SUPPLEMENT TO "ATTRIBUTES: SELECTIVE LEARNING AND INFLUENCE" (Econometrica, Vol. 92, No. 2, March 2024, 311–353)

ARJADA BARDHI Department of Economics, New York University

CONTENTS

Appendix C: Proofs and Auxiliary Results for Section 3.2
Appendix D: Proofs and Auxiliary Results for Section 4.2
Appendix E: Extensions and Additional Results
E.1. Examples for Section 5.1
E.2. Binary Decision and Reservation Values
E.3. Noisy Observations of Attribute Realizations 12
References

APPENDIX C: PROOFS AND AUXILIARY RESULTS FOR SECTION 3.2

PROOF OF PROPOSITION 3: For any $p \in (0, 2]$, $\sigma_p(a, \underline{a})$ and $\sigma_p(a, \overline{a})$ strictly increase in $a \in [\underline{\alpha}, \underline{a}]$, so $\psi^2(a)$ increases in a as well. Hence, $a = \underline{a}$ dominates any $a < \underline{a}$. By a similar argument, sampling $a > \overline{a}$ is suboptimal as well. So, for any $p \in (0, 2]$, $a^s \in [a, \overline{a}]$.

(i) For p = 1, the statement follows from Proposition 2. Consider p < 1. The posterior variance satisfies the following: (i) $\lim_{a \downarrow \underline{a}} \partial \psi^2(a) / \partial a = -\infty$, (ii) $\lim_{a \uparrow \overline{a}} \partial \psi^2(a) / \partial a = \infty$, and (iii) ψ^2 is differentiable and weakly convex in ($\underline{a}, \overline{a}$). Therefore, ψ^2 is maximized at the endpoints of $[a, \overline{a}]$: only the two relevant attributes are optimal.

(ii) Let p > 1. The sign of $\partial \psi^2(a)/\partial a$ is determined by the sign of the function $h(a) := \sigma_p(a, \bar{a})(\bar{a} - a)^{p-1} - \sigma_p(\underline{a}, a)(a - \underline{a})^{p-1}$. Clearly, ψ^2 is strictly increasing at $a = \underline{a}$ because $h(\underline{a}) > 0$ and strictly decreasing at $a = \bar{a}$ because $h(\bar{a}) < 0$. Hence, $a^s \in (\underline{a}, \bar{a})$. The single-player sample a^s satisfies $h(a^s) = 0$, that is,

$$\left(\frac{a^s - \underline{a}}{\overline{a} - a^s}\right)^{p-1} = \frac{\sigma_p(a^s, \overline{a})}{\sigma_p(\underline{a}, a^s)}.$$
(1)

The function h has either a unique zero at $(\underline{a} + \overline{a})/2$, or three zeros, of which one is $(\underline{a} + \overline{a})/2$ and the other two are symmetric with respect to it. There exists at most one $a^s < (\overline{a} + a)/2$ because

$$\frac{\partial h}{\partial a}\Big|_{a=a^s} = \sigma_p(a^s, \bar{a})(\bar{a}-a^s)^{p-1}\left(\frac{1+p\left(\left(\frac{\bar{a}-a^s}{\ell}\right)^p - 1\right)}{\bar{a}-a^s} - \frac{1+p\left(\left(\frac{a^s-a}{\ell}\right)^p - 1\right)}{a^s-\underline{a}}\right)$$

has the same sign over $(\underline{a}, (\overline{a} + \underline{a})/2)$. Hence, *h* is either globally decreasing or decreasing-increasing-decreasing over $(\underline{a}, \overline{a})$.

As $\ell \to 0$, the RHS of (1) goes to zero for any $a^s \in (\underline{a}, \overline{a})$, hence the two single-player samples converge to $a^s \downarrow \underline{a}$ and $a^s \uparrow \overline{a}$, respectively. At any a^s , such that $h(a^s) = 0$ and

Arjada Bardhi: arjada.bardhi@nyu.edu

 $a^s < (\underline{a} + \overline{a})/2$ (i.e., for which *h* crosses zero thrice), the function *h* is decreasing at a^s . Note that *h* is increasing in ℓ at such an a^s because

$$\frac{\partial h}{\partial \ell}\Big|_{a=a^s} = \frac{p}{\ell} \sigma_p(a^s, \bar{a}) (\bar{a} - a^s)^{p-1} \left(\left(\frac{\bar{a} - a^s}{\ell} \right)^p - \left(\frac{a^s - \bar{a}}{\ell} \right)^p \right) > 0.$$

Moreover, the function h is decreasing in a at $a = a^s$ such that $h(a^s) = 0$ and $a^s < (\underline{a} + \overline{a})/2$. Thus, as ℓ increases the single-player sample to the left of $(\underline{a} + \overline{a})/2$ shifts to the right. By the mirror argument, the single-player sample that is strictly closer to \overline{a} shifts to the left as ℓ increases.

For ℓ sufficiently large, the function h is strictly decreasing at $(\underline{a} + \overline{a})/2$. To see this, consider

$$\left.\frac{\partial h}{\partial a}\right|_{a=(\underline{a}+\overline{a})/2} = 2^{3-2p}(\overline{a}-\underline{a})^{p-2}e^{-2^{-p}(\frac{\overline{a}-\underline{a}}{\ell})^p}\left(p\left(\left(\frac{\overline{a}-\underline{a}}{\ell}\right)^p-2^p\right)+2^p\right),$$

which is strictly negative for ℓ large because $((\bar{a} - \underline{a})/\ell)^p \to 0$ as $\ell \to +\infty$. Therefore, it must be that *h* is strictly decreasing over (\underline{a}, \bar{a}) , hence the single-player sample is $a^s = (\underline{a} + \bar{a})/2$.

Finally, fix $\ell > 0$. As $p \downarrow 1$, the RHS of (1) converges to a strictly positive value whereas the LHS shrinks to 0 for any fixed sample. Therefore, the two single-player samples converge to $a^s \downarrow \underline{a}$ and $a^s \uparrow \overline{a}$, respectively. Q.E.D.

LEMMA C.1: Suppose Assumption 2 holds. Fix a sample $\mathbf{a} = \{a_1, \ldots, a_k\}$, where $0 \le a_1 < \cdots < a_k \le 1$. For the singleton sample, $\mathbf{a} = \{a_1\}, \tau(a_1) = \ell(2 - e^{-a_1/\ell} - e^{-(1-a_1)/\ell})$. For $k \ge 2$, the sample realization $f(a_i)$ is weighted by

$$\tau_{j}(\mathbf{a}) = \begin{cases} \ell \left(1 - e^{-a_{1}/\ell} + \tanh\left(\frac{a_{2} - a_{1}}{2\ell}\right) \right) & \text{if } j = 1\\ \ell \left(\tanh\left(\frac{a_{j} - a_{j-1}}{2\ell}\right) + \tanh\left(\frac{a_{j+1} - a_{j}}{2\ell}\right) \right) & \text{if } j = 2, \dots, k-1\\ \ell \left(1 - e^{-(1 - a_{k})/\ell} + \tanh\left(\frac{a_{k} - a_{k-1}}{2\ell}\right) \right) & \text{if } j = k. \end{cases}$$

PROOF OF LEMMA C.1: Using the expressions for $\tau(a; \mathbf{a})$ derived in the proof of Lemma 2, we obtain: (i) if $a < a_1$, then $\tau_1(a; \mathbf{a}) = e^{-(a_1-a)/\ell}$ and $\tau_j(a; \mathbf{a}) = 0$ for all $j \neq 1$; (ii) if $a > a_k$, then $\tau_k(a; \mathbf{a}) = e^{-|a_k-a|/\ell}$ and $\tau_j(a; \mathbf{a}) = 0$ for all $j \neq k$; (iii) if $a \in (a_i, a_{i+1})$ for $i = 1, \ldots, k - 1$, then

$$\tau_i(a; \mathbf{a}) = \frac{e^{-(a-a_i)/\ell} - e^{-(2a_{i+1}-a_i-a)/\ell}}{1 - e^{-2(a_{i+1}-a_i)/\ell}} = \operatorname{csch}\left(\frac{a_{i+1}-a_i}{\ell}\right) \operatorname{sinh}\left(\frac{a_{i+1}-a}{\ell}\right),$$

$$\tau_{i+1}(a; \mathbf{a}) = \frac{e^{-(a_{i+1}-a)/\ell} - e^{-(a_{i+1}+a-2a_i)/\ell}}{1 - e^{-2(a_{i+1}-a_i)/\ell}} = \operatorname{csch}\left(\frac{a_{i+1}-a_i}{\ell}\right) \operatorname{sinh}\left(\frac{a-a_i}{\ell}\right),$$

and $\tau_j(a; \mathbf{a}) = 0$ for all $j \neq i, i + 1$. Integrating these weights as in Corollary 1, we obtain the sample weights stated in the lemma. Q.E.D.

