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APPENDIX C: PROOFS AND AUXILIARY RESULTS FOR SECTION 3.2

PROOF OF PROPOSITION 3: For any p ∈ (0�2], σp(a�a) and σp(a� ā) strictly increase in
a ∈ [α�a], so ψ2(a) increases in a as well. Hence, a= a dominates any a < a. By a similar
argument, sampling a > ā is suboptimal as well. So, for any p ∈ (0�2], as ∈ [a� ā].

(i) For p= 1, the statement follows from Proposition 2. Consider p< 1. The posterior
variance satisfies the following: (i) lima↓a ∂ψ2(a)/∂a = −∞, (ii) lima↑ā ∂ψ2(a)/∂a = ∞,
and (iii) ψ2 is differentiable and weakly convex in (a� ā). Therefore, ψ2 is maximized at
the endpoints of [a� ā]: only the two relevant attributes are optimal.

(ii) Let p> 1. The sign of ∂ψ2(a)/∂a is determined by the sign of the function h(a) :=
σp(a� ā)(ā− a)p−1 −σp(a�a)(a− a)p−1. Clearly, ψ2 is strictly increasing at a= a because
h(a) > 0 and strictly decreasing at a= ā because h(ā) < 0. Hence, as ∈ (a� ā). The single-
player sample as satisfies h(as) = 0, that is,

(
as − a
ā− as

)p−1

= σp
(
as� ā

)
σp

(
a�as

) � (1)

The function h has either a unique zero at (a + ā)/2, or three zeros, of which one is
(a + ā)/2 and the other two are symmetric with respect to it. There exists at most one
as < (ā+ a)/2 because

∂h

∂a

∣∣∣∣
a=as

= σp
(
as� ā

)(
ā− as)p−1

⎛
⎜⎜⎝

1 +p
((
ā− as
�

)p

− 1
)

ā− as −
1 +p

((
as − a
�

)p

− 1
)

as − a

⎞
⎟⎟⎠

has the same sign over (a� (ā+a)/2). Hence, h is either globally decreasing or decreasing-
increasing-decreasing over (a� ā).

As �→ 0, the RHS of (1) goes to zero for any as ∈ (a� ā), hence the two single-player
samples converge to as ↓ a and as ↑ ā, respectively. At any as, such that h(as) = 0 and
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as < (a + ā)/2 (i.e., for which h crosses zero thrice), the function h is decreasing at as.
Note that h is increasing in � at such an as because

∂h

∂�

∣∣∣∣
a=as

= p

�
σp

(
as� ā

)(
ā− as)p−1

((
ā− as
�

)p

−
(
as − a
�

)p)
> 0�

Moreover, the function h is decreasing in a at a = as such that h(as) = 0 and as < (a+
ā)/2. Thus, as � increases the single-player sample to the left of (a + ā)/2 shifts to the
right. By the mirror argument, the single-player sample that is strictly closer to ā shifts to
the left as � increases.

For � sufficiently large, the function h is strictly decreasing at (a + ā)/2. To see this,
consider

∂h

∂a

∣∣∣∣
a=(a+ā)/2

= 23−2p(ā− a)p−2e−2−p( ā−a� )p
(
p

((
ā− a
�

)p

− 2p
)

+ 2p
)
�

which is strictly negative for � large because ((ā − a)/�)p → 0 as �→ +∞. Therefore,
it must be that h is strictly decreasing over (a� ā), hence the single-player sample is as =
(a+ ā)/2.

Finally, fix � > 0. As p ↓ 1, the RHS of (1) converges to a strictly positive value whereas
the LHS shrinks to 0 for any fixed sample. Therefore, the two single-player samples con-
verge to as ↓ a and as ↑ ā, respectively. Q.E.D.

LEMMA C.1: Suppose Assumption 2 holds. Fix a sample a ={a1� � � � � ak}, where 0 ≤ a1 <
· · ·< ak ≤ 1. For the singleton sample, a ={a1}, τ(a1) = �(2 − e−a1/� − e−(1−a1)/�). For k≥ 2,
the sample realization f (aj) is weighted by

τj(a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�

(
1 − e−a1/� + tanh

(
a2 − a1

2�

))
if j = 1

�

(
tanh

(
aj − aj−1

2�

)
+ tanh

(
aj+1 − aj

2�

))
if j = 2� � � � �k− 1

�

(
1 − e−(1−ak)/� + tanh

(
ak − ak−1

2�

))
if j = k�

PROOF OF LEMMA C.1: Using the expressions for τ(a;a) derived in the proof of
Lemma 2, we obtain: (i) if a < a1, then τ1(a;a) = e−(a1−a)/� and τj(a;a) = 0 for all j 	= 1;
(ii) if a > ak, then τk(a;a) = e−|ak−a|/� and τj(a;a) = 0 for all j 	= k; (iii) if a ∈ (ai� ai+1)
for i= 1� � � � �k− 1, then

τi(a;a) = e−(a−ai)/� − e−(2ai+1−ai−a)/�

1 − e−2(ai+1−ai)/� = csch
(
ai+1 − ai

�

)
sinh

(
ai+1 − a
�

)
�

τi+1(a;a) = e−(ai+1−a)/� − e−(ai+1+a−2ai)/�

1 − e−2(ai+1−ai)/� = csch
(
ai+1 − ai

�

)
sinh

(
a− ai
�

)
�

and τj(a;a) = 0 for all j 	= i� i+ 1. Integrating these weights as in Corollary 1, we obtain
the sample weights stated in the lemma. Q.E.D.



