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APPENDIX D: OTHER CHARACTERIZATIONS

HERE, WE DISCUSS other characterizations of Pareto optima. As will be seen, these char-
acterizations are not only related to our “near”-utilitarian welfare maximizations, but they
also highlight certain aspects of them and thus help to interpret and understand them.
At the same time, we will show that they differ in their axiomatic properties from our
“near”-utilitarian welfare characterizations. Our discussion will therefore illustrate that
the axiomatic properties of our “near”-utilitarian characterizations are special and not
shared by other possible characterizations of Pareto optima.

D.1. Sequential Nash Bargaining

The first characterization is motivated by an institutional/behavioral implementation of
Pareto optima. As is well known from the second fundamental welfare theorem, a Pareto
optimal allocation, say in an exchange economy, can be implemented by a competitive
equilibrium under a suitable endowment.24 In the same spirit, one may ask what institu-
tion implements a given Pareto optimum in a more general environment. Our SUWM
characterization of Pareto optima allows one to envision sequential negotiations as ful-
filling this goal. That is, any Pareto optimal outcome can be seen as emerging from a
sequence of negotiations among individuals whose relative bargaining powers in round t
are determined by the welfare weights φt in the corresponding round of SUWM charac-
terization.

To be specific, suppose each agent has a disagreement utility, normalized as zero, that is
less than any Pareto optimal utility—that is, u� 0 for every u ∈UP . Consider a collection
of bargaining units I = {I1� � � � � IT} satisfying It−1 � It for each t = 2� � � � � T and IT = I.
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Imagine that the agents engage in a sequence of bargaining: in round 1, agents in I1

bargain from U to a set V 1 ⊂U , and in round t = 2� � � � �T , agents in set It bargain from
V t−1 to a set V t . The bargaining protocol in each round t is a generalized Nash bargaining
game (Kalai (1977)) in which each agent i ∈ It has a bargaining power ψti > 0 such that∑

i∈It ψ
t
i = 1 and a disagreement payoff 0. More specifically, for bargaining units I =

{I1� � � � � IT} and bargaining powers � = (ψ1� � � � �ψT ) satisfying the above requirement,
we let V t := arg maxu∈V t−1

∏
i∈It u

ψti
i for each t = 1� � � � �T with V 0 :=U . Then, we call any

u ∈ V T a sequential Nash bargaining solution (SNBS) over U for I and �, and call u an
SNBS over U if there exist such I and �.

Observe now that SNBS implements the SUWM procedure for the logarithmic trans-
forms of utilities. Namely, u is an SNBS over U ⊂ Rn

++ if and only if v := (lnu1� � � � � lnun)
is an SUWM solution of V := {(lnu′

1� � � � � lnu′
n) : (u′

1� � � � � u
′
n) ∈U}. This connection also

makes it clear that SNBS provides another characterization of Pareto optima.

PROPOSITION 3: A vector u ∈ U ∩ Rn
++ is Pareto optimal if and only if u is an SNBS

over U .

PROOF: For any u ∈ Rn
++, let logu := (logui)i and, moreover, for any u ∈ Rn, let eu :=

(eui)i. Let us also redefineU :=U∩Rn
++ for notational simplicity. Now, let Ũ :={logu|u ∈

U}.

CLAIM 3: Suppose u ∈U and let ũ= logu. Then, u is Pareto optimal with respect to U if
and only if ũ is Pareto optimal with respect to dc(Ũ).

PROOF: First, note that u ∈ U is Pareto optimal with respect to U if and only if ũ is
Pareto optimal with respect to Ũ because log(�) is a strictly increasing function. Second,
note that ũ ∈ Ũ is Pareto optimal with respect to Ũ if and only if it is Pareto optimal with
respect to dc(Ũ) because Pareto optimality is invariant to adding utility vectors to a set
that are smaller than existing utility vectors. These two observations imply the conclusion
of this claim. Q.E.D.

CLAIM 4: Suppose that U is convex. Then dc(Ũ) is convex.

PROOF: Suppose ũ� ũ′ ∈ dc(Ũ), and λ ∈ [0�1]. By definition of dc(�), it follows that
there exist ṽ� ṽ′ ∈ Ũ such that ũ ≤ ṽ, ũ′ ≤ ṽ′. Therefore, by definition of Ũ , there exist
v� v′ ∈U such that ṽ= logv, ṽ′ = logv′.

