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This is an Online Supplementary Appendix to “An Adversarial Approach to Struc-
tural Estimation.” Section S.1 shows the equivalence of the adversarial estimator with
a logistic discriminator to the optimally-weighted simulated method of moments esti-
mator. Section S.2 develops the rate of convergence of a general discriminator and of
a neural network discriminator. Section S.3 contains proofs of the lemmas used in the
main text.

S.1. EQUIVALENCE TO SMM WHEN D IS LOGISTIC

WE SHOW THAT the adversarial estimator with a logistic discriminator is asymptotically
equivalent to SMM. Importantly, we do not assume that the logistic discriminator is “cor-
rectly specified” so the oracle discriminator Dθ may not take the form of a logistic classi-
fier. In turn, we assume that the moments are correctly specified, E[Xi] = E[Xi�θ0 ]; how-
ever, the structural model may still be misspecified. As in Section 3, let D(x;λ) =�(x�λ)
be the logistic discriminator and λθ and λ̂θ be the population parameter and its estimator
for each θ, respectively. We employ the same notation as Section 4.2.1.

In particular, we show that the adversarial estimator θ̂ with this discriminator is asymp-
totically equivalent to the following SMM estimator:

θ̃ := arg min
θ∈�

(
En[X] −Em[Xθ]

)�
�

(
En[X] −Em[Xθ]

)

for � :=
(
E
[
XX�] +E

[
Xθ0X

�
θ0

]
2

)−1

�

This is optimally weighted when X and Xθ contain a constant term and the second-order
moments are also correctly specified (namely E[XX�] = E[Xθ0X

�
θ0

]), in which case � re-
duces to E[XX�]−1. For simplicity, we ignore estimation of �. To show their equivalence,
we assume the following:

1. (Growing synthetic sample size) n/m converges.
2. (Smooth model) Tθ is twice continuously differentiable in θ for every x ∈ X̃ .
3. (Finite moments) E[XX�] is positive definite; E[‖Ẋθ‖2] and E[‖Ẍθ‖] are bounded

uniformly in θ; Em[‖Xθ‖2] and Em[‖Ẋθ‖2] converge uniformly in θ.
4. (Correctly specified moments) E[X] = E[Xθ0 ].
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5. (Identification of λθ0 ) λθ0 is unique.
6. (Smooth discriminator) λθ is continuously differentiable in θ.
7. (Exact maximizer) λ̂θ is the exact maximizer of Mθ(D(·;λ)) in that the FOC for λ̂θ

is exactly zero for every θ ∈ �.
8. (Uniform convergence rate of discriminator) supθ ‖λ̂θ − λθ‖ = OP (n−1/2).
9. (Identification of θ0) E[Ẋθ0 ] is of full row rank.

10. (Exact minimizer) θ̂ is the exact minimizer of Mθ(D(·; λ̂θ)) in that the FOC for θ̂
is exactly zero.

11. (Consistency) θ̂ and θ̃ are consistent for θ0.
The FOC for λθ0 gives E[(1−�(X�λθ0 ))X] = E[�(X�

θ0
λθ0 )Xθ0 ]. Conditions 4 and 5 im-

ply λθ0 = 0. The Taylor expansion of the FOC for λ̂θ0 yields
√
n(λ̂θ0 − 0) =�

√
n(En[X] −

Em[Xθ]) + oP (1) � N(0� Vλ) for Vλ := �[Var(X) + lim n
m

Var(Xθ0 )]�. Also, by the same

reasoning as Section 4.2.1, supθ ‖ ˙̂λθ − λ̇θ‖ =OP (n−1/2).
Next, the envelope theorem simplifies the FOC for θ̂ to Em[�(X�

θ̂
λ̂θ̂)Ẋ�

θ̂
λ̂θ̂] = 0, whose

Taylor expansion gives

0 = Em

[
�

(
X�

θ0
λ̂θ0

)
Ẋ�

θ0
λ̂θ0

] +Em

[
�

(
X�

θ0
λ̂θ0

)[(
1 −�

(
X�

θ0
λ̂θ0

))
Ẋ�

θ0
λ̂θ0 λ̂

�
θ0
Ẋθ0

+A+ Ẋ�
θ0

˙̂λθ0

]]
(θ̂− θ0) + oP

(
n−1/2

)
�

where A = [( ∂
∂θ1

Ẋθ0)�λ̂θ0� � � � � ( ∂
∂θd

Ẋθ0 )�λ̂θ0 ]. As λ̂θ0 → 0 and ˙̂λθ0 → λ̇θ0 , this becomes

√
n(θ̂− θ0) = −E

[
Ẋ�

θ0
λ̇θ0

]−1
E
[
Ẋ�

θ0

]√
n(λ̂θ0 − 0) + oP (1)�

As in Section 4.2.1, we have λ̇θ0 = −�E[Ẋθ0 ], which yields
√
n(θ̂ − θ0) � N(0� Vθ) for

Vθ := (E[Ẋ�
θ0

]�E[Ẋθ0 ])−1
E[Ẋ�

θ0
]VλE[Ẋθ0 ](E[Ẋ�

θ0
]�E[Ẋθ0 ])−1.

Meanwhile, the FOC for SMM, Em[Ẋ�
θ̃

]�(En[X] −Em[Xθ̃]) = 0, expands as

0 = Em

[
Ẋ�

θ0

]
�

(
En[X] −Em[Xθ0 ]

) + (
B −Em

[
Ẋ�

θ0

]
�Em[Ẋθ0 ]

)
(θ̃− θ0) + oP

(
n−1/2

)
�

where B = [Em[
∂Ẋθ0
∂θ1

]��(En[X] − Em[Xθ0 ])� � � � �Em[
∂Ẋθ0
∂θd

]��(En[X] − Em[Xθ0 ])]. Thus,√
n(θ̃ − θ0) = −(E[Ẋ�

θ0
]�E[Ẋθ0 ])−1

E[Ẋ�
θ0

]�
√
n(En[X] − Em[Xθ0 ]) + oP (1), which shows

that θ̂ and θ̃ are asymptotically equivalent in probability as well as in distribution.