ATTRIBUTES: SELECTIVE LEARNING AND INFLUENCE 3

PROOF OF PROPOSITION 4: We first establish that as1 > 0 and ask < 1. Suppose, by con-
tradiction, that as1 = 0. Differentiating ψ2(a) with respect to the leftmost attribute:

∂ψ2(a)
∂a1

∣∣∣∣
a1=0

= 2�e−2a1/�
(
2ea1/� − 1

) − 2� sech2
(
a2 − a1

2�

)∣∣∣∣
a1=0

= 2�
(

1 − sech2
(
a2

2�

))
> 0

for any a \{a1}. This contradicts the optimality of as1 = 0; hence as1 > 0. By a similar argu-
ment, ask < 1. Therefore, the first-order approach is valid for all sample attributes.

Second, we show that for any j ∈ {2� � � � �k}, the distance asj − asj−1 is constant in j. By
the optimality of asj , the first-order condition with respect to asj is

∂ψ2(a)
∂asj

= 2�
(

sech2
(
asj − asj−1

2�

)
− sech2

(
asj+1 − asj

2�

))
= 0

and the second order condition ∂2ψ2(a)

∂asj
2 < 0 is satisfied. Hence, asj − asj−1 = asj+1 − asj =

(1 − as1 − ask)/(k− 1) for any j = 2� � � � �k− 1. By Lemma C.1, this implies that for any
j = 2� � � � �k− 1, the sample weight is τj(as) = 2� tanh( 1−as1−as

k

2�(k−1) ). Third, the first-order con-
ditions with respect to as1 and ask are respectively

e−as1/�
(
2 − e−as1/�

) = sech2
(

1 − as1 − ask
2�(k− 1)

)
�

e−(1−as
k

)/�
(
2 − e−(1−as

k
)/�

) = sech2
(

1 − as1 − ask
2�(k− 1)

)
�

Because the RHSs are equal, LHSs must be equal, too. The LHS is of the form x(2 − x),
which strictly increases in x ∈ (0�1). Hence, as1 = 1 − ask, which implies τ1(as) = τk(as).
This, along with as2� � � � � a

s
k−1 being equidistant, establishes part (i).

The FOC for the leftmost attribute as1 pins down the entire as. We use the trigonometric
identity sech2(x) = 1 − tanh2(x) = (1 − tanh(x))(1 + tanh(x)) and let x := e−as1/� and
y := 1 − tanh( 1−as1−as

k

2�(k−1) ) to rewrite the FOC with respect to as1 as x(2 − x) = y(2 − y),
where x� y ∈ [0�1]. Because f (z) = z(2 − z) is one-to-one for z ∈ [0�1], this implies that
x= y , which combined with the fact that as1 = 1 − ask, gives the conditions in part (ii). The
equation 1−e−as1/� = tanh( 1−2as1

2�(k−1) ) has a unique solution because for as1 ∈ (0�1/2) the LHS
is strictly increasing in as1 and it is zero for as1 = 0, whereas RHS is strictly decreasing in as1
and it is zero for as1 = 1/2. Finally, invoking (11), note that

τ1

(
as

) = τk
(
as

) = �
(

1 − e−as1/� + tanh
(

1 − 2as1
2�(k− 1)

))
= 2� tanh

(
1 − 2as1

2�(k− 1)

)
= τj

(
as

)
for any j = 2� � � � �k− 1. This establishes part (iii). Q.E.D.

PROOF OF PROPOSITION 5: By Proposition 4(i)–(ii), it is sufficient to establish that
|as1 − 1/2| strictly increases in � for k > 1. For k = 1, as = {1/2} is unique for any � > 0.
For k > 1, as1 < 1/2 by symmetry of as. By implicit differentiation of the equation for
as1(�) in (11) with respect to �, ∂as1

∂�
< 0 iff 2as1(k − 1) + (2as1 − 1)(2 − e−as1/�) < 0. But
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as1 < 1/(k + 1) because 1 − e−a1/� − tanh( 1−2a1
2�(k−1) ) is strictly increasing in a1 and strictly

positive for a1 = 1/(k+ 1). Hence, as1 < 1/(k+ 1) < (1 − 2as1)/(k− 1), which implies

as1
�
<

1 − 2as1
2�(k− 1)

⇔ 2as1(k− 1) < 1 − 2as1 <
(
1 − 2as1

)(
2 − e−as1/�

)
because 2 − e−as1/� > 1. Therefore, as1 is strictly decreasing in �.

Next, we want to show that as � → 0, as1 → 1/(k + 1). Substituting the identity

(1 + tanh(x))/(1 − tanh(x)) = e2x into equation (11), we obtain 2 − e−as1/� − e
1−as1(k+1)
�(k−1) = 0.

Because from part (i) as1 < 1/(k+ 1), as �→ 0 we have e−as1/� → 0. Therefore, as �→ 0,

it must be that e
1−as1 (k+1)
�(k−1) → 2. The term �(k− 1) → 0 as �→ 0 and (1 − as1(k+ 1))/(�(k−

1)) → ln(2), hence it must be that 1 − as1(k+ 1) → 0 as well. By the second equation in
(11), it follows that asj → j/(k+ 1) as �→ 0.