Because U is convex, w := λv+ (1 − λ)v′ is in U . This implies that w̃ := logw is in Ũ .
Now, because log(�) is a concave function, we have that

λṽ+ (1 − λ)ṽ′ = λ logv+ (1 − λ) logv′ ≤ log
(
λv+ (1 − λ)v′) = logw= w̃�

so λṽ + (1 − λ)ṽ′ ∈ dc(Ũ). Because ũ ≤ ṽ and ũ′ ≤ ṽ′, it follows that λũ + (1 − λ)ũ′ ∈
dc(Ũ), as desired. Q.E.D.

Now we proceed to prove the theorem.

The “if” direction: Suppose that u ∈ U is an SNBS over U for some bargaining
units I and bargaining powers � (satisfying the requirement). Then, u ∈ V T , where
V T = U and V t := arg maxv∈V t−1

∏
i∈It v

ψti
i for each t ≥ 1. This implies that V t :=
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arg maxv∈V t−1
∑

i∈It ψ
t
i logvi. Setting ũ := logu and noting that ψ is a nonnegative and

eventually positive sequence, ũ is a SUWM solution of dc(Ũ) with respect to ψ. There-
fore, by Theorem 1, ũ is Pareto optimal in dc(Ũ). Then, by Claim 3, u is Pareto optimal
with respect to U , as desired.

The “only if” direction: Suppose that u ∈ U is Pareto optimal with respect to U . Then,
by Claim 3, ũ := logu is Pareto optimal with respect to dc(Ũ). Therefore, by Theo-
rem 1, there exist a sequence φ := (φt)t of nonnegative and eventually positive welfare
weight vectors such that ũ ∈ ŨT , where Ũ0 = dc(Ũ) and Ũ t := arg maxũ′∈Ũt−1

∑
i∈It φ

t
iũ

′
i

for each t ≥ 1. Then, for u= eũ, we have u ∈UT , where Ut := arg maxu′∈Ut−1
∏

i∈It (u
′
i)
φti =

arg maxu′∈V t−1
∏

i∈It (u
′
i)
ψti for each t ≥ 1, where V t := {eṽ|ṽ ∈Ut} and ψti := φti∑

j∈It φtj
, so u is

an SNBS, as desired (note that ψ satisfies the condition required of bargaining powers for
SNBS). Q.E.D.

This result provides a behavioral interpretation of our near-weighted utilitarian welfare
maximization. Despite this close connection, we will see that the SNBS characterization
differs in the social welfare ordering it induces from our near weighted utilitarian char-
acterizations. To see this, we first define the welfare ordering induced by SNBS. We say
u sequentially Nash welfare dominates v according to bargaining units I and bargaining
powers � if u is an SNBS over {u�v} for I and �.

Since SNBS implements the SUWM procedure for the logarithmic transforms of utili-
ties, Theorem 3 implies that the following axiom would fulfill the same role as Invariance.

• Log Invariance: for any u�v ∈ Rn
++, if u	 v, then u′ 	 v′ for any u′� v′ ∈ Rn

++ such that,
for some a ∈Rn and b ∈R++, lnu′

i = ai + b lnui and lnv′
i = ai + b lnvi for all i ∈ I.

Combining this axiom with the Pareto Principle and Weak Continuity defined earlier, we
obtain the following axiomatization of the welfare ordering based on SNBS.

COROLLARY 1: Let 	 be a social welfare ordering defined on Rn
++. Then, the following

statements are equivalent:
(i) 	 satisfies the Pareto Principle, Log Invariance, and Weak Continuity.

(ii) There exist bargaining units I and bargaining powers � such that for any u�v ∈ Rn
++,

u	 v if and only if u sequentially Nash welfare dominates v according to I and �.

PROOF: To prove that (ii) implies (i), we only check that 	 satisfies Log Invariance since
the other axioms are rather straightforward to check. To do so, suppose that u	 v so that,
for some t ≤ T ,

∏
i∈Is u

ψsi
i = (>)

∏
i∈Is v

ψsi
i for s < (=) t + 1, which implies∑

i∈Is
ψsi lnui = (>)

∑
i∈Is
ψsi lnvi for s < (=) t + 1� (18)

Consider now any u′, v′ such that for some a ∈ Rn and b ∈ R++, lnu′
i = ai + b lnui and

lnv′
i = ai + b lnvi for all i ∈ I. By (18), we have

∑
i∈Is
ψsi lnu′

i =
∑
i∈Is
ψsiai + b

(∑
i∈Is
ψsi lnui

)

= (>)
∑
i∈Is
ψsiai + b

(∑
i∈Is
ψsi lnvi

)
=

∑
i∈Is
ψsi lnv′

i for s < (=) t + 1�

which implies
∏

i∈Is (u
′
i)
ψsi = (>)

