p; — ¢ ||, < ¥/ym for some & > 0. The number of sets needed to do so is
of the order m*™*”2, and each of them yields terms to which the second part of Lemma S.1
can be applied, showing them to be at most of order m!~% uniformly. This then yields

sup P% (max ~ ms8> — O(n) O(mlquerim(qﬁ)/Z) — O(mfl),

yieP 1<i<n

1 m
f(Zit, ¢z)
T 26 )

using that O("/m) = O(1) and that gs > 3+ dm(¢)/>. This completes the proof of the lemma.
Q.E.D.

LEMMA S.3: Let x and y be two random vectors of length k. Write « for the k-vector of
ones. Then

P(y <a) <P(x <a+e) +P(|ly — xl, > Vke)
forall a and any ¢ > 0.
PROOF: Fix ¢ > 0. We have

Ply<a)=P(y<a,x<a+ie)+P(y<a,x>a+e).
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Now, P(y <a,x <a+ &) <P(x <a+ &) while
Py<a,x>a+ie)=P(y—x<a—x,a—x < —u¢)
<P(y—x<—te)+P(y—x>1¢)
<P(lly — x| > ke)
<P(ly - xl. > Vke).

Combining results completes the proof of the lemma. Q.E.D.

LEMMA S.4: Let Yun, Xum, and z be random vectors of size k whose probability functions
are indexed by the parameter 0 € ©. Assume that
(i) the function Py(z < a) is continuous in a for all 6 € 6,
(if) as n,m — 00, sup,.o Po(|yum — Xumll2 > €) = 0(1) forall & > 0,
(iii) as n, m — 00, sup,_o|Po(xum < a) —Py(z < a)| =o(1) forall a.
Then,
sgug\l%(ynm <a)—Py(z < a)| =o(1)

as n,m— oo.
PROOF: For any 6 € O and ¢ > 0, an application of Lemma S.3 gives
Py (Y < @) < Po(Xum < @+ 18) + Po(ym — Xumll2 > Vke)

and so, for any a, > a + e,

Po(Yum < @) < Po(Xum < a1) + Po(Yum — Xumll2 > V). (S.15)
By an application of the same lemma, for any a_ < a — v,

Py (Xm < a-) < Pg(Yum < @) + Py (1Y — Xumll2 > Vke). (S.16)
Taken together, (S.15) and (S.16) imply that

Py(Xm < a-) = Po(I|Yum — Xamll2 > Vke)

S ]P)(?(ynm S Cl)
S IP)0()(:11m S 6l+) +P6(||ynm - xnm”Z > \/zé,‘)

Subtracting Py(z < a) from each of the terms in the above inequalities and rearranging
shows that

Py (Gm < @) = Py(z < @)| < 2Py (1Y — Xl > Vke)

+ ‘P()(xnm =< a—) - ]P)(?(Z =< a)| + ‘]P}O(xnm < Cl+) — PB(Z < Cl)’
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Applying an adding and subtracting strategy to the terms on the right-hand side now gives

SUP|Py(Yum < @) — Py(z < @)| < 25UpPy(|Yum — Xumll2 > Vi &)

0O 0O

+ Sup‘Pf?(xnm =< Cl_) - P(-)(Z < a_)|

0O

+ sup|Py(z < a_) —Py(z < a)|

0O

+ sup|Py(xm < a;) — Py(z < a.)|

0O

+ sup|Py(z < ay) — Py(z < a)|.

0O

Here, as n, m — oo, the first right-hand-side term is o(1) by Condition (ii); the second
and fourth term are both o(1) by Condition (iii); and, due to the fact that a_ and a, can
be chosen to be arbitrarily close, the third and fifth term can be made arbitrarily small by
Condition (i). The result has thus been shown and the proof of the lemma is, therefore,
complete. Q.E.D.
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