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APPENDIX A: DETAIL ON DATA SOURCES, CLEANING, AND MERGING

IN THIS DATA APPENDIX, we discuss: (1) our data sources; (2) how we estimate well decline
and the present value of well cumulative production; (3) how we clean lease data and
match leases to units; and (4) how we match wells to Haynesville units.

A.1. Data Sources

We gather data from the following sources:
• Publicly-available Louisiana DNR Strategic Online Natural Resources Information

System (SONRIS) data on well drilling and completions.
– Shapefiles from Louisiana Department of Natural Resources (2016a) that include

wells’ top hole location, bottom hole location, and lateral location; and units’
boundaries.

– Well tabular data from Louisiana Department of Natural Resources (2016c) that
include spud date, completion date, well name, and formation targeted.

– Drilling cost and fracking input data from Louisiana Department of Natural Re-
sources (2016b). We obtain drilling cost information from reports (“Applications
for Well Status Determination”) that unit operators file with the Louisiana DNR
for the purpose of determining severance taxes. We obtain data on fracking inputs
(water use and the number of frac stages used) from well completion reports. We
used manual double-entry to digitize this information from the raw pdf files.

• Publicly-available Louisiana parish boundaries from US Census Bureau (2020).
• Enverus well and completion shapefiles, from Enverus (2012).
• Enverus production data from Enverus (2016). Enverus takes unit-level reported

monthly production data from the Louisiana DNR and then imputes well-level
monthly production using the start date of each well’s production.

• Enverus lease data, from Enverus (2012). Enverus collects data on leases signed in
Louisiana. Further details are below.

• Enverus dayrate data from Anderson, Kellogg, and Salant (2018) and Enverus
(2017). We use dayrates that correspond to the “ArkLaTx” region, for rigs with depth
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ratings between 10,000 and 12,999 feet (which corresponds to the depth of the Hay-
nesville).

• Henry Hub natural gas futures prices. We obtained daily futures price data, at
all available delivery dates, from Bloomberg (2017). We deflate these prices, rig
dayrates, and drilling cost data to December 2014 dollars using the Bureau of La-
bor Statistics’ Consumer Price Index for all goods less energy, all urban consumers,
and not seasonally adjusted (Bureau of Labor Statistics, 2018). The CPI series ID is
CUUR0000SA0LE.

• Original gas in place (OGIP) from Gülen, Ikonnikova, Browning, Smye, and Tinker
(2015).

A.2. Well Data and Production Decline Estimation

We identify Haynesville wells using three sources. First, for each well we see if the well
is included in an auxiliary DNR file that is limited to Haynesville wells. Second, we use
the name of the well: wells targeting the Haynesville typically have names that begin with
“HA” or “HAY.” Third, we check whether the listed formation that the well targets is the
Haynesville. We denote a well as a Haynesville well if it satisfies at least one of these three
criteria. We also impose a restriction that Haynesville wells must have been spudded on
or after September 2006.

To estimate wells’ production decline, we follow Patzek, Male, and Marder (2013),
which derives decline curves for shale gas formations. This paper shows that production
initially declines inversely proportional to the square root of time, and then begins to de-
cline more quickly, at an exponential rate, once the well’s fractures interfere with one
another. More precisely, we assume that cumulative production of natural gas for well j
at month t takes the following functional form:

mj(t) =
⎧⎨⎩Mj

√
t/τ if 0 ≤ t ≤ τ�

Mj + Mj

2τd
[
1 − exp

(−d(t − τ)
)]

if t > τ�
(A.1)

where τ is the time at which the decline function changes to exponential, d is the expo-
nential decline rate, and Mj is a well-specific production multiplier corresponding to the
expected cumulative production at t = τ.

Before estimating these parameters, we make a number of adjustments to the data.
First, because a well’s production is substantially affected by the length of the lateral well
leg, we normalize the measure of cumulative production by a scalar sj , which is equal to
1485 meters divided by the length of the lateral portion of the well. We drop any well with
missing lateral length information or a well lateral of less than 150 meters to eliminate
potentially misclassified vertical wells.

We find that about 7% of wells had recompletions. As recompletions are designed to
rapidly increase production, we exclude from the data observations that come during or
after months in which well recompletions were performed. (When we later use our esti-
mates to predict total production, we assume no recompletions.)

Following Patzek, Male, and Marder (2013), we limit the sample to observations that
are the fourth month or later (t ≥ 4) because early months of production tend to be noisy.
This noise is due in part to the fact that hydrofracturing water is still being back-produced
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in the early months of production. Similarly, for any given date with no production but in
which there is production both before and after the date, we assume that the production
process is paused on that date and resumes when production resumes.

Rather than estimating τ directly, we use estimates from Male, Islam, Patzek, Ikon-
nikova, Browning, and Marder (2015) for the Haynesville, which finds that τ is 14.16
months. We then use nonlinear least squares to find the values of Mi and d that minimize
the sum of the squared differences between true and predicted log cumulative production,
as shown in equation (A.2):∑

j

∑
t|t≥4

(
logmj(t)sj − log m̂j(t|Mj�τ�d)

)2
� (A.2)

The estimated decline parameter d is equal to 0.037. The 25th, 50th, and 75th per-
centiles of the estimated Mi are 1.57 million, 2.09 million, and 2.63 million mmBtu, re-
spectively.

We then use our estimates of d and Mj to predict total discounted well production
(equation (A.3)). Following Gülen et al. (2015), we assume that wells have a total pro-
duction lifetime of 20 years. We use an annual discount factor of 0.909, following Kellogg
(2014). In Panel (a) of Figure 1, we map our measures of the present value of total well
production. Where there are multiple wells, we take an average over all wells within the
unit. Units with no drilling have no shading and are labeled NA:

Yj =
240∑
t=1

[
m̂j(t|Mj�τ�d) − m̂j(t − 1|Mi�τ�d)

]
δt−1� (A.3)

A.3. Lease Data and Clustering of Duplicate Leases Within Units

In February 2016, we downloaded raw data of oil and gas leases in Louisiana from
Enverus. We keep only leases in Bienville, Bossier, Caddo, De Soto, Natchitoches, Red
River, Sabine, and Webster parishes—the parishes that cover the Louisiana portion of
the Haynesville formation. Because we ultimately map leases to units, we keep only those
observations that report Public Land Survey System township, range, and section.

We keep observations that are listed as being leases, memo of leases, lease options,
lease extensions, and lease amendments. We drop observations that are mineral rights as-
signments, lease ratifications, mineral deeds, royalty deeds, and other documents. Leases
include information on the grantor of the lease (typically the original mineral owner) and
the grantee (the oil and gas firm that leases the land). In some cases, we find that oil and
gas firms are listed as grantors, with other oil and gas firms listed as grantees. As these
observations are likely cases where the land was released or subleased, we drop these
observations from our sample.

We drop leases with zero or missing acreage. We also drop excess lease observations
that are perfect duplicates, leases that have lengths of fewer than 10 days, and leases in
which the reported township, range, and section are not within the stated reported parish.

We find that in some cases, a single firm grantee has leased from multiple grantors, and
the reported acreage appears to be the total over all grantors. We identify these leases by
identifying duplicates that share the same grantee name and the same acreage, and where
the acreage reported is unusual, that is, is either large and/or is not equal to a multiple
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of common lot sizes (e.g., 10 acres, 40 acres). In these cases, we impute a new acreage
measure by dividing the reported acreage by the number of apparent duplicates. In cases
where a lease spans multiple sections and acreage within each section is not reported, we
assume total acreage is divided equally between the spanned sections.