∏
i∈Is (v

′
i)
ψsi for s < (=) t + 1 or u′ 	 v′ as desired.
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We now prove that (i) implies (ii). Given any u ∈ Rn, let eu denote a vector (eui)i∈I
and lnu denote a vector (lnui)i∈I for simplicity. Consider any welfare ordering 	 on
Rn

++ that satisfies the three axioms. Let us define another ordering 	̃ on Rn as follows:
for any u�v ∈ Rn, u	̃v if eu 	 ev. It is straightforward to check that 	̃ satisfies Pareto
Principal, Invariance, and Weak Continuity. In particular, Invariance holds for the following
reason. Consider any u, v such that u	̃v, or equivalently, ũ := eu 	 ev =: ṽ. Invariance
requires that for any a ∈ Rn and b ∈ R++, u′ := (a+ bu)	̃(a+ bv) =: v′ or equivalently
ũ′ := eu′ 	 ev′ =: ṽ′, which follows from ũ	 ṽ and Log Invariance since ln ũ′ = a+b ln ũ and
ln ṽ′ = a+b ln ṽ. Since 	̃ satisfies the Pareto Principle, Invariance, and Weak Continuity, The-
orem 3 implies that there exists a nonnegative and eventually positive sequence of weight
vectors�= (φ1�φ2� � � � �φT ) such that, for any u�v ∈Rn, u	̃v if and only if u sequentially
utilitarian welfare dominates v according to �. For each t = 1� � � � � T , let It = suppψt

and ψti = φti∑
i∈It φti

for all i ∈ It . Consider any u, v with u 	 v. Then, ũ := lnu	̃ lnv =: ṽ
so that ũ sequentially utilitarian welfare dominates ṽ according to � = (ψ1� � � � �ψT );
that is, for some t ≤ T ,

∑
i∈Is ψ

s
i ũi = (>)

∑
i∈Is ψ

s
i ṽi for s < (=) t + 1, which implies that∏

i∈Is u
ψsi
i = (>)

∏
i∈Is v

ψsi
i for s < (=) t+1, meaning u sequentially Nash welfare dominates

v acording to I and �.
It is straightforward, and thus omitted, to prove that u sequentially Nash welfare dom-

inating v according to I and � implies u	 v. Q.E.D.

In particular, this corollary implies that while SNBS characterizes Pareto optimality,
the welfare orderings implied by the criterion depart further from utilitarianism than our
“near”-utilitarian welfare criteria. While it shares the Pareto Principle and Weak Continuity,
it generally fails Invariance.

D.2. Piecewise-Linear Concave Welfare Function

Some readers may not like the sequentiality of SUWM or the use of hyperreal numbers
in LHUWM. This observation leads to the question of whether it is possible to character-
ize Pareto optima by a one-shot maximization of a real-valued welfare function. For such
a characterization, the welfare function cannot be weighted utilitarian. In particular, the
function must be nonlinear. Can we achieve the characterization with minimal relaxation
of the linearity? This motivates the following approach.

A social welfare function W is a piecewise-linear concave (PLC) welfare function char-
acterized by (ψ1�ψ2� � � � �ψt) if

W (v) = min
t∈{1�����T}

〈
ψt� v

〉
� (19)

where ψt ∈ Rn
+ for each t. One candidate for the weight vectors (ψ1�ψ2� � � � �ψT ) to con-

struct a PLC welfare function are those identified in the SUWM characterization; that is,
eventually positive weights. However, the characterization does not hold without an aux-
iliary condition. For this condition, let us say that a PLC welfare function W achieves its
maximum over U via eventually positive weights if (i) (ψ1�ψ2� � � � �ψT ) is nonnegative and
eventually positive and (ii) for all v ∈ arg maxu′∈U W (u′), W (v) = 〈ψT�v〉.
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PROPOSITION 4: Let U be a closed convex subset of Rn. Then, u ∈ U ∩ Rn
++ is Pareto

optimal if and only if it maximizes a PLC welfare function that achieves its maximum over U
via eventually positive weights.25,26

PROOF: The “only if” direction: By Theorem 1, for any Pareto optimal u ∈ U ∩ Rn
++,

there are nonnegative and eventually positive weights (φ1� � � � �φT ) sequentially maxi-
mized by u. Letting Ut be defined as in (3), we have u ∈ Ut for all t = 1� � � � � T . Con-
sider weights (ψt)Tt=1 defined as ψ1 = φ1 and ψt = 〈ψt−1�u〉

〈φt �u〉 φ
t for each t ≥ 2. First, us-

ing the fact that u ∈ Rn
++ and φt ∈ Rn

+�∀t, it is straightforward to see that 〈ψt�u〉 > 0
and 〈φt�u〉 > 0 for every t. Thus, 〈ψt� v〉 ≥ 〈ψt� v′〉 if and only if 〈φt� v〉 ≥ 〈φt� v′〉 for all
v� v′ ∈U . Note also that 〈ψt�u〉 = 〈ψt−1�u〉

