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THIS SUPPLEMENT IS STRUCTURED as follows. Appendix C complements Section 4.1.3
of the main body by presenting confidence intervals under heteroskedastic errors. Ap-
pendix D provides an extended discussion on principal component regression (PCR).

APPENDIX C: CONFIDENCE INTERVALS FOR HETEROSKEDASTIC NOISE

In Section 4.1.3, we presented confidence intervals under homoskedastic noise. Here,
we present confidence intervals that are also motivated by Theorem 3 but for the het-
eroskedastic noise setting, that is, (�hz

T ��
vt
N��

dr
T ��

dr
N ) are diagonal matrices whose nonzero

entries are not necessarily identical. We construct our confidence intervals as in (18)
and (19) of Section 4.1.3 using two popular strategies to estimate the covariance ma-
trix.

Additional Notation. Recall Hu = UU ′ and Hv = V V ′. We define Hu
⊥ = I − Hu and

Hv
⊥ = I−Hv. With this notation, the HZ and VT in-sample errors can be written as Hu

⊥yT =
yT − Y 0α̂ and Hv

⊥yN = yN − Y ′
0β̂, respectively.

C.1. Jackknife Variance Estimation

The first estimator is based on the jackknife. Traditionally, the jackknife estimates the
covariance of the regression coefficients (α̂� β̂). By analyzing said estimates, we derive
the following:

�̂
jack

T = diag
([
Hu

⊥ ◦Hu
⊥ ◦ I]†[

Hu
⊥yT ◦Hu

⊥yT

])
� (46)

�̂
jack

N = diag
([
Hv

⊥ ◦Hv
⊥ ◦ I]†[

Hv
⊥yN ◦Hv

⊥yN

])
� (47)
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LEMMA 8:
(i) [HZ model] Suppose Assumption 1 holds. If (Hu

⊥ ◦ Hu
⊥ ◦ I) is nonsingular, then we

have

E
[
�̂

jack

T |yN�Y 0

] =�
hz
T +�hz and E

[̂
v

hz�jack
0 |yN�Y 0

] = vhz
0 + α̂′�hzα̂�

where �hz
�� = ∑

j �=�(σ
hz
jT )2(Hu

�j)
2(1 −Hu

��)
−2 for �= 1� � � � �N0.

(ii) [VT model] Suppose Assumption 2 holds. If (Hv
⊥ ◦ Hv

⊥ ◦ I) is nonsingular, then we
have

E
[
�̂

jack

N |yT �Y 0

] =�
vt
N + � vt and E

[̂
v

vt�jack
0 |yT �Y 0

] = vvt
0 + β̂

′
� vtβ̂�

where �vt
�� = ∑

j �=�(σ
vt
Nj)

2(Hv
�j)

2(1 −Hv
��)

−2 for �= 1� � � � �T0.

(iii) [DR model] Suppose Assumption 3 holds. If (Hu
⊥ ◦ Hu

⊥ ◦ I) and (Hv
⊥ ◦ Hv

⊥ ◦ I) are
nonsingular, then we have

E
[
�̂

jack

T |Y 0

] = �
dr
T +�dr�

E
[
�̂

jack

N |Y 0

] = �
dr
N + � dr�

E
[̂
vdr�jack(Y 0)|Y 0

] = vdr
0 + (

Huβ∗)′
�dr(Huβ∗) + (

Hvα∗)′
� dr(Hvα∗)

+ tr
(
Y †

0�
dr(Y ′

0

)†
� dr)�

where �dr
�� and �dr

�� are defined analogously to �hz
�� and �vt

��, respectively, with (σdr
jT )2 and

(σdr
Nj)

2 in place of (σhz
jT )2 and (σ vt

Nj)
2, respectively.

Lemma 8 establishes that the jackknife is conservative, provided (Hu
⊥ ◦ Hu

⊥ ◦ I) and
(Hv

⊥ ◦ Hv
⊥ ◦ I) are nonsingular. Strictly speaking, the jackknife is well defined if these

quantities are singular, as seen through the pseudoinverse in (46) and (47). Lemma 8 con-
siders the nonsingular case for simplicity. We remark that max� Hu

�� < 1 and max� Hv
�� < 1

are sufficient conditions for invertibility.