REMARK: If X and Xθ have a constant term and the second-order moments are cor-
rectly specified, Vθ simplifies to [1 + lim n

m
](E[Ẋ�

θ0
]E[XX�]−1

E[Ẋθ0 ])−1.

S.2. CONVERGENCE RATES OF THE DISCRIMINATOR

This section establishes the rate of convergence of the discriminator. In addition to
results on a general nonparametric discriminator, we present results specific to a neural
network discriminator.

The distance of discriminators is measured by a Hellinger-like distance

dθ(D1�D2) :=
√
hθ(D1�D2)2 + hθ(1 −D1�1 −D2)2�

where hθ(D1�D2) :=
√

(P0 + Pθ)(
√
D1 − √

D2)2.
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The size of the neural network sieve is usually measured by the uniform and bracketing
entropies. Conceptually, the bracketing entropy gives a stronger bound than the uniform
entropy and yields a tighter convergence rate. It also goes nicely with the Bernstein norm
that is useful for maximal inequalities for the log-likelihood ratio (as well as our discrimi-
nators). For this, we go with the bracketing entropy. See van der Vaart and Wellner (2011)
for more comparison of the two entropy notions.

DEFINITION—Bracketing number and bracketing entropy integral: The ε-bracketing
number N[](ε�F� d) of a set F with respect to a premetric d is the minimal number of
ε-brackets in d needed to cover F .S.1 The δ-bracketing entropy integral of F with respect
to d is J[](δ�F� d) := ∫ δ

0

√
1 + logN[](ε�F� d)dε.

The results on convergence of the discriminator are stated pointwise in θ ∈ �, so the
discussion is made for fixed θ. Let δn be a nonnegative sequence.

S.2.1. General Nonparametric Discriminator

Let Dθ�δ := {D ∈ Dn : dθ(D�Dθ) ≤ δ}. We first assume that the sieve does not grow too
fast.

ASSUMPTION S.1—Entropy of sieve: The entropy integral satisfies J[](δn�Dθ�δn� dθ) �
δ2
n

√
n. Also, there exists α < 2 such that J[](δ�Dθ�δ� dθ)/δα has a majorant decreasing in

δ > 0.

The estimated discriminator need not be the exact maximizer of the loss but is required
to maximize it up to some rate.

ASSUMPTION S.2—Approximately maximizing discriminator: The trained discriminator
D̂θ satisfies Mθ(D̂θ) ≥Mθ(Dθ) −OP (δ2

n).

In a sense, we can interpret Assumption S.1 as a requirement that the sieve be not too
rich and Assumption S.2 that the sieve be rich enough. For example, if Dθ�δn is an empty
set, Assumption S.1 is trivially satisfied, but there is no way to attain Assumption S.2. On
the contrary, if Dn contains every function, there would exist an element in Dn that sat-
isfies Assumption S.2 but Assumption S.1 will be violated. Both assumptions collectively
require that the sieve is small but good enough for Dθ. With these, we obtain the rate of
convergence of the discriminator.

THEOREM S.1—Rate of convergence of discriminator: Under Assumptions S.1 and S.2
and , dθ(D̂θ�Dθ) =O∗

P (δn).

One interesting observation is that Theorem S.1 does not require convergence of the
objective function. This is reminiscent of the nonparametric maximum likelihood liter-
ature. To prove it without requiring convergence of the objective function, we think in
terms of a pseudo-objective function. Let mp

q := log p+q

2q and

M̃θ(D) := P0m
D
Dθ

+ Pθm
1−D
1−Dθ

� M̃θ(D) := P0m
D
Dθ

+ Pθm
1−D
1−Dθ

�

S.1A premetric on a class of functions F is a function d : F × F → R that satisfies d(f� f ) = 0 and d(f�g) =
d(g� f ) ≥ 0 for every f�g ∈ F .
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PROOF: The concavity of the logarithm and Assumption S.2 imply M̃θ(D̂θ)−M̃θ(Dθ) ≥
1
2 [Mθ(D̂θ) −Mθ(Dθ)] ≥ −OP (δ2

n). Then, apply van der Vaart and Wellner (1996, Theorem
3.4.1) with Lemma S.1 and Assumption S.1. Q.E.D.

The following is a maximal inequality used to prove Theorem S.1. Let M1
θ�δ := {mD

Dθ
:

D ∈Dθ�δ} and M2
θ�δ :={m1−D

1−Dθ
:D ∈Dθ�δ}.

LEMMA S.1—Maximal inequality for the pseudo-cross-entropy discriminator: For every
D ∈D, M̃θ(D) − M̃θ(Dθ) ≤ −dθ(D�Dθ)2/(1 + √

2)2. For every δ > 0,

E
∗ sup
D∈Dθ�δ

√
n
∣∣(M̃θ − M̃θ)(D) − (M̃θ − M̃θ)(Dθ)

∣∣
� J[](δ�Dθ�δ� dθ)

[
1 +

√
n

m
+

(
1 + n

m

)
J[](δ�Dθ�δ� dθ)

δ2√n

]
�

PROOF: Since logx≤ 2(
√
x− 1) for every x > 0,

P0 log
D

Dθ

≤ 2P0

(√
D

Dθ

− 1
)

=
[

2P0

√
D(p0 +pθ)√

p0
−

∫
D(p0 +pθ) −

∫
p0

]
+ (P0 + Pθ)(D−Dθ)

= −hθ(D�Dθ)2 + (P0 + Pθ)(D−Dθ)�

Similarly, Pθ log 1−D
1−Dθ

≤ −hθ(1 −D�1 −Dθ)2 − (P0 +Pθ)(D−Dθ). Replacing D and 1 −D

with (D+Dθ)/2 and (1 −D+ 1 −Dθ)/2 and summing them up yield

P0m
D
Dθ

+ Pθm
1−D
1−Dθ

≤ −hθ

(
D+Dθ

2
�Dθ

)2

− hθ

(
1 −D+ 1 −Dθ

2
�1 −Dθ

)2

�

Since
√

2hθ(p+q

2 � q) ≤ hθ(p�q) ≤ (1 + √
2)hθ(p+q

2 � q) (van der Vaart and Wellner (1996,
Problem 3.4.4)), we obtain the first inequality. For the second inequality, observe that