〈φt �u〉 〈φt�u〉 = 〈ψt−1�u〉 for each t ≥ 2. Thus, we have
W (u) = 〈ψt�u〉 for all t = 1� � � � �T . Also, for any v ∈UT , we have 〈ψt�u〉 = 〈ψt� v〉 for all
t, so W (u) =W (v). For any v /∈UT , there is some t such that v /∈Ut so 〈ψt� v〉< 〈ψt�u〉,
implying W (v) < W (u). Thus, u maximizes W , implying that W achieves its maximum
over U via eventually positive weights.

The “if” direction: Consider any u ∈ U maximizing a PLC function W that achieves its
maximum via eventually positive weights. Suppose for contradiction that u is not Pareto
optimal. Then, there is some v > u so that 〈ψt� v〉 ≥ 〈ψt�u〉 for all t = 1� � � � �T . As u
maximizes W , so does v. Given this and the fact that W achieves its maximum via eventu-
ally positive weights, we must have 〈ψT�v〉 =W (v) =W (u) = 〈ψT�u〉 or 〈ψT�v− u〉 = 0,
which is a contradiction since ψT � 0 and v > u. Q.E.D.

The role of the auxiliary condition is to prevent a Pareto suboptimal point from maxi-
mizing the PLC function (so that the “if” direction holds). To see it, observe that for any
Pareto suboptimal point u, one can find v > u so that W (v) ≥ W (u). If u were a maxi-
mizer ofW , then the auxiliary condition would requireW (v) = 〈ψT�v〉 = 〈ψT�u〉 =W (u)
or 〈ψT�v− u〉 = 0, which cannot hold since ψT � 0 and v > u. While achieving the goal
of characterizing Pareto optima, the auxiliary condition also captures the main feature of
SUWM that every agent’s welfare must count as it requires a PLC function to be maxi-
mized via a weight vector that puts a positive weight on every agent’s utility.

While our PLC welfare functions successfully characterize Pareto optima, we regard
them to be further away from utilitarianism than our “near”-utilitarian welfare criteria.
This is because, to our knowledge, no natural axioms characterize PLC welfare functions.
In fact, it is not even obvious how to formulate a PLC function as a social welfare ordering
in the face of the auxiliary condition. For instance, define the binary relation 	 by u 	
v if W (u) ≥ W (v) and W (u) = 〈ψT�u〉. Note that the condition W (u) = 〈ψT�u〉 is an
adaptation of the auxiliary condition to the context of social welfare ordering. Then, 	 is
not necessarily a complete binary relation, as the following example shows.

25We focus on points u ∈ Rn
++ for technical simplicity. This is not a substantive restriction because the eco-

nomic environment is arguably unchanged when a constant is added to all utility profiles.
26This proposition may be reminiscent of construction of a PLC utility function based on an individual’s

choice data (see Afriat (1967)). The PLC social welfare function reveals the planner’s preferences for agents’
utilities similarly to how Afriat’s PLC utility function reveals an individual’s preferences for alternative goods.
Note, however, that there are clear differences. The multiple linear components of our PLC welfare func-
tion result from multiple welfare weights corresponding to the successive rounds of SUWM. By contrast, the
linear components in Afriat’s construction reflect different budget lines a consumer faces in different choice
scenarios. Moreover, the role played by the auxiliary condition to ensure every agent’s welfare counts has no
analogue in Afriat’s characterization.
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EXAMPLE 1: Let there be two agents 1 and 2, T = 2,ψ1 = (1�0),ψ2 = (1�1), u= (1�1),
and v = (0�0). Then, we have W (u) = 1 > 0 = W (v) while W (u) = 1 < 2 = 〈ψ2�u〉, so
neither u	 v nor v	 u holds. Hence, 	 is not complete.

APPENDIX E: PARETO OPTIMALITY (UP) AND POSITIVE UTILITARIANISM (U++)

This section aims to discover natural conditions for UP to coincide with U++. The fol-
lowing lemma, which follows easily from the proof of Theorem 1, is the key to our inves-
tigation.

LEMMA 10: If u is a maximal element of U that lies in the relative interior of an exposed
face of dc(U), then u maximizes a positive weight vector over U .

PROOF: In the proof of the “only if” part of Theorem 1 in Appendix A.3.2, if u is a
maximal element of U that lies in the relative interior of an exposed face of dc(U), then
T = 1 in Step 3 and by Step 4 we know φ1 is positive. Hence, �= (φ1) and so by Step 5,
we conclude that u maximizes the positive weight vector φ1 over U . Q.E.D.

