
Econometrica Supplementary Material

SUPPLEMENT TO “THE ANATOMY OF SORTING—EVIDENCE FROM
DANISH DATA”

(Econometrica, Vol. 91, No. 6, November 2023, 2409–2455)

RASMUS LENTZ
Department of Economics, University of Wisconsin–Madison and Dale T. Mortensen Centre, University of

Aarhus

SUPHANIT PIYAPROMDEE
Department of Economics, University College London

JEAN-MARC ROBIN
Department of Economics, Sciences Po, Paris

APPENDIX D: NUMERICAL IMPLEMENTATION

THE IMPLEMENTATION OF THE ESTIMATION ALLOWS the estimation to be scaled up to
larger data sets by expansion of the number of CPUs in the computing cluster. The fol-
lowing describes how the storage and computation requirements of the estimation are
delegated across CPUs in a parallel computing environment. The coding is done in For-
tran and parallelization is performed with OpenMPI.

D.1. Data Structure

The Danish Matched Employer–Employee (MEE) data comprise approximately I =
4�000�000 workers and J = 400�000 firms observed at a weekly frequency from 1985 to
2013. The fundamental observation in the data is a spell (either employment or unem-
ployment).

A worker history consists of a series of employment and unemployment spells. It is
stored as a linked list. Each object in the list is a spell. The spell object contains

• Start and end weeks of the spell.
• ID’s of the worker and firm (unemployment has firm ID 0).
• A vector of wage observations for each year of the spell.
• Pointers to the previous and next spell in the worker’s history.
• Pointers to the previous and next spell in the firm’s spell list (unlike the worker’s

linked list, the firm list is not necessarily chronological).
In addition, the data structure holds the observable characteristics of each worker and
firm separate from the list of spells. The worker i object holds the worker’s observable
characteristics (gender, education, birth year, year of entry into labor market, etc.) as well
as pointers to the first and last spells in the worker’s labor history. The firm j object holds
observable characteristics (public–private) and pointers to the first and last spell in its list
of spells. The firm j = 0 list holds all the unemployment spells in the data.

The data storage is divided across CPUs so that each CPU holds its own subset of
worker histories. Denote by ιc the set of worker IDs assigned to CPU c. Each CPU holds

Rasmus Lentz: rlentz@wisc.edu
Suphanit Piyapromdee: s.piyapromdee@ucl.ac.uk
Jean-Marc Robin: jeanmarc.robin@sciencespo.fr

© 2023 The Authors. Econometrica published by John Wiley & Sons Ltd on behalf of The Econometric Society.
Jean-Marc Robin is the corresponding author on this paper. This is an open access article under the terms of
the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or
adaptations are made.

https://www.econometricsociety.org/suppmatlist.asp
mailto:rlentz@wisc.edu
mailto:s.piyapromdee@ucl.ac.uk
mailto:jeanmarc.robin@sciencespo.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 R. LENTZ, S. PIYAPROMDEE, AND J.-M. ROBIN

the entire set of firms, but CPU c’s list of employment spells in firm j consists only of
those that are contributed by workers in the subset ιc .

The Danish MEE data set is relatively small by international comparison (small size
of the Danish population). Nevertheless, it does place significant demands on computer
memory. Needless to say, this issue only becomes more acute for MEE data from larger
countries. It is a virtue of the code that the memory requirement associated with each
CPU is roughly 1/C of the total size of the data given a total of C CPUs. Thus, the
memory pool available for the estimation is the combined memory of the nodes in the
cluster, which is trivially scaled up by adding more nodes, by opposition to a data structure
where each CPU holds the entire data set, which would place heavy memory requirements
on multi-CPU nodes.

D.2. E-Step

D.2.1. Likelihood Evaluation for a Given (β�L)

Each CPU holds its own copy of the firm classification, L. With this, CPU c evaluates
Li(β�L) = ∑K

k=1 Li(k;β�L) for any i ∈ ιc by walking through the worker i linked list of
spells. CPU c calculates Lc = ∑

i∈ιc lnLi(β�L). The likelihood of the data is then found
by summing Lc across CPUs, L(β�L) = exp(

∑C

c=1 L
c). This is a modest communication

of a single double precision number across the C CPUs. The calculation of the overall
likelihood is not necessary for the execution of the E-step, but serves as an useful check
that the algorithm is indeed proceeding to increase the likelihood in each iteration.