√
n
[
(M̃θ − M̃θ)(D) − (M̃θ − M̃θ)(Dθ)

] = √
n(P0 − P0)mD

Dθ
+ √

n(Pθ − Pθ)m1−D
1−Dθ

�

Therefore, it suffices to separately bound

E
∗ sup
D∈Dθ�δ

∣∣√n(P0 − P0)mD
Dθ

∣∣ and
√

n

m
E

∗ sup
D∈Dθ�δ

∣∣√m(Pθ − Pθ)m1−D
1−Dθ

∣∣�
Since mD

Dθ
�m1−D

1−Dθ
≥ log(1/2) and e|x| − 1 −|x|≤ 4(ex/2 − 1)2 for every x ≥ log(1/2),

∥∥mD
Dθ

∥∥2

P0�B
≤ 8P0

(
e
mD
Dθ

/2 − 1
)2 ≤ 8hθ

(
D+Dθ

2
�Dθ

)2

≤ 4hθ(D�Dθ)2�

∥∥m1−D
1−Dθ

∥∥2

Pθ�B
≤ 4hθ(1 −D�1 −Dθ)2�
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By van der Vaart and Wellner (1996, Lemma 3.4.3), the first supremum is bounded by
J[](2δ�M1

θ�δ�‖ · ‖P0�B)[1 + J[](2δ�M1
θ�δ�‖ · ‖P0�B)/(4δ2√n)]. Let [
�u] be an ε-bracket in D

with respect to dθ. Since u− 
 ≥ 0 and e|x| − 1 −|x|≤ 2(ex/2 − 1)2 for x ≥ 0,

∥∥mu
Dθ

−m

Dθ

∥∥2

P0�B
≤ 4

∫ (√
u+Dθ


+Dθ

− 1
)2

p0 ≤ 4
∫

(
√
u+Dθ − √


+Dθ)2(p0 +pθ)

≤ 4hθ(u�
)2 ≤ 4ε2�

Thus, [m

Dθ
�mu

Dθ
] makes a 2ε-bracket in M1

θ�δ with respect to ‖ · ‖P0�B, so J[](2δ�M1
θ�δ�‖ ·

‖P0�B) ≤ 2J[](δ�Dθ�δ� dθ). Analogous argument for the second supremum yields the second
inequality. Q.E.D.

S.2.2. Cross-Entropy Loss

To show convergence of the objective function, we need to make an additional assump-
tion that the tails of the discriminators in the sieve are not too thin. This assumption
would be trivial if we assume a compact support for the observables Xi and Xi�θ, which is
standard in the neural network literature.

ASSUMPTION S.3—Support compatibility: Define P(X|A) to be P(X1{A})/P(A) if
P(A) > 0 and 0 otherwise. There exists M such that

sup
D∈Dθ�δn

P0

(
Dθ

D

∣∣∣∣ Dθ

D
≥ 25

16

)
<M� sup

D∈Dθ�δn

Pθ

(
1 −Dθ

1 −D

∣∣∣∣ 1 −Dθ

1 −D
≥ 25

16

)
<M�

Also, the brackets {
 ≤ D ≤ u} in Assumption S.1 can be taken so that (P0 + Pθ)(Dθ



(
√
u −√


)2) and (P0 + Pθ)( 1−Dθ

1−u
(
√

1 − 
− √
1 − u)2) are O(dθ(u�
)2).

With this, we obtain the rate for the estimated cross-entropy loss.

THEOREM S.2—Rate of convergence of objective function: Under Assumptions S.1
to S.3, Mθ(D̂θ) −Mθ(Dθ) =O∗

P (δ2
n).

PROOF: Since Mθ(D̂θ) −Mθ(Dθ) ≥ −OP (δ2
n) by Assumption S.2, we need only to prove

the reverse inequality. With log(x) ≤ 2(
√
x− 1) for x > 0, for every D,

Mθ(D) −Mθ(Dθ)

≤ 2P0

(√
D

Dθ

− 1
)

+ 2Pθ

(√
1 −D

1 −Dθ

− 1
)

+ (P0 − P0) log
D

Dθ

+ (Pθ − Pθ) log
1 −D

1 −Dθ

�

As in Lemma S.1, the first two terms are equal to −dθ(D�Dθ)2. Since Theorem S.1 implies
dθ(D̂θ�Dθ)2 = O∗

P (δ2
n), it remains to show that the last two terms are of the same order.

We bound the suprema,

E
∗ sup
D∈Dθ�δn

∣∣∣∣√n(P0 − P0) log
D

Dθ

∣∣∣∣ and E
∗ sup
D∈Dθ�δn

∣∣∣∣√m(Pθ − Pθ) log
1 −D

1 −Dθ

∣∣∣∣�
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Under Assumption S.3, it follows from (the remark after) Lemma S.4 that for D ∈Dθ�δn ,

∥∥∥∥1
2

log
D

Dθ

∥∥∥∥
2

P0�B

≤ 2(1 +M)hθ(D�Dθ)2�

∥∥∥∥1
2

log
1 −D

1 −Dθ

∥∥∥∥
2

Pθ�B

≤ 2(1 +M)hθ(1 −D�1 −Dθ)2�

Assumption S.3 also implies that an ε-bracket in M1
θ�δ induces

∥∥∥∥log
u

Dθ

− log



Dθ

∥∥∥∥
2

P0�B

≤ 4P0

(√
u



− 1

)2

= 4(P0 + Pθ)
Dθ



(
√
u− √


)2

≤ Cdθ(u�
)2�∥∥∥∥log
1 − 


1 −Dθ

− log
1 − u

1 −Dθ

∥∥∥∥
2

Pθ�B

≤ 4(P0 + Pθ)
1 −Dθ

1 − u
(
√

1 − 
−
√

1 − u)2 ≤ Cdθ(u�
)2�

for some C > 0. By similar arguments as in the proof of Lemma S.1, the two suprema are
of orders

√
nδ2

n and
√
mδ2

n.S.2 With Assumption 2 follows the theorem. Q.E.D.