To characterize when UP =U++, we need to introduce a few notions and establish their
properties. First, the normal cone of U at a point u ∈U is the set

NU (u) = {
φ ∈ Rn | 〈φ�u〉 ≥ 〈φ�v〉 for all v ∈U}

�

If φ ∈NU (u), then u is a maximizer of the linear function 〈φ�u〉 over the set U . Then, the
normal cone of a face F ⊂ U , denoted NU (F), as the normal cone of each of its relative
interior points. Next, the relative boundary of F is defined as F \ ri(F).

The next two lemmas give us some properties of these notions.

LEMMA 11: Let F be a face of a convex set U . Then, every point in the relative interior of
F has the same normal cone.

PROOF: Let u, u′ be distinct in the relative interior of F and suppose NU (u) contains
an element φ not in NU (u′). This implies 〈φ�u〉> 〈φ�u′〉. Since u is the relative interior,
the point v= u+ λ(u− u′) lies in F for a sufficiently small positive λ. However, 〈φ�v〉 =
〈φ�u〉 + λ〈φ�u− u′〉> 〈φ�u〉, violating the assumption that φ is in NU (u). Q.E.D.

LEMMA 12: Let F be a face of a convex set U . Then, every point u in the relative boundary
of F has NU (u) ⊃NU (F).

PROOF: Let u be in the relative boundary of F . Suppose there is a weight vector φ in
NU (v) (where v is any relative interior element of F) that is not in NU (u). That is,

〈φ�u〉 �= 〈φ�v〉� (20)

By the definition of the relative interior, we can get an element of the relative interior of
F arbitrarily close to u, which yields a contradiction of the continuity of 〈φ� ·〉 because of
(20). Q.E.D.

We are now ready to provide the condition that characterizes when UP =U++:
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PROPOSITION 5: Let U be a closed convex set. Then UP =U++ if and only if every maxi-
mal element of U belongs to some exposed maximal face of dc(U).

PROOF: The “if” direction. Observe that U++ ⊂UP is immediate from Proposition 3.23
in Bewley (2009). It remains to show that UP ⊂U++. Let u ∈UP . If u lies in the relative
interior of an exposed face of dc(U), then u ∈U++ from Lemma 10. The remaining case
is where u lies on the relative boundary of a maximal exposed face F of dc(U). Since F
is a maximal exposed face, then an element v in its relative interior maximizes a positive
weight vector φ, again by Lemma 10. By Lemma 11, this implies that the normal cone
NU (F) of face F contains φ and so, by Lemma 12, the normal cone NU (u) of the point u
contains φ. In other words, u maximizes the positive weight vector φ. This completes the
proof.

The “only if” direction. Let u be a maximal element of U . By the equivalence of UP and
U++, u maximizes a positive weight vector φ. Let F = arg maxv∈U〈φ�v〉. We claim that
F is a maximal exposed face of dc(U), which contains u. The fact that F is maximal in
dc(U) follows since Proposition 3.23 in Bewley (2009) (along with Lemma 2) implies
F is maximal in U and thus maximal in dc(U) by Lemma 4. Suppose to the contrary
that F is not exposed in dc(U). Then, there must exist an element u′ ∈ dc(U) \ U that
maximizes φ but is not in F . However, since u′ ∈ dc(U) \U , there must exist u′′ ∈U such
that u′ ≤ u′′ and u′

i < u
′′
i for some index i. But this implies that 〈φ�u〉 ≥ 〈φ�u′′〉> 〈φ�u′〉,

where the weak inequality holds by the definition of F and the strict inequality holds since
φ is positive. This yields a contradiction and so we conclude that F is an exposed face of
dc(U). Q.E.D.

We now discuss a few of the nuances in the statement of Proposition 5. First, the condi-
tion cannot be weakened so that every maximal element of U simply lies in a (potentially
nonmaximal) exposed face of dc(U). Consider our canonical example in Figure 1. The
point u lies on an exposed face of dc(U), but this face is not a maximal face of dc(U).

Figure 1 also demonstrates that it is not sufficient for a point to lie on a maximal ex-
posed face ofU (as opposed to dc(U)) to guarantee it maximizes a positive weight vector.
Consider the point u′′, which is a maximal exposed extreme point of U but does not max-
imize any positive weight vector over U . However, u′′ does not lie on a maximal exposed
face of dc(U) and so does not contradict the theorem.

Given the above nuance, a simpler sufficient condition may be useful. Consider the
setting where all maximal faces of dc(U) are exposed.