D.2.2. Worker Posterior Update for a Given (β�L)

CPU c updates worker posteriors for all i ∈ ιc by, pi(k;β�L) = Lk(k;β�L)/Li(β�L).
No communication across CPUs is necessary for this and CPU c knows only the poste-
riors for workers i ∈ ιc . Nowhere in the CEM algorithm does CPU c need to know the
worker posterior for workers outside ιc . This is a significant saving in communication,
which would otherwise involve the communication of I × K double precision numbers
across the C CPUs in each E-step.

D.3. M-Step

The M-step uses the updated posterior pi(k;β�L) from the E-step. Each part of the
M-step requires only modest communication between nodes.

D.3.1. πk(z) Update for Given (β�L)

With the worker posteriors in hand, CPU c calculates πk�c(z) = ∑
i∈ιc pi(k;β�L)1{zi =

z}, which is communicated across the CPUs. This is a K ×Z dimension double precision
array communication across C CPUs where each CPU receives

∑C

c=1 πk�c(z).28 Each CPU
then calculates πk(z) = ∑C

c=1 πk�c(z)/[
∑K

k=1

∑C

c=1 πk�c(z)].

D.3.2. mk�(x) Update for Given (β�L)

CPU c calculates mk��c(x) = ∑
i∈ιc pi(k;β�L)1{xi1 = x��i1 = �}, which is communi-

cated across the CPUs with each CPU receiving
∑C

c=1 mk��c(x). This is a K × L × Xini

28Using mpi_allreduce.

THE ANATOMY OF SORTING 3

double precision array where Xini is the number of x categories in the initial distribution.
Each CPU then calculates mk�(x) = ∑C

c=1 mk��c(x)/[
∑L

�=1

∑C

c=1 mk��c(x)].

D.3.3. Wage Parameters for Given (β�L)

CPU c calculates

μk��c(x) =
∑
i∈ιc

pi(k;β�L)
T∑
t=1

1{�it = ��xit = x}wit

dk��c(x) =
∑
i∈ιc

pi(k;β�L)
T∑
t=1

1{�it = ��xit = x}�

These 2 K × L × X arrays are communicated across CPUs to form
∑C

c=1 μk��c(x) and∑C

c=1 dk��c(x), where X is the number of relevant x categories for the wage parame-
ters as well as γ and λ mobility parameters. Each CPU proceeds to calculate μk�(x) =∑C

c=1 μk��c(x)/
∑C

c=1 dk��c(x).
Moving to the variance, CPU c calculates σk��c(x) = ∑I

i=1 pi(k;β�L)
∑T

t=1 1{�it =
��xit = x}[wit − μk�(x)]2. The K × L × X array is communicated across CPUs to form∑C

c=1 σk��c(x). Each CPU calculates σk�(x) =
√∑C

c=1 σk��c(x)/
∑C

c=1 dk��c(x).

D.3.4. Mobility Parameters for Given (β�L)

Running through worker spell lists, each CPU calculates mobility counts,

nk��c(x) =
∑
i∈ιc

pi(k;β�L)#{t : Dit = 0� �it = ��xit = x}

and

nk��′�c(x) =
∑
i∈ιc

pi(k;β�L)#
{
t : Dit = 1� �it = �� �i(t+1) = �′�xit = x

}
�

These two integer arrays (of size K × (L + 1) × X and K × (L + 1)2 × X , resp.) are
communicated across CPUs to form nk�(x) = ∑C

c=1 nk��c(x) and nk��′ (x) = ∑C

c=1 nk��′�c(x).
With these counts, each CPU updates γk�(x), λ�(x), and ν�(x) according to Section B.

D.4. C-Step

The C-step reassigns firm types in such a way as to increase the value of the expected
log-likelihood function, thereby increasing the likelihood of the data. The C-step can be
viewed as a simple extension of the M-step where the firm classification is just another
set of parameters to be chosen so as to improve on the expected log likelihood. While the
M-step requires very modest communication, the C-step does involve J separate commu-
nications of size L arrays within the cluster. This is a significant communication load, and
consequently, it is advantageous to do multiple EM iterations between C-steps.