S.2.3. Neural Network Discriminator

The results in Section S.2.1 apply to any nonparametric sieve discriminator. Given a
particular sieve, the specific convergence rate is determined by the δn that satisfies As-
sumption S.1. In the nonparametric estimation literature, it is often observed that δn gets
slower as the dimension d of the input Xi increases. In the context of nonparametric re-
gression, Bauer and Kohler (2019) show that a particular type of neural network estimator
does not have a rate that slows with d but only with d∗, the “underlying dimension” of the
target function.S.3 We believe that the structure they impose on the target function arises
very naturally in economic models, and want to incorporate the “remedy for the curse of
dimensionality” aspect into our theory.

In light of this, we develop the “classification counterpart” of the results in Bauer and
Kohler (2019). Instead of the target regression function, we exploit the low-dimensional
composite structure on the log-likelihood ratio log(p0/pθ). We note that our theory does
not require that there is such a low-dimensional structure; if there is none, we have d∗ = d
and our result reduces to a regular nonparametric rate with the curse of dimensionality.

Intuitively, the low-dimensional composite structure is described as follows. Note that
the log-likelihood ratio log(p0/pθ) takes a d-dimensional input X as its argument, where
d can be large. We need that this ratio admits a representation as a nested composition of
smooth functions, each of which takes a possibly smaller number d∗ of arguments. In the
first layer of composition, we assume a linear index structure to reduce d arguments into
d∗ intermediate outputs.

To develop a precise definition, we start with the notion of smoothness we use.

S.2We can write ‖ 1
2 log D

Dθ
‖2
P0�B

≤ [2(1 + M) ∨ C]hθ(D�Dθ)2 and ‖ log u
Dθ

− log 

Dθ

‖2
P0�B

≤ [2(1 + M) ∨
C]dθ(u�
)2 to apply the same argument as Theorem S.1.

S.3Bauer and Kohler (2019) call d∗ the order.
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DEFINITION—(p�C)-smoothness; Bauer and Kohler (2019, Definition 1): Let p= q+
s for some q ∈N0 and 0 < s ≤ 1. A function m :Rd → R is called (p�C)-smooth if for every
α= (α1� � � � �αd) ∈N

d
0 with

∑d

j=1 αj = q, the partial derivative ∂qm

∂x
α1
1 ···∂xαd

d

exists and satisfies

∣∣∣∣ ∂qm

∂x
α1
1 · · ·∂xαd

d

(x) − ∂qm

∂x
α1
1 · · ·∂xαd

d

(z)
∣∣∣∣ ≤ C‖x− z‖s

for every x�z ∈ R
d where ‖ · ‖ denotes the Euclidean norm.

With this, the nested composition structure is defined as follows.

DEFINITION—Generalized hierarchical interaction model; Bauer and Kohler (2019,
Definition 2): Let d ∈ N, d∗ ∈ {1� � � � � d}, and m : Rd → R. We say that the function m
satisfies a generalized hierarchical interaction model of order d∗ and level 0, if there exist
a1 ∈R

d� � � � � ad∗ ∈ R
d , and f :Rd∗ → R such that

m(x) = f
(
a�

1 x� � � � � a
�
d∗x

)
for every x ∈ R

d . We say that m satisfies a generalized hierarchical interaction model of order
d∗ and level l+1 with K components if there exist gk :Rd∗ →R and f1�k� � � � � fd∗�k :Rd → R

(k = 1� � � � �K) such that f1�k� � � � � fd∗�k (k = 1� � � � �K) satisfy a generalized hierarchical
model of order d∗ and level l and

m(x) =
K∑

k=1

gk

(
f1�k(x)� � � � � fd∗�k(x)

)

for every x ∈ R
d . We say that the generalized hierarchical interaction model is (p�C)-

smooth if all functions occurring in its definition are (p�C)-smooth.

For example, a conditional binary choice model yields a log-likelihood ratio that satis-
fies a generalized hierarchical interaction model of order d∗ ≤ 3 and level 0, irrespectively
of the dimension of the covariates.

EXAMPLE S.1—Binary choice model: Let yi = 1{x�
i α + εi > 0}, εi ∼ Pε be the true

DGP, and yi = 1{x�
i β+ ε̃i > 0}, ε̃i ∼ P̃ε, be the structural model. Then

log
p0(y�x)
pθ(y�x)

= y log
1 − Pε

(−x�α
)

1 − P̃ε

(−x�β
) + (1 − y) log

Pε

(−x�α
)

P̃ε

(−x�β
) �

Therefore, we can write this as f (a�
1 z�a

�
2 z�a

�
3 z) where z = (y�x�)�, a1 = (1�0� � � � �0)�,

a2 = (0�−α�)�, a3 = (0�−β�)�, and f (y�x1�x2) = y[log(1−Pε(x1)) − log(1− P̃ε(x2))] +
(1 − y)[logPε(x1) − log P̃ε(x2)].

Neural networks approximate functions by a nested composition of activation func-
tions. For theoretical development, we define the following structure on the neural net-
work estimator.
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DEFINITION—Hierarchical neural network; Bauer and Kohler (2019, Section 2): Let
σ : R → R be a q-admissible activation function. For M∗ ∈ N, d ∈ N, d∗ ∈ {1� � � � � d}, and
α> 0, let FM∗�d∗�d�α be the class of functions f :Rd → R such that

f (x) =
M∗∑
i=1

μiσ

(
4d∗∑
j=1

λi�jσ

(
d∑

v=1

θi�j�vxv + θi�j�0

)
+ λi�0

)
+μ0

for some μi�λi�j� θi�j�v ∈ R, where |μi|≤ α, |λi�j|≤ α, and |θi�j�v|≤ α. For l = 0, define the
set of neural networks with two hidden layers by H(0)

M∗�d∗�d�α := FM∗�d∗�d�α; for l > 0, define
the set of neural networks with 2l + 2 hidden layers by

H(l)
M∗�d∗�d�α

:=
{
h :Rd →R : h(x) =

K∑
k=1

gk

(
f1�k(x)� � � � � fd∗�k(x)

)
� gk ∈FM∗�d∗�d∗�α� fj�k ∈H(l−1)

}
�

Now, we assume that the log-likelihood ratio admits a hierarchical representation and
that the neural network has a corresponding hierarchical structure.