Finally, we want to show that as �→ +∞, as1 → 1/(2k). Equation (11) implies

lim
�→+∞

1 − e−as1/�

tanh
(

1 − 2as1
2�(k− 1)

) = 1�

Because the numerator and the denominator converge to zero as � → +∞, we apply

L’Hôpital’s rule: lim�→+∞
as1
�2
e
−as1/�

1−2as1
2�2(k−1)

sech2(
1−2as1

2�(k−1) )
= lim�→+∞

2as1(k−1)
1−2as1

e
−as1/�

sech2(
1−2as1

2�(k−1) )
= 1. As �→ +∞,

e−as1/� → 1 and sech2( 1−2as1
2�(k−1) ) → 1. Hence, lim�→+∞

2as1(k−1)
1−2as1

= 1. This implies that as1 →
1/(2k) as �→ +∞. By the second equation in (11), it also follows that asj → (2j−1)/(2k)
as �→ +∞. Q.E.D.

Calculations for Remark 1. Let v ∼ N (ν0�σ
2
0 ), where σ2

0 > 0 exogenous. The player
has access to signals f (a) = v + ξ(a) where the noise terms are correlated accord-
ing to the Ornstein–Uhlenbeck covariance (with variance 1 and correlation exp(−|a2 −
a1|/�)). Hence, any two signals (f (a1)� f (a2)) are correlated according to the Ornstein–
Uhlenbeck covariance as well: each respective variance is σ2

0 + 1 and their covariance is
σ2

0 + exp(−|a2 − a1|/�) = σ2
0 + σou(a1� a2). The covariance between v and any f (a) is σ2

0 .
Let dj = aj+1 − aj . The sample weights for a ={a1� � � � � ak} are

(
σ2

0 · · · σ2
0

)
⎛
⎜⎜⎜⎝

σ2
0 + 1 σ2

0 + e−d1/� · · · σ2
0 + e−(d1+···+dk−1)/�

σ2
0 + e−d1/� σ2

0 + 1 · · · σ2
0 + e−(d2+···+dk−1)/�

���
���

� � �
���

σ2
0 + e−(d1+···+dk−1)/� σ2

0 + e−(d2+···+dk−1)/� · · · σ2
0 + 1

⎞
⎟⎟⎟⎠

−1

�

From here, we calculate the posterior variance as

ψ2(a) =
k∑
j=1

k∑
m=1

τj(a)τm(a)
(
σ2

0 + e−|am−aj|/�)�
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For k= 2, the posterior variance simplifies to⎛
⎜⎝ 4

2 + 1 + e−d1/�

σ2
0

⎞
⎟⎠

2

which is strictly increasing in d1. The optimal signals that maximize this posterior vari-
ance subject to d1 ∈ [0�1] are a∗

2 = {0�1}. Similarly, it is straightforward to verify that the
optimal signals are a∗

3 = {0�1/2�1} for k = 3, a∗
4 = {0�1/3�2/3�1} for k = 4, and so on.

The player seeks to sample signals that are as weakly correlated as possible, so that the
overlap between the information that they carry about v is as small as possible.

The following lemma establishes that the player’s expected payoff is single-peaked in
attribute correlation in a simple attribute setting that is close to the common-variance-
common-correlation signal setting in Clemen and Winkler (1985). Suppose that the at-
tribute space is finite: A = {a1� � � � � aN}. The player’s value is

∑N

j=1 f (aj). The common
variance is σ (a�a) = 1 and the common correlation is σ (a�a′) = ρ ∈ (−1/(N − 1)�1) for
any a�a′ ∈A.

LEMMA C.2: For any sample a that consists of k attributes, the expected loss var[v]−ψ2(a)
is single-peaked in ρ with a maximum at ρ∗ > 0 such that (1 − ρ∗)2 − kρ∗2 = k/(N − 1).

PROOF OF LEMMA C.2: We calculate var[v] and ψ2(a) for the sample of k attributes
a ={a1� � � � � ak}. This is without loss since attributes are identically distributed:

var[v] =N var
[
f (a1)

] + 2
(
N
2

)
cov

[
f (a1)� f (a2)

] =N +N(N − 1)ρ;

ψ2(a) = var

[
k∑
j=1

f (aj)

](
1 + (N − k)

ρ

1 + (k− 1)ρ

)2

= (
k+ k(k− 1)ρ

)(
1 + (N − k)

ρ

1 + (k− 1)ρ

)2

�

The expected payoff from sample a is

V (a) =ψ2(a) − var[v] = − (1 − ρ)(N − k)
(
(N − 1)ρ+ 1

)
(k− 1)ρ+ 1

�

The expected payoff V is increasing in ρ if and only if (1 − ρ)2 − kρ2 ≤ k/(N − 1). It
is immediate to check that V is strictly decreasing at any ρ ∈ (− 1

N−1 �0]. Moreover, V
is strictly increasing at ρ = 1. For ρ > 0, the term (1 − ρ)2 − kρ2 is strictly decreasing
in ρ. Therefore, there exists a unique ρ∗ at which (1 − ρ∗)2 − kρ∗2 = k

N−1 : the payoff is
strictly decreasing (resp., increasing) for ρ < ρ∗ (resp., ρ > ρ∗). Hence, the expected loss
is single-peaked with a peak at ρ∗. Q.E.D.

APPENDIX D: PROOFS AND AUXILIARY RESULTS FOR SECTION 4.2

PROOF OF PROPOSITION 10: Without loss, suppose aA < aP . Given a sample a = {a},
the sample weight for player i is τi(a) := τi1(a) = σp(a�ai). We first establish that a∗ ≥ aA
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for any p ∈ (0�2]. To the contrary, suppose a∗ < aA. Then as a increases in (a∗� aA), both
τP (a) and τA(a) increase. The agent’s payoff strictly increases because

∂VA(a)
∂a

= 2τP (a)
(
∂τA(a)
∂a

− ∂τP (a)
∂a

)
+ 2τA(a)

∂τP (a)
∂a

�

This is strictly positive for a < aA since for both players, τi > 0, ∂τi(a)/∂a > 0, and
∂τi(a)/∂a decreases in ai. The agent is strictly better off sampling aA instead.

