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APPENDIX A: RANGE FOR THE HUMP-SHAPED IRF IN CALVO

IN THIS SECTION, WE EXPLORE the range of the parameter θ for which the impulse re-
sponse has a hump shape in the Calvo model. This complements the information in Fig-
ure 1. In particular, fixing ρ and T , the impulse response Yθ(t�T ) is hump-shaped as
a function of t if θ ∈ (θ1� θ0). The thresholds {θ0� θ1� θ

∗} are defined in Lemma 2. Note
that θ∗ does not depend on T , while {θ0� θ1} do. In Figure 1, we plot the thresholds as a
function of T , using ζ = 2 and ρ= 0 in the left panel while the right panel uses ρ= 0�10.

The shaded area contains the values of θ for which a hump-shaped impulse response
occurs. Two comments are in order. First, the values of T , ρ, ζ scale with the units in
which time is measured. We chose ζ = 2, that is, we interpret time as measured in years
(two price changes per year). Second, it is clear that the two regions are almost identical
for the two values of ρ considered, which bracket any reasonable yearly interest rate.

APPENDIX B: PROOFS

PROOF OF PROPOSITION 1: Define the markup m(p/P) ≡ η(p/P)
η(p/P)−1 . Totally differenti-

ating the first-order condition p∗(P) =m(p∗(P)/P)χ(P) with respect to P , completing
elasticities, and evaluating at p∗ = P gives
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and using that χ(P)/p∗ = 1/m(1),
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FIGURE 1.—Range for hump-shaped IRF in the Calvo model.

To get the expression in equation (1), let r ≡ p/P and note that m(r) ≡ η(r)
η(r)−1 , so

m′(r) = η′(r)(η(r)−1)−η(r)η′(r)
(η(r)−1)2 = − η′(r)

(η(r)−1)2 and hence, m′(1)
m(1) = − η′(1)

(η(1)−1)2
(η(1)−1)
η(1) = − η′(1)

η(1)(η(1)−1) .
That η(1) > 1 is implied by the first-order optimality condition.

The expression in equation (2) is obtained by taking a second-order expansion of the
profit function at a symmetric equilibrium around the optimal price p∗ = P̄ . Let x≡ p−P̄

P̄

be the firm’s price gap, and X ≡ P−P̄
P̄

be the aggregate price gap; we have
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Let us normalize the profits by the steady-state level of profits 
(P̄� P̄). We can then
rewrite the firm’s optimal policy as the minimization of the quadratic period loss

B(x+ θX)2 where B≡ −1
2

11(P̄� P̄)

(P̄� P̄))

P̄2 and θ≡ 
12(P̄� P̄)

11(P̄� P̄)

�

Finally, we show that 1 + η′(1)
η(1)(η(1)−1) > 0. Recall the second-order condition for a maxi-

mum
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Note that D′ < 0 and that χ/p∗ = 1/m, and rewrite the second-order condition as

D′′(p∗/P
)

D′(p∗/P
) p∗

P

(
1 − 1

m

)
+ 2> 0� (62)



PRICE SETTING WITH STRATEGIC COMPLEMENTARITIES AS A MFG 3

Next, differentiate the elasticity η(r) ≡ − ∂D(r)
∂r

r
D(r) and evaluate it at r ≡ p∗/P = 1. We get
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′′(1)
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where the second equality uses the elasticity definition. We can then write the second-
order condition equation (62) as D′′(1)

D(1)
D(1)
D′(1)

1
η

+ 2 > 0 or, using the expression for D′′/D

and the elasticity definition, (η′ − η2 − η) 1
η2 + 2 = η′+η(η−1)

η2 > 0 which establishes that

1 + η′
η(η−1) > 0, where all η are evaluated at p∗ = P .

Finally, the expression for B≡ −
11(P̄�P̄)

(P̄�P̄)

P̄2 is obtained by direct computation evaluating

the objects at p∗ = P = P̄ . We get
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� Q.E.D.

PROOF OF LEMMA 1: Equation (5) is the conventional Hamilton–Jacobi equation giv-
ing the recursive formulation of the sequence problem in equation (4). As usual, the flow
value equals the period costs and the expected change in the value function, given by Ito’s
term and the possibility of a price adjustment. Likewise, the continuation value function
for t > T solves the HJB (ρ+ ζ)ũ(x) = Bx2 + σ2

2 ũxx(x) + ζ(minz ũ(z)), whose solution is
given by ũ(x) = B

(ρ+ζ) (σ
ρ

+ x2).
Equation (6) follows by taking the first-order condition of equation (4) with respect

to x and using that the adjustment times are exponentially distributed with parameter ζ
to compute the expectation. Equation (7) holds since T is finite, the continuation value
function, e−ρT ũ(x), is bounded and since u(x� t) is a quadratic function of x (as can be
shown by equation (5)). Q.E.D.

PROOF OF LEMMA 2: Recall that Y (t) = −X(t). The solution in equation (11) is ob-
tained by solving the system of differential equations (8) and equation (9) with boundary
conditions x∗(T ) = 0 and X(0) = −1. This is a canonical 2 by 2 system whose solution
ẏ =Ay is readily obtained by a factorization of the matrixA= S�S−1 into a diagonal ma-
trix � of eigenvalues λj� j = 1�2, given in the proposition, and the matrix of eigenvectors
S ≡ [ s11 s12

1 1

]
where s11 ≡ 1+γ−�

2γ , s12 ≡ 1+γ+�
2γ and �≡√

(1 + γ)2 + 4γθ is the discriminant of
the characteristic equation. The eigenvalues are real if �≥ 0. The rest of the analysis fol-
lows from standard computations with the exception of the expression for θj = θ∗ − (�j)2

4γ ,
which applies when � < 0. The latter obtains by setting the denominator of the complex
number c(θ�T ), given by d(θ�T ) ≡ (1 +γ−�(θ))eλ1(θ)T − (1 +γ+�(θ))eλ2(θ)T , equal to
zero, so that θj solves d(θ�T ) = 0, after replacing the expression for �, λ1, λ2. Inspection
of the equation reveals that it involves trigonometric function, due to Euler’s formula,
and thus the equation has countably many zeros. Q.E.D.

PROOF OF PROPOSITION 3: Here we argue that, if θ �= −1, then the stationary solution
displayed above is unique. On the other hand, if θ= −1, then any value Xss corresponds
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to a steady state. Define w ≡ x+ θXss. Consider the value function û corresponding to
the control problem:

û(w) = min
{τi��wi}

E

[∫ ∞

0
e−ρtBw2(t) dt +

∞∑
i=1

ψ1{τi �=ti}e
−ρτi

∣∣∣w(0) =w
]
�

where dw= σ dW for t ∈ [τi� τi+1) and w(τ+
i ) =w(τ−

i ) +�wi and where ti are the realiza-
tions of the exogenously given times at which the fixed cost is zero, which are exponentially
distributed with parameter ζ.

We start by making two claims about this problem, and then a third claim about the
stationary distribution. First, the value function û is symmetric around zero, that is,
û(w) = û(−w) for allw. This follows because the flow cost Bw2 is symmetric around zero,
and because a standard Brownian motion has, for any collection of times, increments that
are normally distributed, and hence symmetric around zero. Second, if the solution of the
value function is C2, then it must satisfy: (ρ+ ζ)û(w) = Bw2 + ûww(w) σ

2

2 + ζû(w∗) for
all w ∈ [−¯w� w̄] with boundary conditions û(w̄) = û( ¯w) = û(w∗) + ψ and 0 = ûw(w̄) =
ûw( ¯w) = ûw(w∗). Thus, since û is symmetric, it must be the case that w̄= −¯w and w∗ = 0.