COROLLARY 2: If U is a closed convex set such that all maximal faces of dc(U) are ex-
posed, then UP =U++.27

PROOF: Note that every maximal element of U lies in a maximal face of dc(U) by
Lemma 4. This and the hypothesis imply that every maximal element ofU belongs to some
exposed maximal face of dc(U). Applying Proposition 5, we obtain the desired conclusion.

Q.E.D.

27This cannot be derived easily from Arrow, Barankin, and Blackwell (1953). To see this, recall that they
established U++ ⊂UP ⊂ cl(U++). This implies that if U++ is closed, then UP =U++. However, in the “tilted
cone” in Figure 2, U++ is not closed since the point K does not lie in U++ but is the limit point of elements in
U++ (indicated by the line in the figure). However, it is straightforward to check that UP and U++ coincide.
One can also check that all maximal faces of dc(U) for U in Figure 2 are exposed, the condition of Corollary 2.
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FIGURE E.1.—The maximal extreme point u is not exposed while UP =U++.

However, the converse of Corollary 2 is false, as illustrated by the example in Fig-
ure E.1. One sufficient condition for the hypothesis of Corollary 2 to hold is that U is
a polyhedron. In that case, all faces of U are exposed (Theorem 13.21 of Soltan (2015));
moreover, its downward closure of a polyhedron is also a polyhedron (Theorem 13.20 of
Soltan (2015)), so all of its faces are exposed.

LetX be a polyhedral subset of Rm
+ (possibly Rm

+ itself). The utility function ui :X →R
is piecewise-linear concave (PLC) if there exist finite index set Ki and affine functions
ui�k : Rm

+ → R for each k ∈Ki such that ui(x) = mink∈Ki ui�k(x) for all x ∈X . The lemma
uses some of the following facts.

LEMMA 13: The following properties on polyhedra hold:
(i) Let P1�P2� � � � �Pn be a finite collection of polyhedra in Rm. The Cartesian product

P1 × P2 × · · · × Pn is a polyhedron in Rmn.
(ii) Let π : Rd → Rm be an affine map and let P be a polyhedron in Rd . Then π(P) is a

polyhedron.
(iii) All faces of a polyhedron are exposed.
(iv) The downward closure of a polyhedron is also a polyhedron.

PROOF: (i) Consider two polyhedra in Rm, P1 and P2. Letting Q1 := P1 ×Rm and Q2 :=
Rm × P2, each Qk is a polyhedron in R2m, so P1 × P2 = ⋂

k=1�2Qk is a polyhedron in R2m.
The result follows from applying this argument repeatedly. (ii) This is Theorem 13.21 in
Soltan (2015). (iii) This is Corollary 13.12 in Soltan (2015). (iv) This follows by noting that
dc(P) = P+Rn

− where Rn
− is the nonpositive orthant of Rn and by applying Theorem 13.20

of Soltan (2015). Q.E.D.

LEMMA 14: If each agent has a PLC utility function defined on a polyhedron X and U is
defined according to (1), then dc(U) is a polyhedron.

PROOF: For each k ∈ Ki, let Xi�k = {x ∈X | ui�k(x) ≤ ui�k′ (x)�∀k′ ∈ Ki}. Since X is a
polyhedron and all functions (ui�k)k∈Ki are affine, Xi�k is an intersection of finitely many
polyhedra and thus a polyhedron.

Now let K = {k = (ki)i∈I | ki ∈Ki for all i}. For each k ∈ K, let Xk = ⋂
i∈I Xi�ki and ob-

serve thatXk is a polyhedron. Also, all functions u1(·)� � � � � uI(·) are affine onXk since for
each i ∈ I, ui(x) = ui�ki (x), ∀x ∈Xk. Then, by Lemma 13(ii), the set Uk ={(ui(x))i∈I | x ∈
Xk} is a polyhedron. Observe that U = {(ui(x))i∈I | x ∈X} = ⋃

k∈KUk. While we do not
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know whether the set U , which is a union of polyhedra, is a polyhedron, Theorem 13.19
of Soltan (2015) shows that U := cl(conv

⋃
k∈KUk) is a polyhedron, where cl and conv

denote the closure and convex hull, respectively.
Next, we show that dc(U) = dc(U). By definition of U , dc(U) ⊂ dc(U) is clear. To

show dc(U) ⊂ dc(U), consider any ũ ∈ conv
⋃

k∈KUk so that ũ = ∑
k∈K λkũk for some

weight (λk)k∈K and ũk ∈ ⋃
k′∈KUk′ . Also, for each ũk, we can find x̃k ∈ Xk such that

(ui(x̃k))i∈I = ũk. Letting x = ∑
k∈K λkx̃k, observe that x ∈ X by the convexity of X and

that for all i ∈ I, ui(x) ≥ ∑
k∈K λkui(x̃k) = ũi by the concavity of ui(·), which means that

ũ ∈ dc(U). Thus, conv
⋃

k∈KUk ⊂ dc(U), implying that cl(conv
⋃

k∈KUk) ⊂ dc(U) since
dc(U) is closed, from which dc(U) ⊂ dc(U) follows, as desired.