PROOF OF PROPOSITION 4: We first establish that $a_1^s > 0$ and $a_k^s < 1$. Suppose, by contradiction, that $a_1^s = 0$. Differentiating $\psi^2(\mathbf{a})$ with respect to the leftmost attribute:

$$\frac{\partial \psi^2(\mathbf{a})}{\partial a_1}\Big|_{a_1=0} = 2\ell e^{-2a_1/\ell} \left(2e^{a_1/\ell} - 1\right) - 2\ell \operatorname{sech}^2 \left(\frac{a_2 - a_1}{2\ell}\right)\Big|_{a_1=0} = 2\ell \left(1 - \operatorname{sech}^2 \left(\frac{a_2}{2\ell}\right)\right) > 0$$

for any **a** \ { a_1 }. This contradicts the optimality of $a_1^s = 0$; hence $a_1^s > 0$. By a similar argument, $a_k^s < 1$. Therefore, the first-order approach is valid for all sample attributes.

Second, we show that for any $j \in \{2, ..., k\}$, the distance $a_j^s - a_{j-1}^s$ is constant in j. By the optimality of a_j^s , the first-order condition with respect to a_j^s is

$$\frac{\partial \psi^2(\mathbf{a})}{\partial a_j^s} = 2\ell \left(\operatorname{sech}^2\left(\frac{a_j^s - a_{j-1}^s}{2\ell}\right) - \operatorname{sech}^2\left(\frac{a_{j+1}^s - a_j^s}{2\ell}\right)\right) = 0$$

and the second order condition $\frac{\partial^2 \psi^2(\mathbf{a})}{\partial a_j^{s^2}} < 0$ is satisfied. Hence, $a_j^s - a_{j-1}^s = a_{j+1}^s - a_j^s = (1 - a_1^s - a_k^s)/(k-1)$ for any j = 2, ..., k-1. By Lemma C.1, this implies that for any j = 2, ..., k-1, the sample weight is $\tau_j(\mathbf{a}^s) = 2\ell \tanh(\frac{1 - a_1^s - a_k^s}{2\ell(k-1)})$. Third, the first-order conditions with respect to a_1^s and a_k^s are respectively

$$e^{-a_1^s/\ell} \left(2 - e^{-a_1^s/\ell}\right) = \operatorname{sech}^2 \left(\frac{1 - a_1^s - a_k^s}{2\ell(k-1)}\right),$$
$$e^{-(1 - a_k^s)/\ell} \left(2 - e^{-(1 - a_k^s)/\ell}\right) = \operatorname{sech}^2 \left(\frac{1 - a_1^s - a_k^s}{2\ell(k-1)}\right).$$

Because the RHSs are equal, LHSs must be equal, too. The LHS is of the form x(2-x), which strictly increases in $x \in (0, 1)$. Hence, $a_1^s = 1 - a_k^s$, which implies $\tau_1(\mathbf{a}^s) = \tau_k(\mathbf{a}^s)$. This, along with a_2^s, \ldots, a_{k-1}^s being equidistant, establishes part (i).

The FOC for the leftmost attribute a_1^s pins down the entire \mathbf{a}^s . We use the trigonometric identity $\operatorname{sech}^2(x) = 1 - \tanh^2(x) = (1 - \tanh(x))(1 + \tanh(x))$ and let $x := e^{-a_1^s/\ell}$ and $y := 1 - \tanh(\frac{1-a_1^s - a_k^s}{2\ell(k-1)})$ to rewrite the FOC with respect to a_1^s as x(2 - x) = y(2 - y), where $x, y \in [0, 1]$. Because f(z) = z(2 - z) is one-to-one for $z \in [0, 1]$, this implies that x = y, which combined with the fact that $a_1^s = 1 - a_k^s$, gives the conditions in part (ii). The equation $1 - e^{-a_1^s/\ell} = \tanh(\frac{1-2a_1^s}{2\ell(k-1)})$ has a unique solution because for $a_1^s \in (0, 1/2)$ the LHS is strictly increasing in a_1^s and it is zero for $a_1^s = 0$, whereas RHS is strictly decreasing in a_1^s and it is zero for $a_1^s = 1/2$. Finally, invoking (11), note that

$$\tau_1(\mathbf{a}^s) = \tau_k(\mathbf{a}^s) = \ell \left(1 - e^{-a_1^s/\ell} + \tanh\left(\frac{1 - 2a_1^s}{2\ell(k-1)}\right) \right) = 2\ell \tanh\left(\frac{1 - 2a_1^s}{2\ell(k-1)}\right) = \tau_j(\mathbf{a}^s)$$

for any j = 2, ..., k - 1. This establishes part (iii).

PROOF OF PROPOSITION 5: By Proposition 4(i)–(ii), it is sufficient to establish that $|a_1^s - 1/2|$ strictly increases in ℓ for k > 1. For k = 1, $\mathbf{a}^s = \{1/2\}$ is unique for any $\ell > 0$. For k > 1, $a_1^s < 1/2$ by symmetry of \mathbf{a}^s . By implicit differentiation of the equation for $a_1^s(\ell)$ in (11) with respect to ℓ , $\frac{\partial a_1^s}{\partial \ell} < 0$ iff $2a_1^s(k-1) + (2a_1^s - 1)(2 - e^{-a_1^s/\ell}) < 0$. But

Q.E.D.

 $a_1^s < 1/(k+1)$ because $1 - e^{-a_1/\ell} - \tanh(\frac{1-2a_1}{2\ell(k-1)})$ is strictly increasing in a_1 and strictly positive for $a_1 = 1/(k+1)$. Hence, $a_1^s < 1/(k+1) < (1 - 2a_1^s)/(k-1)$, which implies

$$\frac{a_1^s}{\ell} < \frac{1 - 2a_1^s}{2\ell(k-1)} \quad \Leftrightarrow \quad 2a_1^s(k-1) < 1 - 2a_1^s < (1 - 2a_1^s)(2 - e^{-a_1^s/\ell})$$

because $2 - e^{-a_1^s/\ell} > 1$. Therefore, a_1^s is strictly decreasing in ℓ .

Next, we want to show that as $\ell \to 0$, $a_1^s \to 1/(k+1)$. Substituting the identity $(1 + \tanh(x))/(1 - \tanh(x)) = e^{2x}$ into equation (11), we obtain $2 - e^{-a_1^s/\ell} - e^{\frac{1-a_1^s(k+1)}{\ell(k-1)}} = 0$. Because from part (i) $a_1^s < 1/(k+1)$, as $\ell \to 0$ we have $e^{-a_1^s/\ell} \to 0$. Therefore, as $\ell \to 0$, it must be that $e^{\frac{1-a_1^s(k+1)}{\ell(k-1)}} \to 2$. The term $\ell(k-1) \to 0$ as $\ell \to 0$ and $(1 - a_1^s(k+1))/(\ell(k-1)) \to \ln(2)$, hence it must be that $1 - a_1^s(k+1) \to 0$ as well. By the second equation in (11), it follows that $a_j^s \to j/(k+1)$ as $\ell \to 0$.

Finally, we want to show that as $\ell \to +\infty$, $a_1^s \to 1/(2k)$. Equation (11) implies

$$\lim_{\ell \to +\infty} \frac{1 - e^{-a_1^s/\ell}}{\tanh\left(\frac{1 - 2a_1^s}{2\ell(k-1)}\right)} = 1.$$

Because the numerator and the denominator converge to zero as $\ell \to +\infty$, we apply L'Hôpital's rule: $\lim_{\ell \to +\infty} \frac{\frac{a_1^s}{\ell^2} e^{-a_1^s/\ell}}{\frac{1-2a_1^s}{2\ell^2(k-1)}} = \lim_{\ell \to +\infty} \frac{2a_1^s(k-1)}{1-2a_1^s} \frac{e^{-a_1^s/\ell}}{\operatorname{sech}^2(\frac{1-2a_1^s}{2\ell(k-1)})} = 1$. As $\ell \to +\infty$, $e^{-a_1^s/\ell} \to 1$ and $\operatorname{sech}^2(\frac{1-2a_1^s}{2\ell(k-1)}) \to 1$. Hence, $\lim_{\ell \to +\infty} \frac{2a_1^s(k-1)}{1-2a_1^s} = 1$. This implies that $a_1^s \to 1/(2k)$ as $\ell \to +\infty$. By the second equation in (11), it also follows that $a_j^s \to (2j-1)/(2k)$ as $\ell \to +\infty$.