Third, and finally, using the symmetry of the thresholds {¯w�w
∗� w̄}, we can find the

stationary density m̂(w) which is the unique solution of

0 = m̂ww(w)
σ2

2
− ζm̂(w) for all w ∈ [ ¯w�w∗)∪ (w∗� w̄

]
�

with boundary conditions 0 = m̂(w̄) = m̂( ¯w), limw↑w∗ m̂(w) = limw↓w∗ m̂(w), and 1 =∫ w̄
¯w
m̂(w) dw. Importantly, the density m̂must be symmetric, centered at w∗ = 0.18 Hence,∫ w̄

¯w
wm̂(w) dw = 0. Thus, a stationary equilibrium solution of the original problem re-

quires: x∗
ss =w∗ − θXss, ¯xss = ¯w− θXss, x̄ss = w̄− θXss,

Xss =
∫ w̄

¯w
m̂(w)(w− θXss) dw=

∫ w̄

¯w
m̂(w)wdw− θXss

∫ w̄

¯w
m̂(w) dw�

and thus we can construct a stationary state if and only if Xss = −θXss. Hence, if θ �= −1,
thenXss = 0 is the only stationary state, and if θ= −1, one can construct a stationary state
for any Xss. Q.E.D.

PROOF OF PROPOSITION 4: The proof is constructive. We first argue that if X(t) = 0,
then it is optimal for the firm to set x̄(t) = x̄ss = 1, ¯x(t) = ¯xss, and x∗(t) = x∗

ss = 0. This is
immediate since, given X(t) = 0, the period flow cost for the firm is B(x+ θXss)2 = Bx2,
which is identical to the one for the stationary problem whose HJB is in equation (25).
Hence, the optimal policy must be the same as the one for the stationary problem.

Next, we prove thatm(x� t) is symmetric in x. We will do this by defining a new function
M(x� t) =m(x� t) −m(−x� t), and prove that the integral of its square in the Lebesgue
measure is zero. This implies that the only such possibleM(x; t) is the zero function, thus
establishing that m(x� t) =m(−x� t). We then turn to the existence of a solution to the

18This can be shown since, for [ ¯w�0] and [0� w̄], the density is a linear combination of the same two expo-
nentials. Using the boundary conditions at ¯w and w̄, we express the density in each segment as function of one
constant of integration. Finally, by continuity at w= 0, we find that the distribution must be symmetric.
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PDE with the relevant boundary conditions. The argument is based on finding a fixed
point for a function A : [0�T ] → R+ which serves as a Dirichlet boundary at x= 0.

Having established that given x̄(t) = x̄ss, ¯x(t) = ¯xss, and x∗(t) = x∗
ss, there exists m(x� t)

and it is symmetric in x for each t, then X(t) = ∫ 1
−1 xm(x� t) dx= 0 =Xss.

That the solution is unique on the class of symmetric m follows from noting that (i) if
m is symmetric, then X(t) = 0 and that (ii) the solution to the KFE is unique.

Full details are given in the technical appendix. Q.E.D.

PROOF OF LEMMA 4: First, we show that v is antisymmetric. For that, we use that the
source 2BθxZ(t) is antisymmetric as a function of x. To see this, define w : [0�1] × [0�T ]
as w(x� t) = v(x� t) +v(−x� t). We will show that w(x� t) is identically zero and solves 0 =
wt (x� t) + kwxx(x� t) − ρw(x� t) with boundary conditions w(1� t) = v(1� t) + v(−1� t) =
2v(0� t) from equation (31) and w(0� t) = 2v(0� t) for all t and w(x�T ) = 0 for all x.

We can use the maximum principle to show that the maximum and minimum of w
must occur at the given boundaries, that is, at either x ∈ {0�1} and any t ∈ [0�T ) or at
any x ∈ [0�1] and t = T . To see this, notice that since w(x�T ) = 0 for all x ∈ [0�1], then
if a minimum will be interior, that is, if it will occur at 0 < x̃ < 1 and 0 ≤ t̃ < T , then
w(x̃� t̃) < 0. Hence, wt (x̃� t̃) = −kwxx(x̃� t̃) + ρw(x̃� t̃) < 0 since wxx(x̃� t̃) ≥ 0 because
(x̃� t̃) is an interior minimum and k > 0, and since w(x̃� t̃) < 0. Hence, w(x̃� t ′) <w(x̃� t̃)
for t ′ close to t̃, a contradiction with (x̃� t̃) being an interior minimum. A similar argument
shows that there cannot be an interior maximum.

Now we show that the maximum and minimum have to occur at t = T . For this, we use
that w(x� t) = v(x� t) + v(−x� t) implies wx(0� t) = vx(0� t) − vx(0� t) = 0 for all t < T .
Thus, suppose that the minimum occurs at (x� t) = (0� t1) where t1 < T . Then w(0� t1) =
2v(0� t1) and wt (0� t1) = 2vt (0� t1), so 2ρv(0� t1) = kwxx(0� t1) + 2vt (0� t1). Since (0� t1) is a
minimum, we have vt (0� t1) ≥ 0, and since the minimum occurs at t1 < T , then v(0� t1) < 0,
so wxx(0� t1) < 0. But since wx(0� t1) = 0, then we obtain a contradiction with (0� t1) being
a minimum. A similar argument shows that the maximum cannot occur at (x� t) = (0� t2)
where t2 < T . Thus, the minimum and maximum occur at t = T , where w(x�T ) = 0.

So we have shown thatw(x� t) = 0 for all (x� t), and hence v(x� t) = −v(−x� t) all (x� t).
Since v is antisymmetric, we have v(0� t) = −v(−0� t) and hence v(0� t) = 0.

Second, using smooth pasting at the boundaries (ũx(−1) = ũx(1) = 0) and optimality
at x∗ = 0 (ũx(0) = 0) in equation (31), we can write the boundary conditions as

v(−1� t) = v(0� t) = v(1� t) = 0 all t ∈ (0�T )�

which gives the desired result. Q.E.D.

Proof of Lemma 2. Preliminaries. First, we present a lemma that will be used for solving
the HJB in equation (30). For notation simplicity, we use ρ below to denote the constant
parameter (ρ+ ζ) appearing in equation (30).

LEMMA 9: Let f be the solution of the heat equation

0 = ft (x� t) + kfxx(x� t) − ρf (x� t) + s(x� t) for all x ∈ [−1�1] and t ∈ [0�T ) (63)

and boundaries

f (1� t) = φ̄(t) and f (−1� t) =
¯
φ(t) for all t ∈ (0�T ) (64)
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and

f (x�T ) =�(x) for all x ∈ [−1�1] (65)

for functions φ̄,
¯
φ, �, and s. Assume that ρ≥ 0 and k> 0. The solution is unique.

