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Identifying the strategies that are played is critical to understanding behavior in re-
peated games. This process is difficult because only choices (not strategies) are observ-
able. Recently, a debate has emerged regarding whether subjects play mixed strate-
gies in the indefinitely repeated prisoner’s dilemma. We use an experimental approach
to elicit mixed strategies from human subjects, thereby providing direct empirical evi-
dence. We find that a majority of subjects use mixed strategies. However, the data also
suggest subjects’ strategies are becoming less mixed over time, and move toward three
focal pure strategies: Tit For Tat, Grim Trigger, and Always Defect. We use the elicited
strategies to provide an empirically-relevant foundation for analyzing commonly used
mixture model estimation procedures.
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1. INTRODUCTION

THE REPEATED PRISONER’S DILEMMA has been used to study a variety of topics in eco-
nomics.1 Theoretical work has largely focused on folk theorems, which show that as long
as players are sufficiently patient, any payoff profile above a minimum threshold can be
obtained as an equilibrium payoff. Experimental work has provided an important com-
plement to the theory by testing which of the plethora of equilibria will emerge in a given
setting. Analysis of directly observable outcomes in experiments (e.g., cooperation and
defection) is relatively straightforward, whereas analysis of the underlying (nonobserv-
able) strategies that generate these outcomes is more difficult and often requires assump-
tions about the set of strategies that subjects use. Depending on the assumptions about
the initial set, some studies have found strong evidence that subjects use mixed strategies,
whereas others have found strong evidence that subjects use pure strategies. This paper
aims to provide direct evidence on whether subjects use mixed strategies in the indefi-
nitely repeated prisoner’s dilemma. In addition, our approach can be used to provide an
empirical foundation for strategy types when inferring strategies from actions using finite
mixture models.
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In recent years, great strides have been made to better understand the strategies that
subjects play in the repeated prisoner’s dilemma (Dal Bó and Fréchette (2018)). The lit-
erature has two general approaches for understanding strategies. The first involves direct
observation of strategies using strategy elicitation (Selten (1967)), and the second involves
indirect inference of strategies based on actions. Within the first stream of research, im-
plementations of lab experiments vary based on the flexibility subjects have in specifying
strategies. The implementation with the least flexibility is one where subjects choose from
a prespecified list of strategies (e.g., Cason and Mui (2019)). A more flexible implementa-
tion involves a prespecified set of contingencies (e.g., memory-1 histories), but the subject
chooses an action after each contingency (e.g., Dal Bó and Fréchette (2019)). Lastly, the
most flexible implementation allows the subject to specify both contingencies and which
actions to play after each contingency (e.g., Romero and Rosokha (2018)).2 The less flex-
ible approaches have three primary advantages: (i) the experiment is easier to explain
to subjects, (ii) the strategy-choice procedure is more comparable to selecting actions
in a direct-response experiment, and (iii) the analysis of strategies is less complex. The
less flexible approaches also have several disadvantages. Specifically, the experimenter (i)
chooses strategies ahead of time, (ii) provides subjects with an insight as to which behav-
iors are possible, and (iii) imposes more structure on interactions. As the implementation
becomes more flexible, the advantages and disadvantages flip.

The second general approach involves indirect inference of strategies based on ac-
tions. The most common method of indirect inference is to use a finite mixture model
to estimate the proportion of the population that uses a particular strategy.3 In particu-
lar, finite mixture models have been frequently used to estimate strategies in the indef-
initely repeated prisoner’s dilemma (Dal Bó and Fréchette (2011), Camera, Casari, and
Bigoni (2012), Fudenberg, Rand, and Dreber (2012), Breitmoser (2015), Aoyagi, Bhaskar,
and Fréchette (2019)).4 The advantage of using the indirect-inference approach over the
strategy-elicitation approach is that the researcher does not interfere with or restrict sub-
jects’ behavior during the experiment. The disadvantage of the approach is that at the
estimation stage, the researcher has to assume which strategies (or strategy types) sub-
jects use. Crucially, different assumptions about the initial set may lead to different results
and conclusions. For example, using data from one treatment from Dal Bó and Fréchette
(2011), Fudenberg, Rand, and Dreber (2012) estimate that 55% of the subjects use the
pure-strategy Tit-For-Tat (henceforth TFT), whereas Breitmoser (2015) estimate 90% of
subjects use a single type of mixed strategies termed Semi-Grim (henceforth SG).

This paper makes contributions to both the strategy elicitation and the indirect-
inference approaches. In regards to the strategy-elicitation literature, our experimental
design is the first (to our knowledge) that allows for the elicitation of history-contingent
mixed strategies in repeated games.5 Previous studies that have elicited strategies in the

2An even more flexible implementation, which is not portable to the lab setting, involves subjects creating
computer programs that make choices for them. Examples of this approach include Axelrod (1980a,b) and
Selten, Mitzkewitz, and Uhlich (1997).

3An alternative approach by Engle-Warnick and Slonim (2006) determines the best-fitting set of strategies
based on a fitness function and an increasing cost for larger sets of strategies.

4Finite mixture models have been used in games other than the prisoner’s dilemma. For example, some of
the earliest work that uses mixture model estimation studies level-k strategies in a p-beauty contest (Stahl and
Wilson (1994, 1995), Haruvy, Stahl, and Wilson (2001)).

5A small set of studies experimentally investigate nonhistory-contingent mixed repeated-game strategies
(Bloomfield (1994), Ochs (1995), Shachat (2002), Chmura and Güth (2011), Noussair and Willinger (2011),
Cason, Friedman, and Hopkins (2013)).
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indefinitely repeated prisoner’s dilemma (Dal Bó and Fréchette (2019), Romero and
Rosokha (2018), Cason and Mui (2019), Gill and Rosokha (2020)) have asked subjects
to specify a pure strategy.6 In our experiment, a subject specifies a mixed strategy by spec-
ifying a probability (up to 2 decimal places) with which to play one of the two actions
(C or D) contingent on the actions in the previous periods. For example, a subject could
specify to play C with a probability of 70% if DC was played in the previous period. In the
main treatment, our design allows subjects to construct mixed repeated-game strategies in
which they have different probabilities of playing C or D in the first period and after each
of the four possible memory-1 histories.7 Therefore, 1015 possible strategies are available
to the subjects.

Regarding the literature that uses indirect inference to study strategies in the indefi-
nitely repeated prisoner’s dilemma, the results of our experiments provide information
about the types of strategies that should be considered. In particular, the existing lit-
erature has either restricted strategies to pure strategies (e.g., Dal Bó and Fréchette
(2011)) or has specified a parameterized set of strategy types that encompass both pure
and mixed strategies (e.g., Breitmoser (2015)). The literature that restricts the set of
strategies to pure strategies has found that the majority of behavior is captured by just
three strategies—TFT, Grim Trigger (henceforth GRIM), and Always Defect (henceforth
ALLD). For example, in a recent review, Dal Bó and Fréchette (2018) report that these
three pure strategies account for the majority of behavior in 15 out of 17 treatments across
five papers that estimate strategies. At the same time, a study that used a parameterized
set of strategy types (Breitmoser (2015)) finds that a specific mixed-strategy type, SG, ex-
plains most behavior.8 Because we directly elicit mixed repeated-game strategies, we can
empirically validate whether subjects use mixed strategies in general, and SG in particu-
lar. In addition, we can evaluate the extent to which the two indirect-inference approaches
can correctly identify strategies in our experiment.

We have three main results. Our first main result concerns mixed strategies. Specifically,
we find that, across all treatments of our experiment, we find that a majority of elicited
strategies are mixed.9 Despite the large percentage of mixed strategies, we do not find
evidence of SG. Instead, the most common mixed strategies played in our experiment
come from a class of strategies that we refer to as the mixed-tit-for-tat (henceforth MTFT)
class of strategies. Although these strategies are similar to SG in that they play C after
CC, D after DD, and randomize after CD and DC, they differ from SG in that they have
different probabilities of cooperation after CD and DC (in the direction of TFT).

Our second main result concerns the three pure strategies—TFT, GRIM, and ALLD—
commonly studied in the literature. Specifically, in the main treatment of the experiment,
we find approximately 30% of subjects construct one of these three strategies exactly, de-
spite the fact that 1015 possible strategies are available in our experiment. We also find

6The exception is one treatment from Dal Bó and Fréchette (2019), in which subjects can choose a strategy
that randomizes with the same (subject specified) probability in every period regardless of the history.

7In the robustness treatments that we discuss in Section 4, we relax the memory-1 restriction.
8Backhaus and Breitmoser (2018) do a further analysis of data from a wider range of repeated prisoner’s

dilemma experiments (32 treatments) using data-mining techniques. They still find strong support that a ma-
jority of subjects’ behavior can be explained by SG.

9There are several reasons why a subject may want to use a mixed strategy. First, they may have a prefer-
ence for randomization (e.g., Agranov and Ortoleva (2017)). Second, they may be playing a belief-free mixed-
strategy equilibrium (Ely, Hörner, and Olszewski (2005)). Third, they may be playing a mixed strategy to learn
about the strategies of others. For example, a subject playing TFT cannot distinguish between opponents who
are playing ALLC, TFT, and GRIM. Adding noise (either via mixed strategies or via longer rules as in Romero
and Rosokha (2018)) is a way to learn about others.
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that another 25% of subjects construct strategies that are close to these three pure strate-
gies. Finally, when examining learning dynamics in our experiment, we see a clear trend
of subjects moving away from mixed strategies and toward these three pure strategies.

Our third main result concerns the use of finite mixture models for estimating the pro-
portion of strategies in the indefinitely repeated prisoner’s dilemma. In particular, we
find that when running a finite mixture model estimation with a set of pure strategies on
the data from our experiment, the approach groups the mixed-versions TFT, GRIM, and
ALLD into the proportion of pure TFT, GRIM, and ALLD. At the same time, when run-
ning the estimation using the set of strategy types from Breitmoser (2015), the approach
identifies SG as being one of the most popular strategies, despite the fact that no sub-
jects actually constructed the SG strategy in the experiment. In addition, we show that
the flexibility of mixed strategies can make them difficult to model and can lead to unre-
liable interpretations of the mixture model estimates, especially when the first period is
not taken into account.