C.2. Hartley–Rao–Kiefer (HRK) Variance Estimation

Next, we consider the covariance estimator proposed by Hartley, Rao, and Kiefer
(1969). We index this estimator by the authors, Hartley–Rao–Kiefer (HRK):

�̂
HRK

T = diag
([
Hu

⊥ ◦Hu
⊥
]−1[

Hu
⊥yT ◦Hu

⊥yT

])
�

�̂
HRK

N = diag
([
Hv

⊥ ◦Hv
⊥
]−1[

Hv
⊥yN ◦Hv

⊥yN

])
�

LEMMA 9:
(i) [HZ model] Suppose Assumption 1 holds. If (Hu

⊥ ◦Hu
⊥) is nonsingular, then we have

E
[
�̂

HRK

T |yN�Y 0

] = �
hz
T and E

[̂
vhz�HRK

0 |yN�Y 0

] = vhz
0 �
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(ii) [VT model] Suppose Assumption 2 holds. If (Hv
⊥ ◦Hv

⊥) is nonsingular, then we have

E
[
�̂

HRK

N |yT �Y 0

] =�
vt
N and E

[̂
vvt�HRK

0 |yT �Y 0

] = vvt
0 �

(iii) [DR model] Suppose Assumption 3 holds. If (Hu
⊥ ◦Hu

⊥) and (Hv
⊥ ◦Hv

⊥) are nonsin-
gular, then we have

E
[
�̂

HRK

T |Y 0

] = �
dr
T � E

[
�̂

HRK

N |Y 0

] =�
dr
N� and E

[̂
vdr�HRK

0 |Y 0

] = vdr
0 �

Lemma 9 establishes that the HRK estimator is unbiased, provided (Hu
⊥ ◦ Hu

⊥) and
(Hv

⊥ ◦ Hv
⊥) are invertible. To discuss sufficient conditions for invertibility, consider

(Hu ◦Hu). A sufficient condition is strict diagonal dominance (Varga, 1962): (1 −Hu
��)

2 >∑
j �=�(H

u
�j)

2. Notice that Hu is an orthogonal projector and is thus idempotent, that is,
(Hu)2 =Hu, and symmetric. Therefore,

Hu
�� = (

Hu
��

)2 +
∑
j �=�

(
Hu

�j

)2 =⇒
∑
j �=�

(
Hu

�j

)2 =Hu
��

(
1 −Hu

��

)
�

which allows us to simplify the condition as (1 − Hu
��)

2 >Hu
�� − (Hu

��)
2. Thus, max� Hu

�� <
1/2 is a sufficient condition for invertibility. Since tr(Hu) = R, this restricts R < N0/2.
The same arguments apply for (Hv ◦Hv).

C.3. Discussion

We highlight that Lemmas 1 (from Section 4.1.3), 8, and 9 only hold in expectation.
For any particular realization, v̂dr

0 may exhibit unexpected properties. For instance, if
tr(Y †

0�̂T (Y ′
0)†�̂N) > max{̂vhz

0 � v̂vt
0 }, then v̂dr

0 < min{̂vhz
0 � v̂vt

0 }; thus, the mixed coverage will be
smaller than both HZ and VT coverages. In fact, v̂dr

0 can be negative if tr(Y †
0�̂T (Y ′

0)†�̂N) >
v̂hz

0 + v̂vt
0 , which may occur if both HZ and VT in-sample errors are “too large.” For these

scenarios, one naïve solution is to modify v̂dr
0 as v̂dr

0 = v̂hz
0 + v̂vt

0 , which is conservative by
Lemmas 1, 8, and 9. However, this case is arguably better resolved with a different point
estimator altogether.

C.4. Empirical Applications—Extended

We extend our analysis in Section 5.3.3 to include results with the heteroskedastic confi-
dence intervals. Figure C.1 presents the jackknife-based confidence intervals for our three
case studies. We underscore that the conclusions drawn in Section 5.3.3 hold here as well.
We remark that the conditions necessary for the HRK-based confidence intervals do not
hold for OLS.