PROOF OF LEMMA 9: As a contradiction, assume that there are two solutions f 1 and
f 2. Let F (x� t) ≡ f 2(x� t) − f 1(x� t). Note that the PDE in equation (63) is linear, so that
F must satisfy

0 = Ft (x� t) + kFxx(x� t) − ρF (x� t) for all x ∈ [−1�1] and t ∈ (0�T ) (66)

with boundaries

F (1� t) = 0 and F (−1� t) = 0 for all t ∈ (0�T ) and (67)

F (x�T ) = 0 for all x ∈ [−1�1]� (68)

We use a conservation of energy type of argument. Define I(t) ≡ ∫ 1
−1(F (x� t))2 dx ≥ 0

for t ∈ [0�T ]. Then use the boundary condition I(T ) = 0 to write 0 = I(T ) = I(0) +∫ T
0 I

′(t) dt. Next, compute

I ′(t) =
∫ 1

−1

d

dt

(
F (x� t)

)2
dx= 2

∫ 1

−1
F (x� t)Ft (x� t) dx

= 2
∫ 1

−1
F (x� t)

[
ρF (x� t) − kFxx(x� t)

]
dx

= 2ρ
∫ 1

−1
F (x� t)2 dx+ 2k

(∫ 1

−1
Fx(x� t)2 dx− F (x� t)Fx(x� t)

∣∣∣∣
1

−1

)
�

where we have substituted the PDE and integrated by parts. Using the boundary condi-
tions in equation (67), we have

I ′(t) = 2ρ
∫ 1

−1
F (x� t)2 dx+ 2k

∫ 1

−1
Fx(x� t)2 dx≥ 0�

Thus, I(T ) = 0 only if I is zero for almost all t, and hence F (x� t) = 0 for almost all x,
which in turn implies that f 1 = f 2 for almost all x, t. Q.E.D.

PROOF OF LEMMA 5: Uniqueness follows from the argument given in Lemma 9.
That equation (34) satisfies the zero boundary condition at t = T follows immediately

since, at t = T , equation (34) becomes an integral with zero length. That the Dirichlet
boundary condition holds at x= 1 and x= −1 follows since sin(xjπ) = 0 for all integers j.
Note also that v(0� t) = 0 since sin(0) = 0. It only remains to show that equation (34)
satisfies the heat equation with source CxZ(t), where C ≡ 2Bθ. Direct computation gives

vt (x� t) = CZ(t)2
∞∑
j=1

(−1)j

jπ
sin(jπx)
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− 2C
∫ T

t

∞∑
j=1

e(ρ+k(jπ)2)(t−τ)
(
ρ+ k(jπ)2

)
Z(τ)

(−1)j

jπ
sin(jπx) dτ�

vxx(x� t) = 2C
∫ T

t

∞∑
j=1

e(ρ+k(jπ)2)(t−τ)Z(τ)
(−1)j

jπ
(jπ)2 sin(jπx) dτ�

and notice that the Fourier series for x in the interval [0�1] is x= −2
∑∞

j=1
(−1)j

jπ
sin(jπx),

since
∫ 1

0 x sin(jπx) dx/
∫ 1

0 sin2(jπx) dx = −2 (−1)j

jπ
. Replacing these expressions in the

equation for vt (x� t), we can verify that 0 = vt (x� t) + kvxx(x� t) − ρv(x� t) + CxZ(t) for
all x ∈ (−1�1) and t ∈ [0�T ). Q.E.D.

For use in Proposition 5, we compute the expressions for the second derivative of ũ
when we use the normalization x̄ss = 1, that is, the choice of ψ so that it is attained.

LEMMA 10: Fix the parameters σ , B, ζ, and ρ and let ψ be such that x̄ss = 1. For such
case, the second derivatives of ũ evaluated at the thresholds are given by

0< ũxx(0) = 2B
ρ+ ζ

[
1 −η csch(η)

]
and 0> ũxx(1) = 2B

ρ+ ζ
[
1 −η coth(η)

]
� (69)

where η≡√
(ρ+ ζ)/k. Moreover, |ũxx(0)|<|ũxx(1)|.

PROOF OF LEMMA 10: The solution for ũ is given by the sum of the particular solution
a0 + a2x

2 and of the two homogeneous solutions, which, given the symmetry, can be writ-
ten asA cosh(ηx), so that ũ(x) = a0 +a2x

2 +A cosh(ηx). From the o.d.e. of ũ, we obtain
that η = √

(ρ+ ζ)/k. To determine the coefficients a0, a2, note the particular solution
must satisfy

(ρ+ ζ)
(
a0 + a2x

2
)= Bx2 + k2a2 + ζ(a0 + a2

(
x∗))= Bx2 + k2a2 + ζa0�

where we use that x∗ = 0, and hence a2 = B/(ρ+ ζ) and a0 = 2kB/(ρ(ρ+ ζ)). It remains
to find the value of A. For this, we use smooth pasting at x̄ = 1. We have ũx(x̄) = 0 =

2B
ρ+ζ x̄ + Aη sinh(ηx̄), and using x̄ = 1, we get A = − 2B

(ρ+ζ)η sinh(η) . Since ũxx(x) = 2B
ρ+ζ +

Aη2 cosh(ηx), then the second derivatives are

ũxx(0) = 2B
ρ+ ζ +Aη2 = 2B

ρ+ ζ − 2Bη2

(ρ+ ζ)η sinh(η)
= 2B
ρ+ ζ

[
1 −η csch(η)

]
�

ũxx(1) = 2B
ρ+ ζ +Aη2 cosh(η) = 2B

ρ+ ζ − 2Bη2 cosh(η)
(ρ+ ζ)η sinh(η)

= 2B
ρ+ ζ

[
1 −η coth(η)

]
�

The inequality is equivalent to 1 − η

sinh(η) <−1 + η cosh(η)
sinh(η) or 2<η 1+cosh(η)

sinh(η) or 2 sinh(η) <
η(1 + cosh(η)). Q.E.D.

PROOF OF PROPOSITION 5: Consider the smooth pasting and optimal return condi-
tions from the original problem, that is,

0 = ux
(
¯x(t� δ)� t� δ

)
� 0 = ux

(
x̄(t� δ)� t� δ

)
� and 0 = ux

(
x∗(t� δ)� t� δ

)
�
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Differentiate them w.r.t. δ to find z̄, ¯z, and z∗:

z̄(t) = −vx(1� t)
ũxx(1)

for all t ∈ [0�T )�

¯z(t) = −vx(−1� t)
ũxx(−1)

= z̄(t) for all t ∈ [0�T )�

z∗(t) = −vx(0� t)
ũxx(0)

for all t ∈ [0�T )�

Differentiating equation (34) obtained in Lemma 5, we obtain

vx(1� t) = −2C
∫ T

t

∞∑
j=1

e−(ρ+k(jπ)2)(τ−t)Z(τ) dτ�

vx(0� t) = −2C
∫ T

t

∞∑
j=1

e−(ρ+k(jπ)2)(τ−t)Z(τ)(−1)j dτ�

The equality of z̄ = ¯z follows from the antisymmetry of v established in Lemma 4 and from
z̄(t) = − vx(1�t)

ũxx(1) and ¯z(t) = − vx(−1�t)
ũxx(−1) since ũ is symmetric, and hence ũxx(−1) = ũxx(1).

The expressions for Ā and A∗ in equation (38) follow from Lemma 10.
That H̄(s) > 0 is immediate using that k and s are positive. That H∗(s) < 0 follows

from grouping each pair of consecutive terms as in

H∗(s) = −
∑

j=1�3�5����

e−(η2+(jπ)2)ks
[
1 − e−(η2+((j+1)2−j2)π2)ks

]
< 0�

where the inequality follows because k and s are strictly positive. Q.E.D.

PROOF OF LEMMA 6: The proof strategy is to define N(x� t) = n(x� t) + n(−x� t) de-
fined in (x� t) ∈ [0�1] × [0�T ] satisfying

Nt (x� t) = kNxx(x� t) − ζN(x� t) for (x� t) ∈ [0�1] × [0�T ]�

N(x�0) = ν(x) + ν(−x) = 0 for all x ∈ [0�1]�

N(1� t) = n(1� t) + n(−1� t) = 0 for all t ∈ [0�T ]�

N(0� t) = b(t) + a(t) ≡ C(t) for all t ∈ [0�T ]�∫ 1

0
N(x� t) dx=

∫ 0

−1
n(x� t) dx+

∫ 1

0
n(x� t) dx= 0 for all t ∈ [0�T ]�

for some function C(t). We will show that C(t) = 0 for all t and that N(x� t) = 0 for all
(x� t) ∈ [0�1] × [0�T ].