In addition to the main treatment, we run robustness treatments in which we allow sub-
jects to specify strategies longer than memory-1. The data from these treatments suggest
that the conclusions from the main treatment hold. In particular, there is randomness in
a majority of strategies, but the three pure strategies—TFT, GRIM, and ALLD—account
for much of the data. We also find that relative to the main treatments, subjects substi-
tute away from memory-1 mixed strategies and toward pure strategies that condition on
longer histories.

The rest of the paper is organized as follows: Section 2 presents details of our experi-
mental design. Section 3 presents the results, including strategies observed in our exper-
iment (Section 3.2), the finite mixture model estimation (Section 3.3), and the evolution
of strategies (Section 3.4). Section 4 discusses experimental treatments designed to test
the robustness of our main treatment. Lastly, Section 5 provides a concluding discussion
of the results and outlines directions for future research.

2. EXPERIMENTAL DESIGN

In this section, we describe the interface and the experimental design. Specifically, we
modify the experimental interface of Romero and Rosokha (2018) to allow the elicitation
of mixed strategies. Figure 1 presents a screenshot of the experimental interface used
for the main treatment.10 Next, we highlight the important aspects of the experimental
interface and design.

2.1. Rules and Strategies

The main component of our experimental interface is the ability to construct strategies
using a set of “if [input]-then [output]” rules. The input of a rule is an action profile in at
most one previous period, and the output of a rule is the probability of playing a particular
action. Subjects are able to modify strategies by adding and subtracting rules from their
rule set. The rule set will then make a choice for a subject in a given period based on the
history. The choice is determined by the rule that has the same input as the last period of
the history. If a rule set does not contain a rule that has the last period of the history as
an input, then the default rule will be used to make the choice. Subjects are required to

10The interface was developed using a Simple Toolbox for Experimental Economics Programs (STEEP).
Further information about the interface can be found at http://jnromero.com/research/mixedStrategyChoice.

http://jnromero.com/research/mixedStrategyChoice
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FIGURE 1.—Screenshot of the Experimental Interface. Note: The neutral action names W and Y correspond
to the usual action names C and D from the prisoner’s dilemma. The screenshot shows: (1) History, (2) Rule
Set, (3) Rule Constructor, (4) New Rule Summary, (5) General Information, (6) Payoff Table.

specify both a default rule and a first-period rule before their rule set makes any choices
for them, which ensures that the rule set is able to specify an action after every history.

There are two main differences between the current experiment and Romero and
Rosokha (2018). First and foremost, in the current experiment, we allow subjects to spec-
ify rules with probabilistic outputs. This modification allows us to study mixed strategies
in the indefinitely repeated prisoner’s dilemma, which is the main goal of this paper. Sec-
ond, we restrict subjects to memory-1 rules (no more than one period as an input). This
modification makes the strategy-elicitation process less complex while still allowing sub-
jects to construct strategies of interest from Dal Bó and Fréchette (2018) (e.g., GRIM,
TFT, DTFT, and ALLD), SG from Breitmoser (2015), and belief-free equilibrium strate-
gies from Ely, Hörner, and Olszewski (2005). One way to view our choice, is that we
give memory-1 mixed strategies, such as SG, the best chance to succeed. In addition to
our main treatment, we ran two more treatments in which we remove the restriction to
memory-1. The results are discussed in Section 4.

Our experimental interface allows subjects to construct rules with probabilistic outputs
by using the rule constructor (#3 in Figure 1). Specifically, subjects can use a slider to
specify a cutoff between 0 and 100.11 The cutoff determines the probability with which C is

11When a subject decides to create a rule, the rule constructor appears with “?”s in each box. When the
subject clicks on one of the boxes corresponding to the rule input, the box changes from “?” to either “W” or
“Y” randomly. If the box already has a “W” or a “Y,” then it changes to the other action when clicked. To set
the output of the rule, the subject needs to click the slider next to the rule. The slider has no default value.
The marker on the slider is not visible until the subject clicks on it. Once the subject has clicked the slider,
the proportion of squares corresponding to the probability of playing “W” are colored yellow, the proportion
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selected. The way we implement randomization and explain it to subjects is by drawing an
“action random number” each period. The action random number is an integer between
0 and 100 (inclusive). If the integer is less than or equal to the cutoff, then C is played. If
the integer is greater than the cutoff, then D is played. Subjects are reminded that each of
them receives their own independent draw of the action random number in each period.

Figure 1 (#2) presents an example of a rule set that can be constructed with the inter-
face.12 We denote this rule set as {FP → 90;→ 77;CC → 93;DD → 92;DC → 72}. Given
this strategy, the subject will cooperate with a 90% probability in the first period, and will
cooperate with probability 93%, 77%, 72%, 92% if CC, CD, DC, or DD was played in the
previous period, respectively. Note that because no rule with input CD was created, the
default rule will be used to make the choice after that action profile.

2.2. Experimental Protocol

The main treatment of the experiment consisted of six sessions run at the Vernon Smith
Experimental Economics Laboratory at Purdue University in April 2018. Details of each
session are provided in Table A-2 in the Appendix. Each session consisted of instruc-
tions, an incentivized quiz to ensure that subjects understood the instructions, and 60 su-
pergames. All payoffs were displayed in Experimental Currency Units (ECUs) and were
converted to USD at the end of the experiment at 2000 ECUs equals 1 USD. Next, we
describe specific parts of the experimental design in more detail.

2.2.1. Game Parameters

We picked the parameters for the experiment to match those of Romero and Rosokha
(2018) and one treatment of Dal Bó and Fréchette (2019). Specifically, in the main treat-
ment we used the stage game payoffs that are displayed in Figure 1 (#6) and the contin-
uation probability δ = 0�95. These parameters allow a direct comparison to Romero and
Rosokha (2018) and one treatment of Dal Bó and Fréchette (2019). Four sequences of 60
supergame lengths were pre-drawn using a computer according to continuation probabil-
ity δ= 0�95 (see Tables A-1 and A-2 in the Appendix).

2.2.2. Instructions and Quiz

Instructions used in this experiment consisted of a sequence of interactive screens that
explained all aspects of the experiment and details of the experimental interface. The
instructions contained 20 quiz questions. The quiz was incentivized as follows. Subjects
earned $5.00 if they answered at least 15 out of 20 questions correctly, and $0.00 other-
wise. Among the 158 subjects who participated in the experiment, 124 passed the quiz.13

of squares corresponding to the probability of playing “Y” are colored blue, and the corresponding numbers
are summarized in the rule output square. In addition, a written summary of the rule is displayed below the
constructed rule. Detailed screenshots of this process are presented in Figure A-1 in the Appendix.

12Figure A-2 in the Appendix provides a few more examples of strategies that can be constructed in our
memory-1 treatment, including TFT, GRIM, SG, and MTFT. Figure A-2 in the Appendix provides some ex-
amples of strategies that can be constructed in our unrestricted treatment, including TF2T and Lenient GRIM.

13Passing the quiz could be correlated with IQ, which has been shown to affect cooperation (Segal and
Hershberger (1999), Jones (2008), Proto, Rustichini, and Sofianos (2019, forthcoming)). However, in this ex-
periment, we did not collect IQ variables, so we cannot assess the extent to which this is an issue. Among the
demographic variables that we did collect, the statistic that stood out was whether the participant attended high
school outside of the US. In particular, 47% of those that did not pass the quiz attended high school outside
of the US, indicating that one of the reasons for doing poorly on the quiz may have been understanding of the
language.
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The subjects who passed the quiz were randomly matched into groups with each other.
To keep groups relatively similar in size, we decided to have a minimum-possible group
size of 8 and a maximum-possible group size of 14. Therefore, if only 12 subjects passed
the quiz, they were all matched in the same group, but if 16 subjects passed the quiz, then
they were divided into two groups of 8. In our experiment, each session ended up with
two or three groups, the smallest of which contained 8 subjects and the largest of which
contained 12 subjects.

2.2.3. Experimental Stages

Similar to Dal Bó and Fréchette (2019) and Romero and Rosokha (2018), we imple-
mented three types of supergames: direct response, nonbinding, and locked response.
Next, we briefly describe each stage and its purpose.

2.2.3.1. Direct-Response Stage (Supergames 1–10). In the direct-response stage, sub-
jects play the game by choosing C or D each period. The direct-response stage ensures
that subjects learn about the strategic tension in the game, without having to specify
strategies. One difference between Romero and Rosokha (2018) and the current exper-
iment is that we required subjects to confirm their opponent’s action after each period.
More specifically, they received the following message: “To continue click the key corre-
sponding to the choice of the participant that you are matched with from the previous
period on the keyboard (either W or Y).” We added this confirmation to ensure that sub-
jects had a chance to process the choice of their opponent before making their choice in
the next period. We did so to avoid situations like the following: Suppose two subjects
play C for many periods, and then one subject plays D for one period, and the other sub-
ject quickly continues to play C without necessarily processing that his or her opponent
played D in the previous period. This design allows the subject to progress quickly if his
or her opponent plays as expected, but is more likely to pause if his or her opponent plays
contrary to what was expected.

2.2.3.2. Nonbinding Stage (Supergames 11–20). During the nonbinding stage, subjects
were provided up to 10 minutes to construct the initial set of rules and up to 2 minutes
before each additional supergame. These time limits were never close to binding (see Fig-
ure A-3 in the Appendix for details). Importantly, we placed no time limit on the duration
of each period during a supergame. As the supergame progressed in the nonbinding stage,
subjects were informed of the action that their rule set would play each period given their
draw of the action random number. Subjects were given the option to manually deviate
from the prescription of their rule set in every period of the nonbinding stage.14 When
subjects deviated from the prescription of their rule set, they received a warning that re-
minded them that in the locked-response stage, their rule set would automatically make
their choices for them.