C.5. Deferred Proofs From This Section

We present the proofs for this section.

C.5.1. Proof of Lemma 8

PROOF: Before we establish the biases of (�̂
jack

T � �̂
jack

N ), we first justify their forms. Jack-
knife is a popular approach to estimate the covariances of (α̂� β̂). Below, we follow the
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FIGURE C.1.—OLS estimates with jackknife confidence intervals. From top to bottom, the rows are indexed
by the Basque, California, and West Germany studies. From left to right, the columns are indexed by the HZ,
VT, and DR models.

standard techniques to derive the jackknife estimate of these objects, which will then be
used to derive (�̂

jack

T � �̂
jack

N ). Without loss of generality, we begin with α̂. Notably, while
standard derivations consider Y 0 with full column rank, we consider a general matrix Y 0

that may be rank deficient. This difference is subtle so the following proof is by no means
novel. We provide it simply for completeness.

To describe the jackknife, we define α̂∼i as the minimum �2-norm solution to (2), where
λ1 = λ2 = 0, without the ith observation, that is,

α̂∼i =
(
Y ′

0�∼iY 0�∼i

)†
Y ′

0�∼iyT�∼i� (48)

where Y 0�∼i and yT�∼i correspond to Y 0 and yT without the ith observation. We define the
pseudo-estimator as α̃i = T0α̂ − (T0 − 1)α̂∼i. With these quantities defined, we write the
jackknife variance estimator as

V̂
jack = 1

(T0 − 1)2

∑
i≤N0

(α̃i − α̂)(α̃i − α̂)′� (49)
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To evaluate this quantity, we will rewrite α̂∼i in a more convenient form. In particular,

Y ′
0�∼iY 0�∼i = Y ′

0Y
′
0 − yiy

′
i�

Y ′
0�∼iyT�∼i = Y ′

0yT − yiYiT �

where yi = [Yit : t ≤ T0] is the ith row of Y 0. We do not assume that Y ′
0Y 0 is nonsingular. As

such, we use a generalized form of the Sherman–Morrison formula (Cline, 1965, Meyer,
1973) to obtain

(
Y ′

0�∼iY 0�∼i

)† = (
Y ′

0Y 0

)† + (
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiy

′
i

(
Y ′

0Y 0

)†
� (50)

Recall α̂= (Y ′
0Y 0)†Y ′

0yT and note YiT − y′
iα̂ is the ith element of ε̂T = Hu

⊥yT . Using these
facts, we plug (50) into (48) to yield

α̂∼i =
[(
Y ′

0Y 0

)† + (
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiy

′
i

(
Y ′

0Y 0

)†](
Y ′

0yT − yiYiT

)
= α̂− (

Y ′
0Y 0

)†
yiYiT + (

1 −Hu
ii

)−1(
Y ′

0Y 0

)†
yiy

′
iα̂

−Hu
ii

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiYiT

= α̂− (
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yîεiT � (51)

Inserting (51) into our pseudo-estimate, we have

α̃i = T0α̂− (T0 − 1)
(
α̂− (

1 −Hu
ii

)−1(
Y ′

0Y 0

)†
yîεiT

)
= α̂+ (T0 − 1)

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yîεiT � (52)

Inserting (52) into (49), we have

V̂
jack = (

Y ′
0Y 0

)†
(∑

i≤N0

ε̂2
iT(

1 −Hu
ii

)2 yiy
′
i

)(
Y ′

0Y 0

)†

= (
Y ′

0Y 0

)†
Y ′

0�Y 0

(
Y ′

0Y 0

)†
�

where � is a diagonal matrix with 
ii = ε̂2
iT (1−Hu

ii)
−2. Equivalently, � = diag([Hu

⊥ ◦Hu
⊥ ◦

I]†[̂εT ◦ ε̂T ]). It then follows that

y′
N V̂

jack
yN = β̂

′
�β̂�

To arrive at (46), we define �̂
jack

T = �. This corresponds to the EHW estimator with the
jackknife correction. We derive (47) for β̂ by applying the same arguments above. Now,