The proof proceeds by contradiction. Suppose that max{(x�t)∈[0�1]×[0�T ]}N(x� t) > 0 and
min{(x�t)∈[0�1]×[0�T ]}N(x� t) < 0. The two extremes have different signs since

∫ 1
0 N(x� t) dx=

0 and N(1� t) = 0 for all t. We argue that the maximum and the minimum of N(x� t) on
the set [0�1] × [0�T ] have to occur on {(x� t) : t = 0} ∪ {(x� t) : x = 0} ∪ {(x� t) : x = 1}.
This is based on the strong maximum/minimum principle for the case for ζ ≥ 0; see Evans
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(2010), Theorem 12, Section 7.1.c. But since N(1� t) = 0 for all t, and N(x�0) = 0 for all
x, then the maximum and the minimum are attained at x= 0 for two values 0 ≤¯t < t̄ ≤ T .
Assume, without loss of generality, that C(t̄) > 0 > C(¯t). Since C(t) is non-zero, there
must be some 0 < t0 < T for which C(t) does not change and it attains a strictly either
positive or negative value. Assume, without loss of generality, that it attains a positive
value. Then, by redefining the PDE considered above in the range t ∈ [0� t0], we have
that C(t) ≥ 0 and C(t1) > 0 for some t ′ ∈ [0� t0]. But in this case, using the comparison
principle, N(x� t) will be positive everywhere in this domain, which is a contradiction.

Q.E.D.

PROOF OF LEMMA 7: In this lemma, we use that m(x� t�δ) is continuous around
x = x∗(t� δ) for all t and δ. Under the assumption that m(x� t� δ) is right- and left-
differentiable at x= x∗(t� δ), we have

m(x� t� δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m(0� t�0) +mx

(
0−� t�0

) ∂
∂δ
x∗(0�0)δ+ ∂

∂δ
m
(
0−� t�0

)
δ+ o(δ)

if x < x∗(t� δ)�

m(0� t�0) +mx

(
0+� t�0

) ∂
∂δ
x∗(0�0)δ+ ∂

∂δ
m
(
0+� t�0

)
δ+ o(δ)

if x > x∗(t� δ)�

We can write these expressions in the notation developed above:

m(x� t� δ) =
{
m̃(0) + m̃x

(
0−)z∗(t)δ+ n(0−� t

)
δ+ o(δ) if x < x∗(t� δ)�

m̃(0) + m̃x

(
0+)z∗(t)δ+ n(0+� t

)
δ+ o(δ) if x > x∗(t� δ)�

Using the continuity of m, we equate both expansions to obtain

m̃(0) + m̃x

(
0−)z∗(t)δ+ n(0−� t

)
δ+ o(δ) = m̃(0) + m̃x

(
0+)z∗(t)δ+ n(0+� t

)
δ+ o(δ)�

using that m̃x(0−) = −m̃x(0+) > 0, and the notation a(t) = n(0−� t) and b(t) = n(0+� t),
we have −m̃x(0+)z∗(t) + a(t) + o(δ)/δ= z∗(t)m̃x(0+) + b(t) + o(δ)/δ, or taking δ→ 0,

z∗(t) = b(t) − a(t)
−2m̃x

(
0+) � Q.E.D.

LEMMA 11: The solution of the heat equation given by equation (44), (45), and (46) is

n(x� t) = r(x� t) +
∞∑
j=1

cj(t)ϕj(x) all x ∈ [0�1] and t > 0 where

r(x� t) =w∗(t) + x[w̄(t) −w∗(t)
]

all x ∈ [0�1]� t > 0�

where w∗(t) = −m̃x(0+)z∗(t) and w̄(t) = −m̃x(1)z̄(t) and for all j = 1�2� � � � , we have

ϕj(x) = sin(jπx) for all x ∈ [0�1]� 〈ϕj�h〉 ≡
∫ 1

0
h(x)ϕj(x) dx�

cj(t) = cj(0)e−λj t +
∫ t

0
qj(τ)eλj (τ−t) dτ all t > 0� where λj =

(
�2 + (jπ)2

)
k�
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qj(t) =
〈
ϕj�−rt (·� t) − ζr(·� t)〉

〈ϕj�ϕj〉

= 2
[

cos(jπ) − 1
jπ

]
w�′(t) + 2

(−1)j

jπ

[
w̄′(t) −w�′(t)

]

+ 2ζ
[

cos(jπ) − 1
jπ

]
w�(t) + 2ζ

(−1)j

jπ

[
w̄(t) −w�(t)

]
all t > 0�

cj(0) =
〈
ϕj� ν− r(·�0)

〉
〈ϕj�ϕj〉 = 〈ϕj� ν〉

〈ϕj�ϕj〉 + 2
[

cos(jπ) − 1
jπ

]
w�(0) + 2

(−1)j

jπ

[
w(0) −w�(0)

]
�

where, for the benchmark case of ν = m̃x, we get

〈ϕj� ν〉
〈ϕj�ϕj〉 = 〈ϕj� m̃x〉

〈ϕj�ϕj〉

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �2jπ

�2 + (jπ)2

(
1 + e�(−1)j+1(

1 − e�)2 + 1 + e−�(−1)j+1(
1 − e−�)2

)
if ζ > 0�

−2
1 + (−1)j+1

jπ
if ζ = 0�

(70)

PROOF OF LEMMA 11: This follows from the explicit solution of the heat equation in
{(x� t) : x ∈ [0�1]� t ∈ [0�T ]} and using n(x� t) = n(−x� t) to extend it to the negative
values of x. We use the general solution of the heat equation using Fourier series with
two moving boundaries at x = 0 and x = 1, a given initial condition, and no source. We
reproduce this general solution in the technical appendix. In terms of the notation of the
general solution, we set w(x� t) = n(x� t), no source, that is, s(x� t) = 0, initial conditions
given by f (x) = ν(x), lower and upper space boundaries A(t) = −m̃x(0+)z∗(t), B(t) =
−m̃x(1)z̄(t) and killing rate ι= ζ. Q.E.D.

PROOF OF PROPOSITION 6: We replace the expression from Lemma 11 for n into the
integral for Z, obtaining

Z(t) = 2
∫ 1

0
xn(x� t) dx=w∗(t)

2
2

+ [
w̄(t) −w∗(t)

]2
3

+ 2
∞∑
j=1

cj(t)
∫ 1

0
x sin(jπx) dx

=w∗(t) + [
w̄(t) −w∗(t)

]2
3

− 2
∞∑
j=1

cj(t)
(−1)j

jπ
�

Note that, using the expression in Lemma 11, we can write the function cj(t) in closed
form (see the technical appendix G on the authors’ webpage for a step by step derivation).