2.2.3.3. Locked-Response Stages (Supergames 21–40 and Supergames 41–60). In the
locked-response stage, subjects’ rule sets made choices for them automatically. Subjects
were not able to change their rule sets during the locked-response stage. The current ex-
periment consisted of two locked-response stages (as opposed to only one in Romero and
Rosokha (2018)), and subjects were given up to 10 minutes to edit their rule sets between

14The option to manually deviate from the prescription of the rule set was rarely used (see Figure OA3 in
the Online Appendix in the Supplementary Material (Romero and Rosokha (2023) for details).
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the locked-response stages. The locked-response stage served as an incentive to construct
(and understand) strategies during the nonbinding stage. We decided to include the sec-
ond locked-response stage to ensure that subjects had sufficient time and experience to
evaluate mixed strategies. In addition, comparing strategies between the first and second
locked-response stages allows us to assess the evolution of strategies.

3. EXPERIMENTAL RESULTS

The results section is organized into four subsections. First, we present cooperation
rates and compare them with prior studies that used similar parameters. Specifically, in
Section 3.1, we provide a direct comparison of cooperation rates between our experi-
ments and Romero and Rosokha (2018) (which elicits only pure strategies) and find no
significant difference between the two studies. Second, the main goal of this experiment is
to examine whether subjects play mixed strategies in the indefinitely repeated prisoner’s
dilemma. To achieve this goal, in Section 3.2, we analyze the elicited strategies. In partic-
ular, we use a clustering approach to group similar strategies and find eight clusters, four
based on pure strategies—TFT, GRIM, ALLD, and DTFT—and four mixed strategies,
which roughly match mixed versions of the pure strategies. In particular, we find the most
frequent mixed strategy falls into an MTFT class of strategies. Third, we consider several
mixture model specifications on the action data generated by the constructed strategies in
our experiment. Specifically, in Section 3.3 we compare estimates when using strategy sets
from the literature with estimates when using strategy sets motivated by our elicitation.
Finally, we analyze the evolution of strategies. In particular, in Section 3.4, we investigate
changes that subjects made between the two locked-response stages and find evidence
that the strategies are becoming less random. In addition, we consider a simple long-run
learning model to extrapolate trends in strategy changes and find that the limiting strate-
gies are TFT, GRIM, and ALLD.

3.1. Cooperation

Table I presents the average cooperation rate observed for mixed-strategy elicitation
stages in the current experiment (labeled Current) and pure-strategy elicitation stages
in Romero and Rosokha (2018) (labeled RR2018). The cooperation rates are divided
into groups of supergames based on the experimental design. In particular, supergames
1–10 were direct response, supergames 11–20 were nonbinding, and supergames 21–40
were locked response in both experiments.15 For each of these groups of supergames, we
present the cooperation rates for the first period, first four periods, last four periods, and
all periods, as well as the cooperation rates after each memory-1 history. The cooperation

15Note that Romero and Rosokha (2018) had two treatments. Treatment 1 had direct response for su-
pergames 1–10, nonbinding for supergames 11–20, locked response for supergames 21–50, and direct response
for supergames 51–60. Treatment 2 had direct response for supergames 1–20, nonbinding for supergames 21–
30, and locked response for supergames 31–60. The current experiment had direct response for supergames
1–10, nonbinding for supergames 11–20, locked response for supergames 21–40, and then another locked re-
sponse for supergames 41–60. Thus, we can directly compare supergames 1–10 of the current experiment with
both treatments of Romero and Rosokha (2018) (82 subjects), and directly compare supergames 11–20, and
supergames 21–40 of the current experiment with Treatment 1 of Romero and Rosokha (2018) (44 subjects).
Finally, we have no valid comparison for supergames 41–60, because both treatments in Romero and Rosokha
(2018) had a different progression of stages and opportunities for strategy revision up to supergame 41.
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TABLE I

AVERAGE COOPERATION RATE.

Note: The average cooperation rate is computed by first averaging cooperation in each of the corresponding periods in each
supergame, and then averaging across the corresponding supergames. Bootstrapped standard errors (in parentheses) are calculated
by drawing 1000 random samples: first randomly draw the appropriate number of groups with replacement; then, for each group,
randomly draw the appropriate number of subjects with replacement. If the supergame is less than four periods, then the cooperation
rate for the first four periods and the last four periods is set to the cooperation rate for all periods. Supergames 1–10 correspond to
the direct-response stage (labeled DR); Supergames 11–20 correspond to the nonbinding stage (labeled NB); supergames 21–40 and
41–60 correspond to the locked-response stage (labeled LR).

rate is computed by first averaging cooperation in each of the corresponding periods in
each supergame, and then averaging across the corresponding supergames. In addition,
we provide p-values from the nonparametric permutation test (Good (2013)).16

Table I shows that cooperation rates from the current experiment are close to the co-
operation rates from the prior study, both when looking at the cooperation rates across
different periods and when looking at cooperation rates after each memory-1 history. In
addition, in the Online Appendix, we compare the current experiment with previous stud-
ies that use the same parameters (yet different elicitation procedures and designs). The
results provide further evidence that the cooperation levels seen in the current experi-
ment are in line with previous studies.

16The null hypothesis in the permutation test is that there is no difference in participants’ behavior across
the two treatments and, therefore, the treatment labels are interchangeable across groups. The distribution
of the difference in the average cooperation rate between the two treatments is obtained through random
permutation of treatment labels among groups (Phipson and Smyth, 2010). The p-value for a two-sided test is
then determined by finding the fraction of permutations that have the test statistic with a greater absolute value
than that of the difference between the two corresponding columns. Unless otherwise specified, all p-values
reported in this paper are obtained using this test.
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When comparing cooperation across the stages, we find the greatest change in co-
operation after the CD history. The table shows that the cooperation rates drop from
the direct-response stage (0.35 in supergames 1–10) to the nonbinding stage (0.27 in su-
pergames 11–20), to the locked-response stages (0.17 and 0.12 in supergames 21–40 and
41–60, respectively). Three related reasons for the observed change in cooperation after
the CD history are incentives, deliberation, and learning.17 The first reason is the differ-
ent nature of incentives in the direct-response stage compared to the strategy-elicitation
stage. In particular, as is common in experiments on indefinitely repeated games, we
compensated subjects based on the sum of earnings across all periods. Therefore, in the
direct-response stage, each choice only affected the payoff in one period, whereas in the
strategy-elicitation stage, the specified strategy affected payoffs in many periods. The sec-
ond reason is deliberation, which has been shown to affect cooperation (Rand (2016)).
Strategy elicitation requires subjects to think about their choice after multiple contin-
gencies. In our experiment, we provided subjects with up to 10 minutes to make their
strategies. The third reason is learning. If subjects are learning to play different strategies
across supergames, then we should not necessarily expect the probabilities of cooperation
to remain constant across a large number of supergames. Furthermore, an introspective
learning process may progress differently than an experience-based learning process, es-
pecially when some contingencies are not experienced often.

To summarize, we find that cooperation rates observed within our experiment are in line
with previous studies. Furthermore, with a closer examination, we find that cooperation
rates change the most after the CD history. In Section 3.4, we further examine learning
and show that this finding is consistent with a reduction in mixed strategies across our
experiment.

3.2. Strategies

Figure 2 presents all of the strategies observed in the second locked-response stage of
the current experiment.18 A strategy vector consists of the five cooperation percentages
corresponding to the histories (∅, CC, CD, DC, DD). The figure shows that 83 (out of
124) subjects specify a mixed strategy (a strategy that randomizes after at least one of the
five histories) and 2 (out of 124) subjects specify a pseudo-mixed strategy (a strategy that
randomizes only after a history that cannot be reached). The figure highlights all of these
strategies with a black bar on the left-hand side of the strategy vector.

Strategies are organized using a clustering approach that groups together similar strate-
gies without specifying any categories beforehand. In particular, we use the affinity prop-
agation clustering algorithm (Frey and Dueck (2007)) with Euclidean distances between
strategy vectors as the similarity criteria. Cluster analysis yields eight clusters, with each
cluster characterized by an exemplar—the most representative member among all the

17Romero and Rosokha (2018) note a similar change in cooperation rate after the CD history between the
direct-response and the strategy-elicitation stages. Two reasons that can be ruled out as primary causes for
this change are as follows. First, the elicitation in this experiment allows subjects to play mixed strategies. In
particular, if subjects do indeed play mixed strategies, implementing a mixed strategy in the locked-response
stage would have been impossible in Romero and Rosokha (2018). Second, in the current experiment, we
require subjects to confirm the choice of their opponent in the direct-response stage. Such confirmation was
absent in Romero and Rosokha (2018), which could have led subjects to make choices too quickly in the direct-
response stage. For example, after a long sequence of mutual cooperation, a subject may accidentally choose
C after the other participant selects D. Although the cooperation after the CD history in the direct-response
stage has decreased (0.40 vs 0.35), this difference is not significant (p-value 0.16).

18Figure A-4 in the Appendix presents strategies observed in the first locked-response stage.
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FIGURE 2.—Elicited Strategies. Note: Elicited strategies from the second locked-response stage are dis-
played. Strategies are presented as vectors of cooperation percentages after each of the five histories
(∅�CC�CD�DC�DD). For ease of reading, 100 and 0 are not shown. A black bar on the left-hand side of
the vector denotes a strategy with M1RM > 0. Solid squares denote a situation in which the default rule
determines the percentage of cooperation. Strategies are grouped using the affinity propagation clustering al-
gorithm. A bullet on the left-hand side denotes that the strategy is the cluster exemplar. Strategies in a given
cluster are sorted according to M1RM . The pure strategies TFT, GRIM, ALLD, and DTFT are labeled.

strategies in that cluster. In Figure 2, we mark each exemplar with a black bullet on the
left-hand side of the strategy vector. To examine the randomness of strategies across clus-
ters, we define a memory-1 strategy randomness measure. Let randomness measure (RM)
of cooperation percentage x be two times the minimum distance from x to 0 or 100. For
example, a rule with an output of 80 would have an RM of 40 (= 2 ∗ (100 − 80)), and
a rule with an output of 10 would have an RM of 20 (= 2 ∗ (10 − 0)). Furthermore, any
rule with an output of 0 or 100 would have an RM of 0, a rule with an output of 50 would
have an RM of 100, and a rule with an output drawn from a uniform distribution would
have an expected RM of 50. Then the memory-1 strategy randomness measure, denoted
by M1RM, is the average RM across the five rules. We find that clusters 1, 2, 5, and 8 have
exemplars with M1RM of at most 6.0. Strategies in these clusters are pure strategies or
close to pure strategies. Combined, these four clusters contain 56% of subjects. Clusters
3, 4, 6, and 7 have exemplars with M1RM of at least 32.0. Strategies in these clusters are
predominately mixed strategies.