Next, we establish that a∗ /∈ ((aA + aP)/2� aP) for any p ∈ (0�2]. The agent’s payoff is
strictly decreasing in a ∈ ((aA + aP)/2� aP) because ∂τA(a)/∂a < 0, ∂τP (a)/∂a < 0 and
0< τA(a) < τP (a). The agent is better off sampling (aP + aA)/2 instead.

Third, we establish that a∗ ≤ aP for any p ∈ (0�2]. Suppose, to the contrary, that
a∗ > aP . Consider an alternative sample ã= aP − (a∗ − aP). If available, that is, if ã ∈ A,
τP (ã) = τP (a∗) but τA(ã) > τA(a∗), hence VA(ã) > VA(a∗). If ã /∈ A, it must be that
ã < aA. But by the argument above, the agent strictly prefers aA to any such ã < aA.
This contradicts the optimality of a∗.

Hence, these three observations imply that a∗ ∈ [aA� (aP + aA)/2] for any p ∈ (0�2].
(i) Let p ∈ (0�1]. For any a ∈ [aA� (aP + aA)/2] and any p ∈ (0�2], the agent’s payoff

VA(a) is strictly decreasing in a if and only if
(
aP − a
a− aA

)1−p
e( aP−a

� )p

e( aP−a
� )p − e(

a−aA
� )p

> 1�

which holds because 0 < a − aA < aP − a. Therefore, the agent prefers sampling aA to
sampling any a ∈ (aA� (aP + aA)/2].

(ii) Let p ∈ (1�2]. At a= aA, the agent’s payoff is increasing because the LHS of the in-
equality in part (i) is zero. Moreover, the first-order condition that pins down the optimal
sample a∗ ∈ (aA� (aP + aA)/2) is

e( aP−a∗
� )p

e( aP−a∗
� )p − e(

a∗−aA
� )p

=
(
aP − a∗

a∗ − aA
)p−1

�

As �→ 0, the LHS approaches 1. Therefore, it must be that RHS approaches 1 as well,
which implies that a∗ approaches (aP + aA)/2. Alternatively, as �→ +∞, the LHS ap-
proaches +∞, which implies that a∗ → aA so that the RHS approaches +∞ as well.

Moreover, as p→ 1, the RHS of the FOC converges to 1, whereas the LHS converges
to

e
aP−a∗
�

e
aP−a∗
� − ea

∗−aA
�

≥ 1�

In order for the FOC to hold, it must be that LHS also converges to 1, which implies that
a∗ → aA. Q.E.D.

PROPOSITION D.1: If σ satisfies NAP, no sampling is optimal if and only if for any a ∈A,
τP (a)/τA(a) > 2.

PROOF OF PROPOSITION D.1: Fix k. If no sampling is strictly optimal, then in particular
VA({a1}) < 0 for any singleton sample in A1, which is equivalent to 2τA(a1) − τP (a1) <
0. Conversely, suppose A/P is sufficiently close to zero. If sample a∗ = {a1� � � � � an} is
optimal, by the previous argument all samples of size 1 must attain strictly negative payoff,



ATTRIBUTES: SELECTIVE LEARNING AND INFLUENCE 7

hence n≥ 2. In particular, τA(aj) < τP (aj)/2 for all aj ∈ a∗. But then

α2

(
a∗)< n∑

j=1

τPj
(
a∗)τP (aj)

2
= α1

(
a∗)

2
�

hence VA(a∗) < 0 as well. This contradicts the optimality of a∗. Q.E.D.

PROOF OF PROPOSITION 11: (i) Without loss, let āA < aP . Suppose a∗ ={a1� a2} where
a1 ∈ [aA� āA] and a2 ∈ [aP� āP]. We show that VA({a1� a2}) ≤ VA({a1� aP}) < VA({āA}).
Consider first the difference α2({a1� a2}) − α2({a1}), which due to NAP equals

τA2
(
a∗)τP2 (

a∗)(1 − σ2
ou(a1� a2)

) =
(∫ āA

a1

σou(a�aP)
(
1 − σ2

ou(a�a1)
)

da
)
τP2

(
a∗)σou(aP�a2)�

The term τP2 (a∗)σou(aP�a2) strictly decreases over a2 ∈ [aP� āP] because its first deriva-
tive with respect to a2 is −2e−(a1−aP )/� csch2((a1 − a2)/�) sinh((a2 − aP)/(2�)) sinh((a2 +
aP − 2a1)/(2�)) < 0 for a2 > aP . Hence, α2({a1� aP}) > α2({a1� a2}) for any a2 > aP .
On the other hand, ψ2

P ({a1� a2}) is single-peaked in a2 ∈ [aP� āP] with the peak at â2 >
(aP + āP)/2, because in the absence of a1, ψ2

P would be maximized at (aP + āP)/2.
Moreover, for any a2 > â2, ψ2

P ({a1� a2}) > ψ2
P ({a1� â2 − (a2 − â2)}). Hence, for any

a2 ∈ (aP� āP], ψ2
P ({a1� a2}) > ψ2

P ({a1� aP}). Therefore, a2 = aP guarantees higher covari-
ance and lower ψ2

P , which implies VA({a1� a2}) < VA({a1� aP}) = VA({aP}) for any a2 > aP ,
where the last equality follows from τP1 ({a1� aP}) = 0. Now consider the alternative sam-
ple {āA}. Note that ψ2