Lastly, observe that dc(U) = U + Rn
− and that both U and Rn

− are polyhedra, which
implies (by Lemma 13(iv)) that dc(U) = dc(U) is a polyhedron. Q.E.D.

The following is obtained immediately from Corollary 2 and Lemma 14, and the fact
that all faces of polyhedra are exposed. It is a clean economic setting where UP and U++

coincide.

PROPOSITION 6: If each agent has a PLC utility function defined on a polyhedron X and
U is defined according to (1), then UP =U++.28

APPENDIX F: SECOND WELFARE THEOREM WITH PIECEWISE-LINEAR CONCAVE
UTILITY FUNCTIONS

In the paper, we showed that the notions of exposed faces and normal vectors play
crucial roles for our characterization of a Pareto optimal utility profile as a welfare-
maximizing point. Recall that the normal vector also plays an important role in the second
theorem of welfare economics in identifying a price vector that supports a Pareto optimal
allocation as a competitive equilibrium outcome. Unlike in our characterization, the idea
of a normal vector in the second welfare theorem applies to the space of goods, not the
space of utility profiles. However, the fact that the two spaces are closely connected hints
at the possibility of establishing the second welfare theorem using the machinery we have
developed so far. We do so in the current section under a set of assumptions on the agent
preferences and endowments that generalize the existing welfare theorem in a certain
direction.

To begin, consider an exchange economy with m types of goods with some integer
m> 0. For each k ∈ {1� � � � �m}, let ēk > 0 be the total supply of type-k goods in the envi-
ronment. Let ē denote the vector (ēk)mk=1. Each alternative x= (xi)i∈I , xi = (xki )mk=1 ∈ Rm

+ ,
specifies consumption bundle xi for each i ∈ I. A profile of consumption bundles x is said
to be feasible if and only if

∑
i∈I xi ≤ ē. In this context, the choice set X is defined as the

set of all feasible profiles of consumption bundles. Each individual i ∈ I is endowed with a
utility function ui : Rm

+ → R. Suppose that each agent i is endowed with a vector of goods
ei ∈ Rm

+\{0} and let ē = ∑
i∈I ei. A vector p ∈ Rm is referred to as a price profile. A pair

(p�x) of a price profile p and a profile x= (xi)i∈I of consumption bundles is a Walrasian
equilibrium if

28It is worth noting that the ABB theorem provides an alternative proof of this result. Recall that it suffices
to argue U++ is closed in order to conclude UP = U++. Clearly, the elements of U++ come in faces, and a
polyhedron has finitely many faces. Since the faces of a polyhedron are closed, and a finite union of closed sets
is closed, this implies that U++ is closed.
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1.
∑

i∈I xi = ē, and
2. xi ∈ arg maxyi∈Bi (p) ui(yi) for each i ∈ I, where Bi(p) := {yi ∈ Rm

+ | 〈p�yi〉 ≤ 〈p�ei〉} is
the budget set of i.

We consider a case where utility functions of all players are piecewise-linear concave
(PLC), as defined in Appendix E. PLC utility functions may appear somewhat restric-
tive, but any concave function can be approximated arbitrarily closely by a PLC utility
function (Bronshtein and Ivanov (1975)). Meanwhile, we make a weaker assumption in
another dimension—preference monotonicity. The existing second welfare theorem as-
sumes agents’ utility functions to be strictly monotonic. We invoke a weaker form of
monotonicity. Say that an allocation (xi)i∈I is strictly feasible for good k if it is feasible and
satisfies

∑
i∈I x

k
i < ē

k. We assume that the agent preferences are monotonic under limited
resources in the following sense: for any allocation (xi)i∈I that is strictly feasible for good
k, there exist an agent j and x̃j ∈ Rm

+ such that uj(x̃j) > uj(xj) while x̃k′
j = xk

′
j �∀k′ �= k,

x̃kj > x
k
j , and x̃kj + ∑

i �=j x
k
j ≤ ēk. That is, given any allocation that does not exhaust the

endowment of good k, there exists an agent who gets better off by consuming more of
that good within its endowment. This condition is fairly weak. For instance, it allows for
agents to consider a certain good indifferently, or even as bads (rather than goods), as
long as there is at least one agent who likes to consume that good. We are now ready to
prove the second welfare theorem under the above assumptions.