Among the pure-strategy clusters, Cluster 1 has 27 subjects, has an exemplar of {FP →
100;CC → 100;CD → 0;DC → 100;DD → 5} with an M1RM of 2.0, and contains TFT.
Cluster 2 has 24 subjects, has an exemplar of {FP → 100;CC → 100;CD → 5;DC →
5;DD → 5} with an M1RM of 6.0, and contains GRIM. Cluster 5 has 15 subjects, has an
exemplar of {FP → 2;CC → 2;CD → 2;DC → 2;DD → 2} with an M1RM of 4.0, and
contains ALLD. Finally, Cluster 8 has three subjects, has an exemplar of {FP → 0;CC →
100;CD → 0;DC → 100;DD → 0} with an M1RM of 0.0, and contains DTFT. These four
clusters represent pure strategies that have been consistently found in literature (Dal
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Bó and Fréchette (2018)). To provide further evidence that strategies in these clusters
are close to pure strategies, we compute (via simulations) the percentage of choices that
differ from the choices made by the corresponding strategy without noise. We find that, on
average, 97.2% of periods and 82.6% of supergames perfectly match the corresponding
strategy.19

Among the mixed-strategy clusters, Cluster 3 has 21 subjects and has an exemplar of
{FP → 100;CC → 95;CD → 25;DC → 60;DD → 10} and has an M1RM of 32.0. Clus-
ter 4 has 16 subjects and has an exemplar of {FP → 44;CC → 42;CD → 35;DC →
41;DD → 32} with an M1RM of 77.2. Cluster 6 has 9 subjects and has an exemplar of
{FP → 10;CC → 50;CD → 10;DC → 10;DD → 10} with an M1RM of 36.0. Cluster 7
has 8 subjects and has an exemplar of {FP → 48;CC → 77;CD → 11;DC → 39;DD → 3}
with an M1RM 49.6. Although all but one strategy in these clusters are mixed, the four
clusters represent a variety of randomizing behaviors. Strategies in Cluster 3 cooperate
with a high probability after CC, with a low probability after DD, and with a higher prob-
ability after DC than CD. We refer to such strategies as the MTFT class of strategies.
Strategies in Cluster 4 randomize with similar probability after every history. All but one
strategy in Clusters 6 and 7 have the highest probability of cooperation after CC, and
relatively low probabilities of cooperation after the CD, DC, and DD histories.

Notably absent from the mixed-strategy clusters is the previously studied SG strategy.
Out of 124 subjects, none specified a strategy with {CC → 100;CD → α;DC → α;DD →
0} for some value of α ∈{1�2� � � � �99}. As a further robustness check, we relax the criteria
for SG by requiring the probability of cooperation after CC to be within x percentage
points from 100, after CD and DC to be within x percentage points of each other, and
after DD to be within x percentage points of 0. We find that even when x = 25, only 10
(out of 124) subjects could be classified as SG, while at the same time not being classified
as GRIM by a similar criterion (see Figure A-5 in the Appendix).

To summarize, we find that 67% of elicited strategies are mixed, and 31% of elicited
strategies are pure (the remaining 2% are pseudo-mixed strategies). Almost all of the
pure strategies (37 out of 39) are the three commonly studied strategies TFT, GRIM,
and ALLD. Furthermore, approximately one-third of the elicited mixed strategies are
characterized as being close to these three pure strategies according to the clustering al-
gorithm.20 Among the remaining mixed strategies, a large proportion fall into the MTFT
class of strategies. Strategies in this class cooperate after CC, defect after DD, and co-

19To run these simulations, we focus on the 4 clusters that correspond to the 4 commonly studied strategies
TFT, GRIM, ALLD, and DTFT (clusters 1, 2, 5, and 8 in Figure 2). For each strategy in a corresponding
cluster, we match that strategy against each of the 124 strategies and simulate the play for 100 supergames with
continuation probability δ = 0�95. All strategies used in the simulations are from the second locked-response
stage. We find that in clusters TFT, GRIM, ALLD, and DTFT, constructed strategies match 97, 97, 99, and
97% of periods and 82, 81, 90, and 69% of supergames when compared to the corresponding pure strategy.
Corresponding medians are 99, 99, 100, and 98% of periods and 91, 90, 100, and 55% of supergames.

20Another approach to test how close the elicited strategies are to pure strategies is to carry out a test
similar to that performed in Dal Bó and Fréchette (2018). They find that across 32 treatments (with different
discount factors and payoffs), a majority of observed sequences of play are consistent with five pure strategies:
ALLC, ALLD, TFT, GRIM, and DTFT. That is, in a given supergame, if we replace a subject with a computer
playing one of the five strategies, it would have played the same sequence of actions. We do this exercise on our
data and find that across all 60 supergames and all subjects in the main treatment, observed play in 63.9% of
supergames is identical to observed play from one of the five strategies. Furthermore, if we allow for one error,
then observed play in an additional 11.7% of supergames matches one of these five strategies. If we restrict
the data to the second locked-response stage, we find 68.8% identical match with an additional 10.4% when
allowing for one error.
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operate with a higher percentage after DC than CD. Finally, we find little evidence that
subjects use the previously studied SG strategy.

3.3. Mixture Model Estimation

The main goal of this section is to better understand strategy-estimation techniques
that have been used in the literature. When estimating strategies using mixture models,
researchers are required to specify a set of input strategies to be estimated. Recent ap-
proaches have used strategy sets that have been founded on a combination of commonly
studied theoretical strategies (Dal Bó and Fréchette (2011)), responses from unincen-
tivized post-experimental survey questions (Fudenberg, Rand, and Dreber (2012)), and
empirical regularities in cooperation after memory-1 histories (Breitmoser (2015)). The
strategies elicited in our experiment provide an empirical comparison for the results of
these strategy estimation techniques. In particular, using data from the second locked-
response stage, we run the estimations based on actions and compare them with the actual
strategies from the experiment.

Panel (a) of Table II presents estimation results using the strategy frequency estimation
method of Dal Bó and Fréchette (2011) with the 20 pure strategies proposed in Fuden-

TABLE II

MIXTURE MODEL ESTIMATES.

Note: For this estimation, we use the choice data from the second locked-response stage. The three columns in each panel display
the strategy, the proportion of the population estimated to use that strategy, and the estimated value of the parameter (“–” if the
strategy has no parameter). Bootstrapped standard errors are generated using 1000 samples by first randomly drawing groups and then
randomly drawing an appropriate number of subjects for each group. Strategies are represented by the five-dimensional vector, which
represents the probabilities of cooperation after the first period, and after memory-1 histories CC, CD, DC, and DD. The strategy
estimation in panel (a) uses the 20 strategies from Fudenberg, Rand, and Dreber (2012). The procedure to construct the likelihood
function is described in Appendix B. Eight strategies with the highest estimated frequencies are displayed. The strategy estimation
in panel (b) uses the eight strategies identified from the cluster analysis in Section 3.2. To account for the mixed components of the
strategies in panel (b), we adapt the procedure from Breitmoser (2015) to allow for the first period. Log-likelihood (LL) and Bayesian
Information Criterion (BIC) values are displayed in the final two rows.
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berg, Rand, and Dreber (2012) on our data. For comparison, panel (b) of Table II presents
mixture model estimates using a strategy set motivated by our results in Section 3.2. In
particular, we consider eight strategies corresponding to the eight clusters presented in
Figure 2. The set contains four pure strategies (TFT, GRIM, ALLD, DTFT) and four
mixed strategies (MTFT, CONST, MGRIM1, MGRIM2).21 We find that strategies with
the highest frequencies identified by the strategy frequency estimation method are the
three pure strategies identified by our experiment. The strategy with the largest differ-
ence is TFT, which appears to be capturing the proportion of subjects that specify a strat-
egy that falls in Cluster 3 that we classify as MTFT. This observation is consistent with the
finding from Dal Bó and Fréchette (2019) that when a strategy is missing, its proportion
goes to a related strategy. To summarize, though the panels have different proportions
and likelihood values, the qualitative conclusions are similar in that the majority of sub-
jects use TFT, GRIM, and ALLD.22

Panel (a) of Table III presents estimation results using a finite mixture model with the
set of six parameterized strategies from Breitmoser (2015).23 One important difference
from the estimation in Table II is that the strategies proposed in Breitmoser (2015) do
not take the first period into account, and are therefore only vectors of length four, cor-
responding to probabilities of cooperation after memory-one histories CC, CD, DC, and
DD. Panel (b) of Table III presents estimation results from a set of six strategies based on
the elicited strategies from the main treatment of our experiment. Because the strategies
in this estimation do not take into account the first period, the strategies TFT and DTFT
as well as MGRIM1 and MGRIM2 are considered the same. This leaves us with a set of
six strategies—three pure strategies and three parameterized strategies.24 We find that the
strategy with the highest frequency when using the strategy set from Breitmoser (2015) is
SG at 35%. This finding is surprising, given that we find little evidence of SG among the
elicited strategies.

To try to understand which strategies are driving the high estimate of SG, we classify
subjects based on the likelihood of each strategy generating the observed play from that
subject. Specifically, for the estimated strategies from Table III(a) and each of the 124
subjects, we determine which of the strategies is most likely to generate the observed se-

21When determining the strategy corresponding to each cluster, we restricted to strategies that had a single
parameter. MTFT corresponds to Cluster 3. Strategies in this cluster cooperate with high probability in the first
period and after CC, cooperate with low probability after DD, and mix with relatively high probability after DC
and relatively low probability after CD. We parameterize this strategy as (1�1�1−α�α�0)�α ∈ (0�5�1). CONST
corresponds to Cluster 4. Strategies in this cluster cooperate with similar probabilities after each history. We
parameterize this strategy as (α�α�α�α�α)�α ∈ (0�1). MGRIM1 corresponds to Cluster 6. Strategies in this
cluster defect in the first period cooperate with a relatively high probability after CC and cooperate with
a relatively low probability after all other histories. We parameterize this strategy as (0�1 − α�α�α�α)�α ∈
(0�0�5). MGRIM2 corresponds to Cluster 7. This strategy is similar to MGRIM1 in that it cooperates with a
relatively high probability after CC, and cooperates with a relatively low probability after DD, DC, and CD.
However, strategies in this cluster cooperate with higher probability in the first period. We parameterize this
strategy as (0�5�1 − α�α�α�α)�α ∈ (0�0�5).