4 R. LENTZ, S. PIYAPROMDEE, AND J.-M. ROBIN

The firm IDs have been chosen so that firms are ordered by size (j = 1 is the largest
firm where size is the number of wage observations throughout the panel). The algorithm
reassigns firm type j by

�
(s+1)
j = arg max

�

I∑
i=1

K∑
k=1

pi

(
k; β̂(s)�L(s)

)
lnLi

(
k; β̂(s)�L(s)

−j (�)
)
� (14)

where L(s)
−j (�) is the firm classification that is obtained by taking the L(s) classification

where all firm types j′ = 1� � � � � j − 1 have already been reassigned and, furthermore,
replace the j’th element with �. Do the reassignment in order. This step increases the
expected log likelihood.

Done naively, the step is expensive since it involves L × J expected likelihood evalua-
tions of the data. But the expected log likelihood varies with firm j’s type only through the
spells that directly involve firm j and through firm j’s type’s impact on the q(��L(s)

−j (�))
distribution. The latter does involve all spells but in a way that allows simplification. De-
fine by �(L), the contribution to the expected log likelihood from the q(·|L) related
terms,

�(β�L) = −
I∑

i=1

K∑
k=1

pi(k;β�L)

[
lnq(�i1|L) +

T∑
t=1

Dit lnq(�i(t+1)|L)

]

Define

n
q
� (L) =

I∑
i=1

[
1{�i1 = �}+ #{t : Dit = 1� �i(t+1) = �}

]
with which we can write

�(β�L) = −
L∑

�=1

lnq(�|L)nq
� (L)�

It is worth noting that another way of calculating � is by adding up spells at the firm level.
Denote by n̂j the number of employment spells in firm j,

n̂j =
I∑

i=1

[
1
[
j(i�1) = j

] +
T∑
t=1

1
[
Dit = 1� j(i� t + 1) = j

]]
�

with this, � can be written as

�(β�L) = −
L∑

�=1

lnq(�|L)
J∑

j=1

n̂j1[�j = �] = −
L∑

�=1

lnq(�|L)n̂(�|L)�

where the number of spells in type � firms is

n̂(�|L) ≡
J∑

j=1

n̂j1[�j = �]� (15)

THE ANATOMY OF SORTING 5

This firm-centric formulation of � is the preferable one for the firm reclassification algo-
rithm.

Continuing the firm-centric formulation of the log likelihood, denote by ι(j) =
{(i� t)|j(i� t) = j}, that is, all worker-time pairs with firm j. We can then write the the
firm j classification update as

�
(s+1)
j = arg max

�

[∑
(i�t)∈ι(j)

K∑
k=1

pi

(
k; β̂(s)�L(s)

) × [
fk�(wit|xit) + (1 −Dit) lnMk�it (xit)

+Di(t−1) lnMk�i(t−1)� +Dit lnMk��i(t+1)

] +�
(
β�L(s)

−j (�)
)]

� (16)

The algorithm is then as follows:
1. The firm j spell counts, n̂j , are determined at the outset of the overall estimation

where all processors count how many spells they each have for each given firm j.
n̂j is then found by a communication of a size J integer vector across all processors.
Furthermore, the firm IDs j = 1� � � � � J, are ordered by firm size—specifically the
size of ι(j). These steps are not done in the C-step but rather just once at the outset
of the full CEM algorithm.

2. The firm classification at the outset of the C-step is L(s) . Denote by L(s)�0 = L(s) ,
where L(s)�j is the firm classification in the jth substep of the C-step. Initialize the
C-step by the determination of n̂(�|L(s)) by equation (15).

3. Take firm j = 1. Find the optimal firm type for firm j according to equation (16) and
firm classification L(s)�j−1. The (i� t) pairs in ι(j) are by the data delegation spread
out across different CPUs. Each CPU evaluates the summation in equation (16) for
its own (i� t) pairs for each firm type � = 1� � � � �L. The data structure has for each
firm defined a linked list of its spells held by CPU c, which allows quick within CPU
evaluation of each CPU’s contribution to equation (16). The full sum for each �
is then obtained by a summation across all CPUs to the master process. This is a
communication of an L size array from each node to the master node. The master
process resolves the maximization problem in equation (16), and communicates the
optimal firm type �

(s+1)
j to all CPUs, a single integer.