Calculations for Remark 1. Let $v \sim \mathcal{N}(v_0, \sigma_0^2)$, where $\sigma_0^2 > 0$ exogenous. The player has access to signals $f(a) = v + \xi(a)$ where the noise terms are correlated according to the Ornstein–Uhlenbeck covariance (with variance 1 and correlation $\exp(-|a_2 - a_1|/\ell)$). Hence, any two signals $(f(a_1), f(a_2))$ are correlated according to the Ornstein– Uhlenbeck covariance as well: each respective variance is $\sigma_0^2 + 1$ and their covariance is $\sigma_0^2 + \exp(-|a_2 - a_1|/\ell) = \sigma_0^2 + \sigma_{ou}(a_1, a_2)$. The covariance between v and any f(a) is σ_0^2 . Let $d_j = a_{j+1} - a_j$. The sample weights for $\mathbf{a} = \{a_1, \ldots, a_k\}$ are

$$\begin{pmatrix} \sigma_0^2 & \cdots & \sigma_0^2 \end{pmatrix} \begin{pmatrix} \sigma_0^2 + 1 & \sigma_0^2 + e^{-d_1/\ell} & \cdots & \sigma_0^2 + e^{-(d_1 + \cdots + d_{k-1})/\ell} \\ \sigma_0^2 + e^{-d_1/\ell} & \sigma_0^2 + 1 & \cdots & \sigma_0^2 + e^{-(d_2 + \cdots + d_{k-1})/\ell} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_0^2 + e^{-(d_1 + \cdots + d_{k-1})/\ell} & \sigma_0^2 + e^{-(d_2 + \cdots + d_{k-1})/\ell} & \cdots & \sigma_0^2 + 1 \end{pmatrix}^{-1}$$

From here, we calculate the posterior variance as

$$\psi^2(\mathbf{a}) = \sum_{j=1}^k \sum_{m=1}^k au_j(\mathbf{a}) au_m(\mathbf{a}) \big(\sigma_0^2 + e^{-|a_m - a_j|/\ell} \big).$$

For k = 2, the posterior variance simplifies to

$$\left(\frac{4}{2+\frac{1+e^{-d_1/\ell}}{\sigma_0^2}}\right)^2$$

which is strictly increasing in d_1 . The optimal signals that maximize this posterior variance subject to $d_1 \in [0, 1]$ are $\mathbf{a}_2^* = \{0, 1\}$. Similarly, it is straightforward to verify that the optimal signals are $\mathbf{a}_3^* = \{0, 1/2, 1\}$ for k = 3, $\mathbf{a}_4^* = \{0, 1/3, 2/3, 1\}$ for k = 4, and so on. The player seeks to sample signals that are as weakly correlated as possible, so that the overlap between the information that they carry about v is as small as possible.

The following lemma establishes that the player's expected payoff is single-peaked in attribute correlation in a simple attribute setting that is close to the common-variance-common-correlation signal setting in Clemen and Winkler (1985). Suppose that the attribute space is finite: $\mathcal{A} = \{a_1, \ldots, a_N\}$. The player's value is $\sum_{j=1}^N f(a_j)$. The common variance is $\sigma(a, a) = 1$ and the common correlation is $\sigma(a, a') = \rho \in (-1/(N-1), 1)$ for any $a, a' \in \mathcal{A}$.

LEMMA C.2: For any sample **a** that consists of k attributes, the expected loss $\operatorname{var}[v] - \psi^2(\mathbf{a})$ is single-peaked in ρ with a maximum at $\rho^* > 0$ such that $(1 - \rho^*)^2 - k\rho^{*2} = k/(N - 1)$.

PROOF OF LEMMA C.2: We calculate var[v] and $\psi^2(\mathbf{a})$ for the sample of k attributes $\mathbf{a} = \{a_1, \ldots, a_k\}$. This is without loss since attributes are identically distributed:

$$\operatorname{var}[v] = N \operatorname{var}[f(a_1)] + 2\binom{N}{2} \operatorname{cov}[f(a_1), f(a_2)] = N + N(N-1)\rho;$$

$$\psi^2(\mathbf{a}) = \operatorname{var}\left[\sum_{j=1}^k f(a_j)\right] \left(1 + (N-k)\frac{\rho}{1 + (k-1)\rho}\right)^2$$

$$= \left(k + k(k-1)\rho\right) \left(1 + (N-k)\frac{\rho}{1 + (k-1)\rho}\right)^2.$$

The expected payoff from sample **a** is

$$V(\mathbf{a}) = \psi^2(\mathbf{a}) - \operatorname{var}[v] = -\frac{(1-\rho)(N-k)((N-1)\rho+1)}{(k-1)\rho+1}$$

The expected payoff V is increasing in ρ if and only if $(1 - \rho)^2 - k\rho^2 \le k/(N - 1)$. It is immediate to check that V is strictly decreasing at any $\rho \in (-\frac{1}{N-1}, 0]$. Moreover, V is strictly increasing at $\rho = 1$. For $\rho > 0$, the term $(1 - \rho)^2 - k\rho^2$ is strictly decreasing in ρ . Therefore, there exists a unique ρ^* at which $(1 - \rho^*)^2 - k\rho^{*2} = \frac{k}{N-1}$: the payoff is strictly decreasing (resp., increasing) for $\rho < \rho^*$ (resp., $\rho > \rho^*$). Hence, the expected loss is single-peaked with a peak at ρ^* .

APPENDIX D: PROOFS AND AUXILIARY RESULTS FOR SECTION 4.2

PROOF OF PROPOSITION 10: Without loss, suppose $a_A < a_P$. Given a sample $\mathbf{a} = \{a\}$, the sample weight for player *i* is $\tau^i(a) := \tau_1^i(\mathbf{a}) = \sigma_p(a, a_i)$. We first establish that $a^* \ge a_A$

for any $p \in (0, 2]$. To the contrary, suppose $a^* < a_A$. Then as *a* increases in (a^*, a_A) , both $\tau^P(a)$ and $\tau^A(a)$ increase. The agent's payoff strictly increases because

$$\frac{\partial V_A(a)}{\partial a} = 2\tau^P(a) \left(\frac{\partial \tau^A(a)}{\partial a} - \frac{\partial \tau^P(a)}{\partial a} \right) + 2\tau^A(a) \frac{\partial \tau^P(a)}{\partial a}.$$

This is strictly positive for $a < a^A$ since for both players, $\tau^i > 0$, $\partial \tau^i(a)/\partial a > 0$, and $\partial \tau^i(a)/\partial a$ decreases in a_i . The agent is strictly better off sampling a_A instead.

Next, we establish that $a^* \notin ((a_A + a_P)/2, a_P)$ for any $p \in (0, 2]$. The agent's payoff is strictly decreasing in $a \in ((a_A + a_P)/2, a_P)$ because $\partial \tau^A(a)/\partial a < 0$, $\partial \tau^P(a)/\partial a < 0$ and $0 < \tau^A(a) < \tau^P(a)$. The agent is better off sampling $(a_P + a_A)/2$ instead.

Third, we establish that $a^* \leq a_P$ for any $p \in (0, 2]$. Suppose, to the contrary, that $a^* > a_P$. Consider an alternative sample $\tilde{a} = a_P - (a^* - a_P)$. If available, that is, if $\tilde{a} \in \mathcal{A}$, $\tau^P(\tilde{a}) = \tau^P(a^*)$ but $\tau^A(\tilde{a}) > \tau^A(a^*)$, hence $V_A(\tilde{a}) > V_A(a^*)$. If $\tilde{a} \notin \mathcal{A}$, it must be that $\tilde{a} < a_A$. But by the argument above, the agent strictly prefers a_A to any such $\tilde{a} < a_A$. This contradicts the optimality of a^* .