22The fit of the strategy sets presented in Table II could be improved using heterogeneous error terms for
each strategy (e.g., Bland (2020)).

23An important difference between the mixture model estimation displayed in Table III and the procedure
used in Breitmoser (2015) is that we consider the six parameterized strategies and do not carry out the strategy
elimination based on the integrated classification likelihood-Bayes information criterion (ICL-BIC).

24Figure A-6 in the Appendix presents results of the clustering approach on vectors of cooperation percent-
ages after (CC�CD�DC�DD). The six main clusters, each containing at least 12% of subjects, map to the six
strategies used for the estimation. The clustering approach also identifies an additional seventh cluster, but it
contains less than 2% of strategies.
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TABLE III

MIXTURE MODEL ESTIMATES FOR MEMORY-1 MARKOV STRATEGIES.

Note: For this estimation, we use the choice data from the second locked-response stage. The three columns in each panel display
the strategy, the proportion of the population estimated to use that strategy, and the estimated value of the parameter (“–” if the
strategy has no parameter). Bootstrapped standard errors are generated using 1000 samples by first randomly drawing groups and
then randomly drawing an appropriate number of subjects for each group. Strategies are represented by the four-dimensional vector,
which represents the probabilities of cooperation after memory-1 histories CC, CD, DC, and DD. The strategy estimation in panel (a)
uses the six strategies from Breitmoser (2015). The strategy estimation in panel (b) uses the six strategies identified from the cluster
analysis in Section 3.2. Log-likelihood (LL) and Bayesian Information Criterion (BIC) values are displayed in the final two rows.

quence of play for that subject in supergames 41–60. We then compare this likelihood-
based classification to the clustering results presented in Figure 2 (see Figure A-7 in
the Appendix). We find that strategies from five different clusters are classified as SG.
The cluster with the most strategies classified as SG is the GRIM cluster, yet there are
also three other clusters with at least four strategies classified as SG. Strategies classified
as SG include those close to GRIM (100,100,0,0,0), TFT (100,100,20,80,0), and ALLD
(0,3,6,8,3). This exercise highlights why SG has a high estimate without much empirical
evidence. First, SG does not take the first period into account. Therefore, SG can match
strategies that cooperate in the first period as well as those that defect in the first period.
Second, SG prescribes accurate fixed behavior after the most common histories CC and
DD, while providing flexibility after uncommon histories CD and DC.25 Hence, SG can
capture behavior from a variety of strategies that expect to have long periods of CC and
DD such as TFT, GRIM, and ALLD, and has the ability to adjust the flexible parameter
to fit behavior after rare occurrences of CD and DC.

Another important point regarding mixture model estimation with mixed strategies is
that the interpretation of a given strategy heavily depends on the parameter estimates
for that strategy. For example, consider the ICL-BIC elimination as done in Breitmoser
(2015). Following this procedure for the strategy set from Table III(a), we find that Gen

25In supergames 41–60, approximately 30%, 10%, 10%, and 50% of observed play followed each of the
CC, CD, DC, and DD memory-1 histories, respectively. The difference in frequencies aligns with the observed
composition of strategies. For example, a subject that plays GRIM can only encounter the CD history once
within a supergame, but likely will encounter the CC or DD history more often.
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COOP and Gen WSLS are eliminated while the other four strategies remain (see Table A-
4 in the Appendix). Importantly, removing Gen COOP from the set causes Gen Grim to
switch interpretations and change which behavior it is capturing. For example, using the
likelihood-based classification above, if all six strategies are used, Gen Grim is estimated
to be (1,0.243,0.243,0.243) and captures fairly random strategies in the MTFT cluster.
After the elimination, Gen Grim is estimated to be (1,0.025,0.025,0.025) and captures
pure and close-to-pure strategies in the GRIM and ALLD clusters (See Table A-4 in the
Appendix). Importantly, only 2 strategies are classified as Gen Grim both before and
after the elimination. Consequently, the estimates and interpretation of other strategies
are affected.

To summarize, in this section, we evaluated the performance of existing approaches
using both the actions and strategies from our experiment. We find that the strategy fre-
quency estimation approach of Dal Bo and Frechette (2011) does well in recovering qual-
itative trends found in our experiment—mainly, the prevalence of GRIM, ALLD, TFT,
and TFT-like strategies. We also find that the specification of the details of each strategy
and the interaction of strategies in the set is important. In particular, the flexibility of
mixed strategies can make them difficult to model and, therefore, strategy sets consisting
of mixed strategies can be unreliable in recovering trends in the data while still leading to
a good fit.

3.4. Evolution of Strategies

Our experiment gives us a unique perspective on the evolution of strategies. We be-
gin our analysis by considering changes that subjects make to their strategies during the
experiment. In particular, we examine changes to strategy randomness between the two
locked-response stages. In addition, we look at the relative performance of different types
of strategies when matched against other strategies in the population. Finally, we use data
on strategy changes made throughout our experiment, and simulate a learning process
across the population to see where strategies are tending toward.

Panel (a) of Figure 3 presents the strategy-randomness measure (M1RM) for each
strategy. We use arrows to denote the resulting change in M1RM and sort strategies ac-
cording to modification type (top: changes resulting in an increase of M1RM; middle:
changes resulting in a decrease or no change of M1RM; bottom: no modification). Panel
(b) of the figure presents the performance of strategies against the population of elicited
strategies. Performance is calculated as the average payoff per period in a round-robin
tournament in which each strategy is matched with each other strategy from the corre-
sponding stage 1000 times. The length of each interaction is determined by the continua-
tion probability from the experiment, δ = 0�95, with the same 1000 draws for each pair of
strategies. We use arrows to identify changes across the two locked-response stages.

Using the data presented in Figure 3, we identify three key observations regarding the
evolution of strategies. First, subjects were less likely to make changes to pure strategies
and more likely to make changes to mixed strategies. This can be seen in panel (a), where
only 8 out of 38 subjects with M1RM = 0 in LR1 changed their strategy, whereas 67 out of
84 subjects with M1RM > 0 in LR1 changed their strategy (p-value < 0�01, using Fisher’s
exact test). Second, of the strategies that were changed, more changed to lower M1RM
(48) than higher M1RM (24, p-value < 0�01). Finally, panel (b) of the figure shows that
strategies with lower M1RM perform better. Notably, the two clusters with the best per-
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FIGURE 3.—Strategy Randomness and Performance. Note: (a) Strategies are sorted by modification type
and M1RM . Modification types are based on strategy changes between LR1 and LR2. Solid circles denote
subjects that changed their strategy that led to an increase, decrease, or no change in M1RM . Arrows denote
the magnitude of the change in M1RM from LR1 (semitransparent) to LR2 (opaque). Empty circles denote
no change to strategy. (b) Strategies are sorted by performance. Performance is calculated as the average
payoff per period in a round-robin tournament in which each strategy is matched with each other strategy
from the corresponding stage 1,000 times. The length of each interaction is determined by the continuation
probability from the experiment, δ = 0�95, with the same 1,000 draws for each pair of strategies. M1RM of
each strategy is identified by a shade of gray (with solid black denoting a strategy with the highest M1RM , and
solid white denoting a strategy with M1RM). Corresponding measures for LR1 are semitransparent. Change
in the measure is identified by an arrow. “C” identifies strategies that fall into pure-strategy clusters: 1–TFT,
2–GRIM, 5–ALLD, and 8–DTFT.
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FIGURE 4.—Evolution of Strategies within Experiment. Note: We carry out a principal component analysis
to reduce the dimensionality of the data from 5D to 2D. Circles represent subjects that did not change their
strategy from the beginning to the end. The size of the circle represents the number of subjects. For example,
subject T1S3Sub10 constructed strategy (0,100,100,100,100) at the beginning of supergame 11 and changed it
to strategy (100,100,0,100,0) by supergame 41.

forming strategies were Clusters 2 and 1, corresponding to GRIM and TFT.26 These three
observations provide strong evidence that subjects were still learning and more subjects
may have started playing well-performing pure strategies if given more time to learn.

Figure 4 presents the change in strategies observed in our experiment projected on a
two-dimensional space using principal component analysis. The projected vector space
has the leftmost, lowest, and rightmost points corresponding to TFT, GRIM, and ALLD,
respectively. Each vector starts at a given subject’s strategy observed at the beginning of
supergame 11 and ends at that subject’s strategy at the beginning of supergame 41. For
example, subject T1S3Sub10 constructed strategy (0,100,100,100,100) at the beginning
of supergame 11 and changed it to strategy (100,100,0,100,0) by supergame 41. Panels
(a), (b), and (c) highlight the vectors for all subjects whose strategies at the beginning
of supergame 41 were assigned to Cluster 1 (TFT), Cluster 2 (GRIM), and Cluster 5
(ALLD), respectively.27 This figure suggests that a number of subjects have learned to
play these strategies during our experiment.

To provide evidence on where the long-run learning dynamics might go, we use Markov
Chain simulations. These simulations allow us to extrapolate trends in strategy changes
observed in Figure 4, by assuming a common learning process for all agents. In particular,
the process is determined by the set of states, S , the one-step transition probability matrix,
P , and the starting state, s0. The set of states, S , consists of all 1015 possible memory-1
mixed strategies available in our experiment. The one-step transition probability matrix
P consists of entries P (s� s′) that correspond to the probability that strategy s evolves
into strategy s′ in the next step.28 The starting state, s0, is a strategy observed at the end
of our experiment. To obtain the long-run distribution of strategies, we conduct Markov

26In the Appendix, we provide further investigation of strategy performance. Specifically, Figure A-9
presents evidence on the variability of the performance for each strategy. Notably, ALLD yields large vari-
ability in performance and a strong negative relationship with the realized supergame length, whereas TFT
and GRIM generate small variability in performance and a weak positive relationship with realized supergame
length.