Replacing the 2 (−1)j

jπ
cj(t) back into Z(t) and using that

∞∑
j=1

(−1)j

(jπ)2 = − 1
12

and
∞∑
j=1

1
(jπ)2 = 1

6
�
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we get

Z(t) =
∞∑
j=1

4k(−1)j+1

∫ t

0
w∗(τ)eλj (τ−t) dτ

+
∞∑
j=1

4k
∫ t

0
w̄(τ)eλj (τ−t) dτ− 2

∞∑
j=1

(−1)j

jπ

〈ϕj� ν〉
〈ϕj�ϕj〉e

−λj t �

Using the definition of w∗(t) = −m̃x(0+)z∗(t) and w̄(t) = −m̃x(1)z̄(t) and exchanging
the integral with the sum and replacing λj = (�2 + (jπ)2)k, we get

Z(t) = 4k
∫ t

0

(
−m̃x

(
0+) ∞∑

j=1

(−1)j+1e(�2+(jπ)2)k(τ−t)
)
z∗(τ) dτ

+ 4k
∫ t

0

(
−m̃x(1)

∞∑
j=1

e(�2+(jπ)2)k(τ−t)
)
z̄(τ) dτ− 2

∞∑
j=1

(−1)j

jπ

〈ϕj� ν〉
〈ϕj�ϕj〉e

−(�2+(jπ)2)kt�

Finally, computing the projections for ν:

Z(t) = 4k
∫ t

0

(
−m̃x

(
0+) ∞∑

j=1

(−1)j+1e(�2+(jπ)2)k(τ−t)
)
z∗(τ) dτ

+ 4k
∫ t

0

(
−m̃x(1)

∞∑
j=1

e(�2+(jπ)2)k(τ−t)
)
z̄(τ) dτ

− 4
∞∑
j=1

(−1)j
e−(�2+(jπ)2)kt

jπ

∫ 1

0
sin(jπx)ν(x) dx�

which gives the expression for TZ given the definitions of Ḡ, G∗, and Zη
0 .

That Ḡ(s) > 0 is immediate. That G∗(s) ≥ 0 follows by noticing that we can write

G∗(s) =
∑

j=1�3�5����

e−(�2+(jπ)2)ks
[
1 − e−((j+1)2−j2)π2ks

]

and each term [1 − e−((j+1)2−j2)π2ks]> 0 since k and s are positive. Q.E.D.

PROOF OF PROPOSITION 7: First, we note that we can decompose ν into its symmetric
and antisymmetric part. By linearity, the solution is the sum of the solutions for each
part. Due to Corollary 1, the solution for the symmetric part is zero, so we can assume
without loss of generality that ν is antisymmetric. Given Z, we replace z∗ = T ∗(Z), given
by equation (36), and z̄ = T̄ (Z), given by equation (35), into TZ(z∗� z̄), given by equation
(47), to get T (Z) = TZ(T ∗(Z)� T̄ (Z)). Note that, except for the term with Z0, each term
is a double integral. Changing the order of integration and using that Ḡ, H̄ and G∗, H∗

satisfy

−m̃x(1)H̄(s) = e−ρsḠ(s) ≥ 0 and m̃x

(
0+)H∗(s) = e−ρsG∗(s) ≤ 0 for all s > 0� (71)
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we obtain

Z(t) =Z0(t) + θ
∫ T

0
K(t� s)Z(s) ds�

where

K(t� s) = 4k
∫ min{t�s}

0
e−ρ(s−τ)

[
Ā�

Ḡ(s− τ)
m̃x(1)

Ḡ(t − τ)
m̃x(1)

−A∗
�

G∗(s− τ)
m̃x

(
0+) G∗(t − τ)

m̃x

(
0+)

]
dτ� (72)

Performing the integration of the exponentials, we obtain the desired expression.
The expression for Z0 uses that sin and ν are antisymmetric; hence, we have

∫ 1

0
sin(jπx)ν(x) dx= 1

2

∫ 1

−1
sin(jπx)ν(x) dx� Q.E.D.

PROOF OF LEMMA 8: The symmetry of K when ρ= 0 in part 1 follows directly from its
definition in equation (72). That K ≤ 0 as in part 2 uses the expression equation (72) and
that G∗ ≥ 0, A∗ > 0, Ḡ≥ 0, and Ā < 0.

For part 1 with ρ > 0 and part 3, we use the expression for the kernel K derived in the
proof of Proposition 7 (see equation (72)).

Part 3 establishes that K is negative definite. To see why this has to hold, we write

Qi = −
∫ T

0

∫ T

0

∫ T

0
e−ρ(s−τ)Gi(s− τ)Gi(t − τ)V (s)V (t)e−ρt dτ ds dt

= −
∫ T

0
eρτ
(∫ T

0
Gi(s− τ)V (s)e−ρs ds

)2

dτ ≤ 0�

with strictly inequality if V �= 0.
Part 4 of the proof establishes the bounds for the integral

∫ T
0 |K(t� s)|ds. This is ob-

tained by direct (but tedious) calculation. See the technical appendix for the full details
of the proof. The same calculation gives the bound in part 4 for any η and t ≥ 0. Another
direct calculation establishes part 5, a bound for the kernel when � > 0 in terms of the
kernel for � = 0. The bound uses the expression derived in the proof of Proposition 6,
which shows in equation (72). Q.E.D.

PROOF OF PROPOSITION 8: It is straightforward to compute K(0� s) = 0 for all s ∈
[0�T ] using the definition of K in equation (52). Hence, Yθ(0) = Y0(0) + θ ∫ T0 K(0� s) ×
Yθ(s) ds = Y0(0). Finally, that Y0(0) = −Z0(0) = 1 follows from evaluation of equation
(49) for any �≥ 0. Q.E.D.

PROOF OF PROPOSITION 10: That the series in equation (57), whenever it converges, is
the solution of equation (56) follows by replacing the series into the integral equation.

To establish that Yθ(t) > 0 when θ < 0, we note that θK(t� s) > 0 for all (t� s) ∈ (0�T )2

and hence (θK)r (Y0) > 0 for t ∈ (0�T ). Note that, for each t, the sequence Sn(θ� t) ≡∑n

r=0 θ
r (K)r(Y0)(t) is monotone increasing in n and that (by assumption) it converges.

Hence, Yθ(t) > 0.
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To establish that Yθ(t) is decreasing in θ, we differentiate equation (57), obtaining

∂

∂θ
Yθ(t) =

∞∑
r=1

rθr−1(K)r (Y0)(t)

for t ∈ (0�T ). If r is even, we have θr−1 < 0 and (K)r(Y0)(t) > 0. If r is odd, we have
θr−1 > 0 and (K)r(Y0)(t) < 0; hence, all the terms in the sum are strictly negative, and
thus ∂

∂θ
Yθ(t) < 0.

To establish that Yθ(t) is convex in θ, we differentiate twice equation (57), obtaining

∂2

∂θ2Yθ(t) =
∞∑
r=2

r(r − 1)θr−2(K)r (Y0)(t)

for t ∈ (0�T ). If r is even, we have θr−2 > 0 and (K)r(Y0)(t) > 0. If r is odd, we have
θr−2 < 0 and (K)r(Y0)(t) < 0; hence, all the terms in the sum are strictly positive, and
thus ∂2

∂θ2Yθ(t) > 0. Q.E.D.