Hence, these three observations imply that $a^* \in [a_A, (a_P + a_A)/2]$ for any $p \in (0, 2]$.

(i) Let $p \in (0, 1]$. For any $a \in [a_A, (a_P + a_A)/2]$ and any $p \in (0, 2]$, the agent's payoff $V_A(a)$ is strictly decreasing in a if and only if

$$\left(\frac{a_P-a}{a-a_A}\right)^{1-p} \frac{e^{(\frac{a_P-a}{\ell})^p}}{e^{(\frac{a_P-a}{\ell})^p} - e^{(\frac{a-a_A}{\ell})^p}} > 1,$$

which holds because $0 < a - a_A < a_P - a$. Therefore, the agent prefers sampling a_A to sampling any $a \in (a_A, (a_P + a_A)/2]$.

(ii) Let $p \in (1, 2]$. At $a = a_A$, the agent's payoff is increasing because the LHS of the inequality in part (i) is zero. Moreover, the first-order condition that pins down the optimal sample $a^* \in (a_A, (a_P + a_A)/2)$ is

$$\frac{e^{(\frac{a_P-a^*}{\ell})^p}}{e^{(\frac{a_P-a^*}{\ell})^p}-e^{(\frac{a^*-a_A}{\ell})^p}} = \left(\frac{a_P-a^*}{a^*-a_A}\right)^{p-1}.$$

As $\ell \to 0$, the LHS approaches 1. Therefore, it must be that RHS approaches 1 as well, which implies that a^* approaches $(a_P + a_A)/2$. Alternatively, as $\ell \to +\infty$, the LHS approaches $+\infty$, which implies that $a^* \to a_A$ so that the RHS approaches $+\infty$ as well.

Moreover, as $p \rightarrow 1$, the RHS of the FOC converges to 1, whereas the LHS converges to

$$\frac{e^{\frac{a_P-a^*}{\ell}}}{e^{\frac{a_P-a^*}{\ell}}-e^{\frac{a^*-a_A}{\ell}}} \ge 1.$$

In order for the FOC to hold, it must be that LHS also converges to 1, which implies that $a^* \rightarrow a_A$. Q.E.D.

PROPOSITION D.1: If σ satisfies NAP, no sampling is optimal if and only if for any $a \in A$, $\tau^{P}(a)/\tau^{A}(a) > 2$.

PROOF OF PROPOSITION D.1: Fix k. If no sampling is strictly optimal, then in particular $V_A(\{a_1\}) < 0$ for any singleton sample in \mathcal{A}_1 , which is equivalent to $2\tau^A(a_1) - \tau^P(a_1) < 0$. Conversely, suppose Δ_A/Δ_P is sufficiently close to zero. If sample $\mathbf{a}^* = \{a_1, \ldots, a_n\}$ is optimal, by the previous argument all samples of size 1 must attain strictly negative payoff,

hence $n \ge 2$. In particular, $\tau^A(a_j) < \tau^P(a_j)/2$ for all $a_j \in \mathbf{a}^*$. But then

$$\alpha_2(\mathbf{a}^*) < \sum_{j=1}^n \tau_j^P(\mathbf{a}^*) \frac{\tau^P(a_j)}{2} = \frac{\alpha_1(\mathbf{a}^*)}{2},$$

hence $V_A(\mathbf{a}^*) < 0$ as well. This contradicts the optimality of \mathbf{a}^* .

PROOF OF PROPOSITION 11: (i) Without loss, let $\bar{a}_A < \underline{a}_P$. Suppose $\mathbf{a}^* = \{a_1, a_2\}$ where $a_1 \in [\underline{a}_A, \overline{a}_A]$ and $a_2 \in [\underline{a}_P, \overline{a}_P]$. We show that $V_A(\{a_1, a_2\}) \le V_A(\{a_1, \underline{a}_P\}) < V_A(\{\overline{a}_A\})$. Consider first the difference $\alpha_2(\{a_1, a_2\}) - \alpha_2(\{a_1\})$, which due to NAP equals

$$\tau_{2}^{A}(\mathbf{a}^{*})\tau_{2}^{P}(\mathbf{a}^{*})(1-\sigma_{ou}^{2}(a_{1},a_{2})) = \left(\int_{a_{1}}^{\bar{a}_{A}}\sigma_{ou}(a,\underline{a}_{P})(1-\sigma_{ou}^{2}(a,a_{1}))\,\mathrm{d}a\right)\tau_{2}^{P}(\mathbf{a}^{*})\sigma_{ou}(\underline{a}_{P},a_{2}).$$

The term $\tau_2^p(\mathbf{a}^*)\sigma_{ou}(\underline{a}_p, a_2)$ strictly decreases over $a_2 \in [\underline{a}_p, \overline{a}_P]$ because its first derivative with respect to a_2 is $-2e^{-(a_1-\underline{a}_p)/\ell} \operatorname{csch}^2((a_1-a_2)/\ell) \sinh((a_2-\underline{a}_p)/(2\ell)) \sinh((a_2+\underline{a}_p-2a_1)/(2\ell)) < 0$ for $a_2 > \underline{a}_p$. Hence, $\alpha_2(\{a_1, \underline{a}_p\}) > \alpha_2(\{a_1, a_2\})$ for any $a_2 > \underline{a}_p$. On the other hand, $\psi_p^2(\{a_1, a_2\})$ is single-peaked in $a_2 \in [\underline{a}_p, \overline{a}_p]$ with the peak at $\hat{a}_2 > (\underline{a}_p + \overline{a}_p)/2$, because in the absence of a_1, ψ_p^2 would be maximized at $(\underline{a}_p + \overline{a}_p)/2$. Moreover, for any $a_2 > \hat{a}_2, \psi_p^2(\{a_1, a_2\}) > \psi_p^2(\{a_1, a_2\}) > \psi_p^2(\{a_1, a_2 - (a_2 - \hat{a}_2)\})$. Hence, for any $a_2 \in (\underline{a}_p, \overline{a}_p], \psi_p^2(\{a_1, a_2\}) > \psi_p^2(\{a_1, a_2\}) > \psi_p^2(\{a_1, a_2\}) > \psi_p^2(\{a_1, a_2\}) = V_A(\{\underline{a}_p\})$ for any $a_2 > \underline{a}_p$, where the last equality follows from $\tau_1^p(\{a_1, \underline{a}_p\}) = 0$. Now consider the alternative sample $\{\overline{a}_A\}$. Note that $\psi_p^2(\{\overline{a}_A\}) = \sigma_{ou}^2(\underline{a}_p, \overline{a}_A)\psi_p^2(\{\underline{a}_p\}) < \psi_p^2(\{\underline{a}_p\})$ and $\tau^p(\overline{a}_A)\tau^A(\overline{a}_A) = (\sigma_{ou}(\overline{a}_A, \underline{a}_p)\tau^p(\underline{a}_p))(\tau^A(\underline{a}_p)/\sigma_{ou}(\overline{a}_A, \underline{a}_p)) = \tau^p(\underline{a}_p)\tau^A(\underline{a}_p)$. Hence, $V_A(\{\overline{a}_p\}) < V_A(\{\overline{a}_A\})$. Therefore, $\{\overline{a}_A\}$ dominates \mathbf{a}^* . Moreover, any sample of the form $\{a_2\}$ for $a_2 \in [\underline{a}_p, \overline{a}_p]$ is dominated by $\{\overline{a}_A\}$. Hence, the optimal sample is of the form $\{a_1\}$, where $a_1 \in [\underline{a}_A, \overline{a}_A]$.