After taking the above steps, we find that the total leased acreage in a unit still some-
times adds up to more than the total acreage of the unit (usually 640 acres), and some-
times significantly so. Many of these cases appear to be driven by undivided mineral in-
terests: cases where there are multiple grantors on the same plot (e.g., husband and wife,
multiple siblings, or cousins), and separate observations for each grantor. In other cases,
it appears that data were entered multiple times and inconsistencies were not reconciled,
so that the excess observations were not dropped when we removed duplicates.

To identify these likely duplicates, we use an agglomerative, hierarchical clustering
method described by https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html.
In particular, we use the hclust function within the cluster package, version 2.0.7-1, for
R. The hclust function uses information on how similar multiple observations are to each
other to determine whether they are likely duplicates. The algorithm puts observations
that are likely duplicates into the same “cluster”; from there, we use proportional down-
weighting of all observations within the same cluster to obtain updated acreage. This
method relies on constructing some kind of measure of similarity between any two obser-
vations i and j. Depending on the threshold level of similarity that the researcher imposes,
the number of clusters can range from the total number of observations (no clustering) to
1 (all observations are placed within the same cluster).

This similarity measure we use is a Euclidean-like distance measure in which the dis-
tance between observation i and observation j takes the form:

dij =
√∑

k

wkmk

(
xki � x

k
j

)
� (A.4)

Here, k indexes characteristics of the observation, for example, grantor name, the start
date of the lease, the acreage, the reported royalty rate, etc. The functionmk is a function
that determines how similar two observations are, and is equal to 0 if identical, and posi-
tive otherwise. Depending on the characteristic, we use different types of mk functions:

• mk(xki � x
k
j ) = (xki − xkj )2 for some numerical characteristics like the start date of the

lease. Prior to inputting variables xk into this function, we standardize them so that
they have a mean of zero and standard deviation of one.

• mk(xki � x
k
j ) = 1(xki �= xkj ) for other numerical and binary characteristics like reported

royalty rate, acreage, and whether there is an extension option.
• mk(xki � x

k
j ) is a fuzzy match score for string characteristics like grantee name and

grantor name. We use the partial_ratio function from the fuzzywuzzy Python pack-
age, version 0.16.0. The partial_ratio function uses Levenshtein distance augmented
with partial string matching. It allows us to identify cases where some subsets of
words within strings match or nearly match, even if the length of the two strings
is very different. This technique is useful for catching cases with identical last names
but differing or missing first names. We scale this measure so that it ranges from 0
to 1.

For cases where information is missing, we set a value of mk = 0�4 if both observations
are missing and mk = 0�7 if only one observation is missing.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html


DRILLING DEADLINES AND OIL AND GAS DEVELOPMENT 5

wk are positive weights. We set wk = 1 for all characteristics other than acreage, for
which we set wk = 100. This weighting ensures that leases that vary in acreage will not be
presumed to be duplicates.

How many observations are clustered together depends on the threshold level of sim-
ilarity imposed by the researcher. To determine our threshold, we choose a calibration
date of January 1, 2010, examining only the leases that were active on that date.A1 We first
examine every possible threshold that could be used to cluster the leases in each unit. For
each possible threshold, we find the resulting clusters, downweight each lease’s acreage
by the total number of observations in its cluster, and then compute what total leased
acreage would be within the unit. Then, for each unit, we find the threshold that would
set total acreage leased to be equal to or just less than the total unit area. We refer to this
threshold as the unit-level threshold height. We then set our preferred overall threshold
to be equal to the 90th percentile of all the unit-level thresholds. The threshold height
that results from this computation is 1.644. We find similar results if we use a threshold
height using the 85th percentile.

We then apply the clustering procedure, using this threshold, to each unit and each
quarterly date of our sample, ranging from January 1, 2005, to January 1, 2016. This pro-
cedure gives us lease by date-specific downweights. We find that in some cases lease down-
weights vary depending on the date. For example, a lease may be in a cluster of five on
April 1, 2010, but a cluster of six July 1, 2010—resulting in a downweight of 1/5 for April
1, 2010, and a downweight of 1/6 for July 1, 2010. In these situations, we take the inverse
of the arithmetic average of the inverse downweight over all quarterly dates to obtain a
master downweight for each lease (yielding, in this example, a weight of 1/5.5).

In some outlier unit-quarters, we find that even with this downweighting, total leased
acreage still exceeds section acreage. In these cases, we then proportionally reduce the
area of all leases in the unit so that total leased acreage is equal to total unit acreage in
the most heavily leased quarter.

A.4. Matching of Wells to Units

To match wells to units, we use information on the reported laterals, reported bottom
holes, and reported top hole locations. If, for a given well, the data only report top hole
location, we use the location of the top hole to identify which unit the well is in. If the
data report bottom hole but not lateral information, we use the location of the bottom
hole to identify which unit the well is in. If the data report lateral information, we use the
unit that the lateral runs through to identify the well’s unit.

In a few instances, the well lateral intersects multiple units. There are two possible
reasons for these occurrences. One is that the well’s top hole is located in a different unit
than the unit the well extracts from, for the purpose of sharing a well pad with other wells
or to give sufficient space to accommodate the curvature of transitioning from the vertical
to the horizontal while still extracting from a maximum area within the targeted unit. A
second reason is that the well actually targets multiple units. In cases where a wellbore
passes through multiple units, we only match a well to a unit if at least 300 meters of the
horizontal wellbore pass through the unit.

A1We find that using other calibration dates gives similar results. We use January 1, 2010, as it was at a
period of peak leasing and, therefore, a period in which it is most likely that most of a section had been leased.
Leases whose primary terms would have expired but may have been extended are not included in this group.



6 E. HERRNSTADT, R. KELLOGG, AND E. LEWIS

APPENDIX B: ADDITIONAL EMPIRICAL ANALYSIS

This appendix presents additional empirical results related to the bunching analysis
presented in Section 4.

B.1. Bunching Analysis

To test the statistical significance of the drilling bunching shown in Figure 5, we use a
bunching estimator similar to that of Chetty, Friedman, Olsen, and Pistaferri (2011). We
take time of spud relative to first lease expiration date, discretize it to the quarterly level,
and compute total wells spudded (across all units in our analysis sample) for each quarter
(34 quarters in total). We create some indicator variables for whether the spud date is two
quarters before lease expiration (pre_2), one quarter before lease expiration (pre_1), one
quarter after lease expiration (post_1), and two quarters after lease expiration (post_2).
We also add similar variables for spud timing relative to the extension expiration date
(pre_ext2, pre_ext1, post_ext1, and post_ext2).

We then estimate a regression of the form:

ct = f (t) +β1 · pre_2 +β2 · pre_1 +β3 · post_1 +β4 · post_2

+β5 · pre_ext2 +β6 · pre_ext1 +β7 · post_ext1

+β8 · post_ext2 + εt� (A.5)

where ct is total well count, t is quarter, and f (t) is a polynomial of degree 9. Our main
regression estimates are in column (1) of Table A.I. The estimates of β1, β2, β5, and β6 are
all statistically significant with p-values less than 0.05, indicating that there is significantly
more drilling in the two quarters prior to the primary term expiration and the two quarters
prior to any extension term expiration. In column (2), we present results from the same
empirical specification as column (1) except that the dependent variable is the log of the
count rather than the count, and results are similar. For a sense of magnitude, the estimate
of β2 (the coefficient on “pre_1”) in column (2) means that the actual number of wells
drilled is 1.1 log points larger than the polynomial fit in the quarter prior to expiration.
In Figure A.1, we plot our data and the number of wells predicted by our polynomial fit,
which graphically displays the size of the bunching effect.