27In Figure A-10 of the Appendix, we provide the plot for all of the clusters.
28We construct P based on the strategy changes observed in the experiment as follows. Let I be the set of

124 subjects. For each strategy s, we find the set of subjects, c(s) ⊆ I , who played strategies most similar to
s in supergame 11, and a subset of these subjects, d(s� s′) ⊆ c(s), who then played strategy s′ in supergame
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Chain simulations until convergence, by starting the process with each one of the 124
strategies from the second locked-response stage (presented in Figure 2) and repeating
the process 100 times.29 We then classify converged strategies based on the clusters from
the second locked-response stage. We find that the three pure strategies—TFT, GRIM,
and ALLD—are the main attractors in the learning space (see Figure A-10 in the Ap-
pendix). Specifically, 31% of converged strategies are classified as TFT, 30% are classified
as GRIM, 29% are classified as behaviorally equivalent to ALLD, and the remaining 10%
are classified as CONST.30

To summarize, we find that subjects’ strategies are becoming less random across su-
pergames during our experiment. We also find that pure strategies generally perform
better than mixed strategies. In addition, we find that a number of subjects learned to
play TFT, GRIM, and ALLD during our experiment. Finally, a simple learning process
based on strategy changes in our experiment converges to strategies that are close to pure
strategies over 90% of the time. Overall, these trends suggest that the three commonly
studied strategies (TFT, GRIM, and ALLD) may be even more prevalent if the subjects
are given more time to learn.

4. ROBUSTNESS TREATMENTS

We made several important choices regarding the experimental design of the main
treatment presented above. First, we restricted subjects to memory-1 rules. Eliciting and
analyzing rules longer than memory-1 adds significant complexity to an already complex
environment for both the researcher and the experimental subjects. Because the main
goal of this paper was to understand the use of mixed strategies in repeated games as mo-
tivated by the literature on memory-1 mixed strategies, we decided to try to avoid as much
complexity as possible and focus solely on memory-1 strategies. Second, when creating a
rule, subjects used a slider to select the output by choosing any integer between 0 and
100. Using a slider meant that the only way they could choose a nonrandom output was
to select either 0 or 100, whereas the other 99 numbers all led to a random output. We
made this choice for simplicity and because we wanted to give commonly studied mixed
strategies, such as SG, a fair shot at emerging. Finally, we only used one probability of
continuation (δ = 0�95), which was the only probability of continuation that would allow
us to compare results with previous experiments that had been run with a similar interface
(Romero and Rosokha (2018)) as well as those run with a different interface (Dal Bó and
Fréchette (2019)).

The design of our main treatment raises a few potential concerns. First, the restric-
tion to memory-1 strategies could lead some subjects to use mixed strategies as a proxy
for longer pure strategies (e.g., lenient grim or tit-for-two-tats). In this case, the results
presented above may overstate the amount of mixed strategies that subjects are using.

41. Formally, c(s) = arg mini∈I ‖s − s11
i ‖ and d(s� s′) = {i|i ∈ c(s)� s41

i = s′}, where s11
i � s41

i ∈ S are strategies for
subject i ∈ I in supergames 11 and 41, respectively. Finally, we define P(s� s′) = |d(s�s′)|

|c(s)| .
29Sometimes the process cycles through a deterministic repetitive sequence of strategies. In this case, we say

the process converges to the average of all strategies in the repetitive sequence.
30An alternative approach to identify long-run strategy distributions could be to use an adaptive learning

model over the set of repeated-game strategies such as in Hanaki, Sethi, Erev, and Peterhansl (2005), Ioannou
and Romero (2014), Romero and Rosokha (2019) or estimate individual-level learning parameters as done in
Dal Bó and Fréchette (2011) and Embrey, Fréchette, and Yuksel (2018). However, given the complexity of
strategies considered in this paper, extending the existing learning models is not trivial.
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Second, the large majority of options (99 out of 101) of the output-selection slider cor-
responded to mixed outputs. For this reason, if a subject were to select their output ran-
domly, the probability of them selecting a random output would be very close to 1 ( 99

101 ).
This is another potential reason that the amount of mixed strategies may be overstated.
Finally, we only used one continuation probability. Just using data from the main ex-
periment, how changes to the continuation probability would affect the amount of mixed
strategies is not clear. A different continuation probability would also be useful as another
basis of comparison for cooperation levels and strategies played by subjects.

Given these concerns, we ran additional robustness treatments with two modifications.
First, in the robustness treatments, subjects were not restricted to memory-1 rules. In-
stead, they could specify a rule that can condition on up to eight periods in the past.
Second, they were required to go through a multistage procedure to create a new rule.
The procedure (discussed below) made pure strategies more salient. These two changes
allow us to address the first two concerns listed above. We address the third concern by
using two different probabilities of continuation in the robustness treatments: one with
continuation probability δ= 0�95 (referred to as M2 + D95) and the other with continua-
tion probability δ= 0�75 (referred to as M2 + D75). Treatment M2 + D95 uses the same
continuation probability as the main treatment and allows us to see what impact our de-
sign choices had on results. Treatment M2 + 75 gives us results for a new continuation
probability.

A list of design changes for the robustness treatments are as follows:
1. To allow subjects to use rules longer than memory-1, we needed to redesign the inter-

face. A screenshot of the updated experimental interface can be found in Figure 5.
The major change is that the rule-set area has been expanded to allow for more rules
and longer rules. In addition, it can now scroll if the user adds more rules than can
fit on the screen.

2. To reduce experimenter demand of mixed strategies, the subjects now have to go
through a multistage procedure to add a new rule. First, the subjects are asked if
they want the output of the rule to be pure (referred to as a “Type A” rule in the
experiment) or if they want the output of the rule to be mixed (referred to as a
“Type B” rule in the experiment). Second, the subjects choose the length of the rule
(any number between 1 and 8, which represents how many of the previous periods
this rule depends on). Finally, the subjects choose the inputs and outputs. When
selecting the output, if they choose a Type A rule they are given two buttons (W or
Y), and if they choose a Type B rule they are given the slider, where they can choose
an integer between 0 and 100. Note they can still choose a pure output. Screenshots
of the rule constructor for this multistage procedure can be seen in Figure 5 panels
(b) through (e).

3. Given the expanded set of possible rules, and the new procedure for adding rules, we
also had to update the experimental quiz. Changes to the quiz include new screens
explaining rule length, which rule will be chosen (longest rule that fits the history),
and some demos for how to add rules of different types. The quiz still had the same
number of questions and the same criteria for passing the quiz, and subjects were
given the same amount of time.31

4. For the M2 + 75 treatments, subjects faced the same number of supergames but
fewer periods (60*4 in expectation) than in the main experiments and M2 + 95
treatments (60*20 in expectation).

31A complete set of screenshots of the updated quiz from the robustness treatments can be found at http:
//jnromero.com/research/mixedStrategyChoice.

http://jnromero.com/research/mixedStrategyChoice
http://jnromero.com/research/mixedStrategyChoice
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FIGURE 5.—Screenshot of the Experimental Interface for the Robustness Treatments. Note: The screen-
shots shows (a) the main interface for the robustness treatments, (b) the rule type selector (deterministic Type
A or mixed Type B), (c) the rule length selector, (d) the deterministic output selector, and (e) the mixed output
selector.

The two robustness treatments consisted of 12 sessions run at the Vernon Smith Ex-
perimental Economics Laboratory at Purdue University in March 2020 and March 2021.
Details of each session are provided in Table A-3 in the Appendix. As in the main treat-
ment, each session consisted of instructions, an incentivized quiz to ensure that subjects
understood the instructions, and 60 supergames. The M2 + D95 treatment used the same
exchange rate as the main experiment (2000 ECUs equals one US dollar). Since the M2 +
D75 had one-fifth as many periods as the M2 + D95, in expectation, we set the exchange
rate in the M2 + D75 treatment to 400 ECUs equals one US dollar.
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It is important to note that the analysis of the rule sets in the robustness treatments is
difficult due to the complexity of the strategy space.32 Difficulties include the fact the two
strategies can be very similar, for example, TFT and a strategy that is like TFT after every
history except that after eight periods of alternations between CD and DC, it plays D. In
addition, multiple rule combinations can lead to the same strategy (TFT can be repre-
sented with {default rule D, FP → C, CC → C, DC → C} or {default rule C, FP → C,
CD → D, DD → D}). Therefore, rather than focusing on the strategies, we focus on sim-
ulated play of the strategies using the method from Romero and Rosokha (2018). More
precisely, we fix a set of 500 predetermined action sequences of random lengths based on
the continuation probability of δ = 0�95. Then we have every strategy play against these
sequences and analyze and compare strategies based on the simulated play. Focusing on
the simulated play of strategies alleviates the above difficulties because similar strategies
will have similar simulated play regardless of the rule-set composition.33

To provide a comparison between the memory-1 strategies in the main treatment and
the memory-8 strategies in the robustness treatments, we construct an empirical memory-1
strategy by taking the simulated play and calculating the frequencies of cooperation in the
first period and after each of the four memory-1 histories. For example, consider a subject
that has a rule set {default rule D, FP → D, DCDC → C} presented in Figure 6(a). This
rule set plays like ALLD after every history except that after two consecutive periods of
cooperation by the other player, it switches to cooperation for one period. The empiri-
cal memory-1 frequencies for this strategy would be 0% cooperation in the first period
and after CC, CD, and DD; and roughly 31% cooperation after DC. We organize these
empirical memory-1 strategies using the same clustering approach as in Section 3.2. The
results are presented in Figure 7. We find that consistent with the main treatment, the two
largest clusters in the M2 + 95 treatment contain strategies that are similar to TFT and
GRIM.34 Also, not surprisingly, we find that in the M2 + 75 treatment, the two largest
clusters contain strategies that are similar to ALLD and GRIM.