4. Update the firm classification L(s)�j = L(s)�(j−1)
−j (�(s+1)

j). Thus, as the algorithm steps
through j = 1� � � � � J, the firm classification is updated sequentially with a new firm
type for firm j. Also, update n̂j(�) = n̂(�|L(s)�j) and the type frequencies q(�|L(s)�j).
This is done by the simple algorithm (stated just for n̂j)
(a) If �(s+1)

j = �
(s)
j , then n̂j(�) = n̂(j−1)(�) for all �.

(b) Else, n̂j(�(s+1)
j) = n̂(j−1)(�(s+1)

j)+ n̂j and n̂j(�(s)
j) = n̂j−1(�(s)

j)− n̂j . For all other firm
types, n̂j(�) = n̂(j−1)(�).

5. Loop back to step 3 for next j. Exit when j = J is completed. Denote by L(s+1) =
L(s)�J .

6 R. LENTZ, S. PIYAPROMDEE, AND J.-M. ROBIN

APPENDIX E: ADDITIONAL RESULTS

TABLE E.I

FIRM CHARACTERISTICS BY TYPE IN PERIOD 2.

Avg. Spell No. Avg Avg. Avg. Avg.
� No Info Public Private All �-Firms Firm Size/Yr. Inflow/Yr Outflow/Yr. Age in Yr.

1 0.02 0.33 0.65 7960 6226 1�28 0.72 0.70 4�94
2 0.02 0.40 0.57 23�369 4781 4�89 0.58 0.53 8�47
3 0.03 0.25 0.72 12�526 9233 1�36 0.62 0.60 5�08
4 0.02 0.31 0.67 66�569 7073 9�41 0.52 0.46 9�45
5 0.04 0.06 0.90 20�176 14�742 1�37 0.77 0.76 3�94
6 0.02 0.10 0.88 31�959 20�378 1�57 0.49 0.48 6�78
7 0.00 0.04 0.95 47�013 22�204 2�12 0.49 0.47 9�97
8 0.23 0.50 0.27 282�366 150 1882�44 0.36 0.03 12�91
9 0.02 0.17 0.81 434�100 5868 73�98 0.39 0.25 11�29

10 0.00 0.11 0.89 102�101 19�693 5�18 0.35 0.31 12�04
11 0.02 0.04 0.95 94�658 14�175 6�68 0.40 0.37 6�89
12 0.03 0.06 0.92 34�998 31�460 1�11 0.47 0.46 7�00
13 0.03 0.04 0.93 69�139 22�599 3�06 0.53 0.52 4�47
14 0.04 0.03 0.92 102�721 5182 19�82 0.50 0.41 5�28

TABLE E.II

FIRM CHARACTERISTICS BY TYPE IN PERIOD 3.

Avg. Spell Avg. Avg. Avg. Avg.
� No Info Public Private All �-Firms No. Firms Size/Yr. Inflow/Yr. Outflow/Yr. Age in Yr.

1 0.05 0.33 0.62 4662 3778 1�23 0.76 0.70 6�36
2 0.05 0.55 0.41 4464 666 6�70 0.71 0.56 11�88
3 0.06 0.28 0.66 5221 5168 1�01 0.87 0.83 5�74
4 0.05 0.12 0.83 11�679 4685 2�49 0.72 0.64 5�98
5 0.08 0.09 0.83 22�360 300 74�53 0.74 0.33 7�00
6 0.02 0.46 0.51 12�979 7392 1�76 0.64 0.55 12�24
7 0.07 0.10 0.83 11�761 9475 1�24 0.85 0.82 5�25
8 0.02 0.66 0.32 26�760 2994 8�94 0.55 0.43 15�31
9 0.05 0.06 0.89 49�036 6651 7�37 0.65 0.55 7�37