One might worry that periods with substantial lease expirations coincide with periods
in which gas prices or industry-wide productivity is high. To address this possibility, we
construct a measure of total spud counts at the calendar quarter by quarter of lease level.
For example, one observation in this count data will be the total number of spuds in 2010
quarter 3 when the spud happened between 3 and 6 months before the first primary term
is set to expire. In columns (3) and (4) of Table A.I, we present estimates from the same
empirical specifications as columns (1) and (2), only with this more disaggregated data.
Columns (5) and (6) then add in calendar-time quarter fixed effects. Across columns (3)
and (5), the coefficient on pre_1 is large, statistically significant, and similar in magni-
tude, implying that the high drilling before the expiration date is not being driven by high
drilling at particular calendar dates. The same holds in logs for columns (4) and (6).
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TABLE A.I

BUNCHING ESTIMATES.

count log(count) count log(count) count log(count)

pre_2 12�72 0�40 1�06 0�19 1�02 0�21
(5�25) (0�21) (0�88) (0�30) (0�82) (0�30)

pre_1 60�94 1�10 3�91 0�78 3�99 0�88
(5�71) (0�21) (1�36) (0�29) (1�29) (0�29)

post_1 6�03 0�31 0�31 −0�07 0�44 0�04
(5�74) (0�21) (0�77) (0�28) (0�70) (0�27)

post_2 −8�92 −0�09 −0�50 −0�21 −0�53 −0�17
(5�32) (0�19) (0�61) (0�25) (0�58) (0�25)

pre_ext2 13�70 0�26 1�24 0�52 1�39 0�53
(4�75) (0�19) (1�11) (0�34) (1�05) (0�34)

pre_ext1 21�73 0�52 1�79 1�19 1�93 1�15
(5�23) (0�22) (1�26) (0�31) (1�16) (0�31)

post_ext1 −4�99 −0�24 −0�32 −0�05 −0�23 0�04
(5�19) (0�21) (0�72) (0�32) (0�72) (0�32)

post_ext2 −3�70 −0�11 −0�26 0�28 −0�15 0�41
(4�61) (0�17) (0�64) (0�30) (0�67) (0�37)

Quarter of lease data X X
Quarter by quarter of lease data X X X X
Calendar quarter fixed effects X X
R Squared 0�97 0�93 0�24 0�3 0�42 0�44
Observations 35 30 363 235 363 235

Note: This table presents estimates of equation (A.5). Newey–West standard errors, computed with two quarterly lags, are in
parentheses. Estimates in columns (1) and (2) use data that are aggregated to the lease-level quarter, which is defined as the time
between first primary term expiration and spudding, measured at quarterly intervals. Estimates in columns (3) through (6) use data
that are aggregated to the lease-level quarter by calendar-level quarter. That is, these columns aggregate wells drilled that share both
a common lease-level quarter and a common calendar quarter-of-sample. Estimates in columns (5) and (6) include calendar quarter
fixed effects.

FIGURE A.1.—Estimates from bunching analysis. Note: The figure presents data and estimates correspond-
ing to the bunching analysis in column (1) of Table A.I. Plotted data include counts of wells spudded, the
quarters to which we add bunching fixed effects, and the polynomial predicted probabilities given the bunch-
ing estimator fixed effects. Timing is relative to the expiration date of the first lease within the unit to expire.
Vertical lines are drawn at the date of first lease expiration and 2 years after first lease expiration.
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B.2. Additional Descriptive Figures and Table

FIGURE A.2.—Comparison of units with identical vs. different neighboring operators. Note: The figure
shows kernel-smoothed estimates of the probability of drilling the first Haynesville well in a unit on a given
date, relative to the expiration date of the first lease within the unit to expire. Vertical lines are drawn at the
date of first lease expiration and 2 years after first lease expiration. Figure compares units in which ≥ 50% of
the nearby units have the same operator vs. units where ≥ 50% of the nearby units have a different operator.
Neighboring units are defined as those with centroids within 1.2 miles of the centroid of the given unit (results
are similar if we use a threshold of 1.7 miles, which will include the diagonal units). In Panel (a), we limit the
units to our analysis sample, as described in Section 3.4. In Panel (b), we show results using all Haynesville
units.

TABLE A.II

REGRESSIONS OF LEASE TERMS ON OGIP AND NATURAL GAS PRICES.

(1) (2) (3)
Royalty Term 1(Extension)

OGIP 0�0136 −0�0192 −0�0024
(0�0040) (0�0060) (0�0004)

12 month NG futures (real) −0�3832 0�1569 −0�0263
(0�0667) (0�0865) (0�0065)

Constant 24�2351 36�1959 1�2124
(0�7925) (0�6830) (0�0821)

R squared 0�0931 0�0168 0�0453
Observations 29�370 37�528 37�448

Note: Regressions where the unit of observation is the lease and observations are weighted by lease acreage. Natural gas price is
that at the time of lease signing. Standard errors are clustered by unit. Royalty is measured in percentages, for example, a value of 25
for the dependent variable means a royalty of 25%. According to these estimates, moving from the lowest to highest OGIP unit in our
data would imply an increase in the royalty of 2.4 percentage points, a decrease in the primary term of 3 months, and a 42-percentage
point decrease in the probability of an extension.
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FIGURE A.3.—Wells’ production, water use, and cost vs. time relative to first lease expiration. Note: The
figure plots natural gas production, water input, and reported drilling cost for the first well drilled in each unit
against the well’s spud date relative to the date of first lease expiration (measured in days). The line is the
predicted value from a local polynomial regression.
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FIGURE A.4.—Log water use versus time. Note: The figure presents a scatter plot and lowess estimate of
each well’s log water use versus its spud date. Scatter plot excludes a small number of outlier water observa-
tions.

APPENDIX C: DETAILS OF MODEL SIMULATION AND ESTIMATION

This appendix describes in greater detail how we simulate and estimate the model pre-
sented in Section 5.

C.1. Estimating βw
We first discuss our bandwidth selection to nonparametrically control for latitude and

longitude, and then discuss IJIVE, UJIVE, 2SLS, and OLS.

Bandwidth. Our IJIVE as well as UJIVE, 2SLS, and OLS estimates rely on nonpara-
metric regression to control for latitude and longitude. To do this, we use a Gaussian
kernel φ(0�σ2

φ) where φ is the normal pdf with a mean of 0 and a standard deviation of
σφ. To calculate the bandwidth σφ, we use an optimal bandwidth approach using a leave-
one-out estimator: We use the average log water for all wells j′ other than well j to predict
log water for well j. Our estimate of σφ is the value that minimizes the sum of the squares
of the differences between the actual and predicted values of log water for well j:

σφ = arg min
σ>0

∑
j

⎛⎜⎜⎜⎝log waterj −

∑
j′ �=j
φ

(
d
(
j� j′

)
�σ2

) · log waterj′∑
j′ �=j
φ

(
d
(
j� j′

)
�σ2

)
⎞⎟⎟⎟⎠

2

� (A.6)

In our regressions (including residualization for IJIVE as well as Robinson-semipara-
metric 2SLS and OLS regressions—but not during cross-validation), we also apply a
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caliper that assigns zero weight to any observations greater than four bandwidths away
from the observation of interest.