we will evaluate the biases of (�̂
jack

T � �̂
jack

N ).
(i) [HZ model] Let Assumption 1 hold. We define (σhz

iT )2 = Var(εiT|yN�Y 0) for i =
1� � � � �N0. Observe that

E
[(
Hu

⊥ ◦Hu
⊥ ◦ I)†

(̂εT ◦ ε̂T )|yN�Y 0

] = (
Hu

⊥ ◦Hu
⊥ ◦ I)†

E[̂εT ◦ ε̂T|yN�Y 0]� (53)
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To evaluate (53), we follow the derivations of (35) and (37) to obtain

E[̂εT|yN�Y 0] =Hu
⊥Y 0α

∗ = 0� (54)

Cov(̂εT|yN�Y 0) =Hu
⊥�

hz
T H

u
⊥� (55)

Recall that E[X2] = Var(X) + E[X]2 for any random variable X . Thus, combining (54)
with (55) gives

E[̂εT ◦ ε̂T|yN�Y 0] = (
Hu

⊥�
hz
T H

u
⊥ ◦ I)1� (56)

Let γ̂ = E[̂εT ◦ ε̂T|yN�Y 0]. By (56), the �th entry of γ̂ can be written as

γ̂� =
∑
j �=�

(
Hu

j�

)2(
σhz

jT

)2 + (
1 −Hu

��

)2(
σhz

�T

)2
�

where Hu
j� is the (j� �)th entry of Hu. In turn, this allows us to rewrite (56) as

γ̂ = (
Hu

⊥ ◦Hu
⊥
)
�

hz
T 1� (57)

Next, let ζ̂ = (Hu
⊥ ◦Hu

⊥ ◦ I)−1γ̂ . Notice that the �th entry of ζ̂ is given by

ζ̂� = (
σhz

�T

)2 +
∑
j �=�

(
Hu

�j

)2

(
1 −Hu

��

)2

(
σhz

jT

)2
�

Therefore, diag(̂ζ) = �
hz
T + �hz, where �hz

�� = ∑
j �=�(σ

hz
jT )2(Hu

�j)
2(1 − Hu

��)
−2 for � =

1� � � � �N0. Notice if max� Hu
�� < 1, then (Hu

⊥ ◦ Hu
⊥ ◦ I) is nonsingular, that is, the

pseudo-inverse is precisely the inverse. In this situation, plugging the above into (53)
gives

E
[
�̂

jack

T |yN�Y 0

] = diag
((
Hu

⊥ ◦Hu
⊥ ◦ I)−1

E[̂εT ◦ ε̂T|yN�Y 0]
)

= diag
((
Hu

⊥ ◦Hu
⊥ ◦ I)−1

γ̂
)

= diag(̂ζ)

=�
hz
T +�hz� (58)

From this, we conclude that

E
[̂
v

hz�jack
0 |yN�Y 0

] = β̂
′
E
[
�̂

jack

T |yN�Y 0

]
β̂

= β̂
′(
�

hz
T +�hz)β̂

= vhz
0 + β̂

′
�hzβ̂�

where we note that β̂
′
�hzβ̂ ≥ 0.

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we conclude

E[�̂
jack

N |yT �Y 0] = �
vt
N + � vt, where �vt

�� = ∑
j �=�(σ

vt
Nj)

2(Hv
�j)

2(1 − Hv
��)

−2 for � = 1� � � � �T0.
Thus, E[̂vvt�jack

0 |yT �Y 0] = vvt
0 + α̂′� vtα̂, where we note that α̂′� vtα̂≥ 0.
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(iii) [DR model] Let Assumption 3 hold. We define (σdr
iT )2 = Var(εiT|Y 0) for i =

1� � � � �N0 and (σdr
Nt)

2 = Var(εNt|Y 0) for t = 1� � � � �T0. Following the arguments that led to

(58), we obtain E[�̂
jack

T |Y 0] = �
dr
T +�dr, where �dr

�� = ∑
j �=�(σ

dr
jT )2(Hu

�j)
2(1 −Hu

��)
−2 for � =

1� � � � �N0. Similarly, we obtain E[�̂
jack

N |Y 0] = �
dr
N + � dr, where �dr

�� = ∑
j �=�(σ

dr
Nj)