ASSUMPTION S.4—Neural network discriminator: Let P0 and Pθ have subexponential
tails and finite first moments.S.4 Let log(p0/pθ) satisfy a (p�C)-smooth generalized hierar-
chical interaction model of order d∗ and finite level l with K components for p = q + s,
q ∈ N0, and s ∈ (0�1]. Let H(l)

M∗�d∗�d�α be the class of neural networks with the Lipschitz acti-
vation function with Lipschitz constant 1 for

M∗ =
⌈(

d∗ + q
d∗

)
(q+ 1)

([
(logδn)2(2q+3)

δn

] 1
p

+ 1
)d∗⌉

�

α=
[

(logδn)2(2q+3)

δn

] d∗+p(2q+3)+1
p logn

δ2
n

�

and δn = [(logn)
p+2d∗ (2q+3)

p /n]
p

2p+d∗ . Denote by Dn :={�(f ) : f ∈H(l)
M∗�d∗�d�α} the sieve of neu-

ral network discriminators for the standard logistic cdf �.

Assumption S.4 gives a sufficient condition for Assumption S.1, so we use this to derive
the rate of convergence of the neural network discriminator. If, in addition, d∗ < 2p,
we have δn = oP (n−1/4); this is easier to satisfy if the underlying dimension of the log-
likelihood ratio is low, regardless of the dimension of the input.

PROPOSITION S.3—Rate of convergence of neural network discriminator: Under As-
sumptions S.2 and S.4 and , dθ(D̂θ�Dθ) =O∗

P (δn).

PROOF: We use Lemma S.2 to bound the bracketing number in Assumption S.1.
For now, let us assume that Dn in Assumption S.4 satisfies the network structure of
Lemma S.2; later, we calibrate the constants in reflection of the network structure in

S.4We say that P on R
d has subexponential tails if logP(‖X‖∞ > a) � −a for large a.
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Assumption S.4. Since D is nonnegative, we can extend dθ to accommodate arbitrary
functions f1 and f2 by dθ(f1� f2) := dθ(0 ∨ f1�0 ∨ f2). In the notation of Lemma S.2,

∥∥ε2F
∥∥2

dθ
= sup

D∈D
dθ

(
D− ε2F/2�D+ ε2F/2

)2 ≤ hθ

(
0� ε2F

)2 + hθ

(
0� ε2F

)2

= 2ε2(P0 + Pθ)F = 2ε2
[
2σ0 + (P0 + Pθ)‖X‖∞

] =: Bε2�

Since P0 and Pθ have bounded first moments, B < ∞. Replacing ε with ε/
√
B yields

‖ ε2

B
F‖dθ ≤ ε. Therefore, with Lemma S.2,

logN[](ε�Dn� dθ) ≤ logN[]

(∥∥∥∥ε2

B
F

∥∥∥∥
dθ

�Dn� dθ

)
≤ S log

⌈
2B(L+ 1)(ŨC)L+1d

ε2

⌉
�

Observe that for 0 < δ ≤ ea,

∫ δ

0

√
1 + a− logεdε=

√
πea

2
erfc(

√
1 + a− logδ)+δ

√
1 + a− logδ� δ

√
1 + a− logδ�

Therefore,

J[](δ�Dn�hθ) �
∫ δ

0

√
1 + S

[
log

(
2B(L+ 1)(ŨC)L+1d

) − 2 logε
]
+ dε

� δ
√

1 + S
[
log

(
2B(L+ 1)(ŨC)L+1d

) − 2 logδ
]
+

� δ
√

1 ∨ [
SL log(ŨC) − S logδ

]
�

Therefore, if we set

δn =O

(√
SL log(ŨC) + S logn

n

)
� (1)

Dn satisfies Assumption S.1 with α= 1�5. Now, we must choose S, L, Ũ , and C so that this
rate is attainable and fast. For the rate to be attainable, we must also have Assumption S.2,
for which we need that Dθ�δ is nonempty. That is, the sieve Dn must contain an element
in the δn-neighborhood of Dθ, that is, infD∈Dn dθ(D�Dθ) � δn.

Since Dn = �(H(l)), we use Bauer and Kohler (2019, Theorem 3) to find the network
configuration that attains this inequality. For this, we need to choose “N , ηn, an, Mn”
in their notation; in doing so, we find “S, L, Ũ , C” in our notation. First, we set N = q
and ηn = δ2

n. By subexponentiality, we have logP0(‖X‖∞ > a) + logPθ(‖X‖∞ > a) � −a
for large a. Therefore, we want an 
 −2 logδn so that the remainder term in Bauer and
Kohler (2019, Theorem 3) is small enough, that is, (P0 + Pθ)(‖X‖∞ > an) � δ2

n.S.5 We
can do this by setting, for example, an = (− logδn)2. Finally, we want to choose Mn so
that aN+q+3

n M−p
n ∼ δn since then Bauer and Kohler (2019, Theorem 3) can bound the

supremum term that appears below; set Mn = (logδn)2(N+q+3)/p/δ1/p
n . Let A ⊂ [−an�an]d

S.5If we set an ∼ −2 logδn, we can only say (P0 + Pθ)(‖X‖∞ > an) � δc
n for some c.
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be the set for which (P0 + Pθ)(A) ≤ cηn in Bauer and Kohler (2019, Theorem 3). Then

hθ(D�Dθ)2 ≤
(∫

‖x‖∞>an

+
∫
A

+
∫

{‖x‖∞≤an}\A

)
(
√
D− √

Dθ)2(p0 +pθ)

≤ (P0 + Pθ)
(‖X‖∞ > an

) + (P0 + Pθ)(A)

+
∫

{‖x‖∞≤an}\A
(
√
D− √

Dθ)2(p0 +pθ)�

The first two terms are bounded by δ2
n + cδ2

n. For D= �(f ),

∫
{‖x‖∞≤an}\A

(
√
D− √

Dθ)2(p0 +pθ) =
∫

{‖x‖∞≤an}\A

(√
�(f ) −

√
�

(
�−1 ◦Dθ

))2
(p0 +pθ)

≤ 2
27

∥∥f −�−1 ◦Dθ

∥∥2

∞�{‖x‖∞≤an}\A

= 2
27

∥∥∥∥f − log
p0

pθ

∥∥∥∥
2

∞�{‖x‖∞≤an}\A
�

since
√
�(·) is Lipschitz with constant 1/(3

√
3). We may likewise bound hθ(1 − D�1 −

Dθ)2. By Bauer and Kohler (2019, Theorem 3), inff∈H(l) ‖f − log p0
pθ

‖∞�{‖x‖∞≤an}\A � δn.
Thus, we obtain infD∈Dn dθ(D�Dθ) � δn.