$$\frac{\partial V_A(a_1)}{\partial a_1} = 2\ell e^{\frac{a_1-\bar{a}_A-2(\underline{a}_P+\bar{a}_P)}{\ell}} \left(e^{\frac{\bar{a}_P}{\ell}} - e^{\frac{\underline{a}_P}{\ell}}\right) \left(e^{\frac{a_1}{\ell}} C_1 + C_0\right),$$

where $C_1 = e^{\bar{a}_A/\ell} (e^{\underline{a}_P/\ell} - e^{\bar{a}_P/\ell}) - 2e^{(\underline{a}_P + \bar{a}_P)/\ell} < 0$ and $C_0 = 2e^{(\bar{a}_A + \underline{a}_P + \bar{a}_P)/\ell} > 0$. Therefore, the FOC that uniquely pins down a_1^* , whenever the solution is interior in $[\underline{a}_A, \bar{a}_A]$, is $e^{a_1^*/\ell} = -C_0/C_1$. The second-order condition is satisfied as well because

$$\frac{\partial^2 V_A(a_1)}{\partial a_1^2}\bigg|_{a_1=a_1^*} = 4e^{\frac{a_1^*-\bar{a}_A-2(a_P+\bar{a}_P)}{\ell}} \left(e^{\frac{\bar{a}_P}{\ell}} - e^{\frac{a_P}{\ell}}\right) \left(e^{\frac{a_1^*}{\ell}}C_1 + C_0/2\right) < 0.$$

It can be easily verified that $V_A(\{\bar{a}_A\}) < 0$. Moreover, if $e^{\underline{a}_A/\ell}C_1 + C_0 > 0$ then $V_A(\{\underline{a}_A\}) > 0$. Therefore, either $V_A(\{\underline{a}_A\}) > 0 > V_A(\{\bar{a}_A\})$ and V_A is single-peaked in a_1 , or $V_A(\{\underline{a}_A\}) < 0$ and V_A is strictly decreasing in a_1 . The optimal attribute, if interior, is given by $a_1^* = \bar{a}_P - \ell \ln(\frac{1}{2}(2e^{(\bar{a}_P - \bar{a}_A)/\ell} + e^{(\bar{a}_P - \underline{a}_P)/\ell} - 1)))$, which simplifies to $a_1^* = -\ell \ln(e^{-\bar{a}_A/\ell} + \frac{e^{-\underline{a}_P/\ell} - e^{-\bar{a}_P/\ell}}{2})$. The case of $\bar{a}_P < \underline{a}_A$ follows by a similar argument.

(ii) Let $\bar{a}_P < \underline{a}_A$. Equation (15) simplifies to $e^{a_1^*/\ell} - e^{\underline{a}_A/\ell} = \frac{1}{2}(e^{\bar{a}_P/\ell} - e^{\underline{a}_P/\ell})$. By implicit differentiation with respect to ℓ , we obtain

$$\frac{\partial a_1^*(\ell)}{\partial \ell} = e^{-a_1^*/\ell} \bigg(\frac{a_1^*}{\ell} e^{a_1^*/\ell} - \frac{\underline{a}_A}{\ell} e^{\underline{a}_A/\ell} - \frac{\overline{a}_P}{2\ell} e^{\overline{a}_P/\ell} + \frac{\underline{a}_P}{2\ell} e^{\underline{a}_P/\ell} \bigg).$$

O.E.D.

ARJADA BARDHI

The function $g(x) := xe^x$ is above $f(x) := e^x$ for x > 1, below f(x) for x < 1, and strictly more convex than f(x). Hence, if $e^{a_1^*/\ell} - \frac{e^{a_A/\ell}}{2\ell} - \frac{1}{2}(e^{\bar{a}_P/\ell} - e^{\underline{a}_P/\ell}) = 0$ then $\frac{a_1^*}{\ell}e^{a_1^*/\ell} - \frac{a_A}{\ell}e^{\underline{a}_A/\ell} - \frac{\bar{a}_B}{2\ell}e^{\bar{a}_P/\ell} + \frac{a_P}{2\ell}e^{\underline{a}_P/\ell} > 0$. Therefore, $a_1^*(\ell)$ is strictly increasing in ℓ . An analogous argument applies to the case of $\bar{a}_A < \underline{a}_P$.

(iii) We take the limit of $\overline{a_1^*}(\ell)$ in (15) as $\ell \to 0^+$. Let $\overline{a_P} < \underline{a_A}$. Applying L'Hôpital's rule and then dividing through by $e^{\underline{a_A}/\ell}$, we obtain

$$\lim_{\ell \to 0^+} a_1^*(\ell) = \lim_{\ell \to 0^+} \frac{2\underline{a}_A e^{\underline{a}_A/\ell} + \bar{a}_P e^{\bar{a}_P/\ell} - \underline{a}_P e^{\underline{a}_P/\ell}}{2e^{\underline{a}_A/\ell} + e^{\bar{a}_P/\ell} - e^{\underline{a}_P/\ell}} = \lim_{\ell \to 0^+} \frac{2\underline{a}_A + \bar{a}_P e^{-(\underline{a}_A - \bar{a}_P)/\ell} - \underline{a}_P e^{-(\underline{a}_A - \underline{a}_P)/\ell}}{2 + e^{-(\underline{a}_A - \bar{a}_P)/\ell} - e^{-(\underline{a}_A - \underline{a}_P)/\ell}},$$

which is just $2\underline{a}_A/2 = \underline{a}_A$. By a similar argument, if $\overline{a}_A < \underline{a}_P$ then $a_1^*(\ell) \to \overline{a}_A$ as $\ell \to 0^+$. (iv) Let $\overline{a}_P < \underline{a}_A$. By similar steps to part (iii),

$$\lim_{\ell \to +\infty} a_1^*(\ell) = \lim_{\ell \to +\infty} \frac{2\underline{a}_A + \bar{a}_P e^{-(\underline{a}_A - \bar{a}_P)/\ell} - \underline{a}_P e^{-(\underline{a}_A - \underline{a}_P)/\ell}}{2 + e^{-(\underline{a}_A - \bar{a}_P)/\ell} - e^{-(\underline{a}_A - \underline{a}_P)/\ell}} = \frac{2\underline{a}_A + \bar{a}_P - \underline{a}_P}{2} = \underline{a}_A + \frac{\Delta_P}{2}.$$

If $\Delta_A \ge \Delta_P/2$, this limit is interior in $[\underline{a}_A, \overline{a}_A]$. Otherwise, \mathbf{a}^* is empty. A similar argument applies to the case of $\overline{a}_A < \underline{a}_P$. Q.E.D.

PROOF OF PROPOSITION 12: Without loss, fix $0 < \underline{a}_A < \underline{a}_P < \overline{a}_A < \overline{a}_P < 1$ and let an optimal sample be $\mathbf{a}^* = \{a_1, \ldots, a_n\}$. We first show that there is no sampling in $(\overline{a}_A, \overline{a}_P]$. Suppose first that n = 1 and $a_1 \in (\overline{a}_A, \overline{a}_P]$. Then $\alpha_2(a_1) = \sigma_{ou}(\overline{a}_A, a_1)\tau^A(\overline{a}_A)\tau^P(a_1)$ and its first derivative with respect to a_1 is $-2\tau^A(\overline{a}_A) \exp((\overline{a}_A - 2a_1)/\ell)(\exp(a_1/\ell) - \exp(\underline{a}_P/\ell)) < 0$. Hence, α_2 is strictly decreasing over $(\overline{a}_A, \overline{a}_P]$. Let $a_p^s := (\underline{a}_P + \overline{a}_P)/2$. If $a_1 \in (\overline{a}_A, a_p^s]$, α_1 is strictly increasing, hence $V_A(a_1)$ is strictly decreasing. If $a_1 \in (a_p^s, \overline{a}_P]$, then due to ψ_P^2 being single-peaked at a_p^s and symmetric around it, $\tau^P(a_1) = \tau^P(a_p^s - (a_1 - a_p^s))$ and $\alpha_1(a_1) = \alpha_1(a_p^s - (a_1 - a_p^s))$. Hence, $V_A(a_1) < V_A(a_p^s - (a_1 - a_p^s))$. Next, suppose $n \ge 2$ and $a_n > \overline{a}_A$. Consider first the difference $\alpha_2(\mathbf{a}^*) - \alpha_2(\mathbf{a}^* \setminus \{a_n\}) = \tau_n^A(\mathbf{a}^*)\tau_n^P(\mathbf{a}^*)(1 - \sigma_{ou}^2(a_{n-1}, a_n))$, which equals

$$\sigma_{ou}(\bar{a}_A, a_n)\tau_n^P(\mathbf{a}^*)\bigg(\int_{a_{n-1}}^{\bar{a}_A}\sigma_{ou}(a, \bar{a}_A)(1-\sigma_{ou}^2(a, a_{n-1}))\,\mathrm{d}a\bigg).$$