10 0.06 0.06 0.88 23�153 12�956 1�79 0.56 0.54 6�52
11 0.22 0.56 0.23 285�184 200 1425�92 0.39 0.02 16�48
12 0.00 0.12 0.88 41�711 14�645 2�85 0.35 0.31 15�07
13 0.11 0.07 0.82 71�019 15�276 4�65 0.42 0.38 7�99
14 0.01 0.22 0.78 237�283 6292 37�71 0.41 0.25 14�94
15 0.02 0.06 0.92 25�993 14�381 1�81 0.53 0.49 11�22
16 0.10 0.04 0.86 36�182 22�943 1�58 0.47 0.46 6�97
17 0.04 0.02 0.95 29�515 8721 3�38 0.72 0.62 7�02
18 0.07 0.02 0.91 120�541 11�822 10�20 0.40 0.32 9�20
19 0.03 0.05 0.92 94�202 11�143 8�45 0.52 0.44 9�77
20 0.06 0.03 0.90 15�804 14�494 1�09 0.79 0.77 5�71
21 0.10 0.03 0.87 220�533 1949 113�15 0.42 0.19 10�86
22 0.15 0.03 0.82 41�427 16�187 2�56 0.54 0.51 5�49

THE ANATOMY OF SORTING 7

TABLE E.III

FIRM CHARACTERISTICS BY TYPE IN PERIOD 4.

Avg. Spell Avg. Avg. Avg. Avg.
� No Info Public Private All �-Firms No. Firms Size/Yr. Inflow/Yr. Outflow/Yr. Age in Yr.

1 0.16 0.38 0.46 3895 3075 1�27 0.79 0.71 8�64
2 0.18 0.23 0.60 6941 5571 1�25 0.84 0.80 6�85
3 0.16 0.49 0.35 7423 1157 6�42 0.73 0.60 14�34
4 0.22 0.21 0.57 10�819 6572 1�65 0.60 0.56 8�11
5 0.32 0.03 0.65 47�178 7471 6�31 0.66 0.59 7�46
6 0.19 0.10 0.71 13�240 9426 1�40 0.85 0.83 5�39
7 0.01 0.69 0.30 18�706 4593 4�07 0.52 0.45 19�52
8 0.35 0.08 0.58 33�863 12�731 2�66 0.55 0.53 6�58
9 0.06 0.12 0.82 8408 10�803 0�78 0.67 0.64 11�32

10 0.07 0.07 0.86 23�614 11�933 1�98 0.51 0.48 13�92
11 0.37 0.09 0.54 62�922 18�688 3�37 0.37 0.36 9�65
12 0.82 0.06 0.12 433�508 94 4611�78 0.45 0.01 10�24
13 0.00 0.43 0.57 174�620 1353 129�06 0.39 0.17 20�40
14 0.00 0.13 0.87 47�447 11�554 4�11 0.37 0.33 17�75
15 0.30 0.06 0.63 106�902 10�459 10�22 0.55 0.48 10�06
16 0.34 0.04 0.62 49�422 24�507 2�02 0.45 0.44 6�67
17 0.23 0.06 0.72 375�017 5034 74�50 0.44 0.29 13�67
18 0.17 0.01 0.81 32�934 7711 4�27 0.70 0.63 7�48
19 0.38 0.02 0.60 132�247 12�475 10�60 0.40 0.36 9�64
20 0.18 0.04 0.78 21�437 15�244 1�41 0.75 0.74 4�79
21 0.38 0.01 0.61 38�556 11�903 3�24 0.40 0.38 8�62
22 0.33 0.03 0.64 20�837 12�042 1�73 0.66 0.65 4�00

TABLE E.IV

FIRM CHARACTERISTICS BY TYPE IN PERIOD 5.

No.
Firms

No.
Workers

Avg.
Size/Yr.

Legal Status Avg.
Inflow/Yr.

Avg.
Outflow/Yr.

Avg.
Age� Private Public Mixed

1 5442 5655 1�04 0.60 0.07 0.33 0.79 0.77 7�71
2 2425 32�555 13�42 0.62 0.01 0.37 0.69 0.58 7�52
3 7091 20�681 2�92 0.70 0.01 0.29 0.66 0.61 7�14
4 4866 8058 1�66 0.44 0.36 0.20 0.60 0.53 17�23
5 9067 12�432 1�37 0.66 0.02 0.32 0.86 0.84 5�95
6 2554 18�154 7�11 0.36 0.62 0.02 0.52 0.44 22�79
7 10�150 70�578 6�95 0.58 0.01 0.41 0.54 0.48 9�59
8 13�781 25�247 1�83 0.71 0.02 0.27 0.52 0.51 7�42
9 126 347�968 2761�65 0.12 0.07 0.81 0.37 0.02 14�80