We calculate σφ = 3632 meters. If we instead use production rather than log water as
an input to calculate σφ, we calculate σφ = 2407meters. Our IJIVE and UJIVE estimates
of βw are quantitatively similar using this smaller bandwidth.

IJIVE: Following Ackerberg and Devereux (2009), we identify βw using the following
steps:

1. For each variable—production, log water, and each of the month effects—we project
the variable on a nonparametric function of latitude and longitude using the Gaus-
sian kernel φ(0�σ2

φ). We then compute the residualized variable as the difference
between the variable and the predicted value of the variable.

2. For each well j, we use OLS to project residualized log water for well j on residu-
alized month fixed effects for all wells other than well j. We use this projection to
compute predicted residualized log water for well j.

3. We calculate βw by projecting residualized production on predicted residualized log
water using OLS.

UJIVE: Following Kolesàr (2013), the UJIVE estimation of βw takes a similar approach
to IJIVE in that it uses leave-one-out prediction and partials out the contribution of ge-
ology. However, it does so by constructing a new instrument Zj that is then used in con-
ventional 2SLS:

1. For each well j, use all wells other than well j and project log water on a nonpara-
metric function of latitude and longitude as well as month fixed effects. Compute
predicted log water for well j: l̂ogwj .

2. For each well j, use all wells other than well j and project log water on only a non-
parametric function of latitude and longitude. Computed predicted log water for
well j: l̃ogwj .

3. Construct the UJIVE instrument as Zj = l̂ogwj − l̃ogwj .
4. First stage: Use Robinson (1988) to project log water on Zj and a nonparametric

function of latitude and longitude. Use this projection to construct predicted log
water.

5. Second stage: Use Robinson (1988) to project production on predicted log water and
a nonparametric function of latitude and longitude. The coefficient on predicted log
water is βw.

2SLS: Our 2SLS specification uses month fixed effects as instruments, in two steps:
1. Use Robinson (1988) to project log water on month fixed effects and a nonparamet-

ric function of latitude and longitude. Use this projection to construct predicted log
water.

2. Use Robinson (1988) to project production on predicted log water and a nonpara-
metric function of latitude and longitude. The coefficient on predicted log water is
βw.

OLS: Our OLS specification is the Robinson (1988) double-residual regression project-
ing production on log water and flexibly controlling for latitude and longitude.

C.2. Profits and Optimal Water Input

The static drilling profits accruing to the firm differ depending on whether its profits
before taxes, royalties, and operating costs are positive (i.e., whether the well “pays out”).
As we discuss in Section 2, unleased mineral interests are not liable for well costs if the
well fails to pay out. In addition, severance taxes are waived. These rules create a kink in
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the profit function at the payout point. If the well pays out, profits are given in equation
(2) in the main text. If the well does not pay out, profits are given by equation (A.7):

π−
ijt = (1−τ)(1−fitki−c)Ptg(θi�Xi�Wj� εit) − (1−τ)PwWj + (1−τc)(α0 +α1Dt)� (A.7)

This kink also affects the optimal amount of water use, since the firm’s first-order con-
dition that determines optimal water use will depend on whether the firm expects the well
to pay out or not. Optimal water use W ∗

it is given by equation (A.8) if the well pays out:

log
(
W ∗
ijt

) = log(βw) + logPt − log(Pwt) + log
(

(1 − s)(1 − ki) − c
1 − s+ ski

)
(A.8)

and by equation (A.9) if it does not pay out:

log
(
W ∗
ijt

) = log(βw) + logPt − log(Pwt) + log(1 − fitki − c)� (A.9)

Given the parameter inputs to the static profit function, we determine the optimal wa-
ter use W ∗

it by first finding the values W+ and W− that solve equations (A.8) and (A.9),
respectively. If W+ results in positive payout, we set W ∗

ijt = W+. Alternatively, if W− re-
sults in negative payout, we set W ∗

ijt = W−. Finally, it is possible that W− results in posi-
tive payout while W+ results in negative payout. In that case, we interpolate the value of
W ∗ ∈ (W+�W−) that results in zero payout.

C.3. Water Price Estimation

Once the production function coefficient βw is estimated, each term in the first-order
condition for optimal water use is known except for the price of water Pwt . We use this fact
to estimate the γ parameters in the water price projection (equation (5) in the main text)
by combining equation (5) and equation (A.8) into equation (A.10), which we estimate
by OLS:A2

log(Wj) − log
(

(1 − s)(1 − ki) − c
1 − τ+ ski

)
= (logβw − γ0) + (1 − γ1) logPt − γ2 logDt +ωj� (A.10)

Estimates from equation (A.10) are presented in Table A.III. Estimates of γ1 and γ2

are similar if we include nonparametric controls for latitude and longitude rather than
an intercept term. Because our estimate of βw is used to identify γ0, and because we use
the same sample to estimate βw as to estimate the water price process, we use bootstrap-
ping with 5000 draws to estimate the variance-covariance matrix of [βw�γ0�γ1�γ2]. Our
bootstrap draws are clustered at the township level to account for spatial correlation.

To back out the time series of water price shocks ωt (defined in equation (5) in the
main text), we use the fact that the expected within-month mean of the residuals ωj from
equation (A.10) are the negative of the ωt . Because actual water use is noisy, we obtain
our estimates of ωt by applying Bayesian shrinkage to the within-month mean of the
residuals ωj .

We graph the resulting estimated implied log water price series in Figure A.5, aggre-
gated to the quarterly level. As implied by our large and positive estimate of γ1, water

A2We use the first-order condition for when the well “pays out” (as opposed to equation (A.9)).
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TABLE A.III

OLS ESTIMATES OF EQUATION (A.10).

log NG price (1 − γ1) −0�006
(0�185)

log dayrate (−γ2) −0�24
(0�197)

intercept (log(βw) − γ0) 4�472
(4�449)

R2 0�006
N 2019

Note: The dependent variable is log(Wi) − log(
(1−s)(1−ki)−c

1−s+ski ). Sample uses all wells in

the production estimation sample. Standard errors are clustered at the township level.

FIGURE A.5.—Estimated log water price relative to natural gas price, dayrate, and average log water use.
Note: The natural gas price is in $/mmBtu, the dayrate is in $/day, water use is in millions of gallons, and the
water price is in $/gallon.
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prices follow natural gas prices closely. These estimated prices should be thought of as
the marginal cost of not just the water itself but also the associated labor and capital (e.g.,
pumping equipment) necessary to conduct the fracturing job.

C.4. Value Function and Model of Predicted Drilling Probabilities

Our assumption in equation (6) that expected profits are additive in the number of
wells and in the cost shocks ν1

it and ν0
it allows us to significantly decrease the number of

choices we need to consider. Flow profits increase linearly in the number of wells drilled,
so that if the firm faces an infinite horizon problem, the firm will always drill either zero
wells or all possible M wells. If the unit’s leases have primary terms and are not held by
production, however, the firm may prefer to drill a single well that extends any remaining
leases indefinitely. Beyond that first well, the incremental payoffs are again constant, so
the firm would never choose to drill strictly between one and M wells.