These configurations can be translated into our constants as S = O(dd∗M∗Kl) ∼ M∗,
Ũ = M∗ ∨ (4d∗) ∨K ∼M∗, C = α, and L = 2+3l =O(1), where Bauer and Kohler (2019,
Theorem 3) define

M∗ =
(
d∗ +N

d∗

)
(N + 1)(Mn + 1)d

∗ ∼Md∗
n = (logδn)2d∗(N+q+3)/p

δd∗/p
n

�

α= Md∗+p(2N+3)+1
n

ηn

logn = (logδn)2(N+q+3)[d∗+p(2N+3)+1]/p

δ2+[d∗+p(2N+3)+1]/p
n

logn�

With these, (1) becomes δ2
n ∼ M∗

log(M∗α)+logn
n

∼ [(logn)
p+2d∗ (N+q+3)

p /n]
p

2p+d∗ . The result fol-
lows by substituting N = q and invoking Theorem S.1. Q.E.D.

The following lemma bounds the bracketing number of a (possibly sparse) neural
network with bounded weights and Lipschitz activation functions. The notation of the
neural network is defined as follows. Denote the hidden-layer activation function by
σ : R → R and the output activation function by � : R → R. Let L be the number of
hidden and output layers. Let w
ij be the weight for the ith node in the (
 + 1)th layer
on the jth node in the 
th layer; for example, the input to the second node in the first
layer is w021x1 + · · · + w02UxU , where X = (x1� � � � � xU) is the input to the network. Let
w
i = (w
i1� � � � �w
iU)� be the column vector of weights for the ith node in the (
 + 1)th
layer. Let w
 = (w
1� � � � �w
U) be the matrix with columns w
i; note that for 
 = L, wL is
just a column vector as there is only one output. Let w be the vector of all parameters.
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Then the discriminator is given byS.6

D(X;w) = �
(
w�

Lσ
(
w�

L−1σ
(· · ·w�

1 σ
(
w�

0 X
))))

�

where σ (·) for a vector argument is elementwise application.

LEMMA S.2—Bracketing number of neural network with bounded weights: Let F be a
class of neural networks defined as above. Denote the total number of nonzero weights by S
and the maximum number of nonzero weights in each node (except for the first layer taking
inputs) by Ũ .S.7 Assume that σ and � are Lipschitz with constant 1 and ‖w‖∞ ≤ C for some
C. Assume innocuously that ŨC ≥ 2 and let σ0 :=|σ (0)|. Define an envelope F :Rd → R by
F (x) := σ0 +‖x‖∞. Then, for every premetric dF and ‖f‖dF := supg∈F dF (g−f/2� g+f/2),

N[]

(‖εF‖dF �F� dF
) ≤

⌈
2(L+ 1)(ŨC)L+1d

ε

⌉S

�

For a fully connected network, Ũ = U and S = (LU + 1)U + (d −U)U . For a hierarchical
network in Bauer and Kohler (2019), S =O(Ũ (L+4)/3d).

PROOF: The neural network is given as f (x;w) = �(w�
Lσ (w�

L−1σ (· · ·w�
1 σ (w�

0 x)))).
We can bound the outputs of the 
th layer by∥∥σ(

w�

−1σ (· · · )

)∥∥
∞ ≤ σ0 + ∥∥w�


−1σ (· · · )
∥∥

∞ ≤ σ0 + ŨC
∥∥σ (· · · )

∥∥
∞

≤ [
1 + ŨC + · · · + (ŨC)
−1

]
σ0 + Ũ
−1C
d‖x‖∞

≤ Ũ
−1C

(
Ũσ0 + d‖x‖∞

) ≤ (ŨC)
d
(
σ0 + ‖x‖∞

)
�

where the fourth inequality holds for ŨC ≥ 2. For two sets of weights, w and w̃,∣∣f (x;w) − f (x; w̃)
∣∣ ≤ Ũ‖wL − w̃L‖∞

(∥∥σ(
w�

L−1σ (· · · )
)∥∥

∞ ∨ ∥∥σ(
w̃�

L−1σ (· · · )
)∥∥

∞
)

+ ŨC
∥∥σ(

w�
L−1σ (· · · )

) − σ
(
w̃�

L−1σ (· · · )
)∥∥

∞

≤ ŨL+1CLd‖wL − w̃L‖∞
(
σ0 + ‖x‖∞

) + · · ·
+ ŨL+1CLd‖w1 − w̃1‖∞

(
σ0 + ‖x‖∞

) + ŨLCLd‖w0 − w̃0‖∞‖x‖∞

≤ (L+ 1)ŨL+1CLd‖w − w̃‖∞
(
σ0 + ‖x‖∞

)
�

Let A := (L + 1)ŨL+1CLd. Partitioning the weight space [−C�C]S into cubes of
length 2ε/A creates �CA/ε�S cubes. Hence, the covering number is bounded as
N(ε� [−C�C]S�‖ · ‖∞) ≤ �CA/ε�S . The bound on the bracketing number then follows
from van der Vaart and Wellner (1996, Theorem 2.7.11), observing that the proof thereof
works for a premetric with the modification of 2ε‖F‖ to ‖2εF‖dF .

S.6If we include a constant input and a constant node (also known as the “bias” term), it is assumed to be
already incorporated in X and w.