P ({āA}) = σ2
ou(aP� āA)ψ2

P ({aP}) < ψ2
P ({aP}) and τP (āA)τA(āA) =

(σou(āA�aP)τP (aP))(τA(aP)/σou(āA�aP)) = τP (aP)τA(aP). Hence, VA({aP}) < VA({āA}).
Therefore, {āA} dominates a∗. Moreover, any sample of the form {a2} for a2 ∈ [aP� āP] is
dominated by {āA}. Hence, the optimal sample is of the form {a1}, where a1 ∈ [aA� āA].
Differentiating VA({a1}) with respect to a1,

∂VA(a1)
∂a1

= 2�e
a1−āA−2(aP+āP )

�
(
e
āP
� − eaP� )(

e
a1
� C1 +C0

)
�

where C1 = eāA/�(eaP/� − eāP/�) − 2e(aP+āP )/� < 0 and C0 = 2e(āA+aP+āP )/� > 0. Therefore, the
FOC that uniquely pins down a∗

1, whenever the solution is interior in [aA� āA], is ea∗
1/� =

−C0/C1. The second-order condition is satisfied as well because

∂2VA(a1)
∂a2

1

∣∣∣∣
a1=a∗

1

= 4e
a∗1−āA−2(aP+āP )

�
(
e
āP
� − eaP� )(

e
a∗1
� C1 +C0/2

)
< 0�

It can be easily verified that VA({āA}) < 0. Moreover, if eaA/�C1 +C0 > 0 then VA({aA}) >
0. Therefore, either VA({aA}) > 0> VA({āA}) and VA is single-peaked in a1, or VA({aA}) <
0 and VA is strictly decreasing in a1. The optimal attribute, if interior, is given by a∗

1 =
āP−� ln( 1

2 (2e(āP−āA)/�+e(āP−aP )/�−1)), which simplifies to a∗
1 = −� ln(e−āA/�+ e−aP /�−e−āP /�

2 ).
The case of āP < aA follows by a similar argument.

(ii) Let āP < aA. Equation (15) simplifies to ea∗
1/� − eaA/� = 1

2 (eāP/� − eaP/�). By implicit
differentiation with respect to �, we obtain

∂a∗
1(�)
∂�

= e−a∗
1/�

(
a∗

1

�
ea

∗
1/� − aA

�
eaA/� − āP

2�
eāP/� + aP

2�
eaP/�

)
�
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The function g(x) := xex is above f (x) := ex for x > 1, below f (x) for x < 1, and strictly
more convex than f (x). Hence, if ea∗

1/�−eaA/�− 1
2 (eāP/�−eaP/�) = 0 then a∗

1
�
ea

∗
1/�− aA

�
eaA/�−

āP
2� e

āP/� + aP
2� e

aP/� > 0. Therefore, a∗
1(�) is strictly increasing in �. An analogous argument

applies to the case of āA < aP .
(iii) We take the limit of a∗

1(�) in (15) as �→ 0+. Let āP < aA. Applying L’Hôpital’s rule
and then dividing through by eaA/�, we obtain

lim
�→0+ a

∗
1(�) = lim

�→0+
2aAe

aA/� + āPeāP/� − aPeaP/�
2eaA/� + eāP/� − eaP/� = lim

�→0+
2aA + āPe−(aA−āP )/� − aPe−(aA−aP )/�

2 + e−(aA−āP )/� − e−(aA−aP )/�
�

which is just 2aA/2 = aA. By a similar argument, if āA < aP then a∗
1(�) → āA as �→ 0+.

(iv) Let āP < aA. By similar steps to part (iii),

lim
�→+∞

a∗
1(�) = lim

�→+∞
2aA + āPe−(aA−āP )/� − aPe−(aA−aP )/�

2 + e−(aA−āP )/� − e−(aA−aP )/� = 2aA + āP − aP
2

= aA + P

2
�

If A ≥ P/2, this limit is interior in [aA� āA]. Otherwise, a∗ is empty. A similar argument
applies to the case of āA < aP . Q.E.D.

PROOF OF PROPOSITION 12: Without loss, fix 0< aA < aP < āA < āP < 1 and let an op-
timal sample be a∗ ={a1� � � � � an}. We first show that there is no sampling in (āA� āP]. Sup-
pose first that n= 1 and a1 ∈ (āA� āP]. Then α2(a1) = σou(āA�a1)τA(āA)τP (a1) and its first
derivative with respect to a1 is −2τA(āA) exp((āA − 2a1)/�)(exp(a1/�) − exp(aP/�)) < 0.
Hence, α2 is strictly decreasing over (āA� āP]. Let asP := (aP + āP)/2. If a1 ∈ (āA�asP], α1 is
strictly increasing, hence VA(a1) is strictly decreasing. If a1 ∈ (asP� āP], then due to ψ2