PROOF OF PROPOSITION 11: We show here a bound for the HS operator norm in terms
of the L2 norm of the kernel. We use that

‖K‖2
2 ≡ ρ2(

1 − e−ρT )2

∫ T

0

∫ T

0
K2(t� s)e−ρ(s+t) ds dt (73)

=
∑
i�j

(
ρ2(

1 − e−ρT )2

∫ T

0

∫ T

0
K(t� s)fi(s)fj(t)e−ρ(s+t) ds dt

)2

� (74)

This equality follows from projecting K(t� s) first as a function of s into {fi(s)}. In partic-
ular, fix a t:

K(t� s) =
∞∑
i=1

〈
K(t� ·)� fi

〉
fi(s) = ρ

1 − e−ρT

∞∑
i=1

∫ T

0
K
(
t� s′

)
fi
(
s′
)
e−ρs′ ds′fi(s)�

and then project this expression as a function of t into the base {fj(t)}:

K(t� s) = ρ2(
1 − e−ρT )2

∞∑
i=1

∞∑
j=1

∫ T

0

∫ T

0
K
(
t ′� s′

)
fj
(
t ′
)
fi
(
s′
)
e−ρs′e−ρt′ ds′ dt ′fi(s)fj(t)�

To simplify, we can write this expression as K(t� s) =∑∞
i=1

∑∞
j=1 κi�jfi(s)fj(t). Now we can

write

(
K(t� s)

)2 =
∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

κi�jκm�nfi(s)fj(t)fm(s)fn(t)�
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Then integrating with respect to ρ2e−ρ(t+s)/(1 − e−ρT )2:

ρ2(
1 − e−ρT )2

∫ T

0

∫ T

0

(
K(t� s)

)2
e−ρ(t+s) dt ds

=
∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

κi�jκm�n
ρ

1 − e−ρT

∫ T

0
fi(s)fm(s)e−ρs ds

ρ

1 − e−ρT

∫ T

0
fj(t)fn(t)e−ρt dt

=
∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

κi�jκm�nδi�mδj�n =
∞∑
i=1

∞∑
j=1

(κi�j)2�

where we use that {fi} are orthonormal, and δ·�· is the Kroneker symbol, and thus we
obtain equation (74).

Let Kρ be defined as Kρ(t� s) =K(t� s)eρs. Then

‖Kρ‖2
2 =

∑
i�j

(
ρ2(

1 − e−ρT )2

∫ T

0

∫ T

0
Kρ(t� s)fi(s)fj(t)e−ρ(s+t) ds dt

)2

=
∑
i�j

(
ρ2(

1 − e−ρT )2

∫ T

0

∫ T

0
K(t� s)fi(s)fj(t)e−ρt ds dt

)2

�

and using Cauchy–Schwarz: ‖Kρ‖2
2 ≤ ‖K‖2

2‖eρs‖2
2 = ‖K‖2

2
(ρT )2

(1−e−ρT )2 so

‖K‖2
HS ≤

(
1 − e−ρT )2

ρ2

(ρT )2(
1 − e−ρT )2 ‖K‖2

2 = T 2‖K‖2
2�

Thus, using this inequality and the results in Lemma 8, we obtain the bound on ‖K‖HS,
and thus operator is compact. The rest of the proof is directly from the spectral theorem.

Q.E.D.

PROOF OF PROPOSITION 12: Part 1 follows using the compactness and self-adjoint na-
ture of K, as well as the fact that all its eigenvalues are negative, and that μ1 is the largest,
all established in Proposition 11. Under these conditions, the uniqueness and existence
are a consequence of the Fredholm alternative for the second kind of Fredholm inte-
gral equation, such as equation (56). The computation of the projection coefficients is
immediate, that is, using the inner product with respect to the jth eigenfunction φj with
eigenvalue μj on the integral equation (56), that is,

〈Yθ�φj〉 = 〈Y0�φj〉 + θ〈KYθ�φj〉 = 〈Y0�φj〉 + θ〈Yθ�Kφj〉 = 〈Y0�φj〉 + θμj〈Yθ�φj〉�
where we use the self-adjointess of K, and the assumption that {φj�μj} are an eigen-
function-eigenvalue pair. From here, we obtain that 〈Yθ�φj〉 = 〈Y0�φj〉/(1 −μjθ), that is,
the projection coefficients of the solution Yθ. Then we use that {φj}∞

j=1 form an orthonor-
mal base to write Yθ.

Part 2 follows directly by taking limits, since μj < 0 for all j, as shown in Proposition 11.
Part 3 follows directly a consequence of the Fredholm alternative for the second kind

of Fredholm integral equation, such as equation (56). Recall that for the lack of existence,
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it is required to show that 〈Y0�φ1〉 �= 0. This, in turns, follows from the Perron–Frobenius
theorem, since −K(t� s) > 0 for all t, s, and hence the dominant eigenfunction φ1 can be
taken to be positive. The two limits follow from direct computation.

Part 4 uses as an intermediate step that φj(0) = 0 for all j = 1�2� � � � . This follows
because K(0� s) = 0 for all s ∈ [0�T ] and hence μjφj(0) = ∫ T

0 K(0� s)φj(s) ds = 0. Now,
using that φj(0) = 0 for all j = 1�2� � � � , that Y0(0) = 1 and Y0(t) > 0 for t ∈ [0� ε) for
some ε > 0, we have that the inner product between 〈φj�Y0〉 is different from zero for
infinite (countably many) j, and hence that equation (59) diverges as θ→ μj . Q.E.D.

PROOF OF PROPOSITION 14: We set T = ∞. For this value, we want to compute

d

dθ
CIRθ

∣∣∣∣
θ=0

=
∫ ∞

0

d

dθ
Yθ(t)

∣∣∣∣
θ=0

dt =
∫ ∞

0

∫ ∞

0
K(t� s)Y0(t) ds dt�

which can be written as

Q≡
∫ ∞

0

∫ ∞

0
K(t� s)Y0(s) ds dt =

∞∑
m=1

Qm

where Qm = 4
∫ ∞

0

∫ ∞

0
K(t� s)

1 − cos(mπ)
(mπ)2 ds dt�

where we have replaced the expression for Y0.
Replacing the expression for K, we get that, for each m,

Qm =
∞∑
i=1

∞∑
j=1

16
(
1 − cos(mπ)

)(
Ā−A∗(−1)i+j

)
ω̃i�j�m�

where ω̃i�j�m is defined as

ω̃i�j�m = 1
k2π8

1(
i2 + j2 + r2

)
m2ωi�j�m and

ωi�j�m =
∫ ∞

0

∫ ∞

0

(
e(j2+i2+r2)s∧t − 1

)
e−j2t−i2s−r2s−m2s ds dt�

where we have used a change of variables for t, and where we use r ≡ η2/π2.
Now we compute ωi�j�m letting ρ ↓ 0, or equivalently, r → 0. For this, note that we can

write the inner integral in ωi�j�m as follows:∫ t

0
e−j2te−(m2−j2)s ds+

∫ ∞

t

ei
2te−(i2+m2)s ds−

∫ ∞

0
e−j2te−(i2+m2)s ds

= e−j2t − em2t

m2 − j2 + e−m2t − e−j2t

i2 +m2 �

Then, integrating the resulting expression with respect to t between 0 and ∞, we get

ωi�j�m = 1(
m2 − j2

)[ 1
j2 − 1

m2

]
+ 1(

i2 +m2
)[ 1
m2 − 1

j2

]
= 1
m2j2 + 1(

i2 +m2
)
(
j2 −m2

)
m2j2
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= 1
m2j2

(
i2 + j2

i2 +m2

)
�

Now we replace this expression into ω̃i�j�m:

ωi�j�m = 1
k2π8

1
m2

1(
j2 + i2)ωi�j�m = 1

k2π8

1
m2

1(
j2 + i2) 1

m2j2

(
i2 + j2

i2 +m2

)

= 1
k2π8

1
m2

1
m2j2

(
1

i2 +m2

)
= 1
k2

1
(mπ)4

1
(jπ)2

1(
i2π2 +m2π2

) �
Finally, we want to compute the infinite sums of the expression for ωi�j�m over i, j, m. For
this, we will use that, when m is odd,

∞∑
i=1

1
i2π2 +m2π2 = mπ coth(mπ) − 1

2m2π2 �

∞∑
i=1

(−1)i

i2π2 +m2π2 = mπ csch(mπ) − 1
2m2π2 �

∞∑
i=1

(−1)i+1

i2π2 +m2π2 = 1 −mπ csch(mπ)
2m2π2 �

and we will also use that
∞∑
j=1

1
(jπ)2 = 1

6
and

∞∑
j=0

1
π2(j + 1)2 = 1

8
�

We write Q=QI −QII:

QI =
∑

m=1�3�5����

2 × 16Ā
∞∑
i=1

∞∑
j=1

ω̃i�j�m =
∑

m=1�3�5����

32
Ā

k

1
k

1
(mπ)4

∞∑
j=1

1
(jπ)2

∞∑
i=1

1(
i2π2 +m2π2

)
=

∑
m=1�3�5����

32
12
Ā

k

1
k

1
(mπ)6

(
mπ coth(mπ) − 1

)
�

Now we write the second term of Q:

QII = 32
k

A∗

k

∑
1�3�5����

1
(mπ)4

∞∑
j=1

1
j2π2

∞∑
i=1

(−1)i+1

π2i2 +π2m2

= 32
k

A∗

k

∑
m=1�3�5����

1
(mπ)4 (O + E) where

O =
∑

j=1�3�5����

1
(πj)2

∞∑
i=1

(−1)i+1(
i2π2 +m2π2

)
)

=
∞∑
j=0

1
π2(j + 1)2

(
1 −mπ csch(mπ)

)
2m2π2

= 1
8

(
1 −mπ csch(mπ)

)
2m2π2 and
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E =
∑

j=2�4�6����

1
(πj)2

∞∑
i=1

(−1)i(
i2π2 +m2π2

) =
[

1
6

− 1
8

] ∞∑
i=1

(−1)i(
i2π2 +m2π2

)

= 1
8

1
3

(
mπ csch(mπ) − 1

)
2m2π2 �

Thus,

QII = 32
k

A∗

k

∑
m=1�3�5����

1
(mπ)4 (O + E)

= 32
k

A∗

k

1
8

(
1
3

− 1
) ∑
m=1�3�5����

1
(mπ)4

(
mπ csch(mπ) − 1

)
2m2π2

= 32
k

A∗

k

1
8

1
3

∑
m=1�3�5����

1 −mπ csch(mπ)
(mπ)6 �

Recall that, as ρ→ 0, then Ā/k→ −6 and A∗/k→ 12, and thus

Q=QI −QII

=
∑

m=1�3�5����

32
12
Ā

k

1
k

1
(mπ)6

(
mπ coth(mπ) − 1

)− 32
k

A∗

k

1
8

1
3

∑
m=1�3�5����

1 −mπ csch(mπ)
(mπ)6

= 16
k

∑
m=1�3�5����

csch(mπ) − coth(mπ)
(mπ)5 �

Finally, we have

CIR0 =
∫ ∞

0
Y0(t) dt =

∑
1�3�5����

8
∫ ∞

0

e−π2m2kt

(mπ)2 dt =
8
k

∑
1�3�5����

1
(mπ)4 = 8

k

1
96

= 1
12k

�

Thus,

1
CIRθ

dCIRθ

dθ

∣∣∣∣
θ=0

= Q

CIR0
= 16 × 12

∑
m=1�3�5����

csch(mπ) − coth(mπ)
(mπ)5 �

and using 16 × 12 = 192, we get our final result. Q.E.D.

APPENDIX C: NUMERICAL COMPUTATION OF EQUILIBRIUM

This section develops a simple and accurate algorithm to solve the equilibrium as a
finite-dimensional linear system, which follows exactly the same equations as the continu-
ous case. This linear system also serves to clarify the expressions of the original continuous
case which uses notation and concepts from functional analysis. We prove that our numer-
ical procedure is stable, and that its solution has the same properties as the actual solution.
Moreover, in spite of the fact that the kernel K is irregular, that is, that K(t� t) = −∞ for
all t > 0, we show that the method is convergent, and analytically characterize its rate of
convergence.
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Our algorithm uses two assumptions: (A1) replaces the time interval [0�T ] by {tr}mr=1,
and (A2) replaces the infinite series in the definition of the kernel K in equation (52) and
in the definition of Y0 in equation (48) by finite sums of its first M elements.

We first implement A2, that is, we define a version of the kernel with sums of M terms.
In particular, define the kernel KM : [0�T ]2 →R as

KM (t� s) ≡ 4
M∑
j=1

M∑
i=1

[
Ā� −A∗

�(−1)j+i
][e[(jπ)2+(iπ)2+η2+�2]k(t∧s) − 1

]
e−(jπ)2kt−�2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 +η2 + �2 �

Now we implement A1 by discretizing time as follows. Let �= T/m and tr = r� for r =
1�2� � � � �m, and likewise for sq = q�. For finitem, we use the kernelKM to build anm×m
matrix K with typical element Kr�q where, for any pair (r� q), we have

Kr�q ≡KM (tr� sq) for (r� q) ∈{1�2� � � � �m}2� (75)

Likewise, we approximate the infinite sums in equation (48) with the first M terms:

YM
0 (t) ≡ 4

M∑
j=1

(−1)j
e−(�+(jπ)2)kt

jπ

∫ 1

0
sin(jπx)ν(x) dx for all t ∈ [0�T ]� (76)

and in the case of a monetary shock, we use equation (49) to write

YM
0 (t) = −2

M∑
j=1

�2

�2 + (jπ)2

(
(−1)j

(
1 + e2�

)− 2e�(
1 − e�)2

)
e−(�2+(jπ)2)kt for all t ∈ [0�T ]� (77)

The equilibrium path Yθ : [0�T ] → R is replaced by a vector Yθ ∈ R
m, and likewise the

equilibrium with no strategic interactions Y0 is replaced by Y0 ∈ R
m. Thus, we define Y0

as the m-dimensional vector: Y0 = [YM
0 (t1)�YM

0 (t2)� � � � �YM
0 (tm)]. Then the equilibrium

vector Yθ solves the following system of m linear equations:

Yθ = Y0 + θT
m

KYθ� (78)

Let R be an m×m diagonal matrix with typical element Rrr = e−ρtr for r = 1�2� � � � �m.

PROPOSITION 15: Fix a positive integerm and a positive even integerM . The matrix K has
real strictly negative eigenvalues μj and real eigenvectors φj ∈ R

m satisfying μjφj = Kφj . The
matrix RK is symmetric, and the eigenvectors of K are orthonormal using the inner product
φ�
j Rφi = 0 if i �= j and φ�

i Rφi = 1. Letting � be the matrix whose columns are the eigen-
vectors φj , we have �−1 =��R. If θμj �= 1 for all j = 1� � � � �m, then the unique solution of
equation (78) is given by

Yθ =
m∑
j=1

φ�
j RY0

1 − θμj φj ≡�D(θ)��RY0� (79)

where D(θ) is a diagonal matrix with diagonal element 1/(1 − θμj).
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The previous proposition shows that for a fixed m, M , the solution of the discretized
system has the same properties as the solution on the original case. Clearly, the expression
in equation (79) is the finite-dimensional version of equation (59) in Proposition 12. It is
also the finite-dimensional version of equation (57) in Proposition 10 in the cases where
|θμ1|< 1. To see this, note that �D(θ)��R =�D(θ)�−1 = I + θK + (θK)2 + · · · .

Its computation is extremely simple, as it only involves finding the eigenvalues and
eigenvectors of the well-behaved matrix K. In particular, no inverse matrices are needed,
the computation of {φj�μj} is independent of the value of θ, and the solution is stable
even as θ→ 1/μj , while solving equation (78) using a matrix inversion will give rise to a
badly behaved problem.