S.7The number of nonzero elements in each row of each matrix w
, 
≥ 1, is bounded by Ũ .
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For a fully connected network, the number of all weights is dU (weights for the first
layer) plus (L−1)U2 (weights for the remaining hidden layers) plus U (weights in the out-
put layer), summing to (LU +1)U+ (d−U)U .S.8 For a network H(0) in Bauer and Kohler
(2019) (in their notation), the number of all weights is A(0) := d(4d∗M∗) + 4d∗M∗ +M∗ =
4(1 + d)d∗M∗ +M∗. For H(1), A(1) :=A(0)K +K(4d∗M∗) + 4d∗M∗ +M∗ = A(0)K + 4(1 +
K)d∗M∗ +M∗. For H(l) , A(l) :=A(l−1)K + 4(1 +K)d∗M∗ +M∗ =A(0)Kl + ∑l−1

j=0 K
j[4(1 +

K)d∗M∗ +M∗] = 4d∗M∗[(1 + d)Kl + 1−Kl

1−K
(1 +K)] +M∗ 1−Kl+1

1−K
= O(dd∗M∗Kl). Then use

L = 2 + 3l and Ũ =M∗ ∨ (4d∗) ∨K. Q.E.D.

REMARK: Lemma S.2 assumes a Lipschitz property for the activation and output func-
tions, which accommodates ReLU, softplus, and sigmoid, but not perceptron.

S.3. SUPPORTING LEMMAS FOR THE MAIN TEXT

The following lemma shows local convergence of the loss needed for Theorem 3.

LEMMA S.3—Asymptotic distribution of objective function: Under Assumptions 2
and 5, for every compact K ⊂�, uniformly in h ∈ K,

n
[
Mθ0+h/

√
n(Dθ0+h/

√
n) −Mθ0 (Dθ0 )

]
= −√

nP0h
�
̇θ0 + √

n(P0 + Pθ0+h/
√
n)Dθ0+h/

√
nh

�
̇θ0

+ n
[
(Pθ0+h/

√
n − Pθ0+h/

√
n) − (Pθ0 − Pθ0 )

]
log(1 −Dθ0 ) + h�Ĩθ0h

4
+ oP (1)�

PROOF: Let θ := θ0 + h/
√
n, W := √

Dθ/Dθ0 − 1, W̃ := √
pθ0/pθ − 1. Observe that

n
[
Mθ(Dθ) −Mθ0 (Dθ0 )

] = n(P0 + Pθ) log
Dθ

Dθ0

− nPθ log
pθ0

pθ

+ n(Pθ − Pθ0 ) log(1 −Dθ0 )�

We examine each term separately. By Assumption 5,

n(Pθ − Pθ0 ) log(1 −Dθ0 ) = n

∫
(
√
pθ + √

pθ0 )(
√
pθ − √

pθ0) log(1 −Dθ0 )

=
∫ (√

nh�
̇θ0 + h�
̈θ0h

2
+ h�
̇θ0 
̇

�
θ0
h

2

)
pθ0 log(1 −Dθ0 ) + o(1)�

The first term is zero since Mθ(Dθ) − Mθ0 (Dθ0 ) ≥ 0 and Mθ(Dθ) − Mθ0 (Dθ0 ) =
2
∫
Dθ0 (

√
pθ − √

pθ0 )2 + o(h(θ�θ0)2) + (Pθ − Pθ0 ) log(1 − Dθ0 ).S.9 Therefore, n(Pθ −
Pθ0 ) log(1 −Dθ0 ) = 1

2Pθ0 (h�
̈θ0h+ h�
̇θ0 
̇
�
θ0
h) log(1 −Dθ0 ) + o(1).

Using logx = 2(
√
x− 1) − (

√
x− 1)2 + (

√
x− 1)2R(

√
x− 1) for R(x) = O(x),

n(P0 + Pθ) log
Dθ

Dθ0

= 2n(P0 + Pθ)W − n(P0 + Pθ)W 2 + n(P0 + Pθ)W 2R(Wn)�

S.8If the network has a bias term, the actual variable weights are slightly fewer, but it does not change the
order.

S.9The term Pθ0h
�
̇θ0 log(1 − Dθ0 ) is the only term that is linear in h = h(θ�θ0), so if it is not zero, then

Mθ(Dθ) −Mθ0 (Dθ0 ) ≥ 0 is violated.
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Let Ĭθ0 := 2Pθ0Dθ0 
̇θ0 
̇
�
θ0

. Observe that

(P0 + Pθ)
(√

nW + h�
̇θ0

2
(1 −Dθ)

)2

= n

∫ [√
p0 +pθ0 − √

p0 +pθ + h�
̇θ0

2
√
n

√
(1 −Dθ)pθ

]2

�

which is o(‖h‖2/n) by Lemma S.6 and . Thus, the RHS converges to zero uniformly
over every compact K ⊂ �. We draw two observations: (i) the mean and variance of
(
√
nW + (1 − Dθ)h�
̇θ0/2)(Xi), Xi ∼ (P0 + Pθn)/2, converge to zero and so does the

variance of
√
n(P0 + Pθ)(

√
nW + (1 − Dθ)h�
̇θ0/2) under Assumption 2;S.10 (ii) (P0 +

Pθ)|nW 2 − (1 −Dθ)2(h�
̇θ0/2)2|→ 0, so n(P0 +Pθ)W 2 = (P0 +Pθ)(1 −Dθ)2(h�
̇θ0/2)2 +
oP (1) → h�Iθ0h/4 − h�Ĭθ0h/8. Next,

n(P0 + Pθ)W = −n

2
h(p0 +pθ0�p0 +pθ)2 −→ −h�Iθ0h

8
+ h�Ĭθ0h

16
�

√
n(P0 + Pθ)(1 −Dθ)

h�
̇θ0

2
= √

nPθ

h�
̇θ0

2
= √

n(Pθ − Pθ0 )
h�
̇θ0

2
→ h�Iθ0h

2
�

This implies that the mean of
√
n(P0 + Pθ)(

√
nW + (1 − Dθ)h�
̇θ0/2) converges to

3h�Iθ0h/8 + h�Ĭθ0h/16. Combining with (i), we find

n(P0 + Pθ)W = −√
n(P0 + Pθ)(1 −Dθ)

h�
̇θ0

2
+ 3h�Iθ0h

8
+ h�Ĭθ0h

16
+ oP (1)�

The remainder term n(P0 + Pθ)W 2R(Wn) vanishes by the same logic as van der Vaart
(1998, Theorem 7.2).