We formalize this concept and derive the probabilities of drilling 0, 1, and M wells
below. We use the tilde to denote the firm’s per-well continuation value, equal to the total
continuation value divided by the number of total remaining wells that can be drilled on
the lease.

• Let E[Ṽi�t+1|Sit� θi] ≡ (1/M)E[Vi�t+1|Sit� θi] denote the firm’s per-well continuation
value at t if the lease has not been held by production at period t.

• Let E[Ũi�t+1�t|Sit� θi] denote the firm’s per-well continuation value if the lease has
been held by production on date t (i.e., if first drilling activity took place at time t).

Because the constraint of a primary term decreases the expected continuation value of
the unit, E[Ṽi�t+1|Sit� θi]<E[Ũi�t+1�t|Sit� θi].

We focus on the firm’s choice set for time periods when drilling has not occurred (as
our maximum likelihood estimation only uses information on the timing of the first well),
putting aside for the moment the cost shocks νit . The firm has three choices. First, the firm
may choose to drill all M wells (m=M), thus ending the optimal stopping problem. The
firm receives M times the per-well profits, where the expectation denotes the expectation
over water prices Pwt :

V M
i�t (Sit� θi) =MEPwt

[
πit (Sit� θi)

]
� (A.11)

Second, the firm may choose to drill only one well (m= 1), thus holding the unit. The
firm then receives the profits from that well and the continuation payoff from the option
to drill M − 1 future wells:

V 1
i�t (Sit� θi) = EPwt

[
πit (Sit� θi)

] + δ(M − 1)E[Ũi�t+1�t|Sit� θi]� (A.12)

Finally, the firm can retain the lease without drilling (m= 0) and receive the continua-
tion value associated with an undrilled unit capable of holding M wells:

V 0
i�t(Sit� θi) = δME[Ṽi�t+1|Sit� θi]� (A.13)

Now we incorporate the additive cost shocks. For each well that the firm drills, it gets
the shock ν1

it , and for each potential well that it does not drill, it gets ν0
it (scaled by the

leased acreage share fit). Thus, the full static payoffs from the three choices are:

Drill all M wells: V M
i�t (Sit� θi) + fitMν1

it �

Drill 1 well: V 1
i�t (Sit� θi) + fit

[
ν1
it + (M − 1)ν0

it

]
�

Drill zero wells (continue): V 0
i�t (Sit� θi) + fitMν0

it �

(A.14)
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This structure leads to a tractable set of choice probabilities. Combining equations
(A.14) with equations (A.11)–(A.13), we can characterize the firm’s choice probabilities.
The firm prefers drilling all M wells to a single well if

ν1
it − ν0

it >
1
fit

[
δE[Ũi�t+1�t|Sit� θi] −EPwt

[
πit (Sit� θi)

]]
� (A.15)

In addition, the firm prefers drilling M wells to not drilling any wells if

ν1
it − ν0

it >
1
fit

[
δE[Ṽi�t+1|Sit� θi] −EPwt

[
πit (Sit� θi)

]]
� (A.16)

Finally, the firm prefers drilling one well to drilling no wells if

ν1
it − ν0

it >
1
fit

[
MδE[Ṽi�t+1|Sit� θi] − (M − 1)δE[Ũi�t+1�t�θ|Sit� θi]

−EPwt
[
πit (Sit� θi)

]]
� (A.17)

Since E[Ũi�t+1�t|Sit� θi]>E[Ṽi�t+1|Sit� θi], it is clear that if the firm prefers drilling M wells
to drilling one well, it also prefers drilling M wells to drilling zero wells. By the same
inequality, if a firm prefers drilling zero wells to drilling one well, it also prefers to drill
zero wells over drilling M wells. Therefore, this system of preferences is an ordered logit.
Because the likelihood estimation (see equation (7)) uses data on timing of the first well,
the probability that at least one well is drilled is equal to the probability that the firm
prefers to drill either one or M wells rather than zero. The ordered logit specification
implies that we only need to compare the payoff of drilling zero wells to drilling one well
(because if the firm prefers to drill zero wells over one well, it also prefers to drill zero
wells over M wells). Therefore, we write the hazard Hit as

Hit =
exp

(
V 1
i�t/σνfit

)
exp

(
V 1
i�t/σνfit

) + exp
(
V 0
i�t/σνfit

) � (A.18)

and the probability of first drilling at date t as

Pr(Iit = 1) =Hit ·�t−1
t′=1(1 −Hi�t′)� (A.19)

C.5. Restrictions Imposed in the Sample of Units Used for Maximum Likelihood Estimation

As we discuss in Section 5.4, we impose restrictions on the sample of units used in the
maximum likelihood estimation of our model. We start with the sample of 1226 units in
which drilling had not yet occurred by Q1 2009. We first filter out units that had already
reached their maximum acreage by this date (38% of units) and units that reach this
acreage after 2013 (2%of units), so that all units “start” in-sample. We then drop units in
which reported leased acreage ever increases after having reached its maximum (affecting
25% of the original 1226 units) and units that are drilled before reaching their maximum
acreage (affecting 30% of the original 1226 units).

We drop a small share (6%) of units with no royalty data. We then mitigate problems
with measurement error in reported acreage by dropping units never having more than
160 acres leased in our data (affecting 21% of the original 1226 units) and then rescaling
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FIGURE A.6.—Locations of units in the estimation sample.

each unit’s leased acreage in each quarter so that the maximum acreage leased in each
unit during the sample period is 640 acres (the standard unit size). That is, we multiply the
leased acreage in each unit i in each quarter t by 640 and divide by the maximum reported
acreage for i during the sample. This rescaling is motivated by our belief that reported
changes in relative acreage leased within a unit over time, particularly when changes are
driven by lease expiration, are less error-prone that reported levels of acreage.

Finally, we drop units in which a well is drilled when leased acreage is very small in our
data: less than 10% of the maximum acreage ever leased. This last restriction removes just
3 of the remaining units, following the imposition of the other restrictions. It is necessary
because it is extremely difficult for our model to rationalize drilling when acreage is so
small (since the firm makes zero profits absent a highly extreme draw of the cost shock
ν), but we sometimes see such instances in the data due to missing and misreported data
in the lease records. The final estimation sample then contains 241 units. We map the
distribution of these units within the Haynesville Shale in Figure A.6.

C.6. Maximum Likelihood Estimation

C.6.1. Integrated Likelihood Computation

Computing the log likelihood per equation (7) requires integrating the components of
each unit’s likelihood function over the distribution ψ(θ|σθ). A natural way to do this
would be to use a numerical procedure like quadrature or Monte Carlo integration for
each unit, where the evaluation points are functions of the unit’s OGIP and the param-
eters β0, β1, and σθ. This procedure is computationally intensive, however, because it
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requires the model to be solved—for each unit—for each evaluation point, and for each
guess of the parameters in �.

We instead adopt a nested loop procedure that minimizes the number of times the
model must be solved. The outer-most loop searches over the cost parameters α0 and
σν . At each candidate pair of parameters, the model is solved for each unit on a fixed
grid of productivities that captures the range of values of β0 +β1Xi + θi that might plau-
sibly be encountered. This grid contains 200 points, linearly spaced from -45.50TBtu to
-20.50TBtu. Then an inner loop searches for the parameters β0, β1, σθ, and σε that maxi-
mize the likelihood (conditional on α0 and σν) by integrating the likelihood for each unit
on this grid. This integration occurs via Gauss–Hermite quadrature over 11nodes, where
the node locations (which we interpolate on the grid) are functions of β0, β1, and σθ, as
well as each unit’s OGIP value.