The term $\sigma_{ou}(\bar{a}_A, a_n)\tau_n^P(\mathbf{a}^*)$ is strictly decreasing in a_n because its first derivative with respect to a_n is $-2\exp((\bar{a}_A - a_{n-1})/\ell)\operatorname{csch}^2((a_{n-1} - a_n)/\ell)\sinh((a_n - \underline{a}_P)/\ell)\sinh((a_n + \underline{a}_P - 2a_{n-1})/\ell) < 0$ if $a_{n-1} < \underline{a}_P$ and $-2\exp((a_n + \bar{a}_A)/\ell)/(\exp(a_{n-1}/\ell) + \exp(a_n/\ell))^2 < 0$ if $a_{n-1} \ge \underline{a}_P$. Therefore, $\alpha_2(\mathbf{a}^*)$ is strictly decreasing in $a_n \in (\bar{a}_A, \bar{a}_P]$. On the other hand, from the single-player benchmark we know that $\psi_P^2(\mathbf{a}^*)$ is single-peaked in $a_n \in (a_{n-1}, \bar{a}_P]$, with a peak at $a_n^s > (\underline{a}_P + \bar{a}_P)/2$ because in the absence of the rest of the sample, and in particular a_{n-1} , it would be maximized at $(\underline{a}_P + \bar{a}_P)/2$. If $a_n^s > \bar{a}_A$, then any attribute in (\bar{a}_A, a_n^s) is dominated by \bar{a}_A . Moreover, V_A is either single-troughed in a_n , with a trough to the right of a_n^s , or strictly decreasing in $a_n \in (\bar{a}_A, \bar{a}_P]$. Hence, $V_A((\mathbf{a}^* \setminus \{a_n\}) \cup \bar{a}_A) > V_A((\mathbf{a}^* \setminus \{a_n\}) \cup \bar{a}_A)$.

Second, to show that there is no sampling in $[\underline{a}_A, \underline{a}_P)$ for $n \ge 2$, we suppose by contradiction that $a_1 < \underline{a}_P$. For $\tau_1^P(\mathbf{a}^*) \ne 0$, it must be that $a_2 > \underline{a}_P$. Differentiate V_A with respect to a_1 , we obtain

$$4\ell \left(2\cosh\left(\frac{a_1-a_2}{\ell}\right) - 1 - \cosh\left(\frac{a_2-\underline{a}_P}{\ell}\right)\right) \operatorname{csch}^2\left(\frac{a_1-a_2}{\ell}\right) \sinh^2\left(\frac{a_2-\underline{a}_P}{2\ell}\right) > 0$$

for any $a_1 \le \underline{a}_p < a_2$ because $a_2 - a_1 > a_2 - \underline{a}_p$. Hence, V_A strictly increases in a_1 . Finally, n = k by Corollary 9. Q.E.D.

APPENDIX E: EXTENSIONS AND ADDITIONAL RESULTS

E.1. Examples for Section 5.1

EXAMPLE E.1—Inference reversal due to conflicting attributes: Let $\mathcal{A} = [\underline{a}, \overline{a}]$ and $\omega(a) = 1$ for all $a \in \mathcal{A}$. The attribute covariance is $\sigma_{\text{lin}}(a, a') = (a - \hat{a})(a' - \hat{a})$ and the prior mean is $\mu(a) = 0$ for $a, a' \in \mathcal{A}$; note that $\sigma_{\text{lin}}(\hat{a}, \hat{a}) = 0$. This structure corresponds to a linear attribute mapping f that goes through the realization $f(\hat{a}) = 0$ for $\hat{a} \in \mathcal{A}$ and the slope of which is not known (Figure E.1). Attribute variance increases quadratically with distance from \hat{a} . Without loss, let $\hat{a} < (\underline{a} + \overline{a})/2$. The correlation between any two attribute realizations is perfect because

$$\operatorname{corr}(f(a), f(a')) = \frac{\sigma_{\operatorname{lin}}(a, a')}{\sqrt{\sigma_{\operatorname{lin}}(a, a)\sigma_{\operatorname{lin}}(a', a')}} = \begin{cases} +1 & \text{if } \operatorname{sgn}(a - \hat{a}) = \operatorname{sgn}(a' - \hat{a}) \\ -1 & \text{if } \operatorname{sgn}(a - \hat{a}) \neq \operatorname{sgn}(a' - \hat{a}). \end{cases}$$

Therefore, discovering one more attribute resolves all uncertainty about f.

Suppose $\tilde{a} \neq \hat{a}$ is discovered. The uncertainty about v prior to the discovery of $f(\tilde{a})$ is $\frac{1}{4}(\bar{a}-\underline{a})^2(\bar{a}+\underline{a}-2\hat{a})^2$. The project is more uncertain the greater is the mass of attributes $(\bar{a}-\underline{a})$ and the farther \hat{a} is from the median attribute $(\underline{a}+\bar{a})/2$, that is, the more peripheral the known attribute \hat{a} is. If \hat{a} is exactly the median attribute, the uncertainty about v is zero because the uncertainty about $[\underline{a}, \hat{a}]$ cancels that about $[\hat{a}, \bar{a}]$. Given a singleton sample $\mathbf{a} = \{\tilde{a}\}$, by equation (6) the expected realization of any other attribute a is $\mathbb{E}[f(a) \mid f(\tilde{a})] = \tau_1(a; \mathbf{a})f(\tilde{a}) = (a - \hat{a})f(\tilde{a})/(\tilde{a} - \hat{a})$. Hence, from equation (8), the sample weight is $\tau_1(\tilde{a}) = \frac{1}{2}(\bar{a}-\underline{a})(\bar{a}+\underline{a}-2\hat{a})/(\tilde{a}-\hat{a})$, which is strictly negative for $\tilde{a} < \hat{a}$. That is, a high realization for $\tilde{a} < \hat{a}$ implies low realizations for attributes in $[\hat{a}, \bar{a}]$, which is the majority of the attributes. Therefore, the sample weight of attributes to the left of \hat{a} is negative even though all attributes are desirable.

EXAMPLE E.2—Inference reversal due to the presence of other sample attributes: Let $\mathcal{A} = [0, 1]$, $\omega(a) = 1$, and the squared-exponential covariance $\sigma_2(a, a') = e^{-(a-a')^2/\ell^2}$ for all $a, a' \in [0, 1]$. Lemma E.3 shows the possibility of a reversal in the direction of inference when going from a one-attribute sample to a two-attribute one. Due to the positive attribute correlation, any singleton sample has a strictly positive sample weight. But in

FIGURE E.1.—Linear attribute mapping corresponding to σ_{lin} .

ARJADA BARDHI

a two-attribute sample, one of the attributes can have a strictly negative sample weight, even though the sum of the sample weights for the two attributes must be strictly positive. Lemma E.3(ii) establishes that such a negative sample weight arises if and only if the two attributes are on the same side of the median attribute and attribute correlation is high. The attribute with a negative sample weight is the one farther away from the median attribute.

LEMMA E.3: Let $\sigma_2(a, a') = e^{-(a-a')^2/\ell^2}$, and $\omega(a) = 1$ for all $a, a' \in [0, 1]$. For any sample $\mathbf{a}_1 = \{a_1\}, \tau_1(\mathbf{a}_1) > 0$. For any two-attribute sample, $\mathbf{a}_2 = \{a_1, a_2\}$ such that $0 \le a_1 < a_2 \le 1$:

- (i) the sum of sample weights is always positive: $\tau_1(\mathbf{a}_2) + \tau_2(\mathbf{a}_2) > 0$;
- (ii) one of the attributes is assigned a strictly negative if and only if a_1 and a_2 are on the same side of the median attribute and ℓ is sufficiently large.

PROOF OF LEMMA E.3: (i) Let $g(a) := \operatorname{erf}(\frac{a}{\ell}) + \operatorname{erf}(\frac{1-a}{\ell})$. First, note that g(a) > 0 because $a_1 \in [0, 1], \ell > 0$ and $\operatorname{erf}(x) > 0$ for any x > 0. For a singleton sample, equation (8) simplifies to $\tau_1(\mathbf{a}_1) = \ell \sqrt{\pi g(a_1)} > 0$. Now consider $\mathbf{a}_2 = \{a_1, a_2\}$, where $a_1 < a_2$, and let $d := a_2 - a_1$. Applying Lemma 1, the sample weights are given by

$$\tau_j(\mathbf{a}) = \frac{1}{4} \ell \sqrt{\pi} e^{-\frac{4a_1 a_2}{\ell^2}} \operatorname{csch}\left(\frac{d^2}{\ell^2}\right) \left(e^{d^2/\ell^2} g(a_j) - g(a_{-j})\right),$$

which is positive if and only if $e^{d^2/\ell^2}g(a_j) - g(a_{-j}) > 0$. Then the sign of the sum $\tau_1(\mathbf{a}) + \tau_2(\mathbf{a})$ is determined by the sign of $g(a_1) + g(a_2)$, which is strictly positive for any $a_1, a_2 \in [0, 1]$. Hence, at least one of the attributes has a strictly positive sample weight.