PROPOSITION 7: Consider the exchange economy described above. If (ui(ei))i∈I is Pareto
optimal, then there exists a positive price vector p� 0 such that (p� (ei)i∈I) is a Walrasian
equilibrium.

PROOF OF PROPOSITION 7: Let Ai := {x ∈ Rm
+ | ui(x) ≥ ui(ei)} for each agent i. Ob-

serve that each Ai is a polyhedron since it is an intersection of two polyhedra, {x ∈ Rm |
x≥ 0} and {x ∈Rm | ui(x) ≥ ui(ei)}= ⋂

k∈Ki{x ∈Rm | ui�k(x) ≥ ui(ei)}.
Consider the set A = {x ∈ Rm

+ | ∃x1 ∈ A1�x2 ∈ A2� � � � � xn ∈ An s.t. x = ∑
i∈I xi}. Ob-

serve that A is the image of the set A1 ×A2 × · · · ×An under the affine mapping π that
maps (xi)i∈I to

∑
i∈I xi. By Lemma 13(i) and (ii), A itself is a polyhedron.

Next, we argue that ē is a minimal element of the set A. Suppose for contradiction that
there exists an element x ∈A where x < ē where xk < ēk for some good k. Since x ∈A,
there exists an allocation (yi)i∈I where yi ∈Ai such that x= ∑

i∈I yi. Since this allocation is
strictly feasible for the good k, the monotone preference under limited resources implies
that there are some agent j and ỹj ∈ Rm

+ such that uj(yj) < uj(ỹj) while ỹk′
j = yk

′
j �∀k′ �=

k, ỹkj > y
k
j , and ỹkj + ∑

i �=j y
k
i ≤ ēk. Now consider an alternative allocation (zi)i∈I , which

is identical to (yi)i∈I except that zj = ỹj . Note that this allocation is feasible under the
endowment ē and that uj(zj) > uj(yj) ≥ uj(ej) while ui(zi) = ui(yi) ≥ ui(ei)�∀i �= j, which
contradicts the Pareto optimality of (ei)i∈I .

That ē is a minimal element of A implies that −ē is a maximal element of −A.
By Lemma 4, this implies that −ē is a maximal element of dc(−A). Moreover, by
Lemma 13(iv), dc(−A) is a polyhedron, and so by Lemma 13(iii), all of its faces are ex-
posed. Thus, by Lemma 10, there exists a supporting hyperplane of −A through the point
−ē with a positive normalφ. The same normal p :=φ can define a supporting hyperplane
to A through the point ē; that is,

〈p�y〉 ≥ 〈p� ē〉� ∀y ∈A�
where p is a positive vector of prices.
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It remains to show that the positive price vector p just constructed supports the alloca-
tion (ei)i∈I as a Walrasian equilibrium. For this, it suffices to show that each ei maximizes
ui(·) under the pricesp and the budget 〈p�ei〉. To do so, we take any xi with ui(xi) > ui(ei)
and show that agent i cannot afford xi.

By continuity of ui, the inequality ui(xi) > ui(ei) implies that for some λ < 1 but suf-
ficiently close to 1, we have ui(λxi) > ui(ei), so by definition we have λxi ∈Ai. This im-
plies that λxi + ∑

j �=i ej ∈ A. Since 〈p�λxi + ∑
j �=i ej〉 ≥ 〈p�∑i∈I ei〉, we must also have

〈p�λxi〉 ≥ 〈p�ei〉. Dividing through by λ gives 〈p�xi〉 ≥ 〈 1
λ
p�ei〉> 〈p�ei〉, where the strict

inequality holds since ei is nonnegative and nonzero while p is positive. Q.E.D.

In addition to the weakening of preference monotonicity, we also dispense with the
typical assumption required by the existing second welfare theorem that every consumer
has a positive endowment for every type of good (i.e., ei � 0�∀i ∈ I). The positive endow-
ment assumption can be quite restrictive, excluding many realistic situations. Relaxing the
same assumption was an important motivation behind Arrow’s generalization of the first
welfare theorem.29 At the same time, the theorem assumes PLC utility functions. This as-
sumption guarantees that the “upper contour set” of the target allocation—or the set of
goods weakly preferred to (ei)i∈I—is a polyhedron. Meanwhile, preference monotonicity
and Pareto optimality of (ui(ei))i∈I ensure that the vector ē is a (minimal) face of this
set. Invoking Proposition 6, ē is then exposed by a positive normal (or price vector) that
supports (ei)i∈I as a competitive equilibrium allocation.
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