Next we characterize the rate at which the solution of the discrete system converges
to the solution of the original case. We use a variation on the Nystrom method. For this,
we define linear operator and a solution corresponding to each m, M . In particular, let
Km�M be the linear operator defined as Km�M (V )(t) = �∑m

q=1KM (t� sq)V (sq), and denote
by Ym�M

θ : [0�T ] → R the function that solves

Ym�M
θ (t) = YM

0 (t) + θ�
m∑
r=1

KM (t� sq)Y
m�M
θ (sq) for all t ∈ [0�T ]�

Let Yθ be them-dimensional vector solution of equation (79) for the pair (m�M). Clearly,
Ym�M
θ (tr) = Yθ�r . We first have a preliminary lemma about YM

0 .

LEMMA 12: Assume that ν is absolutely continuous. Then ‖YM
0 ‖∞ <∞ and there exists a

constant c0 > 0 such that ‖Y0 −YM
0 ‖∞ ≤ c0

M
for all M .

The next proposition analyzes the rate of convergence of the extension of the solution
of the discretized linear system to the solution of the original system, as a function of the
two discretization parameters m and M .

PROPOSITION 16: Assume that T < ∞, that ν is absolutely continuous, and that
|θ|LipK < 1. There exist three positive constants c1, c2, c3 and an integer m̄ such that

∥∥Ym�M
θ −Yθ

∥∥
∞ ≤ c1

(logM)2

m
+ c2

1
M

+ c3
1
M2 for all M and m≥ m̄� (80)

As equation (80) makes clear, the convergence requires that m grows at a faster rate
than M . For instance, m=M2 is enough. In words, we require a relatively fine discretiza-
tion of the time interval relative to the number of terms to compute the kernel in the
matrix K and the Fourier series in Y0. This is required because the kernel K is irregular,
that is, because K(t� t) = −∞ for each t ∈ (0�T ].

C.1. Proofs for Numerical Computation

PROOF OF PROPOSITION 15: We first establish that RK is symmetric and negative def-
inite. The proof is almost identical to the one for the kernel K. To see this, note that KM

is defined as K in equation (72), except that we use ḠM and G∗
M :

KM (t� s) = 4k
∫ min{t�s}

0
e−ρ(s−τ)

[
Ā�

ḠM (s− τ)
m̃x(1)

ḠM (t − τ)
m̃x(1)

−A∗
�

G∗
M (s− τ)
m̃x

(
0+) G∗

M (t − τ)
m̃x

(
0+)

]
dτ�
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where ḠM andG∗
M are defined asG andG∗ except that the infinite sum is replaced by the

sums up to M elements, that is,

ḠM (s) ≡ −m̃x(1)
M∑
j=1

e−(�2+(jπ)2)ks > 0 and

G∗
M (s) ≡ −m̃x

(
0+) M∑

j=1

(−1)j+1e−(�2+(jπ)2)ks > 0�

We want to show that, for any two m-dimensional vectors V and W ,

m∑
r=1

m∑
q=1

KM (tr� sq)VqWre
−ρtr =

m∑
r=1

m∑
q=1

KM (tr� sq)WqVre
−ρtr � (81)

and that for any non-zero m-dimensional vector V ,

m∑
r=1

m∑
q=1

KM (tr� sq)VqVse−ρtr < 0� (82)

In both cases, we use the expression for KM and interchange the integral with respect to
τ with the sums with respect to q and r. First consider equation (81). Fort this, it suffices
to show that

S1 ≡
m∑
r=1

m∑
q=1

[∫ min{tr �sq}

0
e−ρ(sq−τ)ḠM (sq − τ)ḠM (tr − τ) dτ

]
VqWre

−ρtr �

S2 ≡
m∑
r=1

m∑
q=1

[∫ min{tr �sq}

0
e−ρ(sq−τ)ḠM (sq − τ)ḠM (tr − τ) dτ

]
WqVre

−ρtr �

To see why the equality holds, interchange the order of the integrals, and rearranging, we
get that each of these expressions is

S1 =
∫ min{tr �sq}

0
eρτ

[
m∑
r=1

m∑
q=1

e−ρsqḠM (sq − τ)e−ρtr ḠM (tr − τ)VqWr

]
dτ and

S2 =
∫ min{tr �sq}

0
eρτ

[
m∑
r=1

m∑
q=1

e−ρsqḠM (sq − τ)e−ρtr ḠM (tr − τ)WqVr

]
dτ�

which established the equality. Now consider equation (82). Again, it suffices to show that

PD ≡
m∑
r=1

m∑
q=1

[∫ min{tr �sq}

0
e−ρ(sq−τ)ḠM (sq − τ)ḠM (tr − τ) dτ

]
VqVre

−ρtr > 0�
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Rewriting this expression, we get

PD =
∫ min{tr �sq}

0
eρτ

[
m∑
r=1

m∑
q=1

e−ρsqḠM (sq − τ)ḠM (tr − τ)VqVre−ρtr
]
dτ

=
∫ min{tr �sq}

0
eρτ

[
m∑
q=1

e−ρsqḠM (sq − τ)V (sq)

]2

dτ > 0�

Finally, to show that φ�
j Rφi = 0 if i �= j, take two different eigenvalues μj �= μi and pre-

multiply μjφj = Kφj by R, and transpose it, to get: μjφ�
j R = φ�

j (RK)�; use the sym-
metry of RK, obtaining μjφ�

j R=φ�
j (RK); and post-multiplying by φi, then μjφ�

j Rφi =
φ�
j (RK)φi. Reversing the role of i and j, we obtain μiφ�

i Rφj = φ�
i (RK)φj . Subtracting

one from the other, (μj −μi)φ�
j Rφi = 0. Given these properties, the form of the solution

is immediate, since we can regard the matrix K as defining a self-adjoint linear opera-
tor, using the inner product defined by 〈V �W 〉 ≡ V �RW . Thus, we reproduce the same
argument as for the general case, by using the Fredholm alternative to solve the linear
system. Q.E.D.

PROOF OF LEMMA 12: Integrating by parts gives

YM
0 (t) = 4

M∑
j=1

(−1)j
e−(�+(jπ)2)kt

jπ

∫ 1

0
sin(jπx)ν(x) dx

= 4
M∑
j=1

(−1)j
e−(�+(jπ)2)kt

(jπ)2

[
cos(jπ)ν(1) − ν(0) −

∫ 1

0
cos(jπx)ν′(x) dx

]
�

Let ν̄ = |ν(1)| + ν(0) + ∫
|ν′(x)|dx; then |YM

0 (t)| ≤ 4ν̄
∑M

j=1
1

(jπ)2 . Thus, ‖Y0‖∞ ≡
limM→∞ ‖YM

0 ‖<∞. Moreover,

Y0(t) −YM
0 (t) = 4

∞∑
j=M

(−1)j
e−(�+(jπ)2)kt

(jπ)2

[
cos(jπ)ν(1) − ν(0) −

∫ 1

0
cos(jπx)ν′(x) dx

]
�

and thus ∣∣Y0(t) −YM
0 (t)

∣∣≤ 4ν̄
∞∑
j=M

1
(jπ)2 ≤ c0

M
� Q.E.D.

PROOF OF PROPOSITION 16: This proof proceeds in four steps. First, we note that for
each M , the kernel and the solution for YM

θ have the same properties as Yθ. Second, we
use some bounds on the approximations of integrals using the trapezoidal rule as applied
in this case. We note that for large m, our method gives the same limit as the trapezoidal
rule. Third, we use the first two results, as well as the characterization in Proposition 15
and Lemma 8 to check the sufficient conditions for a bound on ‖Ym�M

θ −YM
θ ‖, whereYM

θ =
limm→∞Y

m�M
θ . The fourth and final step uses the hypothesis on θ to obtain a bound on

‖YM
θ −Yθ‖. Combining the last two steps, we obtain the desired result. See the technical

appendix for all details. Q.E.D.
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