P be-
ing single-peaked at asP and symmetric around it, τP (a1) = τP (asP− (a1 −asP)) and α1(a1) =
α1(asP − (a1 −asP)). Hence, VA(a1) < VA(asP − (a1 −asP)). Next, suppose n≥ 2 and an > āA.
Consider first the difference α2(a∗) − α2(a∗ \ {an}) = τAn (a∗)τPn (a∗)(1 − σ2

ou(an−1� an)),
which equals

σou(āA�an)τPn
(
a∗)(∫ āA

an−1

σou(a� āA)
(
1 − σ2

ou(a�an−1)
)

da
)
�

The term σou(āA�an)τPn (a∗) is strictly decreasing in an because its first derivative with
respect to an is −2 exp((āA − an−1)/�) csch2((an−1 − an)/�) sinh((an − aP)/�) sinh((an +
aP − 2an−1)/�) < 0 if an−1 < aP and −2 exp((an + āA)/�)/(exp(an−1/�) + exp(an/�))2 < 0
if an−1 ≥ aP . Therefore, α2(a∗) is strictly decreasing in an ∈ (āA� āP]. On the other hand,
from the single-player benchmark we know that ψ2

P (a∗) is single-peaked in an ∈ (an−1� āP],
with a peak at asn > (aP + āP)/2 because in the absence of the rest of the sample, and in
particular an−1, it would be maximized at (aP + āP)/2. If asn > āA, then any attribute in
(āA�asn) is dominated by āA. Moreover, VA is either single-troughed in an, with a trough
to the right of asn, or strictly decreasing in an ∈ (āA� āP]. Hence, VA((a∗ \ {an}) ∪ āA) >
VA((a∗ \{an}) ∪ āA).

Second, to show that there is no sampling in [aA�aP) for n≥ 2, we suppose by contra-
diction that a1 < aP . For τP1 (a∗) 	= 0, it must be that a2 > aP . Differentiate VA with respect
to a1, we obtain

4�
(

2 cosh
(
a1 − a2

�

)
− 1 − cosh

(
a2 − aP
�

))
csch2

(
a1 − a2

�

)
sinh2

(
a2 − aP

2�

)
> 0
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for any a1 ≤ aP < a2 because a2 − a1 > a2 − aP . Hence, VA strictly increases in a1. Finally,
n= k by Corollary 9. Q.E.D.

APPENDIX E: EXTENSIONS AND ADDITIONAL RESULTS

E.1. Examples for Section 5.1

EXAMPLE E.1—Inference reversal due to conflicting attributes: Let A = [a� ā] and
ω(a) = 1 for all a ∈ A. The attribute covariance is σlin(a�a′) = (a − â)(a′ − â) and the
prior mean is μ(a) = 0 for a�a′ ∈ A; note that σlin(â� â) = 0. This structure corresponds
to a linear attribute mapping f that goes through the realization f (â) = 0 for â ∈ A and
the slope of which is not known (Figure E.1). Attribute variance increases quadratically
with distance from â. Without loss, let â < (a+ ā)/2. The correlation between any two
attribute realizations is perfect because

corr
(
f (a)� f

(
a′)) = σlin

(
a�a′)√

σlin(a�a)σlin

(
a′� a′) =

{
+1 if sgn(a− â) = sgn

(
a′ − â)

−1 if sgn(a− â) 	= sgn
(
a′ − â)�

Therefore, discovering one more attribute resolves all uncertainty about f .
Suppose ã 	= â is discovered. The uncertainty about v prior to the discovery of f (ã)

is 1
4 (ā − a)2(ā + a − 2â)2. The project is more uncertain the greater is the mass of at-

tributes (ā−a) and the farther â is from the median attribute (a+ ā)/2, that is, the more
peripheral the known attribute â is. If â is exactly the median attribute, the uncertainty
about v is zero because the uncertainty about [a� â] cancels that about [â� ā]. Given a
singleton sample a = {ã}, by equation (6) the expected realization of any other attribute
a is E[f (a) | f (ã)] = τ1(a;a)f (ã) = (a− â)f (ã)/(ã− â). Hence, from equation (8), the
sample weight is τ1(ã) = 1

2 (ā−a)(ā+a−2â)/(ã− â), which is strictly negative for ã < â.
That is, a high realization for ã < â implies low realizations for attributes in [â� ā], which
is the majority of the attributes. Therefore, the sample weight of attributes to the left of â
is negative even though all attributes are desirable.

EXAMPLE E.2—Inference reversal due to the presence of other sample attributes: Let
A = [0�1], ω(a) = 1, and the squared-exponential covariance σ2(a�a′) = e−(a−a′)2/�2 for
all a�a′ ∈ [0�1]. Lemma E.3 shows the possibility of a reversal in the direction of infer-
ence when going from a one-attribute sample to a two-attribute one. Due to the positive
attribute correlation, any singleton sample has a strictly positive sample weight. But in

FIGURE E.1.—Linear attribute mapping corresponding to σlin.
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a two-attribute sample, one of the attributes can have a strictly negative sample weight,
even though the sum of the sample weights for the two attributes must be strictly positive.
Lemma E.3(ii) establishes that such a negative sample weight arises if and only if the two
attributes are on the same side of the median attribute and attribute correlation is high.
The attribute with a negative sample weight is the one farther away from the median
attribute.

LEMMA E.3: Let σ2(a�a′) = e−(a−a′)2/�2 , andω(a) = 1 for all a�a′ ∈ [0�1]. For any sample
a1 ={a1}, τ1(a1) > 0. For any two-attribute sample, a2 ={a1� a2} such that 0 ≤ a1 < a2 ≤ 1:

(i) the sum of sample weights is always positive: τ1(a2) + τ2(a2) > 0;
(ii) one of the attributes is assigned a strictly negative if and only if a1 and a2 are on the

same side of the median attribute and � is sufficiently large.