In addition to empirical memory-1 frequencies, we compute three measures that cap-
ture the intent and prevalence of randomizing behavior. First, we define a mixed strategy
as a strategy that randomizes during at least one period of the simulated play. For exam-
ple, the strategy presented in Figure 6(a) is a pure strategy, while the strategy presented
in Figure 6(b) is a mixed strategy. Second, we calculate the M1RM for the empirical
memory-1 strategy. For example, a pure strategy presented in Figure 6(a) would appear
as randomizing 31% of the time after DC if viewed from the perspective of memory-1 co-
operation frequency. Third, we define a strategy’s action randomness measure (referred
to as ARM) as the average randomness measure of rule outputs used to make choices

32Each strategy can be represented with a vector with one entry for the first-period rule, and an entry for
each possible rule up to memory-8. Therefore, the set of possible strategies in this experiment is 101

∑8
k=0 22k =

10log(101)87�381 ≈ 10175�140. Notice that while memory-8 rules will always be used after period 8, shorter rules may
still be used before period 8.

33The predetermined sequences are generated using a Markov process that covers a variety of behaviors
(see Online Appendix for more details). We use the same set of predetermined action sequences to compare
strategy sets across treatments because otherwise identical strategies may appear to be different. In addition,
to keep the outcome of randomization as similar as possible, we used the same sequence of action random
numbers for all strategies.

34Note that the clusters (and cluster exemplars) generated by the affinity propagation algorithm are endoge-
nous. For comparison, in Figure OA4 of the Online Appendix, we provide the empirical memory-1 strategies
organized using the exemplars from Figure 2. One observation is that the composition of cluster 4 in Fig-
ure OA4 is substantially different than in Figure 2. In particular, we find fewer uniformly randomizing strate-
gies in the robustness treatments.
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FIGURE 6.—Example Rule Sets and Strategy Statistics. Note: Rule sets are displayed in the top row of each
panel. All strategy statistics are calculated using simulated play (see Online Appendix for details). Empirical
memory-1 strategies display cooperation frequency after each of the five histories (∅�CC�CD�DC�DD). Solid
squares denote a situation in which the default rule determines the percentage of cooperation after that history.
Dashed squares denote a situation in which a memory-2 or greater rule was used to make a choice at least once
after the specified history. Both rule sets were constructed by subjects in the second locked-response stage of
the M2+D95 treatment. Rule Set #1 is the exemplar of the ALLD cluster, and rule set #2 is the exemplar of
the TFT cluster.

across all periods of simulated play.35 This measure tells how random the choices from a
subject’s rule set are due to rules with mixed outputs. For example, the ARM of the pure
strategy in Figure 6(a) is 0, because all choices are made by rules with deterministic out-
put. Whereas the ARM of the mixed strategy in Figure 6(b) is close to 1.50 because the
randomness measure of actions in the first period is 30, and in the simulations, the first pe-
riod occurs approximately 1/20 of the time because the interaction length is determined
using continuation probability δ= 0�95.

We present a summary of the three measures in Table IV. In particular, the table dis-
plays results obtained from rule sets of the main treatment (labeled M1D95), the first
robustness treatment (M2 + D95), and data from Romero and Rosokha (2018) (labeled
RR2018), all of which implemented continuation probability δ = 0�95. In the fourth col-
umn, we include results from the second robustness treatment (M2 + D75), which con-

35ARM = 1
T

∑T
t=1 RMt , where RMt is the randomness measure of the output of the rule used to make a

choice in period t, and T is the number of interactions in the simulated play. Recall that the randomness
measure is defined as RM = 2 ∗ min{100 −p�p}, where p is the cooperation percentage.



2318 J. ROMERO AND Y. ROSOKHA

FIGURE 7.—Empirical Memory-1 Strategies in Robustness Treatments. Note: Empirical memory-1 strate-
gies are presented as vectors of cooperation frequency after each of the five histories (∅�CC�CD�DC�DD).
Displayed strategies are generated using rule sets from the second locked-response stage. Strategies are
grouped using the affinity propagation clustering algorithm. Strategies in a given cluster are sorted accord-
ing to ARM . A black bar on the left side of a strategy indicates ARM > 0. A bullet on the left side indicates
the cluster exemplar. Solid squares denote a situation in which the default rule determines the percentage of
cooperation after that history. Dashed squares denote a situation in which a memory-2 or greater rule was
used to make a choice at least once after the specified history. The pure strategies TFT, GRIM, ALLD, DTFT,
and ALLC are labeled.
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sists of 60 supergames with continuation probability δ= 0�75. All analyses are carried out
using rule sets from supergame 41 of the corresponding treatment. Table IV shows that
the proportion of subjects that construct rule sets that use random outputs has marginally
decreased relative to the main treatment (0.669 vs. 0.525, p-value of 0.11; 0.669 vs. 0.551,
p-value of 0.14). In addition, while the extent of randomness is not significantly different
according to M1RM (21.523 vs. 17.899, p-value of 0.30; 21.523 vs. 15.325, p-value of 0.13),
it significantly decreases according to ARM (20.664 vs. 10.066, p-value of 0.01; 20.664 vs.
10.237, p-value of 0.02). This finding suggests that focusing on cooperation frequencies
after memory-1 histories (M1RM) may lead to the overestimation in the extent of ran-
domizing behavior during game-play (ARM). Combined, our results suggest that while
about half of the subjects are still using mixed strategies in the robustness treatments, the
amount of randomness in the play has gone down.

Table IV also includes descriptive measures of rule sets. Specifically, we define a strat-
egy’s length as the length of the longest rule used to make a choice during simulated play.
For example, the length of the strategy presented in Figure 6(a) is 2, and the length of the
strategy presented in Figure 6(b) is 1. We define rules used as the total number of rules
used to make a choice during simulated play. For example, the strategy set presented in
Figure 6(b) contains five rules because the default rule is never used. We define action
rule length (ARL) as the average length of the rule that makes a choice during simulated
play. For example, ARL of the strategy presented in Figure 6(b) is 0.95 because for an in-
teraction of 20 periods, the first-period rule (length 0) is used once, and a rule with length
1 is used in every other period. We find that the length of the longest rule (row 4), the
number of rules used (row 5), and the average length of a rule that make a choice during
simulated play (row 6) are all increasing (p-values < 0�01 for all comparisons except ARL
M1D95 vs. M2 + D75, which has a p-value of 0.80). Not surprisingly, this confirms that
subjects have more rules and longer rules in their sets in the robustness treatments.

The last three rows of Table IV show how close the elicited strategies are to three com-
monly observed strategies: ALLD, TFT, and GRIM. The seventh row of the table shows
the percentage of strategies that exactly match one of those three strategies. Next, in row
eight, we present the proportion of strategies in the same cluster as one of the three pure
strategies. Finally, the last row shows the proportion of ALLD, TFT, and GRIM estimated
using the SFEM procedure on the actions from the experiment using the set of 20 pure
strategies proposed in Fudenberg, Rand, and Dreber (2012). Notably, for the robustness
treatments, the proportions of subjects classified to the ALLD, TFT, and GRIM clusters
are close to the results of the SFEM. In addition, the fact that 20% of subjects are able
to construct one of the three common strategies exactly, despite the complexity of the
experimental interface and the fact that the set of possible strategies contains 101

∑8
k=0 22k

strategies indicates the focal nature of these strategies. These results suggest that a ma-
jority of the strategies used in the robustness treatments are close to the three commonly
studied pure strategies, even if they do not match exactly.

Several results from the robustness treatments are in line with previous papers that
study strategies for the same stage-game payoffs. The first three results pertain to changes
in strategies in response to changes in δ and are consistent with Dal Bó and Fréchette
(2019). First, as δ decreases, the prevalence of the ALLD strategy increases significantly
(0.11% vs. 0.35%). Second, the ratio of TFT to (TFT + GRIM) decreases as δ decreases
(39.4 vs. 27.3). Third, the use of memory-1 strategies increases as δ decreases (ARL of
0.987 vs. 0.800). The last result pertains to potential experimenter demand effects for
randomization and longer strategies induced by our interface and design. In particular,
using data from supergames 11 through 20 of Dal Bó and Fréchette (2011) and Dal Bó
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and Fréchette (2019), we calculate the proportion of supergames that can be perfectly ac-
counted for by the five most common memory-1 strategies —ALLC, ALLD, TFT, GRIM,
and DTFT—and compare it to our M2 + D75 treatment. We find that 84.0% of the su-
pergames in Dal Bó and Fréchette (2011), 91.8% of supergames in Dal Bó and Fréchette
(2019), and 87.8% of supergames in our M2 + D75 treatment can be perfectly accounted
for by these five strategies, suggesting that the experimenter demand effects from our
design are minimal.

To summarize, Table IV shows that a majority of subjects in the robustness treatments
are still using mixed strategies (row 1). The table also shows that subjects are construct-
ing rule sets with longer (rows 4 and 6) and fewer random rules (row 3). This finding
is not surprising given the design of the robustness treatments, which allows subjects to
construct longer rules and deemphasizes mixed rules. Finally, the table shows that a ma-
jority of subjects are playing strategies close to the three focal pure strategies TFT, GRIM,
and ALLD (according to clusters in row 8 and SFEM in row 9). Altogether, these results
suggest that while subjects shifted to longer and less random strategies in the robustness
treatments, the primary conclusions from the main treatments still hold.36

5. DISCUSSION

The goal of this paper is to address the recent debate regarding whether subjects use
mixed strategies in the indefinitely repeated prisoner’s dilemma. In particular, we conduct
both an experimental and econometric investigation into the types of strategies that sub-
jects play. Our experiment is the first (to our knowledge) to elicit mixed repeated-game
strategies. The experimental design allows us to directly observe the strategies that sub-
jects use, thereby shedding light on whether subjects use mixed repeated-game strategies.
We use the elicited strategies to provide an empirically-relevant foundation for analyzing
commonly used mixture model estimation procedures.

The first main takeaway is that a majority (67%) of subjects played mixed strategies in
our experiment. In particular, we find a large proportion of subjects used mixed strategies
that we refer to as the mixed-tit-for-tat class of strategies. These strategies cooperate
with high probability after mutual cooperation, defect with high probability after mutual
defection, and randomize otherwise. This class of strategies, to a large degree, is similar to
SG (proposed in Breitmoser (2015)) because it has the same trends after CC and DD, and
also randomizes after CD and DC. However, SG is defined as having an equal probability
of cooperation after CD and DC, and our data suggest that there is a consistent difference
in these probabilities in favor of more cooperation after DC than after CD.