Next, observe that nPθ log
pθ0
pθ

= 2nPθW̃ − nPθW̃
2 + nPθW̃

2R(W̃ ) and

Pθ

(√
nW̃ + h�
̇θ0

2

)2

= n

∫ [√
pθ0 − √

pθ + h�
̇θ
2
√
n

√
pθ

]2

= o

(‖h‖2

n

)
�

Again, (i) the mean and variance of (
√
nW̃ + h�
̇θ0/2)(Xi), Xi ∼ Pθ, converge to

zero and so does the variance of
√
nPθ(

√
nW̃ + h�
̇θ0/2) under Assumption 2; (ii)

Pθ|nW̃ 2 − (h�
̇θ0/2)2| → 0, so nPθW̃
2 → Pθ(h�
̇θ0/2)2 → h�Iθ0h/4. Next, nPθW̃ =

−nh(θ�θ0)2/2→−h�Iθ0h/8 and
√
nPθh

�
̇θ0/2→h�Iθ0h/2. This implies that the mean
of

√
nPθ(

√
nW̃ + h�
̇θ0/2) converges to 3h�Iθ0h/8. Thus, we find

nPθW̃ = −√
nPθ

h�
̇θ0

2
+ 3h�Iθ0h

8
+ oP (1)�

S.10This does not imply that the mean of
√
n(P0 + Pθ)(

√
nW + (1 −Dθ)h�
̇θ0/2) converges to zero.
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We may once again ignore the remainder term nPθW̃
2R(W̃ ). Altogether, with Ĩθ0 defined

in Assumption 5,

n
[
Mθ(Dθ) −Mθ0 (Dθ0 )

] = −√
nP0h

�
̇θ0 + √
n(P0 + Pθ)Dθh

�
̇θ0 + h�Ĩθ0h

4

+ n
[
(Pθ − Pθ0 ) − (Pθ − Pθ0 )

]
log(1 −Dθ0 ) + oP (1)�

Q.E.D.

The Bernstein “norm” of a function f is defined as ‖f‖P�B := √
2P(e|f| − 1 −|f|); this

induces a premetric without the triangle inequality (van der Vaart and Wellner (1996,
p. 324)). The next lemma bounds the Bernstein “norm” of a log-likelihood ratio by the
Hellinger distance without assuming a bounded likelihood ratio.

LEMMA S.4—Bernstein “norm” of log-likelihood ratio; Kaji and Ročková (2022,
Lemma 2.1(iv)): For every pair of probability measures P and P0 such that P0(p0/p) <∞,

∥∥∥∥1
2

log
p

p0

∥∥∥∥
2

P0�B

≤ 2h(p�p0)2

[
1 + P0

(
p0

p

∣∣∣∣ p0

p
≥ 25

16

)]
�

where P0(p0/p | p0/p ≥ 25/16) = 0 if P0(p0/p ≥ 25/16) = 0.

REMARK: Similarly, we have

∥∥∥∥1
2

log
D

Dθ

∥∥∥∥
2

P0�B

≤ 2hθ(D�Dθ)2

[
1 + P0

(
Dθ

D

∣∣∣∣ Dθ

D
≥ 25

16

)]
�

∥∥∥∥1
2

log
1 −D

1 −Dθ

∥∥∥∥
2

Pθ�B

≤ 2hθ(1 −D�1 −Dθ)2

[
1 + Pθ

(
1 −Dθ

1 −D

∣∣∣∣ 1 −Dθ

1 −D
≥ 25

16

)]
�

LEMMA S.5—Bernstein “norm” of log discriminator ratio: For every θ1� θ2 ∈ �,

∥∥∥∥log
Dθ1

Dθ2

∥∥∥∥
2

P0�B

≤ 8h(θ1� θ2)2�

∥∥∥∥log
(1 −Dθ1 ) ◦ Tθ1

(1 −Dθ2 ) ◦ Tθ2

∥∥∥∥
2

P̃0�B

≤ 8h̃(θ1� θ2)2�

PROOF: Since e|x| − 1 −|x|≤ 2(ex/2 − 1)2 for x≥ 0,

∥∥∥∥log
Dθ1

Dθ2

∥∥∥∥
2

P0�B

≤ 4P0

(√
Dθ1

Dθ2

− 1
)2

1{Dθ1 ≥Dθ2}+ 4P0

(√
Dθ2

Dθ1

− 1
)2

1{Dθ1 <Dθ2}

≤ 4P0

(√
p0 +pθ2

p0 +pθ1

− 1
)2

+ 4P0

(√
p0 +pθ1

p0 +pθ2

− 1
)2

≤ 8
∫

(
√
p0 +pθ1 − √

p0 +pθ2)2 ≤ 8
∫

(
√
pθ1 − √

pθ2)2 ≤ 8h(θ1� θ2)2�
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Similarly,

∥∥∥∥log
(1 −Dθ1 ) ◦ Tθ1

(1 −Dθ2 ) ◦ Tθ2

∥∥∥∥
2

P̃0�B

≤ 4P̃0

(√
(1 −Dθ1 ) ◦ Tθ1

(1 −Dθ2 ) ◦ Tθ2

− 1
)2

+ 4P̃0

(√
(1 −Dθ2 ) ◦ Tθ2

(1 −Dθ1 ) ◦ Tθ1

− 1
)2

≤ 8h̃(θ1� θ2)2

since

P̃0

(√
(1 −Dθ1 ) ◦ Tθ1

(1 −Dθ2 ) ◦ Tθ2

− 1
)2

≤ P̃0

(
1√

(1 −Dθ2 ) ◦ Tθ2

− 1√
(1 −Dθ1 ) ◦ Tθ1

)2

≤ P̃0

(√
p0

pθ2

◦ Tθ2 −
√

p0

pθ1

◦ Tθ1

)2

= h̃(θ1� θ2)2�

Q.E.D.

LEMMA S.6—Hellinger distance of sums of densities: For arbitrary densities p, p0, p1,

h(p+p0�p+p1)2 =
∫

p0

p+p0
(
√
p0 − √

p1)2 + o
(
h(p0�p1)2

)
�

PROOF: Since
√
p+ x2 is uniformly differentiable in x with derivative x/

√
p+ x2, the

result follows by expanding
√
p1 around

√
p0. Q.E.D.
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