PROOF OF LEMMA E.3: (i) Let g(a) := erf( a
�
) + erf( 1−a

�
). First, note that g(a) > 0 be-

cause a1 ∈ [0�1], � > 0 and erf(x) > 0 for any x > 0. For a singleton sample, equation (8)
simplifies to τ1(a1) = �

√
πg(a1) > 0. Now consider a2 = {a1� a2}, where a1 < a2, and let

d := a2 − a1. Applying Lemma 1, the sample weights are given by

τj(a) = 1
4
�
√
πe

− 4a1a2
�2 csch

(
d2

�2

)(
ed

2/�2
g(aj) − g(a−j)

)
�

which is positive if and only if ed2/�2
g(aj) − g(a−j) > 0. Then the sign of the sum τ1(a) +

τ2(a) is determined by the sign of g(a1) + g(a2), which is strictly positive for any a1� a2 ∈
[0�1]. Hence, at least one of the attributes has a strictly positive sample weight.

(ii) Taking the limit of these sample weights as �→ +∞, we obtain

lim
�→+∞

τ1(a2) = 2a2 − 1
2(a2 − a1)

� lim
�→+∞

τ2(a2) = 1 − 2a1

2(a2 − a1)
�

If a1 < a2 < 1/2, then lim�→+∞ τ1(a2) < 0. If 1/2 < a1 < a2, then lim�→+∞ τ2(a2) < 0. So,
the conditions are sufficient. To show that they are also necessary, suppose first a1 < 1/2<
a2. Then ed2/�2

g(aj) − g(a−j) strictly increases in the distance d for any aj ∈ a2 and it is
zero for d = 0. Second, suppose that a1 < a2 < 1/2. Then τ1(a2) as a function of � is
single-troughed in � and crosses zero only once in �, say at � = �̄. On the other hand,
τ2(a2) as a function of � is decreasing and strictly positive in �. Hence, for τ1(a2) to be
strictly negative, it is necessary that � > �̄. Q.E.D.

E.2. Binary Decision and Reservation Values

PROPOSITION E.1: Let D= {0�1} and for each i=A�P , u(1� vi) = vi and u(0� vi) = ri,
where ri ∈ R is a known outside option for player i. The agent’s expected payoff from any
sample a ∈Ak is

VA(a) = rA + (
νA0 − rA

)
�

(
νP0 − rP√
α1(a)

)
+ α2(a)√

α1(a)
φ

(
νP0 − rP√
α1(a)

)
�

where α1 and α2 are defined as in Theorem 2.
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PROOF OF PROPOSITION E.1: Let ρ(a) denote the correlation between νP (a) and
νA(a), the joint distribution is Gaussian:(

νP (a)
νA(a)

)
∼N

((
νP0
νA0

)
�

(
ψ2
P (a) ρ(a)ψA(a)ψP (a)

ρ(a)ψA(a)ψP (a) ψ2
P (a)

))
�

CLAIM 1: For any rP ∈ R,

f
(
νA(a) | νP (a) ≥ rP

) =
φ

(
νA(a) − νA0
ψA(a)

)

ψA(a)�
(
νP0 − rP
ψP (a)

)�
⎛
⎜⎜⎝
νP0 + ρ(a)

ψP (a)
ψA(a)

(
νA(a) − νA0

) − rP

ψP (a)
√

1 − ρ(a)2

⎞
⎟⎟⎠ �

PROOF: Let x1, x2 be jointly Gaussian with means μ1, μ2, variances σ2
1 , σ2

2 , and covari-
ance σ12. Let f1, f2 and F1, F2 denote their respective pdf and cdf. Then

f (x1 | x2 ≥ x̄) = 1
1 − F2(x̄)

Pr(x2 ≥ x̄)f (x1 | x2 ≥ x̄)

= 1
1 − F2(x̄)

∫ ∞

x̄

f (x2 | x1)f1(x1) dx2

= f1(x1)
1 − F2(x̄)

(
1 − Fx2|x1 (x̄)

)
�

The first line multiplies and divides by Pr(x2 ≥ x̄). The second line rewrites Pr(x2 ≥
x̄)f (x1 | x2 ≥ x̄) using the joint density and the observation that f (x1�x2) = f (x2 |
x1)f1(x1). The last two lines use the conditional distribution of x2 | x1. But

x2 | x1 ∼N
(
μ2 + ρσ2

σ1
(x1 −μ1)�

(
1 − ρ2

)
σ2

2

)

and ρ= σ12
σ1σ2

. Therefore, we can substitute in the expression for Fx2|x1 to obtain

f (x1 | x2 ≥ x̄) = f1(x1)
1 − F2(x̄)

⎛
⎜⎝1 −�

⎛
⎜⎝ x̄−μ2 − ρσ2

σ1
(x1 −μ1)

σ2

√
1 − ρ2

⎞
⎟⎠

⎞
⎟⎠ �

Switching back to our variables of interest, let x1 := νA(a) ∼N (νA0 �ψ
2
A(a)), x2 := νP (a) ∼

N (νP0 �ψ
2
P (a)), and x̄ := rP . Therefore,

f
(
νA(a)|νP (a) ≥ rP

)

=
φ

(
νA(a) − νA0
ψA(a)

)

ψA(a)
(

1 −�
(
rP − νP0
ψP (a)

))
⎛
⎜⎜⎝1 −�

⎛
⎜⎜⎝
rP − νP0 − ρ(a)

ψP (a)
ψA(a)

(
νA(a) − νA0

)
ψP (a)

√
1 − ρ(a)2

⎞
⎟⎟⎠

⎞
⎟⎟⎠ �
Q.E.D.
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Using the claim, observe that:

Pr
(
νP (a) ≥ rP

)
E
[
νA(a) | νP (a)

≥ rP
] =�

(
νP0 − rP
ψP (a)

)∫ ∞

−∞
νA(a)f

(
νA(a)|νP (a) ≥ rP

)
dνA(a)

=
∫ ∞

−∞

νA(a)
ψA(a)

φ

(
νA(a) − νA0
ψA(a)

)
�

⎛
⎜⎜⎝
νP0 + ρ(a)

ψP (a)
ψA(a)

(
νA(a) − νA0

) − rP

ψP (a)
√

1 − ρ(a)2

⎞
⎟⎟⎠ dνA(a)

=
∫ ∞

−∞

(
xψA(a) + νA0

)
φ(x)�

(
νP0 + ρ(a)ψP (a)x− rP
ψP (a)

√
1 − ρ2(a)

)
dx�

where in the last line x := νA(a)−νA0
ψA(a) . From Owen (1980), we have the following Gaussian

identities (resp., numbered 10,010.8 and 10,011.1 in Owen (1980)):∫ ∞

−∞
φ(x)�(a+ bx) dx=�

(
a√

1 + b2

)
�

∫ ∞

−∞
xφ(x)�(a+ bx) dx= b√

1 + b2
φ

(
a√

1 + b2

)
�

Letting a := (νP0 − rP)/(ψP (a)
√

1 − ρ2(a)) and b := ρ(a)/
√

1 − ρ2(a),

Pr
(
νP (a) ≥ rP

)
E
[
νA(a) | νP (a) ≥ rP

] = νA0 �
(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)φ

(
νP0 − rP
ψP (a)

)
�

Therefore, the agent’s payoff from sample a simplifies to

VA(a) = Pr
(
νP (a) < rP

)
rA + νA0 �

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)φ

(
νP0 − rP
ψP (a)

)

= rA + (
νA0 − rA

)
�

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)φ

(
νP0 − rP
ψP (a)

)
�

Finally, note that cov[νP (a)� νA(a)] = cov[νP (a)� vA] = α2(a) because τAj (a) +∑
i 	=j τ

A
i (a)σ (ai� aj) = τA(aj). Substituting �P (a) = √

α1(a) and ρ(a)ψA(a) =
α2(a)/

√
α1(a) into VA(a), we obtain the desired expression. Q.E.D.

E.3. Noisy Observations of Attribute Realizations

For any given sample a ∈ Ak and aj ∈ a, the player obseves a noisy observation
y(aj) = f (aj) + ε(aj), where the noise term ε(a) ∼ N (μ0(a)�η2(a)) is drawn indepen-
dently across attributes. Note that the distribution of noise term can vary across attributes;
the term μ0 captures obervational bias and η captures observational noise. Figure E.2 il-
lustrates extrapolation across noisy observations of a Brownian sample path.
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FIGURE E.2.—Extrapolation across a standard Brownian motion for A = [0�1], a = {1/4�1/2�3/4}, and
μ(a) = 0 for all a ∈ [0�1]. There is no observational bias, that is μ0(a) = 0 for all a ∈ A, whereas the observa-
tional noise is η(a) = 0 for all a ∈ A (red) and η(a) = 0�25 for all a ∈ A (blue).

COROLLARY E.4: The set of single-player samples does not depend on the observational
bias μ0.

PROOF: Fix a sample a ={a1� � � � � ak}∈Ak. The observations are distributed according
to

⎛
⎝y(a1)

���
y(ak)

⎞
⎠ ∼N

⎛
⎜⎜⎝

⎛
⎝μ(a1) +μ0(a1)

���
μ(ak) +μ0(ak)

⎞
⎠ �

⎛
⎜⎜⎝
σ (a1� a1) +η2(a1) · · · σ (a1� ak)

σ (a2� a1) · · · σ (a2� ak)
���

� � �
���

σ (ak�a1) · · · σ (ak�ak) +η2(ak)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ �

Let �(η) be this new covariance matrix. Following Lemma 1, τj(â;a) is now the (1� j)th
entry of the matrix (σ (a1� â) · · · σ (ak� â))�−1(η). The posterior variance is as in equa-
tion (10), where τj(a) is derived from τj(â;a) above as in Lemma 1. By the same argument
as in that in Theorem 1, μ0 enters neither the posterior variance nor the single-player
sample. Q.E.D.

EXAMPLE E.5—Noisier observations, more uncertain single-player sampling: Con-
sider the Brownian covariance σbr (a�a′) = min(a�a′) over A = [0�1]. That is, attribute
uncertainty increases from left to right and attribute a= 0 is the least uncertain attribute.
Letω(a) = 1 for all a ∈ [0�1] and k= 1. The observations are of the form y(a) = f (a)+ε,
where ε ∼ N (0�η2). For any sample a ∈ [0�1], the posterior variance ψ2(a) naturally
decreases with the amount of noise η2. The optimal sample a∗(η) is pinned down by
a∗(η)(3a∗(η) −2) −4(1−a∗(η))η2 = 0. It can be easily verified that the optimal attribute
without observational noise is a∗(0) = 2/3. By implicit differentiation with respect to η,
∂a∗(η)
∂η

= 4η(1−a∗(η))
3a∗(η)+2η2−1 > 0 for a∗ ∈ (2/3�1) and η > 0. Moreover, a∗(η) is strictly increasing
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at η= 0. The higher η2 is, the further away the single-player attribute is from a= 0. That
is, in the presence of greater observational noise, the player samples attributes that are ex
ante more uncertain.
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