C.6.2. Standard Error Estimation

The standard errors of the estimates obtained from the maximum likelihood proce-
dure account for both spatial correlation of outcomes between nearby sections and the
sampling variance of the βw, γ0, γ1, γ2, and α1 parameters that are estimated in advance.

First, we address spatial correlation by clustering standard errors at the township level
(recall that townships are squares consisting of 36 sections). Let S denote the N by 6
matrix of unit-level likelihood scores, where N is the number of units.A3 Let A= S′S/N .
Let W denote an N by N matrix with ones in cells corresponding to units in the same
township and zeros in all other cells. Let B = S′W S. The spatially clustered covariance
matrix is then given by V =A−1BA−1/N2.

We then account for the sampling variance of the first stage parameters using the two-
step procedure from Murphy and Topel (1985). Let V1 denote the covariance matrix for
βw, γ0, γ1, γ2, and α1.A4 Let S1 denote the N by 5 matrix of likelihood scores with respect
to these parameters and let R= S′

1S/N . The final covariance estimate for the parameters
estimated in the maximum likelihood routine is then given by V +A−1R′V1RA

−1/N .

APPENDIX D: ADDITIONAL DETAIL FOR THE MODEL USED IN SECTION 7

In Section 7, we present a model in which the owner offers the firm a lease contract in
which the bonus is set optimally (in terms of maximizing the owner’s expected discounted
revenue) given the lease’s royalty and primary term. Should the firm accept the contract
and then not drill a well during the primary term, the owner offers the firm a renewal—
with the same royalty and primary term—in exchange for another optimally-set bonus.
This process repeats until the firm either drills a well or decides to not pay the bonus.

This appendix provides more information on how we simulate this model. The compu-
tation involves a nested loop. The inner loop solves for each possible firm type’s drilling
probabilities and value function during a lease term, as a function of its terminal payoff
should it not drill a well. The outer loop solves for the owner-optimal bonus (which then
determines the firm’s payoff at the end of the preceding term) and then iterates an infinite
sequence of lease terms until convergence.

The inner loop is the same finite-horizon stopping problem discussed in Section 5.4 and
Appendix C above, but with the continuation value upon lease expiration being nonzero
for firms that choose to pay the renewal bonus.

A3We compute all likelihood scores by taking numerical two-sided derivatives.
A4For βw , γ0, γ1, γ2, the covariances are computed using the clustered bootstrap procedure discussed in

Section 5.1 and Appendix C.3. The estimate of α1 is assumed to be independent of the other parameters.
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We model the renewal bonus as being paid in the final period T of the preceding lease
term. For a given bonus value, firms that have not yet drilled compare the bonus against
their expected value from a new lease next period, and they pay the bonus if the latter
exceeds the former.A5 The owner then chooses the revenue-maximizing bonus, account-
ing for both the bonus revenue itself and expected future royalties (and future renewal
bonuses) from the types θ that elect to participate. This decision trades off, on the margin,
the immediate revenue gain from a higher bonus against the loss of revenue from reduced
participation from marginal types.

The outer loop then proceeds as follows, starting from an initial guess of each firm
type’s continuation value upon expiration:

1. Use finite-horizon backward induction to compute drilling probabilities and the
firm’s and owner’s values during the lease term.

2. Compute the owner-optimal bonus, payable at the end of the preceding term, and
compute a new continuation value upon expiration for each firm type, given the
bonus.

3. Return to step 1 and iterate until convergence of the firm’s and owner’s value func-
tions at the start of each new lease term.A6

We model the initial lease contract as being signed the period before the primary term
begins. The owner-optimal bonus value for this contract is then the same as the converged
bonus from the above loop.

APPENDIX E: ANALYTIC MODEL FOR THE MINERAL OWNER’S VALUE-MAXIMIZING
CONTRACT

This appendix characterizes analytically a revenue-maximizing take-it-or-leave-it menu
of contracts that a mineral owner would offer to a firm with private information on the
unit’s expected production, where the drilling date and realized production are con-
tractible but completion effort (e.g., water input) is not. There are two main results.
First, if the sensitivity of natural gas production to completion effort is small enough,
then the mineral owner’s revenue-maximizing lease contract involves both a royalty and a
provision—here, a drilling subsidy—to accelerate drilling and counteract the royalty’s de-
lay incentive. Second, if instead the production function is dominated by the firm’s effort
choice, the revenue-maximizing contract instead involves a royalty and a drilling tax.

As in the computational model discussed in Section 7, the mineral owner can make
a TIOLI offer to a single firm, and then given the contract the firm decides whether and
when to drill a well, and if so, how much effort to exert conditional on drilling. We simplify
the problem here—thereby gaining analytic tractability—by assuming that only one well
can be drilled on the lease and by assuming that the only variable that evolves over time is
the natural gas price (therefore abstracting away from rig dayrates and water prices that
evolve over time, and from the νit drilling cost shocks that are included in the paper’s
computational model). The primitives of the model are as follows:

• Time is discrete and denoted by t ∈{0� � � � �T}, where T is possibly infinite. The lease
contract is set at t = 0, and then starting at t = 1 the firm can decide whether to

A5Firms realize the period T νiT shocks before making their period T decision of whether to drill, pay the
bonus, or let the lease expire.

A6The outer loop is not guaranteed to converge but typically does in practice. There are a handful of cases
in which the outer loop cycles between values for a few types; in these situations, the difference in values is
small (less than $1000) for these types, and we treat these cycles as having converged.
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execute the option to drill and complete a well. The owner observes the period in
which drilling (and completion) occur. Only one well may be drilled on the lease.

• e ∈R+ denotes noncontractible completion “effort” (i.e., water use in the main text).
• The cost of drilling and completing the well is given by c0 + c1e, where c0 and c1 are

strictly positive scalars that are common knowledge.
• If the firm drills, its natural gas production is given by y = β0 + θ+ g(e) + ε.

– β0 ∈ R is common knowledge. θ ∈ R is known by the firm but not by the owner.
�(θ) denotes the owner’s rational belief about the distribution of θ. The expected
value of θ is 0, and �(θ) has support on [θL� θ̄].

– The function g(e) is common knowledge and maps completion effort onto
gas production, with the properties that g′(e) > 0 and g′′(e) < 0 ∀e, and that
lime→0+ g′(e) → ∞ and lime→∞ g′(e) → 0 (we will later specify g(e) = βw loge as
in our computational model).

– ε is a mean-zero disturbance that is unknown by the owner and firm prior to drilling
and the choice of e. ε is orthogonal to e and θ, and its distribution function �(ε)
is common knowledge.

– Output y is contractible, and for simplicity we assume that y is completely realized
in the same period that the well is drilled and completed.

• The gas price at time t is denoted Pt and is common knowledge. The gas price evolves
stochastically via a process that is common knowledge and has the property that Pt is
bounded above. Pt denotes the entire history of prices from time 0 through t.

Both the owner and firm are risk neutral, share a common per-period discount factor δ,
and seek to maximize the expected present value of their respective cash flows. At t = 0,
the owner can offer a menu of contracts to the firm; the firm must then choose one such
contract or decline entirely (yielding a payoff of 0).