The second main takeaway is that three commonly studied pure strategies (TFT, GRIM,
and ALLD) play an important role in our experiment. First, a large proportion of subjects
(32%) constructed these three strategies exactly. This result is particularly striking in the
context of our experiment because these three strategies emerged even when the strategy
space contained 1015 strategies. Second, the cluster analysis shows that many of the mixed

36Recall that all results in this section are based on the simulated play, because it provides the cleanest
comparison of constructed strategies across treatments. As a robustness check, we remove subjects who played
ALLD from the data and present the results in Table OA2 in the Online Appendix. As a further robustness
check, we provide the corresponding results (for all subjects) based on the actual play during the second locked-
response stage of the experiment in Table OA3 in the Online Appendix. Finally, the proportion mixed, M1RM
of the memory-1 part of the strategy, the strategy length, and the number of rules in the set can be calculated
from the rule sets directly. We present them in Table OA4 in the Online Appendix. The main conclusions still
hold across these robustness checks.
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TABLE IV

STRATEGY COMPARISON ACROSS TREATMENTS.

Note: The columns of the table correspond to the main treatment (M1D95), the robustness treatments with δ= 0�95 (M2 + D95),
the treatments from Romero and Rosokha (2018), and the second robustness treatment with δ = 0�75 (M2 + D75). All statistics
are calculated using strategies from the second locked-response stage. Bootstrapped standard errors (in parentheses) are calculated
by drawing 1000 random samples: first, randomly draw the appropriate number of groups with replacement; then, for each group,
randomly draw the appropriate number of subjects with replacement; and finally, calculate the desired statistic.

strategies are close to these three pure strategies as well. In total, 54% of all subjects’
strategies fall into the three clusters corresponding to these three pure strategies. Finally,
we find evidence that subjects’ strategies are becoming less mixed over the course of the
experiment. Taking this observation one step further, we implement a model of learning
that suggests that 90% of the strategies would converge to the three commonly studied
pure strategies if subjects had more time to learn.

The third main takeaway is that mixture model estimation is sensitive to the set of
strategies that are being used. This is particularly relevant when considering mixed strate-
gies because the researcher needs to specify how randomization is modeled within a strat-
egy. We use the set of strategies observed in our experiment as a benchmark to compare
with previously considered strategy sets using observed actions from our data. We find
that some strategy sets lead to estimates that do not match the underlying distribution of
strategies.

In addition to our main experiment, we ran two robustness treatments that make pure
strategies less salient and allow for a larger set of strategies. The results of the robustness
treatments suggest that some subjects appear to substitute away from memory-1 mixed
strategies toward pure strategies that condition on longer histories. Despite this, the pri-
mary conclusions from our main experiment still hold: a majority of subjects use mixed
strategies; many subjects exactly construct ALLD, TFT, or GRIM; and many of the mixed
strategies are close to those three pure strategies.

Several avenues for future research are promising. First, it would be interesting to test
whether the large proportion of pure strategies and the identified type of mixed strategies
are observed in treatments with different parameters. In particular, parameters that are
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studied in Breitmoser (2015) may show more evidence of SG because the SG equilibrium
described in that paper is fairly close to GRIM for our experimental parameters. Second,
it would be interesting to focus on the learning process with mixed strategies in more
detail. In particular, building a reinforcement learning or a belief learning model that may
explain behavior in our experiment would be of great interest. Finally, future research
can use our elicitation approach for evaluating theoretical refinements in repeated-game
strategies and different strategy-estimation procedures.

APPENDIX A: ADDITIONAL TABLES AND FIGURES

FIGURE A-1.—Rule Constructor Screen-shots. Note: (a) Before any selection has been made; (b) After the
input has been set, but before the output has been set; (c) After both input and output have been set. Subjects
could make selections regarding inputs and output in any order they choose.

FIGURE A-2.—Examples of Rule Sets. Note: (a) TFT—Tit-for-Tat; (b) GT—Grim Trigger; (c) SG—Semi–
Grim; (d) mixed-TFT—mixed tit-for-tat. Note that there are multiple ways to construct the same strategy. All
rule-sets must always have a first-period rule and a default rule. If the rule set has all four rules corresponding
to the four possible memory-1 histories (as in the mixed-TFT rule set displayed in panel (d)), then the default
rule will never make a choice.
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TABLE A-1

SUPERGAME LENGTH REALIZATIONS.

TABLE A-2

SESSION SUMMARY FOR MAIN TREATMENT.
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TABLE A-3

SESSION SUMMARY FOR ROBUSTNESS TREATMENTS.

FIGURE A-3.—Time Before Start Match Button Click. Note: Cumulative distribution of times at which
subjects clicked “start match” button. They had up to 10 minutes before the first supergame in the nonbinding
stage (supergame 11) to construct the initial rule set. Once a subject clicked “start match” button, they were
still able to make changes to their rule set until everyone clicked “start match” button. Subject had up to 2
minutes before each of the other supergames in the nonbinding stage. Subjects had up to 10 minutes before
the second locked-response stage.
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FIGURE A-4.—Elicited Strategies (First Locked-Response Stage). Note: Displayed strategies are elicited
strategies from the first locked-response stage. Strategies are presented as vectors of cooperation percentages
after each of the five histories (∅�CC�CD�DC�DD). A black line on the left-hand side of the vector denotes a
mixed strategy. Red rectangles denote a situation in which the percentage of cooperation is determined by the
default rule. A black bullet on the left-hand side denotes that the strategy is the cluster exemplar. For ease of
reading, 100 and 0 are not shown. Strategies are grouped using the affinity propagation clustering algorithm.
Strategies in a given cluster are sorted according to M1RM . The pure strategies TFT, GRIM, ALLD, and
DTFT are labeled.

FIGURE A-5.—Evidence of Semi-Grim. Note: Proportion of SG and GRIM in the second locked-response
stage of our experiment. For SG strategy, we require the probability of cooperation after CC to be within x
percentage points from 100, after CD and DC to be within x percentage points of each other, and after DD to
be within x percentage points from 0. For GRIM strategy, we require the probability of cooperation in the first
period and after CC to be within x percentage points from 100, whereas after CD, DC, and DD to be within x
percentage point from 0.
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FIGURE A-6.—Cluster Analysis Without First Period. Note: Displayed strategies are elicited strategies from
the second locked-response stage. Strategies are presented as vectors of cooperation percentages after each of
the four histories (CC�CD�DC�DD). A black line on the left-hand side of the vector denotes a mixed strategy.
A black bullet on the left-hand side denotes that the strategy is the cluster exemplar. For ease of reading, 100
and 0 are not shown. Strategies are grouped using the affinity propagation clustering algorithm. Strategies in a
given cluster are sorted according to M1RM .

FIGURE A-7.—Likelihood Classification of Elicited Strategies. Note: This figure replicates Figure 2 with the
following change. For each of the 124 elicited strategies, we determine which of the six estimated strategies
from Table 3(a) has the highest likelihood of matching observed play. The highest likelihood strategy is denoted
by a colored bar on the right side of the corresponding strategy.
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TABLE A-4

MIXTURE MODEL ESTIMATES FOR MEMORY-1 MARKOV STRATEGIES (WITH ICL-BIC ELIMINATION).

Note: This table replicates Table III(a) except that elimination is performed based on the integrated classification likelihood-Bayes
information criterion (ICL-BIC) procedure as in Breitmoser (2015).

FIGURE A-8.—Likelihood Classification of Elicited Strategies (with ICL-BIC elimination). Note: This table
replicates Figure A-7 with the following change. Strategies Gen WSLS and Gen Coop have been removed
based on the integrated classification likelihood-Bayes information criterion (ICL-BIC) elimination procedure
as in Breitmoser (2015).
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FIGURE A-9.—Strategy Performance Variability. Note: We ran 100 round-robin tournaments in which each
strategy from the second locked-response stage was matched with each other’s strategy from the population for
20 supergames of random duration (supergame lengths were the same for each pair within a tournament, but
different across tournaments). Top: Variability in strategy performance across 100 tournaments. Bottom: Each
point denotes the strategy performance (the average payoff per period) in one tournament and the realized
average supergame length in the same tournament. Payoff is calculated as the average earnings per period.
Clusters are identified by color.

FIGURE A-10.—Long-Run Evolution of Strategies.
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APPENDIX B: SFEM ESTIMATION DETAILS

There are three main steps to the strategy frequency estimation method (Dal Bó and
Fréchette (2011)). The first step is to specify the set of K strategies considered for esti-
mation. The second step is to determine the likelihood that strategy k ∈ K generates the
choices made by each subject n ∈ N over multiple supergames. The third step is to for-
mulate the likelihood function. In what follows, we present the matrix approach to SFEM
described in Rosokha and Wei (2020):

• Let X denote a K ×N matrix of the number of correct matches for all combinations
of subjects and strategies. That is, for each entry in the matrix X(k�n) we compare
subject n’s actual play with how strategy k would have played in her place and find
the number of periods in which subject n’s play correctly matches the play of strategy
k.

• Let Y denote a K×N matrix of the number of mismatches when comparing subjects’
play with what the strategies would do in their place.

• Define a Hadamard-product P :

P = βX ◦ (1 −β)Y � (1)

where β is the probability that a subject plays according to a strategy and (1 − β) is
the probability that the subject deviates from that strategy. Thus, each entry P(k�n)
is the likelihood that strategy k generated the observed choices by subject n.

TABLE B-1

SFEM ESTIMATES FOR OUR DATA.
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• Then, using the matrix dot product, we define the log-likelihood function L:

L(β�φ) = ln
(
φ′ · P) · 1� (2)

where φ is a vector of strategy frequencies.
• The optimization objective is to find β≥ 0�5 and φ to maximize L.

Table B-1 presents SFEM estimates on the data from our experiment using the
set of 20 strategies from Fudenberg, Rand, and Dreber (2012). Values of 0.00 are
dropped for ease of reading. Only strategies with at least 10% total proportion across
various treatments/supergames are shown.
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