2(Hv
�j)

2(1 −
Hv

��)
−2 for �= 1� � � � �T0. Applying Lemma 7 then gives

E
[̂
v

dr�jack
0 |Y 0

] = vdr
0 + (

Huβ∗)′
�dr(Huβ∗) + (

Hvα∗)′
� dr(Hvα∗) + tr

(
Y †

0�
dr(Y ′

0

)†
� dr)�

The proof is complete. Q.E.D.

C.5.2. Proof of Lemma 9

PROOF: We adopt the strategy of Hartley, Rao, and Kiefer (1969) to prove our desired
result.

(i) [HZ model] Let Assumption 1 hold. As in the proof of Lemma 8, we define ε̂T =
Hu

⊥yT . Observe

E
[(
Hu

⊥ ◦Hu
⊥
)−1

(̂εT ◦ ε̂T )|yN�Y 0

] = (
Hu

⊥ ◦Hu
⊥
)−1

E[̂εT ◦ ε̂T|yN�Y 0]� (59)

To evaluate (59), we plug in (57) to obtain

E
[(
Hu

⊥ ◦Hu
⊥
)−1

(̂εT ◦ ε̂T )|yN�Y 0

] = (
Hu

⊥ ◦Hu
⊥
)−1(

Hu
⊥ ◦Hu

⊥
)
�

hz
T 1 = �

hz
T 1� (60)

Plugging (60) into (59) yields

E
[
�̂

HRK

T |yN�Y 0

] = diag
((
Hu

⊥ ◦Hu
⊥
)−1

E[̂εT ◦ ε̂T|yN�Y 0]
) =�

hz
T � (61)

It then follows that E[̂vhz�HRK
0 |yN�Y 0] = vhz

0 .

(ii) [VT model] Let Assumption 2 hold. Following the same arguments as above, we
conclude E[�̂

HRK

N |yT �Y 0] = �
vt
N and E[̂vvt�HRK

0 |yT �Y 0] = vvt
0 .

(iii) [DR model] Let Assumption 3 hold. Following the arguments that led to (61),
we obtain E[�̂

HRK

T |Y 0] = �
dr
T and E[�̂

HRK

N |Y 0] = �
dr
N . Applying Lemma 7 then gives

E[̂vdr�HRK
0 |Y 0] = vdr

0 . The proof is complete. Q.E.D.

APPENDIX D: PRINCIPAL COMPONENT REGRESSION

The results in Section 4, which are stated for OLS, immediately extend to PCR by
replacing Y 0 with Y

(k)
0 for any k<R. See Section 3 for details of the PCR method.

D.1. Comparing PCR to OLS

Intuitively, PCR-based models postulate that the data are inherently low-dimensional.
We comment on several benefits of PCR over OLS. To begin, the HZ and VT OLS vari-
ance estimators constructed in Section 4.1.3 can suffer from degeneracy when N and T
are of different sizes. That is, if N <T , then the HZ in-sample error is zero (assuming full
column rank), which causes the HZ coverage to collapse on the point estimate; analogous
statements hold for the VT coverage when N > T . The PCR-based variance estimators,
on the other hand, can avoid degeneracy through the number of chosen principal compo-
nents k (regularization). On a related note, the nonsingularity conditions required for the
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FIGURE D.1.—PCR estimates with jackknife confidence intervals. From top to bottom, the rows are indexed
by the Basque, California, and West Germany studies. From left to right, the columns are indexed by the HZ,
VT, and DR models.

jackknife and HRK variance estimators can also be controlled by k. See Agarwal, Shah,
and Shen (2021) for various methods on choosing k.

D.2. Empirical Applications—Extended

Here, we extend our analysis in Section 5.3.3 to include results for PCR. We present the
PCR-based confidence intervals for our three case studies in Figure D.1. For visualization
ease, we only plot the jackknife intervals. Notably, the same conclusions drawn for OLS
hold for PCR as well.
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