We first characterize the firm’s problem and then turn to the owner’s contract design
problem. The characterization closely follows parts of Laffont and Tirole (1986) and
Board (2007). To facilitate the derivation of the optimal contract, we follow the stan-
dard approach of considering a direct revelation mechanism in which the firm reports a
type θ̂ and is then assigned an up-front “bonus” transfer of R(θ̂) at t = 0 and a contin-
gent payment zt (θ̂� y�Pt) to be paid when the option is executed. For now, we allow this
payment to be contingent on the reported type, ex post production, and the price history
up to execution, though in practice conditioning only on the first two arguments and the
price at execution will be necessary for optimality.

E.1. Firm’s Problem

The firm must make three decisions, in sequence:
1. Report a type θ̂ to the owner at t = 0 (or opt out).
2. Choose a time τ ∈ {1� � � � T} at which to exercise the option to drill, where τ = ∞

signifies not drilling.
3. Conditional on drilling, select an effort level e ∈ R+.
Let τ∗(θ�z) denote a decision rule that dictates whether the well should be drilled in

each period t given the gas price Pt (suppressing the dependence of z on θ̂, y , and Pt).
The firm’s problem, conditional on participation, is then given by

max
θ̂�τ∗(θ�z)�e

�
(
θ̂� τ∗(θ�z)� e�θ

) = EP
[(
Pτ

(
β0 + θ+ g(e)

) − (c0 + c1e)

− zτ
(
θ̂�β0 + θ+ g(e) + ε�Pt))δτ] −R(θ̂)� (A.20)
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where EP is the expectation at the start of period 0, taken over all prices. Note that total
surplus is maximized by the solution to (A.20) when the transfers z and R are set to zero.

The effort selection problem has a unique, interior solution. In addition, the decision
rule τ∗(θ�z) will be given by an optimal stopping rule.A7

We restrict attention to truth-telling mechanisms that induce the agent to report θ̂ =
θ. Let τ(θ̂) and e(θ̂) denote the timing rule and effort function that correspond to the
optimal truthful mechanism. Because drilling is observable, τ(θ̂) can be imposed by the
owner. For truth-telling to be incentive compatible, it must be the case that e(θ̂) is the
optimal effort level for the firm, subject to the mechanism.

To characterize the firm’s ability to deviate from e(θ̂) and thereby reap information
rent, we follow Laffont and Tirole (1986) by first restricting our attention to deviations in
a concealment set in which, for any report θ̂, the chosen effort ẽ is such that θ+g(ẽ) = θ̂+
g(e(θ̂)). Thus, absent uncertainty generated by ε, any deviation outside the concealment
set can be detected by the owner.A8

Within the concealment set, the firm’s choice of report θ̂ determines the firm’s effort
level ẽ. Define an inverse production function H(E) by g(H(E)) =E. The derivatives of
g and H are related by H ′(g(e)) = 1/g′(e). The firm’s problem may then be written

max
θ̂

�(θ̂� θ) = EP
[(
Pτ(θ̂)

(
β0 + θ̂+ g(e(θ̂)

)) − (
c0 + c1H

(
θ̂− θ+ g(e(θ̂)

)))
− zτ(θ̂)

(
θ̂�β0 + θ̂+ g(e(θ̂)

) + ε�Pτ(θ̂)
))
δτ(θ̂)

] −R(θ̂)� (A.21)

To obtain the marginal information rent for a firm of type θ, we use the generalized en-
velope theorem from Milgrom and Segal (2002) and take the partial derivative of �(θ̂� θ)
with respect to θ:

∂�(θ̂� θ)
∂θ

∣∣∣∣
θ̂=θ

=EP
[
c1δ

τ(θ)

g′(e(θ)
)]
� (A.22)

Equation (A.22) is the first-order incentive compatibility condition. The second-order
monotonicity condition is

∂�(θ̂� θ)

∂θ∂θ̂
≥ 0� (A.23)

From taking derivatives of equation (A.21), the mechanism will satisfy condition (A.23)
if the optimal stopping time is decreasing in θ̂, and θ̂+ g(e(θ̂)) is increasing in θ̂.A9

A7Board (2007) proves the existence of such a rule for the case in which effort e is fixed. Existence in
our model follows the same proof, with the assumption that Pt is bounded above replacing the Board (2007)
assumption that costs are bounded below.

A8In the presence of a nondegenerate distribution �(ε), the sufficiency conditions for implementing the
mechanism will be stricter than the conditions given below that the optimal stopping time is decreasing in θ,
and θ+ g(e(θ)) is increasing in θ. In the event that they are not satisfied, the owner will need to “iron” over
regions in the type space where incentive compatibility does not hold.

A9The owner’s optimal timing and effort functions defined below in equations (A.26) and (A.28) will satisfy
the condition that the optimal stopping time is decreasing in θ if h′(θ) ≥ 0. To see this sufficiency, first observe
that h′(θ) ≥ 0 is sufficient for the total derivative of the term in parentheses in (A.26) to be strictly increasing
in θ, via application of the envelope theorem to the firm’s problem. Thus, per Lemma 1 in Board (2007), the
optimal stopping time is decreasing in θ. The second condition—that θ+g(e(θ)) is increasing in θ—is difficult
to characterize in terms of primitives.
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Given incentive compatibility, integration of equation (A.22) yields the firm’s informa-
tion rent:

�(θ�θ) =EP
[∫ θ

θ

c1δ
τ(s)

g′(e(s)
) ds]� (A.24)

where θ denotes the lowest type that participates, so that �(θ�θ) = 0.

E.2. Revenue-Maximizing Contract for the Owner

Continuing to follow Laffont and Tirole (1986) and Board (2007), we treat the owner’s
problem as an optimal control problem in which the objective is to find τ(θ̂) and e(θ̂) such
that the expectation of total surplus minus information rent is maximized. We therefore
write the owner’s problem as

max
τ(θ)�e(θ)�θ

∫ θ̄

θ

[
EP

(
Pτ(θ)

(
β0 + θ+ g(e(θ)

)) − c0 − c1e(θ)
)
δτ(θ)

−
∫ θ

θ

c1δ
τ(s)

g′(e(s)
) ds]ψ(θ) dθ� (A.25)

where the owner also chooses the type θ for which the individual rationality constraint
binds with equality.

To eliminate the double integral, we can use Fubini’s theorem. Letting h(θ) ≡
f (θ)/(1 − F (θ)) denote the hazard function, we rewrite the owner’s problem as

max
τ(θ)�e(θ)�θ

∫ θ̄

θ

EP

[(
Pτ(θ)

(
β0 + θ+ g(e(θ)

)) − c0 − c1e(θ)

− c1

h(θ)g′(e(θ)
))
δτ(θ)

]
ψ(θ) dθ� (A.26)

Now recall the firm’s problem, equation (A.20). Following the logic in Board (2007),
the owner can induce the firm to follow the stopping rule implied by (A.26) by setting the
contingent payment z equal to the information rent term in (A.26), since doing so makes
the firm’s problem equivalent to the owner’s problem. Thus, the revenue-maximizing con-
tingent payment is given by

zτ
(
θ� y�Pt

) = c1

h(θ)g′(e(θ)
) � (A.27)

The contingent payment in (A.27) is positive, which will lead to delayed drilling rel-
ative to the social optimum. Note that the payment is zero for the highest type θ̄ firm
because 1/h(θ̄) = 0, reflecting the standard “no distortion at the top” rule. The optimal
up-front payment R(θ) is set to equate the firm’s payoff to the information rent expressed
in equation (A.24), where the payoff of the endogenously chosen type θ firm is set to zero.