(ii) Taking the limit of these sample weights as $\ell \to +\infty$, we obtain

$$\lim_{\ell \to +\infty} \tau_1(\mathbf{a}_2) = \frac{2a_2 - 1}{2(a_2 - a_1)}, \qquad \lim_{\ell \to +\infty} \tau_2(\mathbf{a}_2) = \frac{1 - 2a_1}{2(a_2 - a_1)}.$$

If $a_1 < a_2 < 1/2$, then $\lim_{\ell \to +\infty} \tau_1(\mathbf{a}_2) < 0$. If $1/2 < a_1 < a_2$, then $\lim_{\ell \to +\infty} \tau_2(\mathbf{a}_2) < 0$. So, the conditions are sufficient. To show that they are also necessary, suppose first $a_1 < 1/2 < a_2$. Then $e^{d^2/\ell^2}g(a_j) - g(a_{-j})$ strictly increases in the distance d for any $a_j \in \mathbf{a}_2$ and it is zero for d = 0. Second, suppose that $a_1 < a_2 < 1/2$. Then $\tau_1(\mathbf{a}_2)$ as a function of ℓ is single-troughed in ℓ and crosses zero only once in ℓ , say at $\ell = \overline{\ell}$. On the other hand, $\tau_2(\mathbf{a}_2)$ as a function of ℓ is decreasing and strictly positive in ℓ . Hence, for $\tau_1(\mathbf{a}_2)$ to be strictly negative, it is necessary that $\ell > \overline{\ell}$.

E.2. Binary Decision and Reservation Values

PROPOSITION E.1: Let $D = \{0, 1\}$ and for each $i = A, P, u(1, v_i) = v_i$ and $u(0, v_i) = r_i$, where $r_i \in \mathbb{R}$ is a known outside option for player *i*. The agent's expected payoff from any sample $\mathbf{a} \in A_k$ is

$$V_A(\mathbf{a}) = r_A + \left(v_0^A - r_A\right) \Phi\left(\frac{v_0^P - r_P}{\sqrt{\alpha_1(\mathbf{a})}}\right) + \frac{\alpha_2(\mathbf{a})}{\sqrt{\alpha_1(\mathbf{a})}} \phi\left(\frac{v_0^P - r_P}{\sqrt{\alpha_1(\mathbf{a})}}\right),$$

where α_1 and α_2 are defined as in Theorem 2.

PROOF OF PROPOSITION E.1: Let $\rho(\mathbf{a})$ denote the correlation between $\nu_P(\mathbf{a})$ and $\nu_A(\mathbf{a})$, the joint distribution is Gaussian:

$$\begin{pmatrix} \nu^{P}(\mathbf{a}) \\ \nu^{A}(\mathbf{a}) \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \nu_{0}^{P} \\ \nu_{0}^{A} \end{pmatrix}, \begin{pmatrix} \psi_{P}^{2}(\mathbf{a}) & \rho(\mathbf{a})\psi_{A}(\mathbf{a})\psi_{P}(\mathbf{a}) \\ \rho(\mathbf{a})\psi_{A}(\mathbf{a})\psi_{P}(\mathbf{a}) & \psi_{P}^{2}(\mathbf{a}) \end{pmatrix} \right).$$

CLAIM 1: For any $r_P \in \mathbb{R}$,

$$f(\nu^{A}(\mathbf{a}) | \nu^{P}(\mathbf{a}) \geq r_{P}) = \frac{\phi\left(\frac{\nu^{A}(\mathbf{a}) - \nu_{0}^{A}}{\psi_{A}(\mathbf{a})}\right)}{\psi_{A}(\mathbf{a})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right)} \Phi\left(\frac{\nu_{0}^{P} + \rho(\mathbf{a})\frac{\psi_{P}(\mathbf{a})}{\psi_{A}(\mathbf{a})}(\nu^{A}(\mathbf{a}) - \nu_{0}^{A}) - r_{P}}{\psi_{P}(\mathbf{a})\sqrt{1 - \rho(\mathbf{a})^{2}}}\right).$$

PROOF: Let x_1, x_2 be jointly Gaussian with means μ_1, μ_2 , variances σ_1^2, σ_2^2 , and covariance σ_{12} . Let f_1, f_2 and F_1, F_2 denote their respective pdf and cdf. Then

$$f(x_1 \mid x_2 \ge \bar{x}) = \frac{1}{1 - F_2(\bar{x})} \Pr(x_2 \ge \bar{x}) f(x_1 \mid x_2 \ge \bar{x})$$
$$= \frac{1}{1 - F_2(\bar{x})} \int_{\bar{x}}^{\infty} f(x_2 \mid x_1) f_1(x_1) \, \mathrm{d}x_2$$
$$= \frac{f_1(x_1)}{1 - F_2(\bar{x})} (1 - F_{x_2 \mid x_1}(\bar{x})).$$

The first line multiplies and divides by $Pr(x_2 \ge \bar{x})$. The second line rewrites $Pr(x_2 \ge \bar{x})f(x_1 \mid x_2 \ge \bar{x})$ using the joint density and the observation that $f(x_1, x_2) = f(x_2 \mid x_1)f_1(x_1)$. The last two lines use the conditional distribution of $x_2 \mid x_1$. But

$$x_2 \mid x_1 \sim \mathcal{N}\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1), (1 - \rho^2)\sigma_2^2\right)$$

and $\rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2}$. Therefore, we can substitute in the expression for $F_{x_2|x_1}$ to obtain

$$f(x_1 \mid x_2 \ge \bar{x}) = \frac{f_1(x_1)}{1 - F_2(\bar{x})} \left(1 - \Phi\left(\frac{\bar{x} - \mu_2 - \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1)}{\sigma_2 \sqrt{1 - \rho^2}}\right) \right).$$

Switching back to our variables of interest, let $x_1 := \nu^A(\mathbf{a}) \sim \mathcal{N}(\nu_0^A, \psi_A^2(\mathbf{a})), x_2 := \nu^P(\mathbf{a}) \sim \mathcal{N}(\nu_0^P, \psi_P^2(\mathbf{a})), \text{ and } \bar{x} := r_P$. Therefore,

$$f(\nu^{A}(\mathbf{a})|\nu^{P}(\mathbf{a}) \geq r_{P}) = \frac{\phi\left(\frac{\nu^{A}(\mathbf{a}) - \nu_{0}^{A}}{\psi_{A}(\mathbf{a})}\right)}{\psi_{A}(\mathbf{a})\left(1 - \Phi\left(\frac{r_{P} - \nu_{0}^{P}}{\psi_{P}(\mathbf{a})}\right)\right)} \left(1 - \Phi\left(\frac{r_{P} - \nu_{0}^{P} - \rho(\mathbf{a})\frac{\psi_{P}(\mathbf{a})}{\psi_{A}(\mathbf{a})}(\nu^{A}(\mathbf{a}) - \nu_{0}^{A})}{\psi_{P}(\mathbf{a})\sqrt{1 - \rho(\mathbf{a})^{2}}}\right)\right).$$

$$Q.E.D.$$

Using the claim, observe that:

$$\begin{aligned} &\Pr\left(\nu^{P}(\mathbf{a}) \geq r_{P}\right)\mathbb{E}\left[\nu^{A}(\mathbf{a}) \mid \nu^{P}(\mathbf{a})\right] \\ &\geq r_{P}\right] = \Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right) \int_{-\infty}^{\infty} \nu^{A}(\mathbf{a}) f\left(\nu^{A}(\mathbf{a}) \mid \nu^{P}(\mathbf{a}) \geq r_{P}\right) d\nu^{A}(\mathbf{a}) \\ &= \int_{-\infty}^{\infty} \frac{\nu^{A}(\mathbf{a})}{\psi_{A}(\mathbf{a})} \phi\left(\frac{\nu^{A}(\mathbf{a}) - \nu_{0}^{A}}{\psi_{A}(\mathbf{a})}\right) \Phi\left(\frac{\nu_{0}^{P} + \rho(\mathbf{a}) \frac{\psi_{P}(\mathbf{a})}{\psi_{A}(\mathbf{a})} \left(\nu^{A}(\mathbf{a}) - \nu_{0}^{A}\right) - r_{P}}{\psi_{P}(\mathbf{a})\sqrt{1 - \rho(\mathbf{a})^{2}}}\right) d\nu^{A}(\mathbf{a}) \\ &= \int_{-\infty}^{\infty} \left(x\psi_{A}(\mathbf{a}) + \nu_{0}^{A}\right) \phi(x) \Phi\left(\frac{\nu_{0}^{P} + \rho(\mathbf{a})\psi_{P}(\mathbf{a})x - r_{P}}{\psi_{P}(\mathbf{a})\sqrt{1 - \rho^{2}(\mathbf{a})}}\right) dx, \end{aligned}$$

where in the last line $x := \frac{\psi^A(\mathbf{a}) - \psi_0^A}{\psi_A(\mathbf{a})}$. From Owen (1980), we have the following Gaussian identities (resp., numbered 10,010.8 and 10,011.1 in Owen (1980)):

$$\int_{-\infty}^{\infty} \phi(x)\Phi(a+bx) \, \mathrm{d}x = \Phi\left(\frac{a}{\sqrt{1+b^2}}\right),$$
$$\int_{-\infty}^{\infty} x\phi(x)\Phi(a+bx) \, \mathrm{d}x = \frac{b}{\sqrt{1+b^2}}\phi\left(\frac{a}{\sqrt{1+b^2}}\right).$$

Letting $a := (v_0^P - r_P) / (\psi_P(\mathbf{a}) \sqrt{1 - \rho^2(\mathbf{a})})$ and $b := \rho(\mathbf{a}) / \sqrt{1 - \rho^2(\mathbf{a})}$,

$$\Pr(\nu^{P}(\mathbf{a}) \geq r_{P})\mathbb{E}\left[\nu^{A}(\mathbf{a}) \mid \nu^{P}(\mathbf{a}) \geq r_{P}\right] = \nu_{0}^{A}\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right) + \rho(\mathbf{a})\psi_{A}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right).$$

Therefore, the agent's payoff from sample a simplifies to

$$V_{A}(\mathbf{a}) = \Pr(\nu^{P}(\mathbf{a}) < r_{P})r_{A} + \nu_{0}^{A}\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right) + \rho(\mathbf{a})\psi_{A}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right)$$
$$= r_{A} + (\nu_{0}^{A} - r_{A})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right) + \rho(\mathbf{a})\psi_{A}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\psi_{P}(\mathbf{a})}\right).$$

Finally, note that $\operatorname{cov}[\nu^{P}(\mathbf{a}), \nu^{A}(\mathbf{a})] = \operatorname{cov}[\nu^{P}(\mathbf{a}), v_{A}] = \alpha_{2}(\mathbf{a})$ because $\tau_{j}^{A}(\mathbf{a}) + \sum_{i \neq j} \tau_{i}^{A}(\mathbf{a})\sigma(a_{i}, a_{j}) = \tau^{A}(a_{j})$. Substituting $\Psi_{P}(\mathbf{a}) = \sqrt{\alpha_{1}(\mathbf{a})}$ and $\rho(\mathbf{a})\psi_{A}(\mathbf{a}) = \alpha_{2}(\mathbf{a})/\sqrt{\alpha_{1}(\mathbf{a})}$ into $V_{A}(\mathbf{a})$, we obtain the desired expression. Q.E.D.

E.3. Noisy Observations of Attribute Realizations

For any given sample $\mathbf{a} \in \mathcal{A}_k$ and $a_j \in \mathbf{a}$, the player observes a noisy observation $y(a_j) = f(a_j) + \epsilon(a_j)$, where the noise term $\epsilon(a) \sim \mathcal{N}(\mu^0(a), \eta^2(a))$ is drawn independently across attributes. Note that the distribution of noise term can vary across attributes; the term μ^0 captures observational bias and η captures observational noise. Figure E.2 illustrates extrapolation across noisy observations of a Brownian sample path.

FIGURE E.2.—Extrapolation across a standard Brownian motion for $\mathcal{A} = [0, 1]$, $\mathbf{a} = \{1/4, 1/2, 3/4\}$, and $\mu(a) = 0$ for all $a \in [0, 1]$. There is no observational bias, that is $\mu^0(a) = 0$ for all $a \in \mathcal{A}$, whereas the observational noise is $\eta(a) = 0$ for all $a \in \mathcal{A}$ (red) and $\eta(a) = 0.25$ for all $a \in \mathcal{A}$ (blue).

COROLLARY E.4: The set of single-player samples does not depend on the observational bias μ^0 .

PROOF: Fix a sample $\mathbf{a} = \{a_1, \dots, a_k\} \in \mathcal{A}_k$. The observations are distributed according to

$$\begin{pmatrix} y(a_1) \\ \vdots \\ y(a_k) \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu(a_1) + \mu^0(a_1) \\ \vdots \\ \mu(a_k) + \mu^0(a_k) \end{pmatrix}, \begin{pmatrix} \sigma(a_1, a_1) + \eta^2(a_1) & \cdots & \sigma(a_1, a_k) \\ \sigma(a_2, a_1) & \cdots & \sigma(a_2, a_k) \\ \vdots & \ddots & \vdots \\ \sigma(a_k, a_1) & \cdots & \sigma(a_k, a_k) + \eta^2(a_k) \end{pmatrix}\right).$$

Let $\Sigma(\eta)$ be this new covariance matrix. Following Lemma 1, $\tau_j(\hat{a}; \mathbf{a})$ is now the (1, j)th entry of the matrix $(\sigma(a_1, \hat{a}) \cdots \sigma(a_k, \hat{a}))\Sigma^{-1}(\eta)$. The posterior variance is as in equation (10), where $\tau_j(\mathbf{a})$ is derived from $\tau_j(\hat{a}; \mathbf{a})$ above as in Lemma 1. By the same argument as in that in Theorem 1, μ^0 enters neither the posterior variance nor the single-player sample. Q.E.D.

EXAMPLE E.5—Noisier observations, more uncertain single-player sampling: Consider the Brownian covariance $\sigma_{br}(a, a') = \min(a, a')$ over $\mathcal{A} = [0, 1]$. That is, attribute uncertainty increases from left to right and attribute a = 0 is the least uncertain attribute. Let $\omega(a) = 1$ for all $a \in [0, 1]$ and k = 1. The observations are of the form $y(a) = f(a) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \eta^2)$. For any sample $a \in [0, 1]$, the posterior variance $\psi^2(a)$ naturally decreases with the amount of noise η^2 . The optimal sample $a^*(\eta)$ is pinned down by $a^*(\eta)(3a^*(\eta)-2)-4(1-a^*(\eta))\eta^2=0$. It can be easily verified that the optimal attribute without observational noise is $a^*(0) = 2/3$. By implicit differentiation with respect to η , $\frac{\partial a^*(\eta)}{\partial \eta} = \frac{4\eta(1-a^*(\eta))}{3a^*(\eta)+2\eta^2-1} > 0$ for $a^* \in (2/3, 1)$ and $\eta > 0$. Moreover, $a^*(\eta)$ is strictly increasing

ARJADA BARDHI

at $\eta = 0$. The higher η^2 is, the further away the single-player attribute is from a = 0. That is, in the presence of greater observational noise, the player samples attributes that are ex ante more uncertain.

REFERENCES

CLEMEN, ROBERT T., AND ROBERT L. WINKLER (1985): "Limits for the Precision and Value of Information From Dependent Sources," *Operations Research*, 33 (2), 427–442. [5]

OWEN, DONALD BRUCE (1980): "A Table of Normal Integrals," Communications in Statistics – Simulation and Computation, 9 (4), 389–419. [12]

Co-editor Barton L. Lipman handled this manuscript.

Manuscript received 16 April, 2020; final version accepted 18 October, 2023; available online 18 January, 2024.