10 11�313 18�457 1�63 0.81 0.13 0.06 0.47 0.45 16�19
11 20�705 54�578 2�64 0.56 0.01 0.43 0.33 0.32 10�95
12 2200 213�090 96�86 0.48 0.03 0.49 0.45 0.26 12�35
13 6669 16�025 2�40 0.74 0.02 0.24 0.71 0.67 8�13
14 8519 32�806 3�85 0.79 0.20 0.01 0.35 0.31 21�73
15 22�301 43�666 1�96 0.72 0.00 0.27 0.46 0.45 7�00
16 6781 18�851 2�78 0.67 0.00 0.32 0.71 0.64 9�07
17 10�267 101�446 9�88 0.60 0.01 0.38 0.50 0.44 11�21
18 14�599 15�193 1�04 0.65 0.01 0.34 0.79 0.78 5�82
19 3408 113�882 33�42 0.80 0.20 0.00 0.36 0.23 23�65
20 11�098 83�863 7�56 0.55 0.01 0.44 0.36 0.32 10�78
21 15�429 20�233 1�31 0.63 0.00 0.37 0.52 0.52 7�31
22 5368 24�685 4�60 0.71 0.00 0.28 0.45 0.41 13�63

8 R. LENTZ, S. PIYAPROMDEE, AND J.-M. ROBIN

APPENDIX F: THE VALUE OF A MATCH

Denote by Vk�(x) the net present value of a type (k�x) worker’s future utility stream
given a current match with a type � firm. Unemployment is denoted by Vk0(x). Let yk�(x)
be the per period utility flow in such a match. When a worker is faced with a choice
between a match Vk�(x) and another Vk�′ (x) make one of two isomorphic assumptions:
(1) A random utility model where each option in the binary match choice is associated
with an iid Gumbel distributed taste shock with variance parameter νkx, or (2) a random
mobility cost model where the worker realizes a random mobility cost from a logistic
distribution with mean zero and variance parameter νkx. In either case, the probability
that the worker makes the move to the �′ firm is exp(Vk�′ (x)/νkx)/[exp(Vk�′ (x)/νkx) +
exp(Vk�(x)/νkx)].

Assume the model’s job offer and layoff events are mutually exclusive. Denote the dis-
count factor by β. With this and following Rust (1981), the value of a match is given by
the recursive formulation,

Vk�(x) = yk�(x) +βE

[
νkx′

L∑
�′=1

λk�′
(
x′) ln

(
exp

(
Vk�

(
x′)/νkx′

) + exp
(
Vk�′

(
x′)/νkx′

))
+ νkx′λk

(
x′)ϑ+ δk�

(
x′)Vk0

(
x′) + (

1 − λk

(
x′) − δk�

(
x′))Vk�

(
x′)]�

where x′ follows the law of motion in the model, and ϑ ≈ 0�577 is the Euler–Mascheroni
constant. Also, λk(x) = ∑

�′ λk�′ (x). With this interpretation, the estimated job prefer-
ences, γk�(x), in the model are related to job values by γk�(x) = exp(Vk�(x)/νkx).

In this interpretation of the model, the structure implies that tenure categories may
change across job comparisons if the worker is faced with a move from a long tenure job
since the new job necessarily starts as short tenure. The estimation does not impose this
constraint on the model, which may be interpreted as a kind of myopia on the part of
workers. One can ex post evaluate the importance of the restriction: Using the estimated
long-term mobility patterns, the constraint can be imposed using the short-tenure job
preferences to obtain modified long-tenure job preferences consistent with the restriction
that a new job is understood to be short tenure. We have done so and the modified long-
tenure preferences are very closely correlated (> 0�99) with the estimated ones (note
available upon request).

Co-editor Giovanni L. Violante handled this manuscript.

Manuscript received 13 June, 2018; final version accepted 7 April, 2023; available online 14 August, 2023.

	Appendix D: Numerical Implementation
	Data Structure
	E-Step
	Likelihood Evaluation for a Given (beta,L)
	Worker Posterior Update for a Given (beta,L)

	M-Step
	pik(z) Update for Given (beta,L)
	mkl(x) Update for Given (beta,L)
	Wage Parameters for Given (beta,L)
	Mobility Parameters for Given (beta,L)

	C-Step

	Appendix E: Additional Results
	Appendix F: The Value of a Match