The contingent payment upon execution of the option echoes Board’s (2007) result.
What differs here is that the optimal payment is contingent not just on drilling but also
on effort. Because effort is not contractible, this mechanism must be implemented us-
ing a payment that is contingent on production y . Paralleling Laffont and Tirole (1986),
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we examine an implementation that involves an affine contingent payment: a lump sum
transfer combined with a linear tax on production. The appeal of an affine payment is
that its optimality is robust to the distribution of the disturbance ε. The downside is that
the sufficient conditions for incentive compatibility will be stronger than those discussed
above, since the affine payment structure constrains punishments for deviations outside
of the concealment set.

To derive the optimal linear production tax, we first take the pointwise derivative of
(A.26) with respect to e(θ) to obtain the FOC that defines the owner’s optimal effort
function, conditional on drilling at τ. Suppressing the dependence of g(e(θ)) and its
derivatives on θ, this FOC is given by

FOCe(θ) : Pτg′ − c1 + c1g
′′

h(θ)g′2 = 0� (A.28)

Because g′′ < 0, FOC (A.28) implies that e(θ) must be strictly less than the surplus-
maximizing effort, except for type θ̄.

To obtain the optimal production tax, we return to the firm’s problem and take the
derivative of equation (A.20) with respect to e to derive the firm’s FOC for its optimal
effort, conditional on drilling at τ:

FOCe : Pτg′ − c1 − ∂zτ
(
θ� y�Pt

)
∂y

g′ = 0� (A.29)

Combining equations (A.28) and (A.29) yield the linear tax on production that aligns
the firm’s incentives with the effort function that the owner wishes to induce:

∂zτ
(
θ� y�Pt

)
∂y

= −c1g
′′

h(θ)g′3 � (A.30)

We can now solve for the optimal contingent payment using equations (A.27) and
(A.30):

zτ
(
θ� y�Pt

) = c1

h(θ)g′ − c1g
′′

h(θ)g′3 (y −β0 − θ− g)� (A.31)

Rearranging and using equation (A.29) to eliminate c1, we obtain

zτ
(
θ�Pt� y

) = Pτ
(
g′2 + g′′(β0 + θ+ g)

)
h(θ)g′2 − g′′ − g′′

h(θ)g′2 − g′′Pτy� (A.32)

The second term in (A.32) is a positive tax on revenue Pτy; that is, a royalty. The first
term is a transfer at the time of drilling that is not dependent on output. It may be positive
(i.e., a tax on drilling) or negative (a drilling subsidy).

E.3. Drilling Subsidy or Drilling Tax?

The sign of the first term of equation (A.32) depends on the function g(e). We now tie
our analysis in this section more closely to the main text and adopt the functional form
g(e) = βw loge, where βw ∈ R++. With this functional form assumption, we can rewrite
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equation (A.32) as

zτ
(
θ�Pt� y

) = Pτ(βw −β0 − θ−βw loge)
1 + h(θ)βw

+ 1
1 + h(θ)βw

Pτy� (A.33)

The numerator of the first term in equation (A.33) may be positive or negative, and
the denominator is guaranteed to be strictly positive. To better understand the sign of this
term, we now consider a comparative static in which we change the sensitivity of output
y to effort e, holding expected production and effort fixed for the mean type θ= 0. More
precisely, we introduce a scalar b < βw that adjusts the marginal productivity of effort so
that:

• The production function is y = (β0 + b loge∗
0) + θ + (βw − b) loge + ε, where e∗

0
denotes the surplus-maximizing effort level of the mean θ = 0 type under a nondis-
tortionary contract, at the initial condition of b= 0.

• The cost of drilling is c0 + c1
(βw−b)
βw

e.
The addition of b loge∗

0 to β0 and the multiplication of c1 by (βw − b)/βw ensure that
after βw is adjusted by subtracting b, then the mean firm type, in the absence of a distor-
tionary contract, would choose the same effort e∗

0 and obtain the same expected produc-
tion, conditional on drilling at the same trigger price, as was the case under b = 0. But
changes in effort will now have a reduced impact on expected output if b ∈ (0�βw) and a
greater impact if b < 0.

The numerator of equation (A.33) is now given by the expression:

Pτ
(
βw − b−β0 − b loge∗

0 − θ−βw logeθ + b logeθ
)
� (A.34)

where we now write eθ rather than just e to clarify that this value represents the effort level
of each participating type θ under the mechanism. e∗

θ denotes the surplus-maximizing
effort of each type θ.

Now consider taking b → βw, making production less sensitive to effort. There will
be a value of b sufficiently close to βw such that the sign of (A.34) will be determined
by the sign of −β0 − θ − b loge∗

0. This expression must be strictly negative for type θ =
0 if it participates, since as b → βw it approaches the negative of that type’s expected
production conditional on drilling under a nondistortionary contract, which cannot be
negative if it participates. In that case, the expression will also be strictly negative for all
types θ > 0 as well. If the θ = 0 type does not participate, then the expression will hold
for all participating θ > 0 types, since for those types e∗

0 > e
∗
θ (because in a nondistorted

contract, higher types exert less effort), and because −β0 − θ− b loge∗
θ < 0 (since those

types participate).
To complete the proof, we need to consider the possibility that types θ < 0 may partici-

pate. In this case, it is sufficient to ensure that b is close enough to βw that eθ ≤ e∗
0 for all

such types. Such a value of b is guaranteed to exist, since the royalty increases with b and
drives effort toward zero as b→ βw for all but the highest type under the optimal con-
tract. From there, since −β0 − θ− b logeθ < 0 for the lowest participating type, it follows
that −β0 − θ− b loge∗

0 < 0 for that type and all higher types.
Finally, consider the opposite comparative static in which the production function be-

comes increasingly sensitive to effort by evaluating the case of b < 0. For a sufficiently
negative b, expression (A.34) becomes dominated by the term −b−b loge∗

0 −θ+b logeθ.
This term is guaranteed to be positive ∀θ under the sufficient condition from Section E.1
that θ+g(e(θ)) is increasing in θ. First, observe that for θ≥ 0, we have e∗

0 ≥ e∗
θ > eθ. From
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there, making b sufficiently negative that −b > θ̄ is sufficient for −b−b loge∗
0 −θ+b logeθ

to be strictly positive ∀θ ≥ 0. Second, the condition that θ + g(e(θ)) is increasing in
θ implies that, for negative enough b, −θ + b logeθ is decreasing in θ. The fact that
−b− b loge∗

0 − θ+ b logeθ is strictly positive for θ= 0 then implies that the expression is
strictly positive ∀θ < 0.

Thus, if the production function is dominated by the firm’s choice of effort, the owner’s
revenue-maximizing contract involves a drilling tax rather than a drilling subsidy. The
model and result in this case are actually similar to that of Board (2007): the high sen-
sitivity of output to input choice makes it difficult to contract on output (Board (2007)
completely rules out contracting on output), so that the owner’s revenue-optimal con-
tract then involves a tax on exercising the drilling option instead (as in Board (2007)).

We have quantitatively examined the optimal fixed payment using our computational
model of Section 7. We find that at our estimate of βw and with a 25%royalty, the owner
would maximize expected revenue with a drilling tax of $0�34 million. However, when
βw = 0 and the royalty is 39%, the owner would maximize expected revenue with a drilling
subsidy of $1�26 million, consistent with the analytic model above.
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